aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
blob: e8a68cf350828eb11b2a42c37fa3781385e0d24c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
/* Target-dependent code for the HP PA architecture, for GDB.
   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   1998, 1999, 2000, 2001 Free Software Foundation, Inc.

   Contributed by the Center for Software Science at the
   University of Utah (pa-gdb-bugs@cs.utah.edu).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "bfd.h"
#include "inferior.h"
#include "value.h"
#include "regcache.h"
#include "completer.h"

/* For argument passing to the inferior */
#include "symtab.h"

#ifdef USG
#include <sys/types.h>
#endif

#include <dl.h>
#include <sys/param.h>
#include <signal.h>

#include <sys/ptrace.h>
#include <machine/save_state.h>

#ifdef COFF_ENCAPSULATE
#include "a.out.encap.h"
#else
#endif

/*#include <sys/user.h>         After a.out.h  */
#include <sys/file.h>
#include "gdb_stat.h"
#include "gdb_wait.h"

#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "symfile.h"
#include "objfiles.h"

/* To support detection of the pseudo-initial frame
   that threads have. */
#define THREAD_INITIAL_FRAME_SYMBOL  "__pthread_exit"
#define THREAD_INITIAL_FRAME_SYM_LEN  sizeof(THREAD_INITIAL_FRAME_SYMBOL)

static int extract_5_load (unsigned int);

static unsigned extract_5R_store (unsigned int);

static unsigned extract_5r_store (unsigned int);

static void find_dummy_frame_regs (struct frame_info *,
				   struct frame_saved_regs *);

static int find_proc_framesize (CORE_ADDR);

static int find_return_regnum (CORE_ADDR);

struct unwind_table_entry *find_unwind_entry (CORE_ADDR);

static int extract_17 (unsigned int);

static unsigned deposit_21 (unsigned int, unsigned int);

static int extract_21 (unsigned);

static unsigned deposit_14 (int, unsigned int);

static int extract_14 (unsigned);

static void unwind_command (char *, int);

static int low_sign_extend (unsigned int, unsigned int);

static int sign_extend (unsigned int, unsigned int);

static int restore_pc_queue (struct frame_saved_regs *);

static int hppa_alignof (struct type *);

/* To support multi-threading and stepping. */
int hppa_prepare_to_proceed ();

static int prologue_inst_adjust_sp (unsigned long);

static int is_branch (unsigned long);

static int inst_saves_gr (unsigned long);

static int inst_saves_fr (unsigned long);

static int pc_in_interrupt_handler (CORE_ADDR);

static int pc_in_linker_stub (CORE_ADDR);

static int compare_unwind_entries (const void *, const void *);

static void read_unwind_info (struct objfile *);

static void internalize_unwinds (struct objfile *,
				 struct unwind_table_entry *,
				 asection *, unsigned int,
				 unsigned int, CORE_ADDR);
static void pa_print_registers (char *, int, int);
static void pa_strcat_registers (char *, int, int, struct ui_file *);
static void pa_register_look_aside (char *, int, long *);
static void pa_print_fp_reg (int);
static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
static void record_text_segment_lowaddr (bfd *, asection *, void *);

typedef struct
  {
    struct minimal_symbol *msym;
    CORE_ADDR solib_handle;
    CORE_ADDR return_val;
  }
args_for_find_stub;

static int cover_find_stub_with_shl_get (PTR);

static int is_pa_2 = 0;		/* False */

/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
extern int hp_som_som_object_present;

/* In breakpoint.c */
extern int exception_catchpoints_are_fragile;

/* This is defined in valops.c. */
extern struct value *find_function_in_inferior (char *);

/* Should call_function allocate stack space for a struct return?  */
int
hppa_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
}


/* Routines to extract various sized constants out of hppa 
   instructions. */

/* This assumes that no garbage lies outside of the lower bits of 
   value. */

static int
sign_extend (unsigned val, unsigned bits)
{
  return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
}

/* For many immediate values the sign bit is the low bit! */

static int
low_sign_extend (unsigned val, unsigned bits)
{
  return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
}

/* extract the immediate field from a ld{bhw}s instruction */

static int
extract_5_load (unsigned word)
{
  return low_sign_extend (word >> 16 & MASK_5, 5);
}

/* extract the immediate field from a break instruction */

static unsigned
extract_5r_store (unsigned word)
{
  return (word & MASK_5);
}

/* extract the immediate field from a {sr}sm instruction */

static unsigned
extract_5R_store (unsigned word)
{
  return (word >> 16 & MASK_5);
}

/* extract a 14 bit immediate field */

static int
extract_14 (unsigned word)
{
  return low_sign_extend (word & MASK_14, 14);
}

/* deposit a 14 bit constant in a word */

static unsigned
deposit_14 (int opnd, unsigned word)
{
  unsigned sign = (opnd < 0 ? 1 : 0);

  return word | ((unsigned) opnd << 1 & MASK_14) | sign;
}

/* extract a 21 bit constant */

static int
extract_21 (unsigned word)
{
  int val;

  word &= MASK_21;
  word <<= 11;
  val = GET_FIELD (word, 20, 20);
  val <<= 11;
  val |= GET_FIELD (word, 9, 19);
  val <<= 2;
  val |= GET_FIELD (word, 5, 6);
  val <<= 5;
  val |= GET_FIELD (word, 0, 4);
  val <<= 2;
  val |= GET_FIELD (word, 7, 8);
  return sign_extend (val, 21) << 11;
}

/* deposit a 21 bit constant in a word. Although 21 bit constants are
   usually the top 21 bits of a 32 bit constant, we assume that only
   the low 21 bits of opnd are relevant */

static unsigned
deposit_21 (unsigned opnd, unsigned word)
{
  unsigned val = 0;

  val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
  val <<= 2;
  val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
  val <<= 2;
  val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
  val <<= 11;
  val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
  val <<= 1;
  val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
  return word | val;
}

/* extract a 17 bit constant from branch instructions, returning the
   19 bit signed value. */

static int
extract_17 (unsigned word)
{
  return sign_extend (GET_FIELD (word, 19, 28) |
		      GET_FIELD (word, 29, 29) << 10 |
		      GET_FIELD (word, 11, 15) << 11 |
		      (word & 0x1) << 16, 17) << 2;
}


/* Compare the start address for two unwind entries returning 1 if 
   the first address is larger than the second, -1 if the second is
   larger than the first, and zero if they are equal.  */

static int
compare_unwind_entries (const void *arg1, const void *arg2)
{
  const struct unwind_table_entry *a = arg1;
  const struct unwind_table_entry *b = arg2;

  if (a->region_start > b->region_start)
    return 1;
  else if (a->region_start < b->region_start)
    return -1;
  else
    return 0;
}

static CORE_ADDR low_text_segment_address;

static void
record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
{
  if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
       == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
      && section->vma < low_text_segment_address)
    low_text_segment_address = section->vma;
}

static void
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
		     asection *section, unsigned int entries, unsigned int size,
		     CORE_ADDR text_offset)
{
  /* We will read the unwind entries into temporary memory, then
     fill in the actual unwind table.  */
  if (size > 0)
    {
      unsigned long tmp;
      unsigned i;
      char *buf = alloca (size);

      low_text_segment_address = -1;

      /* If addresses are 64 bits wide, then unwinds are supposed to
	 be segment relative offsets instead of absolute addresses. 

	 Note that when loading a shared library (text_offset != 0) the
	 unwinds are already relative to the text_offset that will be
	 passed in.  */
      if (TARGET_PTR_BIT == 64 && text_offset == 0)
	{
	  bfd_map_over_sections (objfile->obfd,
				 record_text_segment_lowaddr, (PTR) NULL);

	  /* ?!? Mask off some low bits.  Should this instead subtract
	     out the lowest section's filepos or something like that?
	     This looks very hokey to me.  */
	  low_text_segment_address &= ~0xfff;
	  text_offset += low_text_segment_address;
	}

      bfd_get_section_contents (objfile->obfd, section, buf, 0, size);

      /* Now internalize the information being careful to handle host/target
         endian issues.  */
      for (i = 0; i < entries; i++)
	{
	  table[i].region_start = bfd_get_32 (objfile->obfd,
					      (bfd_byte *) buf);
	  table[i].region_start += text_offset;
	  buf += 4;
	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  table[i].region_end += text_offset;
	  buf += 4;
	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  buf += 4;
	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
	  table[i].Millicode = (tmp >> 30) & 0x1;
	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
	  table[i].Region_description = (tmp >> 27) & 0x3;
	  table[i].reserved1 = (tmp >> 26) & 0x1;
	  table[i].Entry_SR = (tmp >> 25) & 0x1;
	  table[i].Entry_FR = (tmp >> 21) & 0xf;
	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
	  table[i].Args_stored = (tmp >> 15) & 0x1;
	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
	  table[i].Ada_Region = (tmp >> 9) & 0x1;
	  table[i].cxx_info = (tmp >> 8) & 0x1;
	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
	  table[i].reserved2 = (tmp >> 5) & 0x1;
	  table[i].Save_SP = (tmp >> 4) & 0x1;
	  table[i].Save_RP = (tmp >> 3) & 0x1;
	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
	  table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
	  table[i].Cleanup_defined = tmp & 0x1;
	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  buf += 4;
	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
	  table[i].Large_frame = (tmp >> 29) & 0x1;
	  table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
	  table[i].reserved4 = (tmp >> 27) & 0x1;
	  table[i].Total_frame_size = tmp & 0x7ffffff;

	  /* Stub unwinds are handled elsewhere. */
	  table[i].stub_unwind.stub_type = 0;
	  table[i].stub_unwind.padding = 0;
	}
    }
}

/* Read in the backtrace information stored in the `$UNWIND_START$' section of
   the object file.  This info is used mainly by find_unwind_entry() to find
   out the stack frame size and frame pointer used by procedures.  We put
   everything on the psymbol obstack in the objfile so that it automatically
   gets freed when the objfile is destroyed.  */

static void
read_unwind_info (struct objfile *objfile)
{
  asection *unwind_sec, *stub_unwind_sec;
  unsigned unwind_size, stub_unwind_size, total_size;
  unsigned index, unwind_entries;
  unsigned stub_entries, total_entries;
  CORE_ADDR text_offset;
  struct obj_unwind_info *ui;
  obj_private_data_t *obj_private;

  text_offset = ANOFFSET (objfile->section_offsets, 0);
  ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
					   sizeof (struct obj_unwind_info));

  ui->table = NULL;
  ui->cache = NULL;
  ui->last = -1;

  /* For reasons unknown the HP PA64 tools generate multiple unwinder
     sections in a single executable.  So we just iterate over every
     section in the BFD looking for unwinder sections intead of trying
     to do a lookup with bfd_get_section_by_name. 

     First determine the total size of the unwind tables so that we
     can allocate memory in a nice big hunk.  */
  total_entries = 0;
  for (unwind_sec = objfile->obfd->sections;
       unwind_sec;
       unwind_sec = unwind_sec->next)
    {
      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
	{
	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;

	  total_entries += unwind_entries;
	}
    }

  /* Now compute the size of the stub unwinds.  Note the ELF tools do not
     use stub unwinds at the curren time.  */
  stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");

  if (stub_unwind_sec)
    {
      stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
      stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
    }
  else
    {
      stub_unwind_size = 0;
      stub_entries = 0;
    }

  /* Compute total number of unwind entries and their total size.  */
  total_entries += stub_entries;
  total_size = total_entries * sizeof (struct unwind_table_entry);

  /* Allocate memory for the unwind table.  */
  ui->table = (struct unwind_table_entry *)
    obstack_alloc (&objfile->psymbol_obstack, total_size);
  ui->last = total_entries - 1;

  /* Now read in each unwind section and internalize the standard unwind
     entries.  */
  index = 0;
  for (unwind_sec = objfile->obfd->sections;
       unwind_sec;
       unwind_sec = unwind_sec->next)
    {
      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
	{
	  unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;

	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
			       unwind_entries, unwind_size, text_offset);
	  index += unwind_entries;
	}
    }

  /* Now read in and internalize the stub unwind entries.  */
  if (stub_unwind_size > 0)
    {
      unsigned int i;
      char *buf = alloca (stub_unwind_size);

      /* Read in the stub unwind entries.  */
      bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
				0, stub_unwind_size);

      /* Now convert them into regular unwind entries.  */
      for (i = 0; i < stub_entries; i++, index++)
	{
	  /* Clear out the next unwind entry.  */
	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));

	  /* Convert offset & size into region_start and region_end.  
	     Stuff away the stub type into "reserved" fields.  */
	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
						      (bfd_byte *) buf);
	  ui->table[index].region_start += text_offset;
	  buf += 4;
	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
							  (bfd_byte *) buf);
	  buf += 2;
	  ui->table[index].region_end
	    = ui->table[index].region_start + 4 *
	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
	  buf += 2;
	}

    }

  /* Unwind table needs to be kept sorted.  */
  qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
	 compare_unwind_entries);

  /* Keep a pointer to the unwind information.  */
  if (objfile->obj_private == NULL)
    {
      obj_private = (obj_private_data_t *)
	obstack_alloc (&objfile->psymbol_obstack,
		       sizeof (obj_private_data_t));
      obj_private->unwind_info = NULL;
      obj_private->so_info = NULL;
      obj_private->dp = 0;

      objfile->obj_private = (PTR) obj_private;
    }
  obj_private = (obj_private_data_t *) objfile->obj_private;
  obj_private->unwind_info = ui;
}

/* Lookup the unwind (stack backtrace) info for the given PC.  We search all
   of the objfiles seeking the unwind table entry for this PC.  Each objfile
   contains a sorted list of struct unwind_table_entry.  Since we do a binary
   search of the unwind tables, we depend upon them to be sorted.  */

struct unwind_table_entry *
find_unwind_entry (CORE_ADDR pc)
{
  int first, middle, last;
  struct objfile *objfile;

  /* A function at address 0?  Not in HP-UX! */
  if (pc == (CORE_ADDR) 0)
    return NULL;

  ALL_OBJFILES (objfile)
  {
    struct obj_unwind_info *ui;
    ui = NULL;
    if (objfile->obj_private)
      ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;

    if (!ui)
      {
	read_unwind_info (objfile);
	if (objfile->obj_private == NULL)
	  error ("Internal error reading unwind information.");
	ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
      }

    /* First, check the cache */

    if (ui->cache
	&& pc >= ui->cache->region_start
	&& pc <= ui->cache->region_end)
      return ui->cache;

    /* Not in the cache, do a binary search */

    first = 0;
    last = ui->last;

    while (first <= last)
      {
	middle = (first + last) / 2;
	if (pc >= ui->table[middle].region_start
	    && pc <= ui->table[middle].region_end)
	  {
	    ui->cache = &ui->table[middle];
	    return &ui->table[middle];
	  }

	if (pc < ui->table[middle].region_start)
	  last = middle - 1;
	else
	  first = middle + 1;
      }
  }				/* ALL_OBJFILES() */
  return NULL;
}

/* Return the adjustment necessary to make for addresses on the stack
   as presented by hpread.c.

   This is necessary because of the stack direction on the PA and the
   bizarre way in which someone (?) decided they wanted to handle
   frame pointerless code in GDB.  */
int
hpread_adjust_stack_address (CORE_ADDR func_addr)
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (func_addr);
  if (!u)
    return 0;
  else
    return u->Total_frame_size << 3;
}

/* Called to determine if PC is in an interrupt handler of some
   kind.  */

static int
pc_in_interrupt_handler (CORE_ADDR pc)
{
  struct unwind_table_entry *u;
  struct minimal_symbol *msym_us;

  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* Oh joys.  HPUX sets the interrupt bit for _sigreturn even though
     its frame isn't a pure interrupt frame.  Deal with this.  */
  msym_us = lookup_minimal_symbol_by_pc (pc);

  return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
}

/* Called when no unwind descriptor was found for PC.  Returns 1 if it
   appears that PC is in a linker stub.

