1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
/* Machine-dependent hooks for the unix child process stratum. This
code is for the HP PA-RISC cpu.
Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
Contributed by the Center for Software Science at the
University of Utah (pa-gdb-bugs@cs.utah.edu).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include <sys/ptrace.h>
static void fetch_register ();
/* This function simply calls ptrace with the given arguments.
It exists so that all calls to ptrace are isolated in this
machine-dependent file. */
int
call_ptrace (request, pid, addr, data)
int request, pid;
PTRACE_ARG3_TYPE addr;
int data;
{
return ptrace (request, pid, addr, data, 0);
}
void
kill_inferior ()
{
if (inferior_pid == 0)
return;
ptrace (PT_EXIT, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0, 0);
wait ((int *)0);
target_mourn_inferior ();
}
/* Start debugging the process whose number is PID. */
int
attach (pid)
int pid;
{
errno = 0;
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0, 0);
if (errno)
perror_with_name ("ptrace");
attach_flag = 1;
return pid;
}
/* Stop debugging the process whose number is PID
and continue it with signal number SIGNAL.
SIGNAL = 0 means just continue it. */
void
detach (signal)
int signal;
{
errno = 0;
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
if (errno)
perror_with_name ("ptrace");
attach_flag = 0;
}
/* Fetch all registers, or just one, from the child process. */
void
fetch_inferior_registers (regno)
int regno;
{
if (regno == -1)
for (regno = 0; regno < NUM_REGS; regno++)
fetch_register (regno);
else
fetch_register (regno);
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (regno)
int regno;
{
register unsigned int regaddr;
char buf[80];
extern char registers[];
register int i;
unsigned int offset = U_REGS_OFFSET;
if (regno >= 0)
{
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
{
errno = 0;
ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) ®isters[REGISTER_BYTE (regno) + i], 0);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
}
}
else
{
for (regno = 0; regno < NUM_REGS; regno++)
{
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
{
errno = 0;
ptrace (PT_WUAREA, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) ®isters[REGISTER_BYTE (regno) + i], 0);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
}
}
}
return;
}
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
/* Get kernel_u_addr using HPUX-style nlist(). */
CORE_ADDR kernel_u_addr;
struct hpnlist {
char * n_name;
long n_value;
unsigned char n_type;
unsigned char n_length;
short n_almod;
short n_unused;
};
static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
/* read the value of the u area from the hp-ux kernel */
void _initialize_kernel_u_addr ()
{
#if 0
struct user u;
#endif
nlist ("/hp-ux", &nl);
kernel_u_addr = nl[0].n_value;
}
#if !defined (offsetof)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#endif
/* U_REGS_OFFSET is the offset of the registers within the u area. */
#if !defined (U_REGS_OFFSET)
#define U_REGS_OFFSET \
ptrace (PT_READ_U, inferior_pid, \
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0, 0) \
- KERNEL_U_ADDR
#endif
/* Fetch one register. */
static void
fetch_register (regno)
int regno;
{
register unsigned int regaddr;
char buf[MAX_REGISTER_RAW_SIZE];
char mess[128]; /* For messages */
register int i;
/* Offset of registers within the u area. */
unsigned int offset;
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
{
errno = 0;
*(int *) &buf[i] = ptrace (PT_RUREGS, inferior_pid,
(PTRACE_ARG3_TYPE) regaddr, 0, 0);
regaddr += sizeof (int);
if (errno != 0)
{
sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
perror_with_name (mess);
}
}
supply_register (regno, buf);
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
child_resume (step, signal)
int step;
int signal;
{
errno = 0;
/* An address of (PTRACE_ARG3_TYPE) 1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.) */
if (step)
ptrace (PT_SINGLE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
else
ptrace (PT_CONTIN, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
if (errno)
perror_with_name ("ptrace");
}
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. Copy to inferior if
WRITE is nonzero.
Returns the length copied, which is either the LEN argument or zero.
This xfer function does not do partial moves, since child_ops
doesn't allow memory operations to cross below us in the target stack
anyway. */
int
child_xfer_memory (memaddr, myaddr, len, write, target)
CORE_ADDR memaddr;
char *myaddr;
int len;
int write;
struct target_ops *target; /* ignored */
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & - sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
if (addr != memaddr || len < (int)sizeof (int)) {
/* Need part of initial word -- fetch it. */
buffer[0] = ptrace (PT_RIUSER, inferior_pid,
(PTRACE_ARG3_TYPE) addr, 0, 0);
}
if (count > 1) /* FIXME, avoid if even boundary */
{
buffer[count - 1]
= ptrace (PT_RIUSER, inferior_pid,
(PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
0, 0);
}
/* Copy data to be written over corresponding part of buffer */
bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
{
#if 0
/* The HP-UX kernel crashes if you use PT_WDUSER to write into the text
segment. FIXME -- does it work to write into the data segment using
WIUSER, or do these idiots really expect us to figure out which segment
the address is in, so we can use a separate system call for it??! */
errno = 0;
ptrace (PT_WDUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i], 0);
if (errno)
#endif
{
/* Using the appropriate one (I or D) is necessary for
Gould NP1, at least. */
errno = 0;
ptrace (PT_WIUSER, inferior_pid, (PTRACE_ARG3_TYPE) addr,
buffer[i], 0);
}
if (errno)
return 0;
}
}
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
buffer[i] = ptrace (PT_RIUSER, inferior_pid,
(PTRACE_ARG3_TYPE) addr, 0, 0);
if (errno)
return 0;
QUIT;
}
/* Copy appropriate bytes out of the buffer. */
bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
}
return len;
}
|