   ?!? Need to handle stubs which appear in PA64 code.  */

static int
pc_in_linker_stub (CORE_ADDR pc)
{
  int found_magic_instruction = 0;
  int i;
  char buf[4];

  /* If unable to read memory, assume pc is not in a linker stub.  */
  if (target_read_memory (pc, buf, 4) != 0)
    return 0;

  /* We are looking for something like

     ; $$dyncall jams RP into this special spot in the frame (RP')
     ; before calling the "call stub"
     ldw     -18(sp),rp

     ldsid   (rp),r1         ; Get space associated with RP into r1
     mtsp    r1,sp           ; Move it into space register 0
     be,n    0(sr0),rp)      ; back to your regularly scheduled program */

  /* Maximum known linker stub size is 4 instructions.  Search forward
     from the given PC, then backward.  */
  for (i = 0; i < 4; i++)
    {
      /* If we hit something with an unwind, stop searching this direction.  */

      if (find_unwind_entry (pc + i * 4) != 0)
	break;

      /* Check for ldsid (rp),r1 which is the magic instruction for a 
         return from a cross-space function call.  */
      if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
	{
	  found_magic_instruction = 1;
	  break;
	}
      /* Add code to handle long call/branch and argument relocation stubs
         here.  */
    }

  if (found_magic_instruction != 0)
    return 1;

  /* Now look backward.  */
  for (i = 0; i < 4; i++)
    {
      /* If we hit something with an unwind, stop searching this direction.  */

      if (find_unwind_entry (pc - i * 4) != 0)
	break;

      /* Check for ldsid (rp),r1 which is the magic instruction for a 
         return from a cross-space function call.  */
      if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
	{
	  found_magic_instruction = 1;
	  break;
	}
      /* Add code to handle long call/branch and argument relocation stubs
         here.  */
    }
  return found_magic_instruction;
}

static int
find_return_regnum (CORE_ADDR pc)
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (pc);

  if (!u)
    return RP_REGNUM;

  if (u->Millicode)
    return 31;

  return RP_REGNUM;
}

/* Return size of frame, or -1 if we should use a frame pointer.  */
static int
find_proc_framesize (CORE_ADDR pc)
{
  struct unwind_table_entry *u;
  struct minimal_symbol *msym_us;

  /* This may indicate a bug in our callers... */
  if (pc == (CORE_ADDR) 0)
    return -1;

  u = find_unwind_entry (pc);

  if (!u)
    {
      if (pc_in_linker_stub (pc))
	/* Linker stubs have a zero size frame.  */
	return 0;
      else
	return -1;
    }

  msym_us = lookup_minimal_symbol_by_pc (pc);

  /* If Save_SP is set, and we're not in an interrupt or signal caller,
     then we have a frame pointer.  Use it.  */
  if (u->Save_SP
      && !pc_in_interrupt_handler (pc)
      && msym_us
      && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
    return -1;

  return u->Total_frame_size << 3;
}

/* Return offset from sp at which rp is saved, or 0 if not saved.  */
static int rp_saved (CORE_ADDR);

static int
rp_saved (CORE_ADDR pc)
{
  struct unwind_table_entry *u;

  /* A function at, and thus a return PC from, address 0?  Not in HP-UX! */
  if (pc == (CORE_ADDR) 0)
    return 0;

  u = find_unwind_entry (pc);

  if (!u)
    {
      if (pc_in_linker_stub (pc))
	/* This is the so-called RP'.  */
	return -24;
      else
	return 0;
    }

  if (u->Save_RP)
    return (TARGET_PTR_BIT == 64 ? -16 : -20);
  else if (u->stub_unwind.stub_type != 0)
    {
      switch (u->stub_unwind.stub_type)
	{
	case EXPORT:
	case IMPORT:
	  return -24;
	case PARAMETER_RELOCATION:
	  return -8;
	default:
	  return 0;
	}
    }
  else
    return 0;
}

int
frameless_function_invocation (struct frame_info *frame)
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (frame->pc);

  if (u == 0)
    return 0;

  return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
}

CORE_ADDR
saved_pc_after_call (struct frame_info *frame)
{
  int ret_regnum;
  CORE_ADDR pc;
  struct unwind_table_entry *u;

  ret_regnum = find_return_regnum (get_frame_pc (frame));
  pc = read_register (ret_regnum) & ~0x3;

  /* If PC is in a linker stub, then we need to dig the address
     the stub will return to out of the stack.  */
  u = find_unwind_entry (pc);
  if (u && u->stub_unwind.stub_type != 0)
    return FRAME_SAVED_PC (frame);
  else
    return pc;
}

CORE_ADDR
hppa_frame_saved_pc (struct frame_info *frame)
{
  CORE_ADDR pc = get_frame_pc (frame);
  struct unwind_table_entry *u;
  CORE_ADDR old_pc;
  int spun_around_loop = 0;
  int rp_offset = 0;

  /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
     at the base of the frame in an interrupt handler.  Registers within
     are saved in the exact same order as GDB numbers registers.  How
     convienent.  */
  if (pc_in_interrupt_handler (pc))
    return read_memory_integer (frame->frame + PC_REGNUM * 4,
				TARGET_PTR_BIT / 8) & ~0x3;

  if ((frame->pc >= frame->frame
       && frame->pc <= (frame->frame
                        /* A call dummy is sized in words, but it is
                           actually a series of instructions.  Account
                           for that scaling factor.  */
                        + ((REGISTER_SIZE / INSTRUCTION_SIZE)
                           * CALL_DUMMY_LENGTH)
                        /* Similarly we have to account for 64bit
                           wide register saves.  */
                        + (32 * REGISTER_SIZE)
                        /* We always consider FP regs 8 bytes long.  */
                        + (NUM_REGS - FP0_REGNUM) * 8
                        /* Similarly we have to account for 64bit
                           wide register saves.  */
                        + (6 * REGISTER_SIZE))))
    {
      return read_memory_integer ((frame->frame
				   + (TARGET_PTR_BIT == 64 ? -16 : -20)),
				  TARGET_PTR_BIT / 8) & ~0x3;
    }

#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
  /* Deal with signal handler caller frames too.  */
  if (frame->signal_handler_caller)
    {
      CORE_ADDR rp;
      FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
      return rp & ~0x3;
    }
#endif

  if (frameless_function_invocation (frame))
    {
      int ret_regnum;

      ret_regnum = find_return_regnum (pc);

      /* If the next frame is an interrupt frame or a signal
         handler caller, then we need to look in the saved
         register area to get the return pointer (the values
         in the registers may not correspond to anything useful).  */
      if (frame->next
	  && (frame->next->signal_handler_caller
	      || pc_in_interrupt_handler (frame->next->pc)))
	{
	  struct frame_saved_regs saved_regs;

	  get_frame_saved_regs (frame->next, &saved_regs);
	  if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
				   TARGET_PTR_BIT / 8) & 0x2)
	    {
	      pc = read_memory_integer (saved_regs.regs[31],
					TARGET_PTR_BIT / 8) & ~0x3;

	      /* Syscalls are really two frames.  The syscall stub itself
	         with a return pointer in %rp and the kernel call with
	         a return pointer in %r31.  We return the %rp variant
	         if %r31 is the same as frame->pc.  */
	      if (pc == frame->pc)
		pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
					  TARGET_PTR_BIT / 8) & ~0x3;
	    }
	  else
	    pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
				      TARGET_PTR_BIT / 8) & ~0x3;
	}
      else
	pc = read_register (ret_regnum) & ~0x3;
    }
  else
    {
      spun_around_loop = 0;
      old_pc = pc;

    restart:
      rp_offset = rp_saved (pc);

      /* Similar to code in frameless function case.  If the next
         frame is a signal or interrupt handler, then dig the right
         information out of the saved register info.  */
      if (rp_offset == 0
	  && frame->next
	  && (frame->next->signal_handler_caller
	      || pc_in_interrupt_handler (frame->next->pc)))
	{
	  struct frame_saved_regs saved_regs;

	  get_frame_saved_regs (frame->next, &saved_regs);
	  if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
				   TARGET_PTR_BIT / 8) & 0x2)
	    {
	      pc = read_memory_integer (saved_regs.regs[31],
					TARGET_PTR_BIT / 8) & ~0x3;

	      /* Syscalls are really two frames.  The syscall stub itself
	         with a return pointer in %rp and the kernel call with
	         a return pointer in %r31.  We return the %rp variant
	         if %r31 is the same as frame->pc.  */
	      if (pc == frame->pc)
		pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
					  TARGET_PTR_BIT / 8) & ~0x3;
	    }
	  else
	    pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
				      TARGET_PTR_BIT / 8) & ~0x3;
	}
      else if (rp_offset == 0)
	{
	  old_pc = pc;
	  pc = read_register (RP_REGNUM) & ~0x3;
	}
      else
	{
	  old_pc = pc;
	  pc = read_memory_integer (frame->frame + rp_offset,
				    TARGET_PTR_BIT / 8) & ~0x3;
	}
    }

  /* If PC is inside a linker stub, then dig out the address the stub
     will return to. 

     Don't do this for long branch stubs.  Why?  For some unknown reason
     _start is marked as a long branch stub in hpux10.  */
  u = find_unwind_entry (pc);
  if (u && u->stub_unwind.stub_type != 0
      && u->stub_unwind.stub_type != LONG_BRANCH)
    {
      unsigned int insn;

      /* If this is a dynamic executable, and we're in a signal handler,
         then the call chain will eventually point us into the stub for
         _sigreturn.  Unlike most cases, we'll be pointed to the branch
         to the real sigreturn rather than the code after the real branch!. 

         Else, try to dig the address the stub will return to in the normal
         fashion.  */
      insn = read_memory_integer (pc, 4);
      if ((insn & 0xfc00e000) == 0xe8000000)
	return (pc + extract_17 (insn) + 8) & ~0x3;
      else
	{
	  if (old_pc == pc)
	    spun_around_loop++;

	  if (spun_around_loop > 1)
	    {
	      /* We're just about to go around the loop again with
	         no more hope of success.  Die. */
	      error ("Unable to find return pc for this frame");
	    }
	  else
	    goto restart;
	}
    }

  return pc;
}

/* We need to correct the PC and the FP for the outermost frame when we are
   in a system call.  */

void
init_extra_frame_info (int fromleaf, struct frame_info *frame)
{
  int flags;
  int framesize;

  if (frame->next && !fromleaf)
    return;

  /* If the next frame represents a frameless function invocation
     then we have to do some adjustments that are normally done by
     FRAME_CHAIN.  (FRAME_CHAIN is not called in this case.)  */
  if (fromleaf)
    {
      /* Find the framesize of *this* frame without peeking at the PC
         in the current frame structure (it isn't set yet).  */
      framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));

      /* Now adjust our base frame accordingly.  If we have a frame pointer
         use it, else subtract the size of this frame from the current
         frame.  (we always want frame->frame to point at the lowest address
         in the frame).  */
      if (framesize == -1)
	frame->frame = TARGET_READ_FP ();
      else
	frame->frame -= framesize;
      return;
    }

  flags = read_register (FLAGS_REGNUM);
  if (flags & 2)		/* In system call? */
    frame->pc = read_register (31) & ~0x3;

  /* The outermost frame is always derived from PC-framesize

     One might think frameless innermost frames should have
     a frame->frame that is the same as the parent's frame->frame.
     That is wrong; frame->frame in that case should be the *high*
     address of the parent's frame.  It's complicated as hell to
     explain, but the parent *always* creates some stack space for
     the child.  So the child actually does have a frame of some
     sorts, and its base is the high address in its parent's frame.  */
  framesize = find_proc_framesize (frame->pc);
  if (framesize == -1)
    frame->frame = TARGET_READ_FP ();
  else
    frame->frame = read_register (SP_REGNUM) - framesize;
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

   This may involve searching through prologues for several functions
   at boundaries where GCC calls HP C code, or where code which has
   a frame pointer calls code without a frame pointer.  */

CORE_ADDR
frame_chain (struct frame_info *frame)
{
  int my_framesize, caller_framesize;
  struct unwind_table_entry *u;
  CORE_ADDR frame_base;
  struct frame_info *tmp_frame;

  /* A frame in the current frame list, or zero.  */
  struct frame_info *saved_regs_frame = 0;
  /* Where the registers were saved in saved_regs_frame.
     If saved_regs_frame is zero, this is garbage.  */
  struct frame_saved_regs saved_regs;

  CORE_ADDR caller_pc;

  struct minimal_symbol *min_frame_symbol;
  struct symbol *frame_symbol;
  char *frame_symbol_name;

  /* If this is a threaded application, and we see the
     routine "__pthread_exit", treat it as the stack root
     for this thread. */
  min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
  frame_symbol = find_pc_function (frame->pc);

  if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
    {
      /* The test above for "no user function name" would defend
         against the slim likelihood that a user might define a
         routine named "__pthread_exit" and then try to debug it.

         If it weren't commented out, and you tried to debug the
         pthread library itself, you'd get errors.

         So for today, we don't make that check. */
      frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
      if (frame_symbol_name != 0)
	{
	  if (0 == strncmp (frame_symbol_name,
			    THREAD_INITIAL_FRAME_SYMBOL,
			    THREAD_INITIAL_FRAME_SYM_LEN))
	    {
	      /* Pretend we've reached the bottom of the stack. */
	      return (CORE_ADDR) 0;
	    }
	}
    }				/* End of hacky code for threads. */

  /* Handle HPUX, BSD, and OSF1 style interrupt frames first.  These
     are easy; at *sp we have a full save state strucutre which we can
     pull the old stack pointer from.  Also see frame_saved_pc for
     code to dig a saved PC out of the save state structure.  */
  if (pc_in_interrupt_handler (frame->pc))
    frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
				      TARGET_PTR_BIT / 8);
#ifdef FRAME_BASE_BEFORE_SIGTRAMP
  else if (frame->signal_handler_caller)
    {
      FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
    }
#endif
  else
    frame_base = frame->frame;

  /* Get frame sizes for the current frame and the frame of the 
     caller.  */
  my_framesize = find_proc_framesize (frame->pc);
  caller_pc = FRAME_SAVED_PC (frame);

  /* If we can't determine the caller's PC, then it's not likely we can
     really determine anything meaningful about its frame.  We'll consider
     this to be stack bottom. */
  if (caller_pc == (CORE_ADDR) 0)
    return (CORE_ADDR) 0;

  caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));

  /* If caller does not have a frame pointer, then its frame
     can be found at current_frame - caller_framesize.  */
  if (caller_framesize != -1)
    {
      return frame_base - caller_framesize;
    }
  /* Both caller and callee have frame pointers and are GCC compiled
     (SAVE_SP bit in unwind descriptor is on for both functions.
     The previous frame pointer is found at the top of the current frame.  */
  if (caller_framesize == -1 && my_framesize == -1)
    {
      return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
    }
  /* Caller has a frame pointer, but callee does not.  This is a little
     more difficult as GCC and HP C lay out locals and callee register save
     areas very differently.

     The previous frame pointer could be in a register, or in one of 
     several areas on the stack.

     Walk from the current frame to the innermost frame examining 
     unwind descriptors to determine if %r3 ever gets saved into the
     stack.  If so return whatever value got saved into the stack.
     If it was never saved in the stack, then the value in %r3 is still
     valid, so use it. 

     We use information from unwind descriptors to determine if %r3
     is saved into the stack (Entry_GR field has this information).  */

  for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
    {
      u = find_unwind_entry (tmp_frame->pc);

      if (!u)
	{
	  /* We could find this information by examining prologues.  I don't
	     think anyone has actually written any tools (not even "strip")
	     which leave them out of an executable, so maybe this is a moot
	     point.  */
	  /* ??rehrauer: Actually, it's quite possible to stepi your way into
	     code that doesn't have unwind entries.  For example, stepping into
	     the dynamic linker will give you a PC that has none.  Thus, I've
	     disabled this warning. */
#if 0
	  warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
#endif
	  return (CORE_ADDR) 0;
	}

      if (u->Save_SP
	  || tmp_frame->signal_handler_caller
	  || pc_in_interrupt_handler (tmp_frame->pc))
	break;

      /* Entry_GR specifies the number of callee-saved general registers
         saved in the stack.  It starts at %r3, so %r3 would be 1.  */
      if (u->Entry_GR >= 1)
	{
	  /* The unwind entry claims that r3 is saved here.  However,
	     in optimized code, GCC often doesn't actually save r3.
	     We'll discover this if we look at the prologue.  */
	  get_frame_saved_regs (tmp_frame, &saved_regs);
	  saved_regs_frame = tmp_frame;

	  /* If we have an address for r3, that's good.  */
	  if (saved_regs.regs[FP_REGNUM])
	    break;
	}
    }

  if (tmp_frame)
    {
      /* We may have walked down the chain into a function with a frame
         pointer.  */
      if (u->Save_SP
	  && !tmp_frame->signal_handler_caller
	  && !pc_in_interrupt_handler (tmp_frame->pc))
	{
	  return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
	}
      /* %r3 was saved somewhere in the stack.  Dig it out.  */
      else
	{
	  /* Sick.

	     For optimization purposes many kernels don't have the
	     callee saved registers into the save_state structure upon
	     entry into the kernel for a syscall; the optimization
	     is usually turned off if the process is being traced so
	     that the debugger can get full register state for the
	     process.

	     This scheme works well except for two cases:

	     * Attaching to a process when the process is in the
	     kernel performing a system call (debugger can't get
	     full register state for the inferior process since
	     the process wasn't being traced when it entered the
	     system call).

	     * Register state is not complete if the system call
	     causes the process to core dump.


	     The following heinous code is an attempt to deal with
	     the lack of register state in a core dump.  It will
	     fail miserably if the function which performs the
	     system call has a variable sized stack frame.  */

	  if (tmp_frame != saved_regs_frame)
	    get_frame_saved_regs (tmp_frame, &saved_regs);

	  /* Abominable hack.  */
	  if (current_target.to_has_execution == 0
	      && ((saved_regs.regs[FLAGS_REGNUM]
		   && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
					    TARGET_PTR_BIT / 8)
		       & 0x2))
		  || (saved_regs.regs[FLAGS_REGNUM] == 0
		      && read_register (FLAGS_REGNUM) & 0x2)))
	    {
	      u = find_unwind_entry (FRAME_SAVED_PC (frame));
	      if (!u)
		{
		  return read_memory_integer (saved_regs.regs[FP_REGNUM],
					      TARGET_PTR_BIT / 8);
		}
	      else
		{
		  return frame_base - (u->Total_frame_size << 3);
		}
	    }

	  return read_memory_integer (saved_regs.regs[FP_REGNUM],
				      TARGET_PTR_BIT / 8);
	}
    }
  else
    {
      /* Get the innermost frame.  */
      tmp_frame = frame;
      while (tmp_frame->next != NULL)
	tmp_frame = tmp_frame->next;

      if (tmp_frame != saved_regs_frame)
	get_frame_saved_regs (tmp_frame, &saved_regs);

      /* Abominable hack.  See above.  */
      if (current_target.to_has_execution == 0
	  && ((saved_regs.regs[FLAGS_REGNUM]
	       && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
					TARGET_PTR_BIT / 8)
		   & 0x2))
	      || (saved_regs.regs[FLAGS_REGNUM] == 0
		  && read_register (FLAGS_REGNUM) & 0x2)))
	{
	  u = find_unwind_entry (FRAME_SAVED_PC (frame));
	  if (!u)
	    {
	      return read_memory_integer (saved_regs.regs[FP_REGNUM],
					  TARGET_PTR_BIT / 8);
	    }
	  else
	    {
	      return frame_base - (u->Total_frame_size << 3);
	    }
	}

      /* The value in %r3 was never saved into the stack (thus %r3 still
         holds the value of the previous frame pointer).  */
      return TARGET_READ_FP ();
    }
}


/* To see if a frame chain is valid, see if the caller looks like it
   was compiled with gcc. */

int
hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
  struct minimal_symbol *msym_us;
  struct minimal_symbol *msym_start;
  struct unwind_table_entry *u, *next_u = NULL;
  struct frame_info *next;

  if (!chain)
    return 0;

  u = find_unwind_entry (thisframe->pc);

  if (u == NULL)
    return 1;

  /* We can't just check that the same of msym_us is "_start", because
     someone idiotically decided that they were going to make a Ltext_end
     symbol with the same address.  This Ltext_end symbol is totally
     indistinguishable (as nearly as I can tell) from the symbol for a function
     which is (legitimately, since it is in the user's namespace)
     named Ltext_end, so we can't just ignore it.  */
  msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
  msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
  if (msym_us
      && msym_start
      && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
    return 0;

  /* Grrrr.  Some new idiot decided that they don't want _start for the
     PRO configurations; $START$ calls main directly....  Deal with it.  */
  msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
  if (msym_us
      && msym_start
      && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
    return 0;

  next = get_next_frame (thisframe);
  if (next)
    next_u = find_unwind_entry (next->pc);

  /* If this frame does not save SP, has no stack, isn't a stub,
     and doesn't "call" an interrupt routine or signal handler caller,
     then its not valid.  */
  if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
      || (thisframe->next && thisframe->next->signal_handler_caller)
      || (next_u && next_u->HP_UX_interrupt_marker))
    return 1;

  if (pc_in_linker_stub (thisframe->pc))
    return 1;

  return 0;
}

/*
   These functions deal with saving and restoring register state
   around a function call in the inferior. They keep the stack
   double-word aligned; eventually, on an hp700, the stack will have
   to be aligned to a 64-byte boundary. */

void
push_dummy_frame (struct inferior_status *inf_status)
{
  CORE_ADDR sp, pc, pcspace;
  register int regnum;
  CORE_ADDR int_buffer;
  double freg_buffer;

  /* Oh, what a hack.  If we're trying to perform an inferior call
     while the inferior is asleep, we have to make sure to clear
     the "in system call" bit in the flag register (the call will
     start after the syscall returns, so we're no longer in the system
     call!)  This state is kept in "inf_status", change it there.

     We also need a number of horrid hacks to deal with lossage in the
     PC queue registers (apparently they're not valid when the in syscall
     bit is set).  */
  pc = target_read_pc (inferior_ptid);
  int_buffer = read_register (FLAGS_REGNUM);
  if (int_buffer & 0x2)
    {
      unsigned int sid;
      int_buffer &= ~0x2;
      write_inferior_status_register (inf_status, 0, int_buffer);
      write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
      write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
      sid = (pc >> 30) & 0x3;
      if (sid == 0)
	pcspace = read_register (SR4_REGNUM);
      else
	pcspace = read_register (SR4_REGNUM + 4 + sid);
      write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
      write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
    }
  else
    pcspace = read_register (PCSQ_HEAD_REGNUM);

  /* Space for "arguments"; the RP goes in here. */
  sp = read_register (SP_REGNUM) + 48;
  int_buffer = read_register (RP_REGNUM) | 0x3;

  /* The 32bit and 64bit ABIs save the return pointer into different
     stack slots.  */
  if (REGISTER_SIZE == 8)
    write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
  else
    write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);

  int_buffer = TARGET_READ_FP ();
  write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);

  write_register (FP_REGNUM, sp);

  sp += 2 * REGISTER_SIZE;

  for (regnum = 1; regnum < 32; regnum++)
    if (regnum != RP_REGNUM && regnum != FP_REGNUM)
      sp = push_word (sp, read_register (regnum));

  /* This is not necessary for the 64bit ABI.  In fact it is dangerous.  */
  if (REGISTER_SIZE != 8)
    sp += 4;

  for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
    {
      read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
      sp = push_bytes (sp, (char *) &freg_buffer, 8);
    }
  sp = push_word (sp, read_register (IPSW_REGNUM));
  sp = push_word (sp, read_register (SAR_REGNUM));
  sp = push_word (sp, pc);
  sp = push_word (sp, pcspace);
  sp = push_word (sp, pc + 4);
  sp = push_word (sp, pcspace);
  write_register (SP_REGNUM, sp);
}

static void
find_dummy_frame_regs (struct frame_info *frame,
		       struct frame_saved_regs *frame_saved_regs)
{
  CORE_ADDR fp = frame->frame;
  int i;

  /* The 32bit and 64bit ABIs save RP into different locations.  */
  if (REGISTER_SIZE == 8)
    frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
  else
    frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;

  frame_saved_regs->regs[FP_REGNUM] = fp;

  frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);

  for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
    {
      if (i != FP_REGNUM)
	{
	  frame_saved_regs->regs[i] = fp;
	  fp += REGISTER_SIZE;
	}
    }

  /* This is not necessary or desirable for the 64bit ABI.  */
  if (REGISTER_SIZE != 8)
    fp += 4;

  for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
    frame_saved_regs->regs[i] = fp;

  frame_saved_regs->regs[IPSW_REGNUM] = fp;
  frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
  frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
  frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
  frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
  frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
}

void
hppa_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp, npc, target_pc;
  register int regnum;
  struct frame_saved_regs fsr;
  double freg_buffer;

  fp = FRAME_FP (frame);
  get_frame_saved_regs (frame, &fsr);

#ifndef NO_PC_SPACE_QUEUE_RESTORE
  if (fsr.regs[IPSW_REGNUM])	/* Restoring a call dummy frame */
    restore_pc_queue (&fsr);
#endif

  for (regnum = 31; regnum > 0; regnum--)
    if (fsr.regs[regnum])
      write_register (regnum, read_memory_integer (fsr.regs[regnum],
		      REGISTER_SIZE));

  for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
    if (fsr.regs[regnum])
      {
	read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
	write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
      }

  if (fsr.regs[IPSW_REGNUM])
    write_register (IPSW_REGNUM,
		    read_memory_integer (fsr.regs[IPSW_REGNUM],
					 REGISTER_SIZE));

  if (fsr.regs[SAR_REGNUM])
    write_register (SAR_REGNUM,
		    read_memory_integer (fsr.regs[SAR_REGNUM],
					 REGISTER_SIZE));

  /* If the PC was explicitly saved, then just restore it.  */
  if (fsr.regs[PCOQ_TAIL_REGNUM])
    {
      npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
				 REGISTER_SIZE);
      write_register (PCOQ_TAIL_REGNUM, npc);
    }
  /* Else use the value in %rp to set the new PC.  */
  else
    {
      npc = read_register (RP_REGNUM);
      write_pc (npc);
    }

  write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));

  if (fsr.regs[IPSW_REGNUM])	/* call dummy */
    write_register (SP_REGNUM, fp - 48);
  else
    write_register (SP_REGNUM, fp);

  /* The PC we just restored may be inside a return trampoline.  If so
     we want to restart the inferior and run it through the trampoline.

     Do this by setting a momentary breakpoint at the location the
     trampoline returns to. 

     Don't skip through the trampoline if we're popping a dummy frame.  */
  target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
  if (target_pc && !fsr.regs[IPSW_REGNUM])
    {
      struct symtab_and_line sal;
      struct breakpoint *breakpoint;
      struct cleanup *old_chain;

      /* Set up our breakpoint.   Set it to be silent as the MI code
         for "return_command" will print the frame we returned to.  */
      sal = find_pc_line (target_pc, 0);
      sal.pc = target_pc;
      breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
      breakpoint->silent = 1;

      /* So we can clean things up.  */
      old_chain = make_cleanup_delete_breakpoint (breakpoint);

      /* Start up the inferior.  */
      clear_proceed_status ();
      proceed_to_finish = 1;
      proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);

      /* Perform our cleanups.  */
      do_cleanups (old_chain);
    }
  flush_cached_frames ();
}

/* After returning to a dummy on the stack, restore the instruction
   queue space registers. */

static int
restore_pc_queue (struct frame_saved_regs *fsr)
{
  CORE_ADDR pc = read_pc ();
  CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
					  TARGET_PTR_BIT / 8);
  struct target_waitstatus w;
  int insn_count;

  /* Advance past break instruction in the call dummy. */
  write_register (PCOQ_HEAD_REGNUM, pc + 4);
  write_register (PCOQ_TAIL_REGNUM, pc + 8);

  /* HPUX doesn't let us set the space registers or the space
     registers of the PC queue through ptrace. Boo, hiss.
     Conveniently, the call dummy has this sequence of instructions
     after the break:
     mtsp r21, sr0
     ble,n 0(sr0, r22)

     So, load up the registers and single step until we are in the
     right place. */

  write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
					   REGISTER_SIZE));
  write_register (22, new_pc);

  for (insn_count = 0; insn_count < 3; insn_count++)
    {
      /* FIXME: What if the inferior gets a signal right now?  Want to
         merge this into wait_for_inferior (as a special kind of
         watchpoint?  By setting a breakpoint at the end?  Is there
         any other choice?  Is there *any* way to do this stuff with
         ptrace() or some equivalent?).  */
      resume (1, 0);
      target_wait (inferior_ptid, &w);

      if (w.kind == TARGET_WAITKIND_SIGNALLED)
	{
	  stop_signal = w.value.sig;
	  terminal_ours_for_output ();
	  printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
			     target_signal_to_name (stop_signal),
			     target_signal_to_string (stop_signal));
	  gdb_flush (gdb_stdout);
	  return 0;
	}
    }
  target_terminal_ours ();
  target_fetch_registers (-1);
  return 1;
}


#ifdef PA20W_CALLING_CONVENTIONS

/* This function pushes a stack frame with arguments as part of the
   inferior function calling mechanism.

   This is the version for the PA64, in which later arguments appear
   at higher addresses.  (The stack always grows towards higher
   addresses.)

   We simply allocate the appropriate amount of stack space and put
   arguments into their proper slots.  The call dummy code will copy
   arguments into registers as needed by the ABI.

   This ABI also requires that the caller provide an argument pointer
   to the callee, so we do that too.  */
   
CORE_ADDR
hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  /* array of arguments' offsets */
  int *offset = (int *) alloca (nargs * sizeof (int));

  /* array of arguments' lengths: real lengths in bytes, not aligned to
     word size */
  int *lengths = (int *) alloca (nargs * sizeof (int));

  /* The value of SP as it was passed into this function after
     aligning.  */
  CORE_ADDR orig_sp = STACK_ALIGN (sp);

  /* The number of stack bytes occupied by the current argument.  */
  int bytes_reserved;

  /* The total number of bytes reserved for the arguments.  */
  int cum_bytes_reserved = 0;

  /* Similarly, but aligned.  */
  int cum_bytes_aligned = 0;
  int i;

  /* Iterate over each argument provided by the user.  */
  for (i = 0; i < nargs; i++)
    {
      struct type *arg_type = VALUE_TYPE (args[i]);

      /* Integral scalar values smaller than a register are padded on
         the left.  We do this by promoting them to full-width,
         although the ABI says to pad them with garbage.  */
      if (is_integral_type (arg_type)
	  && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
	{
	  args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
				 ? builtin_type_unsigned_long
				 : builtin_type_long),
				args[i]);
	  arg_type = VALUE_TYPE (args[i]);
	}

      lengths[i] = TYPE_LENGTH (arg_type);

      /* Align the size of the argument to the word size for this
	 target.  */
      bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;

      offset[i] = cum_bytes_reserved;

      /* Aggregates larger than eight bytes (the only types larger
         than eight bytes we have) are aligned on a 16-byte boundary,
         possibly padded on the right with garbage.  This may leave an
         empty word on the stack, and thus an unused register, as per
         the ABI.  */
      if (bytes_reserved > 8)
	{
	  /* Round up the offset to a multiple of two slots.  */
	  int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
			    & -(2*REGISTER_SIZE));

	  /* Note the space we've wasted, if any.  */
	  bytes_reserved += new_offset - offset[i];
	  offset[i] = new_offset;
	}

      cum_bytes_reserved += bytes_reserved;
    }

  /* CUM_BYTES_RESERVED already accounts for all the arguments
     passed by the user.  However, the ABIs mandate minimum stack space
     allocations for outgoing arguments.

     The ABIs also mandate minimum stack alignments which we must
     preserve.  */
  cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
  sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);

  /* Now write each of the args at the proper offset down the stack.  */
  for (i = 0; i < nargs; i++)
    write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);

  /* If a structure has to be returned, set up register 28 to hold its
     address */
  if (struct_return)
    write_register (28, struct_addr);

  /* For the PA64 we must pass a pointer to the outgoing argument list.
     The ABI mandates that the pointer should point to the first byte of
     storage beyond the register flushback area.

     However, the call dummy expects the outgoing argument pointer to
     be passed in register %r4.  */
  write_register (4, orig_sp + REG_PARM_STACK_SPACE);

  /* ?!? This needs further work.  We need to set up the global data
     pointer for this procedure.  This assumes the same global pointer
     for every procedure.   The call dummy expects the dp value to
     be passed in register %r6.  */
  write_register (6, read_register (27));
  
  /* The stack will have 64 bytes of additional space for a frame marker.  */
  return sp + 64;
}

#else

/* This function pushes a stack frame with arguments as part of the
   inferior function calling mechanism.

   This is the version of the function for the 32-bit PA machines, in
   which later arguments appear at lower addresses.  (The stack always
   grows towards higher addresses.)

   We simply allocate the appropriate amount of stack space and put
   arguments into their proper slots.  The call dummy code will copy
   arguments into registers as needed by the ABI. */
   
CORE_ADDR
hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  /* array of arguments' offsets */
  int *offset = (int *) alloca (nargs * sizeof (int));

  /* array of arguments' lengths: real lengths in bytes, not aligned to
     word size */
  int *lengths = (int *) alloca (nargs * sizeof (int));

  /* The number of stack bytes occupied by the current argument.  */
  int bytes_reserved;

  /* The total number of bytes reserved for the arguments.  */
  int cum_bytes_reserved = 0;

  /* Similarly, but aligned.  */
  int cum_bytes_aligned = 0;
  int i;

  /* Iterate over each argument provided by the user.  */
  for (i = 0; i < nargs; i++)
    {
      lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));

      /* Align the size of the argument to the word size for this
	 target.  */
      bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;

      offset[i] = (cum_bytes_reserved
		   + (lengths[i] > 4 ? bytes_reserved : lengths[i]));

      /* If the argument is a double word argument, then it needs to be
	 double word aligned.  */
      if ((bytes_reserved == 2 * REGISTER_SIZE)
	  && (offset[i] % 2 * REGISTER_SIZE))
	{
	  int new_offset = 0;
	  /* BYTES_RESERVED is already aligned to the word, so we put
	     the argument at one word more down the stack.

	     This will leave one empty word on the stack, and one unused
	     register as mandated by the ABI.  */
	  new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
			& -(2 * REGISTER_SIZE));

	  if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
	    {
	      bytes_reserved += REGISTER_SIZE;
	      offset[i] += REGISTER_SIZE;
	    }
	}

      cum_bytes_reserved += bytes_reserved;

    }

  /* CUM_BYTES_RESERVED already accounts for all the arguments passed
     by the user.  However, the ABI mandates minimum stack space
     allocations for outgoing arguments.

     The ABI also mandates minimum stack alignments which we must
     preserve.  */
  cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
  sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);

  /* Now write each of the args at the proper offset down the stack.
     ?!? We need to promote values to a full register instead of skipping
     words in the stack.  */
  for (i = 0; i < nargs; i++)
    write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);

  /* If a structure has to be returned, set up register 28 to hold its
     address */
  if (struct_return)
    write_register (28, struct_addr);

  /* The stack will have 32 bytes of additional space for a frame marker.  */
  return sp + 32;
}

#endif

/* elz: this function returns a value which is built looking at the given address.
   It is called from call_function_by_hand, in case we need to return a 
   value which is larger than 64 bits, and it is stored in the stack rather than 
   in the registers r28 and r29 or fr4.
   This function does the same stuff as value_being_returned in values.c, but
   gets the value from the stack rather than from the buffer where all the
   registers were saved when the function called completed. */
struct value *
hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
{
  register struct value *val;

  val = allocate_value (valtype);
  CHECK_TYPEDEF (valtype);
  target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));

  return val;
}



/* elz: Used to lookup a symbol in the shared libraries.
   This function calls shl_findsym, indirectly through a
   call to __d_shl_get. __d_shl_get is in end.c, which is always
   linked in by the hp compilers/linkers. 
   The call to shl_findsym cannot be made directly because it needs
   to be active in target address space. 
   inputs: - minimal symbol pointer for the function we want to look up
   - address in target space of the descriptor for the library
   where we want to look the symbol up.
   This address is retrieved using the 
   som_solib_get_solib_by_pc function (somsolib.c). 
   output: - real address in the library of the function.          
   note: the handle can be null, in which case shl_findsym will look for
   the symbol in all the loaded shared libraries.
   files to look at if you need reference on this stuff:
   dld.c, dld_shl_findsym.c
   end.c
   man entry for shl_findsym */

CORE_ADDR
find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
{
  struct symbol *get_sym, *symbol2;
  struct minimal_symbol *buff_minsym, *msymbol;
  struct type *ftype;
  struct value **args;
  struct value *funcval;
  struct value *val;

  int x, namelen, err_value, tmp = -1;
  CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
  CORE_ADDR stub_addr;


  args = alloca (sizeof (struct value *) * 8);		/* 6 for the arguments and one null one??? */
  funcval = find_function_in_inferior ("__d_shl_get");
  get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
  buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
  msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
  symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
  endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
  namelen = strlen (SYMBOL_NAME (function));
  value_return_addr = endo_buff_addr + namelen;
  ftype = check_typedef (SYMBOL_TYPE (get_sym));

  /* do alignment */
  if ((x = value_return_addr % 64) != 0)
    value_return_addr = value_return_addr + 64 - x;

  errno_return_addr = value_return_addr + 64;


  /* set up stuff needed by __d_shl_get in buffer in end.o */

  target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);

  target_write_memory (value_return_addr, (char *) &tmp, 4);

  target_write_memory (errno_return_addr, (char *) &tmp, 4);

  target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
		       (char *) &handle, 4);

  /* now prepare the arguments for the call */

  args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
  args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
  args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
  args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
  args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
  args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);

  /* now call the function */

  val = call_function_by_hand (funcval, 6, args);

  /* now get the results */

  target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));

  target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
  if (stub_addr <= 0)
    error ("call to __d_shl_get failed, error code is %d", err_value);

  return (stub_addr);
}

/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
static int
cover_find_stub_with_shl_get (PTR args_untyped)
{
  args_for_find_stub *args = args_untyped;
  args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
  return 0;
}

/* Insert the specified number of args and function address
   into a call sequence of the above form stored at DUMMYNAME.

   On the hppa we need to call the stack dummy through $$dyncall.
   Therefore our version of FIX_CALL_DUMMY takes an extra argument,
   real_pc, which is the location where gdb should start up the
   inferior to do the function call. 

   This has to work across several versions of hpux, bsd, osf1.  It has to
   work regardless of what compiler was used to build the inferior program.
   It should work regardless of whether or not end.o is available.  It has
   to work even if gdb can not call into the dynamic loader in the inferior
   to query it for symbol names and addresses.

   Yes, all those cases should work.  Luckily code exists to handle most
   of them.  The complexity is in selecting exactly what scheme should
   be used to perform the inferior call.

   At the current time this routine is known not to handle cases where
   the program was linked with HP's compiler without including end.o.

   Please contact Jeff Law (law@cygnus.com) before changing this code.  */

CORE_ADDR
hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
		     struct value **args, struct type *type, int gcc_p)
{
  CORE_ADDR dyncall_addr;
  struct minimal_symbol *msymbol;
  struct minimal_symbol *trampoline;
  int flags = read_register (FLAGS_REGNUM);
  struct unwind_table_entry *u = NULL;
  CORE_ADDR new_stub = 0;
  CORE_ADDR solib_handle = 0;

  /* Nonzero if we will use GCC's PLT call routine.  This routine must be
     passed an import stub, not a PLABEL.  It is also necessary to set %r19
     (the PIC register) before performing the call.

     If zero, then we are using __d_plt_call (HP's PLT call routine) or we
     are calling the target directly.  When using __d_plt_call we want to
     use a PLABEL instead of an import stub.  */
  int using_gcc_plt_call = 1;

#ifdef GDB_TARGET_IS_HPPA_20W
  /* We currently use completely different code for the PA2.0W inferior
     function call sequences.  This needs to be cleaned up.  */
  {
    CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
    struct target_waitstatus w;
    int inst1, inst2;
    char buf[4];
    int status;
    struct objfile *objfile;

    /* We can not modify the PC space queues directly, so we start
       up the inferior and execute a couple instructions to set the
       space queues so that they point to the call dummy in the stack.  */
    pcsqh = read_register (PCSQ_HEAD_REGNUM);
    sr5 = read_register (SR5_REGNUM);
    if (1)
      {
        pcoqh = read_register (PCOQ_HEAD_REGNUM);
        pcoqt = read_register (PCOQ_TAIL_REGNUM);
        if (target_read_memory (pcoqh, buf, 4) != 0)
          error ("Couldn't modify space queue\n");
        inst1 = extract_unsigned_integer (buf, 4);

        if (target_read_memory (pcoqt, buf, 4) != 0)
          error ("Couldn't modify space queue\n");
        inst2 = extract_unsigned_integer (buf, 4);

        /* BVE (r1) */
        *((int *) buf) = 0xe820d000;
        if (target_write_memory (pcoqh, buf, 4) != 0)
          error ("Couldn't modify space queue\n");

        /* NOP */
        *((int *) buf) = 0x08000240;
        if (target_write_memory (pcoqt, buf, 4) != 0)
          {
            *((int *) buf) = inst1;
            target_write_memory (pcoqh, buf, 4);
            error ("Couldn't modify space queue\n");
          }

        write_register (1, pc);

        /* Single step twice, the BVE instruction will set the space queue
	   such that it points to the PC value written immediately above
	   (ie the call dummy).  */
        resume (1, 0);
        target_wait (inferior_ptid, &w);
        resume (1, 0);
        target_wait (inferior_ptid, &w);

	/* Restore the two instructions at the old PC locations.  */
        *((int *) buf) = inst1;
        target_write_memory (pcoqh, buf, 4);
        *((int *) buf) = inst2;
        target_write_memory (pcoqt, buf, 4);
      }

    /* The call dummy wants the ultimate destination address initially
       in register %r5.  */
    write_register (5, fun);

    /* We need to see if this objfile has a different DP value than our
       own (it could be a shared library for example).  */
    ALL_OBJFILES (objfile)
      {
	struct obj_section *s;
	obj_private_data_t *obj_private;

	/* See if FUN is in any section within this shared library.  */
	for (s = objfile->sections; s < objfile->sections_end; s++)
	  if (s->addr <= fun && fun < s->endaddr)
	    break;

        if (s >= objfile->sections_end)
	  continue;

	obj_private = (obj_private_data_t *) objfile->obj_private;
	
	/* The DP value may be different for each objfile.  But within an
	   objfile each function uses the same dp value.  Thus we do not need
	   to grope around the opd section looking for dp values.

	   ?!? This is not strictly correct since we may be in a shared library
	   and want to call back into the main program.  To make that case
	   work correctly we need to set obj_private->dp for the main program's
	   objfile, then remove this conditional.  */
	if (obj_private->dp)
	  write_register (27, obj_private->dp);
	break;
      }
    return pc;
  }
#endif

#ifndef GDB_TARGET_IS_HPPA_20W
  /* Prefer __gcc_plt_call over the HP supplied routine because
     __gcc_plt_call works for any number of arguments.  */
  trampoline = NULL;
  if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
    using_gcc_plt_call = 0;

  msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
  if (msymbol == NULL)
    error ("Can't find an address for $$dyncall trampoline");

  dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);

  /* FUN could be a procedure label, in which case we have to get
     its real address and the value of its GOT/DP if we plan to
     call the routine via gcc_plt_call.  */
  if ((fun & 0x2) && using_gcc_plt_call)
    {
      /* Get the GOT/DP value for the target function.  It's
         at *(fun+4).  Note the call dummy is *NOT* allowed to
         trash %r19 before calling the target function.  */
      write_register (19, read_memory_integer ((fun & ~0x3) + 4,
		      REGISTER_SIZE));

      /* Now get the real address for the function we are calling, it's
         at *fun.  */
      fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
					     TARGET_PTR_BIT / 8);
    }
  else
    {

#ifndef GDB_TARGET_IS_PA_ELF
      /* FUN could be an export stub, the real address of a function, or
         a PLABEL.  When using gcc's PLT call routine we must call an import
         stub rather than the export stub or real function for lazy binding
         to work correctly

         If we are using the gcc PLT call routine, then we need to
         get the import stub for the target function.  */
      if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
	{
	  struct objfile *objfile;
	  struct minimal_symbol *funsymbol, *stub_symbol;
	  CORE_ADDR newfun = 0;

	  funsymbol = lookup_minimal_symbol_by_pc (fun);
	  if (!funsymbol)
	    error ("Unable to find minimal symbol for target function.\n");

	  /* Search all the object files for an import symbol with the
	     right name. */
	  ALL_OBJFILES (objfile)
	  {
	    stub_symbol
	      = lookup_minimal_symbol_solib_trampoline
	      (SYMBOL_NAME (funsymbol), NULL, objfile);

	    if (!stub_symbol)
	      stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
						   NULL, objfile);

	    /* Found a symbol with the right name.  */
	    if (stub_symbol)
	      {
		struct unwind_table_entry *u;
		/* It must be a shared library trampoline.  */
		if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
		  continue;

		/* It must also be an import stub.  */
		u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
		if (u == NULL
		    || (u->stub_unwind.stub_type != IMPORT
#ifdef GDB_NATIVE_HPUX_11
			/* Sigh.  The hpux 10.20 dynamic linker will blow
			   chunks if we perform a call to an unbound function
			   via the IMPORT_SHLIB stub.  The hpux 11.00 dynamic
			   linker will blow chunks if we do not call the
			   unbound function via the IMPORT_SHLIB stub.

			   We currently have no way to select bevahior on just
			   the target.  However, we only support HPUX/SOM in
			   native mode.  So we conditinalize on a native
			   #ifdef.  Ugly.  Ugly.  Ugly  */
			&& u->stub_unwind.stub_type != IMPORT_SHLIB
#endif
			))
		  continue;

		/* OK.  Looks like the correct import stub.  */
		newfun = SYMBOL_VALUE (stub_symbol);
		fun = newfun;

		/* If we found an IMPORT stub, then we want to stop
		   searching now.  If we found an IMPORT_SHLIB, we want
		   to continue the search in the hopes that we will find
		   an IMPORT stub.  */
		if (u->stub_unwind.stub_type == IMPORT)
		  break;
	      }
	  }

	  /* Ouch.  We did not find an import stub.  Make an attempt to
	     do the right thing instead of just croaking.  Most of the
	     time this will actually work.  */
	  if (newfun == 0)
	    write_register (19, som_solib_get_got_by_pc (fun));

	  u = find_unwind_entry (fun);
	  if (u
	      && (u->stub_unwind.stub_type == IMPORT
		  || u->stub_unwind.stub_type == IMPORT_SHLIB))
	    trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);

	  /* If we found the import stub in the shared library, then we have
	     to set %r19 before we call the stub.  */
	  if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
	    write_register (19, som_solib_get_got_by_pc (fun));
	}
#endif
    }

  /* If we are calling into another load module then have sr4export call the
     magic __d_plt_call routine which is linked in from end.o.

     You can't use _sr4export to make the call as the value in sp-24 will get
     fried and you end up returning to the wrong location.  You can't call the
     target as the code to bind the PLT entry to a function can't return to a
     stack address.

     Also, query the dynamic linker in the inferior to provide a suitable
     PLABEL for the target function.  */
  if (!using_gcc_plt_call)
    {
      CORE_ADDR new_fun;

      /* Get a handle for the shared library containing FUN.  Given the
         handle we can query the shared library for a PLABEL.  */
      solib_handle = som_solib_get_solib_by_pc (fun);

      if (solib_handle)
	{
	  struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);

	  trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);

	  if (trampoline == NULL)
	    {
	      error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
	    }

	  /* This is where sr4export will jump to.  */
	  new_fun = SYMBOL_VALUE_ADDRESS (trampoline);

	  /* If the function is in a shared library, then call __d_shl_get to
	     get a PLABEL for the target function.  */
	  new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);

	  if (new_stub == 0)
	    error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));

	  /* We have to store the address of the stub in __shlib_funcptr.  */
	  msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
					   (struct objfile *) NULL);

	  if (msymbol == NULL)
	    error ("Can't find an address for __shlib_funcptr");
	  target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
			       (char *) &new_stub, 4);

	  /* We want sr4export to call __d_plt_call, so we claim it is
	     the final target.  Clear trampoline.  */
	  fun = new_fun;
	  trampoline = NULL;
	}
    }

  /* Store upper 21 bits of function address into ldil.  fun will either be
     the final target (most cases) or __d_plt_call when calling into a shared
     library and __gcc_plt_call is not available.  */
  store_unsigned_integer
    (&dummy[FUNC_LDIL_OFFSET],
     INSTRUCTION_SIZE,
     deposit_21 (fun >> 11,
		 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
					   INSTRUCTION_SIZE)));

  /* Store lower 11 bits of function address into ldo */
  store_unsigned_integer
    (&dummy[FUNC_LDO_OFFSET],
     INSTRUCTION_SIZE,
     deposit_14 (fun & MASK_11,
		 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
					   INSTRUCTION_SIZE)));
#ifdef SR4EXPORT_LDIL_OFFSET

  {
    CORE_ADDR trampoline_addr;

    /* We may still need sr4export's address too.  */

    if (trampoline == NULL)
      {
	msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
	if (msymbol == NULL)
	  error ("Can't find an address for _sr4export trampoline");

	trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
      }
    else
      trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);


    /* Store upper 21 bits of trampoline's address into ldil */
    store_unsigned_integer
      (&dummy[SR4EXPORT_LDIL_OFFSET],
       INSTRUCTION_SIZE,
       deposit_21 (trampoline_addr >> 11,
		   extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
					     INSTRUCTION_SIZE)));

    /* Store lower 11 bits of trampoline's address into ldo */
    store_unsigned_integer
      (&dummy[SR4EXPORT_LDO_OFFSET],
       INSTRUCTION_SIZE,
       deposit_14 (trampoline_addr & MASK_11,
		   extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
					     INSTRUCTION_SIZE)));
  }
#endif

  write_register (22, pc);

  /* If we are in a syscall, then we should call the stack dummy
     directly.  $$dyncall is not needed as the kernel sets up the
     space id registers properly based on the value in %r31.  In
     fact calling $$dyncall will not work because the value in %r22
     will be clobbered on the syscall exit path. 

     Similarly if the current PC is in a shared library.  Note however,
     this scheme won't work if the shared library isn't mapped into
     the same space as the stack.  */
  if (flags & 2)
    return pc;
#ifndef GDB_TARGET_IS_PA_ELF
  else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
    return pc;
#endif
  else
    return dyncall_addr;
#endif
}




/* If the pid is in a syscall, then the FP register is not readable.
   We'll return zero in that case, rather than attempting to read it
   and cause a warning. */
CORE_ADDR
target_read_fp (int pid)
{
  int flags = read_register (FLAGS_REGNUM);

  if (flags & 2)
    {
      return (CORE_ADDR) 0;
    }

  /* This is the only site that may directly read_register () the FP
     register.  All others must use TARGET_READ_FP (). */
  return read_register (FP_REGNUM);
}


/* Get the PC from %r31 if currently in a syscall.  Also mask out privilege
   bits.  */

CORE_ADDR
target_read_pc (ptid_t ptid)
{
  int flags = read_register_pid (FLAGS_REGNUM, ptid);

  /* The following test does not belong here.  It is OS-specific, and belongs
     in native code.  */
  /* Test SS_INSYSCALL */
  if (flags & 2)
    return read_register_pid (31, ptid) & ~0x3;

  return read_register_pid (PC_REGNUM, ptid) & ~0x3;
}

/* Write out the PC.  If currently in a syscall, then also write the new
   PC value into %r31.  */

void
target_write_pc (CORE_ADDR v, ptid_t ptid)
{
  int flags = read_register_pid (FLAGS_REGNUM, ptid);

  /* The following test does not belong here.  It is OS-specific, and belongs
     in native code.  */
  /* If in a syscall, then set %r31.  Also make sure to get the 
     privilege bits set correctly.  */
  /* Test SS_INSYSCALL */
  if (flags & 2)
    write_register_pid (31, v | 0x3, ptid);

  write_register_pid (PC_REGNUM, v, ptid);
  write_register_pid (NPC_REGNUM, v + 4, ptid);
}

/* return the alignment of a type in bytes. Structures have the maximum
   alignment required by their fields. */

static int
hppa_alignof (struct type *type)
{
  int max_align, align, i;
  CHECK_TYPEDEF (type);
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_INT:
    case TYPE_CODE_FLT:
      return TYPE_LENGTH (type);
    case TYPE_CODE_ARRAY:
      return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      max_align = 1;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  /* Bit fields have no real alignment. */
	  /* if (!TYPE_FIELD_BITPOS (type, i)) */
	  if (!TYPE_FIELD_BITSIZE (type, i))	/* elz: this should be bitsize */
	    {
	      align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
	      max_align = max (max_align, align);
	    }
	}
      return max_align;
    default:
      return 4;
    }
}

/* Print the register regnum, or all registers if regnum is -1 */

void
pa_do_registers_info (int regnum, int fpregs)
{
  char raw_regs[REGISTER_BYTES];
  int i;

  /* Make a copy of gdb's save area (may cause actual
     reads from the target). */
  for (i = 0; i < NUM_REGS; i++)
    read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));

  if (regnum == -1)
    pa_print_registers (raw_regs, regnum, fpregs);
  else if (regnum < FP4_REGNUM)
    {
      long reg_val[2];

      /* Why is the value not passed through "extract_signed_integer"
         as in "pa_print_registers" below? */
      pa_register_look_aside (raw_regs, regnum, &reg_val[0]);

      if (!is_pa_2)
	{
	  printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
	}
      else
	{
	  /* Fancy % formats to prevent leading zeros. */
	  if (reg_val[0] == 0)
	    printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
	  else
	    printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
			       reg_val[0], reg_val[1]);
	}
    }
  else
    /* Note that real floating point values only start at
       FP4_REGNUM.  FP0 and up are just status and error
       registers, which have integral (bit) values. */
    pa_print_fp_reg (regnum);
}

/********** new function ********************/
void
pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
			     enum precision_type precision)
{
  char raw_regs[REGISTER_BYTES];
  int i;

  /* Make a copy of gdb's save area (may cause actual
     reads from the target). */
  for (i = 0; i < NUM_REGS; i++)
    read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));

  if (regnum == -1)
    pa_strcat_registers (raw_regs, regnum, fpregs, stream);

  else if (regnum < FP4_REGNUM)
    {
      long reg_val[2];

      /* Why is the value not passed through "extract_signed_integer"
         as in "pa_print_registers" below? */
      pa_register_look_aside (raw_regs, regnum, &reg_val[0]);

      if (!is_pa_2)
	{
	  fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
	}
      else
	{
	  /* Fancy % formats to prevent leading zeros. */
	  if (reg_val[0] == 0)
	    fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
				reg_val[1]);
	  else
	    fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
				reg_val[0], reg_val[1]);
	}
    }
  else
    /* Note that real floating point values only start at
       FP4_REGNUM.  FP0 and up are just status and error
       registers, which have integral (bit) values. */
    pa_strcat_fp_reg (regnum, stream, precision);
}

/* If this is a PA2.0 machine, fetch the real 64-bit register
   value.  Otherwise use the info from gdb's saved register area.

   Note that reg_val is really expected to be an array of longs,
   with two elements. */
static void
pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
{
  static int know_which = 0;	/* False */

  int regaddr;
  unsigned int offset;
  register int i;
  int start;


  char buf[MAX_REGISTER_RAW_SIZE];
  long long reg_val;

  if (!know_which)
    {
      if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
	{
	  is_pa_2 = (1 == 1);
	}

      know_which = 1;		/* True */
    }

  raw_val[0] = 0;
  raw_val[1] = 0;

  if (!is_pa_2)
    {
      raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
      return;
    }

  /* Code below copied from hppah-nat.c, with fixes for wide
     registers, using different area of save_state, etc. */
  if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
      !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
    {
      /* Use narrow regs area of save_state and default macro. */
      offset = U_REGS_OFFSET;
      regaddr = register_addr (regnum, offset);
      start = 1;
    }
  else
    {
      /* Use wide regs area, and calculate registers as 8 bytes wide.

         We'd like to do this, but current version of "C" doesn't
         permit "offsetof":

         offset  = offsetof(save_state_t, ss_wide);

         Note that to avoid "C" doing typed pointer arithmetic, we
         have to cast away the type in our offset calculation:
         otherwise we get an offset of 1! */

      /* NB: save_state_t is not available before HPUX 9.
         The ss_wide field is not available previous to HPUX 10.20,
         so to avoid compile-time warnings, we only compile this for
         PA 2.0 processors.  This control path should only be followed
         if we're debugging a PA 2.0 processor, so this should not cause
         problems. */

      /* #if the following code out so that this file can still be
         compiled on older HPUX boxes (< 10.20) which don't have
         this structure/structure member.  */
#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
      save_state_t temp;

      offset = ((int) &temp.ss_wide) - ((int) &temp);
      regaddr = offset + regnum * 8;
      start = 0;
#endif
    }

  for (i = start; i < 2; i++)
    {
      errno = 0;
      raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
				(PTRACE_ARG3_TYPE) regaddr, 0);
      if (errno != 0)
	{
	  /* Warning, not error, in case we are attached; sometimes the
	     kernel doesn't let us at the registers.  */
	  char *err = safe_strerror (errno);
	  char *msg = alloca (strlen (err) + 128);
	  sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
	  warning (msg);
	  goto error_exit;
	}

      regaddr += sizeof (long);
    }

  if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
    raw_val[1] &= ~0x3;		/* I think we're masking out space bits */

error_exit:
  ;
}

/* "Info all-reg" command */

static void
pa_print_registers (char *raw_regs, int regnum, int fpregs)
{
  int i, j;
  /* Alas, we are compiled so that "long long" is 32 bits */
  long raw_val[2];
  long long_val;
  int rows = 48, columns = 2;

  for (i = 0; i < rows; i++)
    {
      for (j = 0; j < columns; j++)
	{
	  /* We display registers in column-major order.  */
	  int regnum = i + j * rows;

	  /* Q: Why is the value passed through "extract_signed_integer",
	     while above, in "pa_do_registers_info" it isn't?
	     A: ? */
	  pa_register_look_aside (raw_regs, regnum, &raw_val[0]);

	  /* Even fancier % formats to prevent leading zeros
	     and still maintain the output in columns. */
	  if (!is_pa_2)
	    {
	      /* Being big-endian, on this machine the low bits
	         (the ones we want to look at) are in the second longword. */
	      long_val = extract_signed_integer (&raw_val[1], 4);
	      printf_filtered ("%10.10s: %8lx   ",
			       REGISTER_NAME (regnum), long_val);
	    }
	  else
	    {
	      /* raw_val = extract_signed_integer(&raw_val, 8); */
	      if (raw_val[0] == 0)
		printf_filtered ("%10.10s:         %8lx   ",
				 REGISTER_NAME (regnum), raw_val[1]);
	      else
		printf_filtered ("%10.10s: %8lx%8.8lx   ",
				 REGISTER_NAME (regnum),
				 raw_val[0], raw_val[1]);
	    }
	}
      printf_unfiltered ("\n");
    }

  if (fpregs)
    for (i = FP4_REGNUM; i < NUM_REGS; i++)	/* FP4_REGNUM == 72 */
      pa_print_fp_reg (i);
}

/************* new function ******************/
static void
pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
		     struct ui_file *stream)
{
  int i, j;
  long raw_val[2];		/* Alas, we are compiled so that "long long" is 32 bits */
  long long_val;
  enum precision_type precision;

  precision = unspecified_precision;

  for (i = 0; i < 18; i++)
    {
      for (j = 0; j < 4; j++)
	{
	  /* Q: Why is the value passed through "extract_signed_integer",
	     while above, in "pa_do_registers_info" it isn't?
	     A: ? */
	  pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);

	  /* Even fancier % formats to prevent leading zeros
	     and still maintain the output in columns. */
	  if (!is_pa_2)
	    {
	      /* Being big-endian, on this machine the low bits
	         (the ones we want to look at) are in the second longword. */
	      long_val = extract_signed_integer (&raw_val[1], 4);
	      fprintf_filtered (stream, "%8.8s: %8lx  ",
				REGISTER_NAME (i + (j * 18)), long_val);
	    }
	  else
	    {
	      /* raw_val = extract_signed_integer(&raw_val, 8); */
	      if (raw_val[0] == 0)
		fprintf_filtered (stream, "%8.8s:         %8lx  ",
				  REGISTER_NAME (i + (j * 18)), raw_val[1]);
	      else
		fprintf_filtered (stream, "%8.8s: %8lx%8.8lx  ",
				  REGISTER_NAME (i + (j * 18)), raw_val[0],
				  raw_val[1]);
	    }
	}
      fprintf_unfiltered (stream, "\n");
    }

  if (fpregs)
    for (i = FP4_REGNUM; i < NUM_REGS; i++)	/* FP4_REGNUM == 72 */
      pa_strcat_fp_reg (i, stream, precision);
}

static void
pa_print_fp_reg (int i)
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];

  /* Get 32bits of data.  */
  read_relative_register_raw_bytes (i, raw_buffer);

  /* Put it in the buffer.  No conversions are ever necessary.  */
  memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));

  fputs_filtered (REGISTER_NAME (i), gdb_stdout);
  print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
  fputs_filtered ("(single precision)     ", gdb_stdout);

  val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
	     1, 0, Val_pretty_default);
  printf_filtered ("\n");

  /* If "i" is even, then this register can also be a double-precision
     FP register.  Dump it out as such.  */
  if ((i % 2) == 0)
    {
      /* Get the data in raw format for the 2nd half.  */
      read_relative_register_raw_bytes (i + 1, raw_buffer);

      /* Copy it into the appropriate part of the virtual buffer.  */
      memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
	      REGISTER_RAW_SIZE (i));

      /* Dump it as a double.  */
      fputs_filtered (REGISTER_NAME (i), gdb_stdout);
      print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
      fputs_filtered ("(double precision)     ", gdb_stdout);

      val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
		 1, 0, Val_pretty_default);
      printf_filtered ("\n");
    }
}

/*************** new function ***********************/
static void
pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];

  fputs_filtered (REGISTER_NAME (i), stream);
  print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);

  /* Get 32bits of data.  */
  read_relative_register_raw_bytes (i, raw_buffer);

  /* Put it in the buffer.  No conversions are ever necessary.  */
  memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));

  if (precision == double_precision && (i % 2) == 0)
    {

      char raw_buf[MAX_REGISTER_RAW_SIZE];

      /* Get the data in raw format for the 2nd half.  */
      read_relative_register_raw_bytes (i + 1, raw_buf);

      /* Copy it into the appropriate part of the virtual buffer.  */
      memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));

      val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
		 1, 0, Val_pretty_default);

    }
  else
    {
      val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
		 1, 0, Val_pretty_default);
    }

}

/* Return one if PC is in the call path of a trampoline, else return zero.

   Note we return one for *any* call trampoline (long-call, arg-reloc), not
   just shared library trampolines (import, export).  */

int
in_solib_call_trampoline (CORE_ADDR pc, char *name)
{
  struct minimal_symbol *minsym;
  struct unwind_table_entry *u;
  static CORE_ADDR dyncall = 0;
  static CORE_ADDR sr4export = 0;

#ifdef GDB_TARGET_IS_HPPA_20W
  /* PA64 has a completely different stub/trampoline scheme.  Is it
     better?  Maybe.  It's certainly harder to determine with any
     certainty that we are in a stub because we can not refer to the
     unwinders to help. 

     The heuristic is simple.  Try to lookup the current PC value in th
     minimal symbol table.  If that fails, then assume we are not in a
     stub and return.

     Then see if the PC value falls within the section bounds for the
     section containing the minimal symbol we found in the first
     step.  If it does, then assume we are not in a stub and return.

     Finally peek at the instructions to see if they look like a stub.  */
  {
    struct minimal_symbol *minsym;
    asection *sec;
    CORE_ADDR addr;
    int insn, i;

    minsym = lookup_minimal_symbol_by_pc (pc);
    if (! minsym)
      return 0;

    sec = SYMBOL_BFD_SECTION (minsym);

    if (sec->vma <= pc
	&& sec->vma + sec->_cooked_size < pc)
      return 0;

    /* We might be in a stub.  Peek at the instructions.  Stubs are 3
       instructions long. */
    insn = read_memory_integer (pc, 4);

    /* Find out where we think we are within the stub.  */
    if ((insn & 0xffffc00e) == 0x53610000)
      addr = pc;
    else if ((insn & 0xffffffff) == 0xe820d000)
      addr = pc - 4;
    else if ((insn & 0xffffc00e) == 0x537b0000)
      addr = pc - 8;
    else
      return 0;

    /* Now verify each insn in the range looks like a stub instruction.  */
    insn = read_memory_integer (addr, 4);
    if ((insn & 0xffffc00e) != 0x53610000)
      return 0;
	
    /* Now verify each insn in the range looks like a stub instruction.  */
    insn = read_memory_integer (addr + 4, 4);
    if ((insn & 0xffffffff) != 0xe820d000)
      return 0;
    
    /* Now verify each insn in the range looks like a stub instruction.  */
    insn = read_memory_integer (addr + 8, 4);
    if ((insn & 0xffffc00e) != 0x537b0000)
      return 0;

    /* Looks like a stub.  */
    return 1;
  }
#endif

  /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
     new exec file */

  /* First see if PC is in one of the two C-library trampolines.  */
  if (!dyncall)
    {
      minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
      if (minsym)
	dyncall = SYMBOL_VALUE_ADDRESS (minsym);
      else
	dyncall = -1;
    }

  if (!sr4export)
    {
      minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
      if (minsym)
	sr4export = SYMBOL_VALUE_ADDRESS (minsym);
      else
	sr4export = -1;
    }

  if (pc == dyncall || pc == sr4export)
    return 1;

  minsym = lookup_minimal_symbol_by_pc (pc);
  if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
    return 1;

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub, then return now.  */
  if (u->stub_unwind.stub_type == 0)
    return 0;

  /* By definition a long-branch stub is a call stub.  */
  if (u->stub_unwind.stub_type == LONG_BRANCH)
    return 1;

  /* The call and return path execute the same instructions within
     an IMPORT stub!  So an IMPORT stub is both a call and return
     trampoline.  */
  if (u->stub_unwind.stub_type == IMPORT)
    return 1;

  /* Parameter relocation stubs always have a call path and may have a
     return path.  */
  if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
      || u->stub_unwind.stub_type == EXPORT)
    {
      CORE_ADDR addr;

      /* Search forward from the current PC until we hit a branch
         or the end of the stub.  */
      for (addr = pc; addr <= u->region_end; addr += 4)
	{
	  unsigned long insn;

	  insn = read_memory_integer (addr, 4);

	  /* Does it look like a bl?  If so then it's the call path, if
	     we find a bv or be first, then we're on the return path.  */
	  if ((insn & 0xfc00e000) == 0xe8000000)
	    return 1;
	  else if ((insn & 0xfc00e001) == 0xe800c000
		   || (insn & 0xfc000000) == 0xe0000000)
	    return 0;
	}

      /* Should never happen.  */
      warning ("Unable to find branch in parameter relocation stub.\n");
      return 0;
    }

  /* Unknown stub type.  For now, just return zero.  */
  return 0;
}

/* Return one if PC is in the return path of a trampoline, else return zero.

   Note we return one for *any* call trampoline (long-call, arg-reloc), not
   just shared library trampolines (import, export).  */

int
in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
  struct unwind_table_entry *u;

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub or it's just a long branch stub, then
     return zero.  */
  if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
    return 0;

  /* The call and return path execute the same instructions within
     an IMPORT stub!  So an IMPORT stub is both a call and return
     trampoline.  */
  if (u->stub_unwind.stub_type == IMPORT)
    return 1;

  /* Parameter relocation stubs always have a call path and may have a
     return path.  */
  if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
      || u->stub_unwind.stub_type == EXPORT)
    {
      CORE_ADDR addr;

      /* Search forward from the current PC until we hit a branch
         or the end of the stub.  */
      for (addr = pc; addr <= u->region_end; addr += 4)
	{
	  unsigned long insn;

	  insn = read_memory_integer (addr, 4);

	  /* Does it look like a bl?  If so then it's the call path, if
	     we find a bv or be first, then we're on the return path.  */
	  if ((insn & 0xfc00e000) == 0xe8000000)
	    return 0;
	  else if ((insn & 0xfc00e001) == 0xe800c000
		   || (insn & 0xfc000000) == 0xe0000000)
	    return 1;
	}

      /* Should never happen.  */
      warning ("Unable to find branch in parameter relocation stub.\n");
      return 0;
    }

  /* Unknown stub type.  For now, just return zero.  */
  return 0;

}

/* Figure out if PC is in a trampoline, and if so find out where
   the trampoline will jump to.  If not in a trampoline, return zero.

   Simple code examination probably is not a good idea since the code
   sequences in trampolines can also appear in user code.

   We use unwinds and information from the minimal symbol table to
   determine when we're in a trampoline.  This won't work for ELF
   (yet) since it doesn't create stub unwind entries.  Whether or
   not ELF will create stub unwinds or normal unwinds for linker
   stubs is still being debated.

   This should handle simple calls through dyncall or sr4export,
   long calls, argument relocation stubs, and dyncall/sr4export
   calling an argument relocation stub.  It even handles some stubs
   used in dynamic executables.  */

CORE_ADDR
skip_trampoline_code (CORE_ADDR pc, char *name)
{
  long orig_pc = pc;
  long prev_inst, curr_inst, loc;
  static CORE_ADDR dyncall = 0;
  static CORE_ADDR dyncall_external = 0;
  static CORE_ADDR sr4export = 0;
  struct minimal_symbol *msym;
  struct unwind_table_entry *u;

  /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
     new exec file */

  if (!dyncall)
    {
      msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
      if (msym)
	dyncall = SYMBOL_VALUE_ADDRESS (msym);
      else
	dyncall = -1;
    }

  if (!dyncall_external)
    {
      msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
      if (msym)
	dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
      else
	dyncall_external = -1;
    }

  if (!sr4export)
    {
      msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
      if (msym)
	sr4export = SYMBOL_VALUE_ADDRESS (msym);
      else
	sr4export = -1;
    }

  /* Addresses passed to dyncall may *NOT* be the actual address
     of the function.  So we may have to do something special.  */
  if (pc == dyncall)
    {
      pc = (CORE_ADDR) read_register (22);

      /* If bit 30 (counting from the left) is on, then pc is the address of
         the PLT entry for this function, not the address of the function
         itself.  Bit 31 has meaning too, but only for MPE.  */
      if (pc & 0x2)
	pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
    }
  if (pc == dyncall_external)
    {
      pc = (CORE_ADDR) read_register (22);
      pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
    }
  else if (pc == sr4export)
    pc = (CORE_ADDR) (read_register (22));

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub, then return now.  */
  /* elz: attention here! (FIXME) because of a compiler/linker 
     error, some stubs which should have a non zero stub_unwind.stub_type 
     have unfortunately a value of zero. So this function would return here
     as if we were not in a trampoline. To fix this, we go look at the partial
     symbol information, which reports this guy as a stub.
     (FIXME): Unfortunately, we are not that lucky: it turns out that the 
     partial symbol information is also wrong sometimes. This is because 
     when it is entered (somread.c::som_symtab_read()) it can happen that
     if the type of the symbol (from the som) is Entry, and the symbol is
     in a shared library, then it can also be a trampoline.  This would
     be OK, except that I believe the way they decide if we are ina shared library
     does not work. SOOOO..., even if we have a regular function w/o trampolines
     its minimal symbol can be assigned type mst_solib_trampoline.
     Also, if we find that the symbol is a real stub, then we fix the unwind
     descriptor, and define the stub type to be EXPORT.
     Hopefully this is correct most of the times. */
  if (u->stub_unwind.stub_type == 0)
    {

/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
   we can delete all the code which appears between the lines */
/*--------------------------------------------------------------------------*/
      msym = lookup_minimal_symbol_by_pc (pc);

      if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
	return orig_pc == pc ? 0 : pc & ~0x3;

      else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
	{
	  struct objfile *objfile;
	  struct minimal_symbol *msymbol;
	  int function_found = 0;

	  /* go look if there is another minimal symbol with the same name as 
	     this one, but with type mst_text. This would happen if the msym
	     is an actual trampoline, in which case there would be another
	     symbol with the same name corresponding to the real function */

	  ALL_MSYMBOLS (objfile, msymbol)
	  {
	    if (MSYMBOL_TYPE (msymbol) == mst_text
		&& STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
	      {
		function_found = 1;
		break;
	      }
	  }

	  if (function_found)
	    /* the type of msym is correct (mst_solib_trampoline), but
	       the unwind info is wrong, so set it to the correct value */
	    u->stub_unwind.stub_type = EXPORT;
	  else
	    /* the stub type info in the unwind is correct (this is not a
	       trampoline), but the msym type information is wrong, it
	       should be mst_text. So we need to fix the msym, and also
	       get out of this function */
	    {
	      MSYMBOL_TYPE (msym) = mst_text;
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

/*--------------------------------------------------------------------------*/
    }

  /* It's a stub.  Search for a branch and figure out where it goes.
     Note we have to handle multi insn branch sequences like ldil;ble.
     Most (all?) other branches can be determined by examining the contents
     of certain registers and the stack.  */

  loc = pc;
  curr_inst = 0;
  prev_inst = 0;
  while (1)
    {
      /* Make sure we haven't walked outside the range of this stub.  */
      if (u != find_unwind_entry (loc))
	{
	  warning ("Unable to find branch in linker stub");
	  return orig_pc == pc ? 0 : pc & ~0x3;
	}

      prev_inst = curr_inst;
      curr_inst = read_memory_integer (loc, 4);

      /* Does it look like a branch external using %r1?  Then it's the
         branch from the stub to the actual function.  */
      if ((curr_inst & 0xffe0e000) == 0xe0202000)
	{
	  /* Yup.  See if the previous instruction loaded
	     a value into %r1.  If so compute and return the jump address.  */
	  if ((prev_inst & 0xffe00000) == 0x20200000)
	    return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
	  else
	    {
	      warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

      /* Does it look like a be 0(sr0,%r21)? OR 
         Does it look like a be, n 0(sr0,%r21)? OR 
         Does it look like a bve (r21)? (this is on PA2.0)
         Does it look like a bve, n(r21)? (this is also on PA2.0)
         That's the branch from an
         import stub to an export stub.

         It is impossible to determine the target of the branch via
         simple examination of instructions and/or data (consider
         that the address in the plabel may be the address of the
         bind-on-reference routine in the dynamic loader).

         So we have try an alternative approach.

         Get the name of the symbol at our current location; it should
         be a stub symbol with the same name as the symbol in the
         shared library.

         Then lookup a minimal symbol with the same name; we should
         get the minimal symbol for the target routine in the shared
         library as those take precedence of import/export stubs.  */
      if ((curr_inst == 0xe2a00000) ||
	  (curr_inst == 0xe2a00002) ||
	  (curr_inst == 0xeaa0d000) ||
	  (curr_inst == 0xeaa0d002))
	{
	  struct minimal_symbol *stubsym, *libsym;

	  stubsym = lookup_minimal_symbol_by_pc (loc);
	  if (stubsym == NULL)
	    {
	      warning ("Unable to find symbol for 0x%lx", loc);
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }

	  libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
	  if (libsym == NULL)
	    {
	      warning ("Unable to find library symbol for %s\n",
		       SYMBOL_NAME (stubsym));
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }

	  return SYMBOL_VALUE (libsym);
	}

      /* Does it look like bl X,%rp or bl X,%r0?  Another way to do a
         branch from the stub to the actual function.  */
      /*elz */
      else if ((curr_inst & 0xffe0e000) == 0xe8400000
	       || (curr_inst & 0xffe0e000) == 0xe8000000
	       || (curr_inst & 0xffe0e000) == 0xe800A000)
	return (loc + extract_17 (curr_inst) + 8) & ~0x3;

      /* Does it look like bv (rp)?   Note this depends on the
         current stack pointer being the same as the stack
         pointer in the stub itself!  This is a branch on from the
         stub back to the original caller.  */
      /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
      else if ((curr_inst & 0xffe0f000) == 0xe840c000)
	{
	  /* Yup.  See if the previous instruction loaded
	     rp from sp - 8.  */
	  if (prev_inst == 0x4bc23ff1)
	    return (read_memory_integer
		    (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
	  else
	    {
	      warning ("Unable to find restore of %%rp before bv (%%rp).");
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

      /* elz: added this case to capture the new instruction
         at the end of the return part of an export stub used by
         the PA2.0: BVE, n (rp) */
      else if ((curr_inst & 0xffe0f000) == 0xe840d000)
	{
	  return (read_memory_integer
		  (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
	}

      /* What about be,n 0(sr0,%rp)?  It's just another way we return to
         the original caller from the stub.  Used in dynamic executables.  */
      else if (curr_inst == 0xe0400002)
	{
	  /* The value we jump to is sitting in sp - 24.  But that's
	     loaded several instructions before the be instruction.
	     I guess we could check for the previous instruction being
	     mtsp %r1,%sr0 if we want to do sanity checking.  */
	  return (read_memory_integer
		  (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
	}

      /* Haven't found the branch yet, but we're still in the stub.
         Keep looking.  */
      loc += 4;
    }
}


/* For the given instruction (INST), return any adjustment it makes
   to the stack pointer or zero for no adjustment. 

   This only handles instructions commonly found in prologues.  */

static int
prologue_inst_adjust_sp (unsigned long inst)
{
  /* This must persist across calls.  */
  static int save_high21;

  /* The most common way to perform a stack adjustment ldo X(sp),sp */
  if ((inst & 0xffffc000) == 0x37de0000)
    return extract_14 (inst);

  /* stwm X,D(sp) */
  if ((inst & 0xffe00000) == 0x6fc00000)
    return extract_14 (inst);

  /* std,ma X,D(sp) */
  if ((inst & 0xffe00008) == 0x73c00008)
    return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);

  /* addil high21,%r1; ldo low11,(%r1),%r30)
     save high bits in save_high21 for later use.  */
  if ((inst & 0xffe00000) == 0x28200000)
    {
      save_high21 = extract_21 (inst);
      return 0;
    }

  if ((inst & 0xffff0000) == 0x343e0000)
    return save_high21 + extract_14 (inst);

  /* fstws as used by the HP compilers.  */
  if ((inst & 0xffffffe0) == 0x2fd01220)
    return extract_5_load (inst);

  /* No adjustment.  */
  return 0;
}

/* Return nonzero if INST is a branch of some kind, else return zero.  */

static int
is_branch (unsigned long inst)
{
  switch (inst >> 26)
    {
    case 0x20:
    case 0x21:
    case 0x22:
    case 0x23:
    case 0x27:
    case 0x28:
    case 0x29:
    case 0x2a:
    case 0x2b:
    case 0x2f:
    case 0x30:
    case 0x31:
    case 0x32:
    case 0x33:
    case 0x38:
    case 0x39:
    case 0x3a:
    case 0x3b:
      return 1;

    default:
      return 0;
    }
}

/* Return the register number for a GR which is saved by INST or
   zero it INST does not save a GR.  */

static int
inst_saves_gr (unsigned long inst)
{
  /* Does it look like a stw?  */
  if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
      || (inst >> 26) == 0x1f
      || ((inst >> 26) == 0x1f
	  && ((inst >> 6) == 0xa)))
    return extract_5R_store (inst);

  /* Does it look like a std?  */
  if ((inst >> 26) == 0x1c
      || ((inst >> 26) == 0x03
	  && ((inst >> 6) & 0xf) == 0xb))
    return extract_5R_store (inst);

  /* Does it look like a stwm?  GCC & HPC may use this in prologues. */
  if ((inst >> 26) == 0x1b)
    return extract_5R_store (inst);

  /* Does it look like sth or stb?  HPC versions 9.0 and later use these
     too.  */
  if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
      || ((inst >> 26) == 0x3
	  && (((inst >> 6) & 0xf) == 0x8
	      || (inst >> 6) & 0xf) == 0x9))
    return extract_5R_store (inst);

  return 0;
}

/* Return the register number for a FR which is saved by INST or
   zero it INST does not save a FR.

   Note we only care about full 64bit register stores (that's the only
   kind of stores the prologue will use).

   FIXME: What about argument stores with the HP compiler in ANSI mode? */

static int
inst_saves_fr (unsigned long inst)
{
  /* is this an FSTD ? */
  if ((inst & 0xfc00dfc0) == 0x2c001200)
    return extract_5r_store (inst);
  if ((inst & 0xfc000002) == 0x70000002)
    return extract_5R_store (inst);
  /* is this an FSTW ? */
  if ((inst & 0xfc00df80) == 0x24001200)
    return extract_5r_store (inst);
  if ((inst & 0xfc000002) == 0x7c000000)
    return extract_5R_store (inst);
  return 0;
}

/* Advance PC across any function entry prologue instructions
   to reach some "real" code. 

   Use information in the unwind table to determine what exactly should
   be in the prologue.  */


CORE_ADDR
skip_prologue_hard_way (CORE_ADDR pc)
{
  char buf[4];
  CORE_ADDR orig_pc = pc;
  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
  unsigned long args_stored, status, i, restart_gr, restart_fr;
  struct unwind_table_entry *u;

  restart_gr = 0;
  restart_fr = 0;

restart:
  u = find_unwind_entry (pc);
  if (!u)
    return pc;

  /* If we are not at the beginning of a function, then return now. */
  if ((pc & ~0x3) != u->region_start)
    return pc;

  /* This is how much of a frame adjustment we need to account for.  */
  stack_remaining = u->Total_frame_size << 3;

  /* Magic register saves we want to know about.  */
  save_rp = u->Save_RP;
  save_sp = u->Save_SP;

  /* An indication that args may be stored into the stack.  Unfortunately
     the HPUX compilers tend to set this in cases where no args were
     stored too!.  */
  args_stored = 1;

  /* Turn the Entry_GR field into a bitmask.  */
  save_gr = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == FP_REGNUM)
	continue;

      save_gr |= (1 << i);
    }
  save_gr &= ~restart_gr;

  /* Turn the Entry_FR field into a bitmask too.  */
  save_fr = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    save_fr |= (1 << i);
  save_fr &= ~restart_fr;

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimzied GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
	 || args_stored)
    {
      unsigned int reg_num;
      unsigned long old_stack_remaining, old_save_gr, old_save_fr;
      unsigned long old_save_rp, old_save_sp, next_inst;

      /* Save copies of all the triggers so we can compare them later
         (only for HPC).  */
      old_save_gr = save_gr;
      old_save_fr = save_fr;
      old_save_rp = save_rp;
      old_save_sp = save_sp;
      old_stack_remaining = stack_remaining;

      status = target_read_memory (pc, buf, 4);
      inst = extract_unsigned_integer (buf, 4);

      /* Yow! */
      if (status != 0)
	return pc;

      /* Note the interesting effects of this instruction.  */
      stack_remaining -= prologue_inst_adjust_sp (inst);

      /* There are limited ways to store the return pointer into the
	 stack.  */
      if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
	save_rp = 0;

      /* These are the only ways we save SP into the stack.  At this time
         the HP compilers never bother to save SP into the stack.  */
      if ((inst & 0xffffc000) == 0x6fc10000
	  || (inst & 0xffffc00c) == 0x73c10008)
	save_sp = 0;

      /* Are we loading some register with an offset from the argument
         pointer?  */
      if ((inst & 0xffe00000) == 0x37a00000
	  || (inst & 0xffffffe0) == 0x081d0240)
	{
	  pc += 4;
	  continue;
	}

      /* Account for general and floating-point register saves.  */
      reg_num = inst_saves_gr (inst);
      save_gr &= ~(1 << reg_num);

      /* Ugh.  Also account for argument stores into the stack.
         Unfortunately args_stored only tells us that some arguments
         where stored into the stack.  Not how many or what kind!

         This is a kludge as on the HP compiler sets this bit and it
         never does prologue scheduling.  So once we see one, skip past
         all of them.   We have similar code for the fp arg stores below.

         FIXME.  Can still die if we have a mix of GR and FR argument
         stores!  */
      if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
	{
	  while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
	    {
	      pc += 4;
	      status = target_read_memory (pc, buf, 4);
	      inst = extract_unsigned_integer (buf, 4);
	      if (status != 0)
		return pc;
	      reg_num = inst_saves_gr (inst);
	    }
	  args_stored = 0;
	  continue;
	}

      reg_num = inst_saves_fr (inst);
      save_fr &= ~(1 << reg_num);

      status = target_read_memory (pc + 4, buf, 4);
      next_inst = extract_unsigned_integer (buf, 4);

      /* Yow! */
      if (status != 0)
	return pc;

      /* We've got to be read to handle the ldo before the fp register
         save.  */
      if ((inst & 0xfc000000) == 0x34000000
	  && inst_saves_fr (next_inst) >= 4
	  && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
	{
	  /* So we drop into the code below in a reasonable state.  */
	  reg_num = inst_saves_fr (next_inst);
	  pc -= 4;
	}

      /* Ugh.  Also account for argument stores into the stack.
         This is a kludge as on the HP compiler sets this bit and it
         never does prologue scheduling.  So once we see one, skip past
         all of them.  */
      if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
	{
	  while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
	    {
	      pc += 8;
	      status = target_read_memory (pc, buf, 4);
	      inst = extract_unsigned_integer (buf, 4);
	      if (status != 0)
		return pc;
	      if ((inst & 0xfc000000) != 0x34000000)
		break;
	      status = target_read_memory (pc + 4, buf, 4);
	      next_inst = extract_unsigned_integer (buf, 4);
	      if (status != 0)
		return pc;
	      reg_num = inst_saves_fr (next_inst);
	    }
	  args_stored = 0;
	  continue;
	}

      /* Quit if we hit any kind of branch.  This can happen if a prologue
         instruction is in the delay slot of the first call/branch.  */
      if (is_branch (inst))
	break;

      /* What a crock.  The HP compilers set args_stored even if no
         arguments were stored into the stack (boo hiss).  This could
         cause this code to then skip a bunch of user insns (up to the
         first branch).

         To combat this we try to identify when args_stored was bogusly
         set and clear it.   We only do this when args_stored is nonzero,
         all other resources are accounted for, and nothing changed on
         this pass.  */
      if (args_stored
       && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
	  && old_save_gr == save_gr && old_save_fr == save_fr
	  && old_save_rp == save_rp && old_save_sp == save_sp
	  && old_stack_remaining == stack_remaining)
	break;

      /* Bump the PC.  */
      pc += 4;
    }

  /* We've got a tenative location for the end of the prologue.  However
     because of limitations in the unwind descriptor mechanism we may
     have went too far into user code looking for the save of a register
     that does not exist.  So, if there registers we expected to be saved
     but never were, mask them out and restart.

     This should only happen in optimized code, and should be very rare.  */
  if (save_gr || (save_fr && !(restart_fr || restart_gr)))
    {
      pc = orig_pc;
      restart_gr = save_gr;
      restart_fr = save_fr;
      goto restart;
    }

  return pc;
}


/* Return the address of the PC after the last prologue instruction if
   we can determine it from the debug symbols.  Else return zero.  */

static CORE_ADDR
after_prologue (CORE_ADDR pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_addr, func_end;
  struct symbol *f;

  /* If we can not find the symbol in the partial symbol table, then
     there is no hope we can determine the function's start address
     with this code.  */
  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return 0;

  /* Get the line associated with FUNC_ADDR.  */
  sal = find_pc_line (func_addr, 0);

  /* There are only two cases to consider.  First, the end of the source line
     is within the function bounds.  In that case we return the end of the
     source line.  Second is the end of the source line extends beyond the
     bounds of the current function.  We need to use the slow code to
     examine instructions in that case. 

     Anything else is simply a bug elsewhere.  Fixing it here is absolutely
     the wrong thing to do.  In fact, it should be entirely possible for this
     function to always return zero since the slow instruction scanning code
     is supposed to *always* work.  If it does not, then it is a bug.  */
  if (sal.end < func_end)
    return sal.end;
  else
    return 0;
}

/* To skip prologues, I use this predicate.  Returns either PC itself
   if the code at PC does not look like a function prologue; otherwise
   returns an address that (if we're lucky) follows the prologue.  If
   LENIENT, then we must skip everything which is involved in setting
   up the frame (it's OK to skip more, just so long as we don't skip
   anything which might clobber the registers which are being saved.
   Currently we must not skip more on the alpha, but we might the lenient
   stuff some day.  */

CORE_ADDR
hppa_skip_prologue (CORE_ADDR pc)
{
  unsigned long inst;
  int offset;
  CORE_ADDR post_prologue_pc;
  char buf[4];

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */

  post_prologue_pc = after_prologue (pc);

  /* If after_prologue returned a useful address, then use it.  Else
     fall back on the instruction skipping code.

     Some folks have claimed this causes problems because the breakpoint
     may be the first instruction of the prologue.  If that happens, then
     the instruction skipping code has a bug that needs to be fixed.  */
  if (post_prologue_pc != 0)
    return max (pc, post_prologue_pc);
  else
    return (skip_prologue_hard_way (pc));
}

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

void
hppa_frame_find_saved_regs (struct frame_info *frame_info,
			    struct frame_saved_regs *frame_saved_regs)
{
  CORE_ADDR pc;
  struct unwind_table_entry *u;
  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
  int status, i, reg;
  char buf[4];
  int fp_loc = -1;
  int final_iteration;

  /* Zero out everything.  */
  memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));

  /* Call dummy frames always look the same, so there's no need to
     examine the dummy code to determine locations of saved registers;
     instead, let find_dummy_frame_regs fill in the correct offsets
     for the saved registers.  */
  if ((frame_info->pc >= frame_info->frame
       && frame_info->pc <= (frame_info->frame
			     /* A call dummy is sized in words, but it is
				actually a series of instructions.  Account
				for that scaling factor.  */
			     + ((REGISTER_SIZE / INSTRUCTION_SIZE)
				* CALL_DUMMY_LENGTH)
			     /* Similarly we have to account for 64bit
				wide register saves.  */
			     + (32 * REGISTER_SIZE)
			     /* We always consider FP regs 8 bytes long.  */
			     + (NUM_REGS - FP0_REGNUM) * 8
			     /* Similarly we have to account for 64bit
				wide register saves.  */
			     + (6 * REGISTER_SIZE))))
    find_dummy_frame_regs (frame_info, frame_saved_regs);

  /* Interrupt handlers are special too.  They lay out the register
     state in the exact same order as the register numbers in GDB.  */
  if (pc_in_interrupt_handler (frame_info->pc))
    {
      for (i = 0; i < NUM_REGS; i++)
	{
	  /* SP is a little special.  */
	  if (i == SP_REGNUM)
	    frame_saved_regs->regs[SP_REGNUM]
	      = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
				     TARGET_PTR_BIT / 8);
	  else
	    frame_saved_regs->regs[i] = frame_info->frame + i * 4;
	}
      return;
    }

#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
  /* Handle signal handler callers.  */
  if (frame_info->signal_handler_caller)
    {
      FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
      return;
    }
#endif

  /* Get the starting address of the function referred to by the PC
     saved in frame.  */
  pc = get_pc_function_start (frame_info->pc);

  /* Yow! */
  u = find_unwind_entry (pc);
  if (!u)
    return;

  /* This is how much of a frame adjustment we need to account for.  */
  stack_remaining = u->Total_frame_size << 3;

  /* Magic register saves we want to know about.  */
  save_rp = u->Save_RP;
  save_sp = u->Save_SP;

  /* Turn the Entry_GR field into a bitmask.  */
  save_gr = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == FP_REGNUM)
	continue;

      save_gr |= (1 << i);
    }

  /* Turn the Entry_FR field into a bitmask too.  */
  save_fr = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    save_fr |= (1 << i);

  /* The frame always represents the value of %sp at entry to the
     current function (and is thus equivalent to the "saved" stack
     pointer.  */
  frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimized GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  final_iteration = 0;
  while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
	 && pc <= frame_info->pc)
    {
      status = target_read_memory (pc, buf, 4);
      inst = extract_unsigned_integer (buf, 4);

      /* Yow! */
      if (status != 0)
	return;

      /* Note the interesting effects of this instruction.  */
      stack_remaining -= prologue_inst_adjust_sp (inst);

      /* There are limited ways to store the return pointer into the
	 stack.  */
      if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
	{
	  save_rp = 0;
	  frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
	}
      else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
	{
	  save_rp = 0;
	  frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
	}

      /* Note if we saved SP into the stack.  This also happens to indicate
	 the location of the saved frame pointer.  */
      if (   (inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
          || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
	{
	  frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
	  save_sp = 0;
	}

      /* Account for general and floating-point register saves.  */
      reg = inst_saves_gr (inst);
      if (reg >= 3 && reg <= 18
	  && (!u->Save_SP || reg != FP_REGNUM))
	{
	  save_gr &= ~(1 << reg);

	  /* stwm with a positive displacement is a *post modify*.  */
	  if ((inst >> 26) == 0x1b
	      && extract_14 (inst) >= 0)
	    frame_saved_regs->regs[reg] = frame_info->frame;
	  /* A std has explicit post_modify forms.  */
	  else if ((inst & 0xfc00000c0) == 0x70000008)
	    frame_saved_regs->regs[reg] = frame_info->frame;
	  else
	    {
	      CORE_ADDR offset;

	      if ((inst >> 26) == 0x1c)
		offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
	      else if ((inst >> 26) == 0x03)
		offset = low_sign_extend (inst & 0x1f, 5);
	      else
		offset = extract_14 (inst);

	      /* Handle code with and without frame pointers.  */
	      if (u->Save_SP)
		frame_saved_regs->regs[reg]
		  = frame_info->frame + offset;
	      else
		frame_saved_regs->regs[reg]
		  = (frame_info->frame + (u->Total_frame_size << 3)
		     + offset);
	    }
	}


      /* GCC handles callee saved FP regs a little differently.  

         It emits an instruction to put the value of the start of
         the FP store area into %r1.  It then uses fstds,ma with
         a basereg of %r1 for the stores.

         HP CC emits them at the current stack pointer modifying
         the stack pointer as it stores each register.  */

      /* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
      if ((inst & 0xffffc000) == 0x34610000
	  || (inst & 0xffffc000) == 0x37c10000)
	fp_loc = extract_14 (inst);

      reg = inst_saves_fr (inst);
      if (reg >= 12 && reg <= 21)
	{
	  /* Note +4 braindamage below is necessary because the FP status
	     registers are internally 8 registers rather than the expected
	     4 registers.  */
	  save_fr &= ~(1 << reg);
	  if (fp_loc == -1)
	    {
	      /* 1st HP CC FP register store.  After this instruction
	         we've set enough state that the GCC and HPCC code are
	         both handled in the same manner.  */
	      frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
	      fp_loc = 8;
	    }
	  else
	    {
	      frame_saved_regs->regs[reg + FP0_REGNUM + 4]
		= frame_info->frame + fp_loc;
	      fp_loc += 8;
	    }
	}

      /* Quit if we hit any kind of branch the previous iteration. */
      if (final_iteration)
	break;

      /* We want to look precisely one instruction beyond the branch
	 if we have not found everything yet.  */
      if (is_branch (inst))
	final_iteration = 1;

      /* Bump the PC.  */
      pc += 4;
    }
}


/* Exception handling support for the HP-UX ANSI C++ compiler.
   The compiler (aCC) provides a callback for exception events;
   GDB can set a breakpoint on this callback and find out what
   exception event has occurred. */

/* The name of the hook to be set to point to the callback function */
static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
/* The name of the function to be used to set the hook value */
static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
/* The name of the callback function in end.o */
static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
/* Name of function in end.o on which a break is set (called by above) */
static char HP_ACC_EH_break[] = "__d_eh_break";
/* Name of flag (in end.o) that enables catching throws */
static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
/* Name of flag (in end.o) that enables catching catching */
static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
/* The enum used by aCC */
typedef enum
  {
    __EH_NOTIFY_THROW,
    __EH_NOTIFY_CATCH
  }
__eh_notification;

/* Is exception-handling support available with this executable? */
static int hp_cxx_exception_support = 0;
/* Has the initialize function been run? */
int hp_cxx_exception_support_initialized = 0;
/* Similar to above, but imported from breakpoint.c -- non-target-specific */
extern int exception_support_initialized;
/* Address of __eh_notify_hook */
static CORE_ADDR eh_notify_hook_addr = 0;
/* Address of __d_eh_notify_callback */
static CORE_ADDR eh_notify_callback_addr = 0;
/* Address of __d_eh_break */
static CORE_ADDR eh_break_addr = 0;
/* Address of __d_eh_catch_catch */
static CORE_ADDR eh_catch_catch_addr = 0;
/* Address of __d_eh_catch_throw */
static CORE_ADDR eh_catch_throw_addr = 0;
/* Sal for __d_eh_break */
static struct symtab_and_line *break_callback_sal = 0;

/* Code in end.c expects __d_pid to be set in the inferior,
   otherwise __d_eh_notify_callback doesn't bother to call
   __d_eh_break!  So we poke the pid into this symbol
   ourselves.
   0 => success
   1 => failure  */
int
setup_d_pid_in_inferior (void)
{
  CORE_ADDR anaddr;
  struct minimal_symbol *msymbol;
  char buf[4];			/* FIXME 32x64? */

  /* Slam the pid of the process into __d_pid; failing is only a warning!  */
  msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
  if (msymbol == NULL)
    {
      warning ("Unable to find __d_pid symbol in object file.");
      warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
      return 1;
    }

  anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
  store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
  if (target_write_memory (anaddr, buf, 4))	/* FIXME 32x64? */
    {
      warning ("Unable to write __d_pid");
      warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
      return 1;
    }
  return 0;
}

/* Initialize exception catchpoint support by looking for the
   necessary hooks/callbacks in end.o, etc., and set the hook value to
   point to the required debug function

   Return 0 => failure
   1 => success          */

static int
initialize_hp_cxx_exception_support (void)
{
  struct symtabs_and_lines sals;
  struct cleanup *old_chain;
  struct cleanup *canonical_strings_chain = NULL;
  int i;
  char *addr_start;
  char *addr_end = NULL;
  char **canonical = (char **) NULL;
  int thread = -1;
  struct symbol *sym = NULL;
  struct minimal_symbol *msym = NULL;
  struct objfile *objfile;
  asection *shlib_info;

  /* Detect and disallow recursion.  On HP-UX with aCC, infinite
     recursion is a possibility because finding the hook for exception
     callbacks involves making a call in the inferior, which means
     re-inserting breakpoints which can re-invoke this code */

  static int recurse = 0;
  if (recurse > 0)
    {
      hp_cxx_exception_support_initialized = 0;
      exception_support_initialized = 0;
      return 0;
    }

  hp_cxx_exception_support = 0;

  /* First check if we have seen any HP compiled objects; if not,
     it is very unlikely that HP's idiosyncratic callback mechanism
     for exception handling debug support will be available!
     This will percolate back up to breakpoint.c, where our callers
     will decide to try the g++ exception-handling support instead. */
  if (!hp_som_som_object_present)
    return 0;

  /* We have a SOM executable with SOM debug info; find the hooks */

  /* First look for the notify hook provided by aCC runtime libs */
  /* If we find this symbol, we conclude that the executable must
     have HP aCC exception support built in.  If this symbol is not
     found, even though we're a HP SOM-SOM file, we may have been
     built with some other compiler (not aCC).  This results percolates
     back up to our callers in breakpoint.c which can decide to
     try the g++ style of exception support instead.
     If this symbol is found but the other symbols we require are
     not found, there is something weird going on, and g++ support
     should *not* be tried as an alternative.

     ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.  
     ASSUMPTION: HP aCC and g++ modules cannot be linked together. */

  /* libCsup has this hook; it'll usually be non-debuggable */
  msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
  if (msym)
    {
      eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
      hp_cxx_exception_support = 1;
    }
  else
    {
      warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
      warning ("Executable may not have been compiled debuggable with HP aCC.");
      warning ("GDB will be unable to intercept exception events.");
      eh_notify_hook_addr = 0;
      hp_cxx_exception_support = 0;
      return 0;
    }

  /* Next look for the notify callback routine in end.o */
  /* This is always available in the SOM symbol dictionary if end.o is linked in */
  msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
  if (msym)
    {
      eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
      hp_cxx_exception_support = 1;
    }
  else
    {
      warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
      warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
      warning ("GDB will be unable to intercept exception events.");
      eh_notify_callback_addr = 0;
      return 0;
    }

#ifndef GDB_TARGET_IS_HPPA_20W
  /* Check whether the executable is dynamically linked or archive bound */
  /* With an archive-bound executable we can use the raw addresses we find
     for the callback function, etc. without modification. For an executable
     with shared libraries, we have to do more work to find the plabel, which
     can be the target of a call through $$dyncall from the aCC runtime support
     library (libCsup) which is linked shared by default by aCC. */
  /* This test below was copied from somsolib.c/somread.c.  It may not be a very
     reliable one to test that an executable is linked shared. pai/1997-07-18 */
  shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
  if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
    {
      /* The minsym we have has the local code address, but that's not the
         plabel that can be used by an inter-load-module call. */
      /* Find solib handle for main image (which has end.o), and use that
         and the min sym as arguments to __d_shl_get() (which does the equivalent
         of shl_findsym()) to find the plabel. */

      args_for_find_stub args;
      static char message[] = "Error while finding exception callback hook:\n";

      args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
      args.msym = msym;
      args.return_val = 0;

      recurse++;
      catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
		    RETURN_MASK_ALL);
      eh_notify_callback_addr = args.return_val;
      recurse--;

      exception_catchpoints_are_fragile = 1;

      if (!eh_notify_callback_addr)
	{
	  /* We can get here either if there is no plabel in the export list
	     for the main image, or if something strange happened (?) */
	  warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
	  warning ("GDB will not be able to intercept exception events.");
	  return 0;
	}
    }
  else
    exception_catchpoints_are_fragile = 0;
#endif

  /* Now, look for the breakpointable routine in end.o */
  /* This should also be available in the SOM symbol dict. if end.o linked in */
  msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
  if (msym)
    {
      eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
      hp_cxx_exception_support = 1;
    }
  else
    {
      warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
      warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
      warning ("GDB will be unable to intercept exception events.");
      eh_break_addr = 0;
      return 0;
    }

  /* Next look for the catch enable flag provided in end.o */
  sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
		       VAR_NAMESPACE, 0, (struct symtab **) NULL);
  if (sym)			/* sometimes present in debug info */
    {
      eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
      hp_cxx_exception_support = 1;
    }
  else
    /* otherwise look in SOM symbol dict. */
    {
      msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
      if (msym)
	{
	  eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
	  hp_cxx_exception_support = 1;
	}
      else
	{
	  warning ("Unable to enable interception of exception catches.");
	  warning ("Executable may not have been compiled debuggable with HP aCC.");
	  warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
	  return 0;
	}
    }

  /* Next look for the catch enable flag provided end.o */
  sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
		       VAR_NAMESPACE, 0, (struct symtab **) NULL);
  if (sym)			/* sometimes present in debug info */
    {
      eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
      hp_cxx_exception_support = 1;
    }
  else
    /* otherwise look in SOM symbol dict. */
    {
      msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
      if (msym)
	{
	  eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
	  hp_cxx_exception_support = 1;
	}
      else
	{
	  warning ("Unable to enable interception of exception throws.");
	  warning ("Executable may not have been compiled debuggable with HP aCC.");
	  warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
	  return 0;
	}
    }

  /* Set the flags */
  hp_cxx_exception_support = 2;	/* everything worked so far */
  hp_cxx_exception_support_initialized = 1;
  exception_support_initialized = 1;

  return 1;
}

/* Target operation for enabling or disabling interception of
   exception events.
   KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
   ENABLE is either 0 (disable) or 1 (enable).
   Return value is NULL if no support found;
   -1 if something went wrong,
   or a pointer to a symtab/line struct if the breakpointable
   address was found. */

struct symtab_and_line *
child_enable_exception_callback (enum exception_event_kind kind, int enable)
{
  char buf[4];

  if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
    if (!initialize_hp_cxx_exception_support ())
      return NULL;

  switch (hp_cxx_exception_support)
    {
    case 0:
      /* Assuming no HP support at all */
      return NULL;
    case 1:
      /* HP support should be present, but something went wrong */
      return (struct symtab_and_line *) -1;	/* yuck! */
      /* there may be other cases in the future */
    }

  /* Set the EH hook to point to the callback routine */
  store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0);	/* FIXME 32x64 problem */
  /* pai: (temp) FIXME should there be a pack operation first? */
  if (target_write_memory (eh_notify_hook_addr, buf, 4))	/* FIXME 32x64 problem */
    {
      warning ("Could not write to target memory for exception event callback.");
      warning ("Interception of exception events may not work.");
      return (struct symtab_and_line *) -1;
    }
  if (enable)
    {
      /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
      if (PIDGET (inferior_ptid) > 0)
	{
	  if (setup_d_pid_in_inferior ())
	    return (struct symtab_and_line *) -1;
	}
      else
	{
	  warning ("Internal error: Invalid inferior pid?  Cannot intercept exception events.");
	  return (struct symtab_and_line *) -1;
	}
    }

  switch (kind)
    {
    case EX_EVENT_THROW:
      store_unsigned_integer (buf, 4, enable ? 1 : 0);
      if (target_write_memory (eh_catch_throw_addr, buf, 4))	/* FIXME 32x64? */
	{
	  warning ("Couldn't enable exception throw interception.");
	  return (struct symtab_and_line *) -1;
	}
      break;
    case EX_EVENT_CATCH:
      store_unsigned_integer (buf, 4, enable ? 1 : 0);
      if (target_write_memory (eh_catch_catch_addr, buf, 4))	/* FIXME 32x64? */
	{
	  warning ("Couldn't enable exception catch interception.");
	  return (struct symtab_and_line *) -1;
	}
      break;
    default:
      error ("Request to enable unknown or unsupported exception event.");
    }

  /* Copy break address into new sal struct, malloc'ing if needed. */
  if (!break_callback_sal)
    {
      break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
    }
  INIT_SAL (break_callback_sal);
  break_callback_sal->symtab = NULL;
  break_callback_sal->pc = eh_break_addr;
  break_callback_sal->line = 0;
  break_callback_sal->end = eh_break_addr;

  return break_callback_sal;
}

/* Record some information about the current exception event */
static struct exception_event_record current_ex_event;
/* Convenience struct */
static struct symtab_and_line null_symtab_and_line =
{NULL, 0, 0, 0};

/* Report current exception event.  Returns a pointer to a record
   that describes the kind of the event, where it was thrown from,
   and where it will be caught.  More information may be reported
   in the future */
struct exception_event_record *
child_get_current_exception_event (void)
{
  CORE_ADDR event_kind;
  CORE_ADDR throw_addr;
  CORE_ADDR catch_addr;
  struct frame_info *fi, *curr_frame;
  int level = 1;

  curr_frame = get_current_frame ();
  if (!curr_frame)
    return (struct exception_event_record *) NULL;

  /* Go up one frame to __d_eh_notify_callback, because at the
     point when this code is executed, there's garbage in the
     arguments of __d_eh_break. */
  fi = find_relative_frame (curr_frame, &level);
  if (level != 0)
    return (struct exception_event_record *) NULL;

  select_frame (fi, -1);

  /* Read in the arguments */
  /* __d_eh_notify_callback() is called with 3 arguments:
     1. event kind catch or throw
     2. the target address if known
     3. a flag -- not sure what this is. pai/1997-07-17 */
  event_kind = read_register (ARG0_REGNUM);
  catch_addr = read_register (ARG1_REGNUM);

  /* Now go down to a user frame */
  /* For a throw, __d_eh_break is called by
     __d_eh_notify_callback which is called by
     __notify_throw which is called
     from user code.
     For a catch, __d_eh_break is called by
     __d_eh_notify_callback which is called by
     <stackwalking stuff> which is called by
     __throw__<stuff> or __rethrow_<stuff> which is called
     from user code. */
  /* FIXME: Don't use such magic numbers; search for the frames */
  level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
  fi = find_relative_frame (curr_frame, &level);
  if (level != 0)
    return (struct exception_event_record *) NULL;

  select_frame (fi, -1);
  throw_addr = fi->pc;

  /* Go back to original (top) frame */
  select_frame (curr_frame, -1);

  current_ex_event.kind = (enum exception_event_kind) event_kind;
  current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
  current_ex_event.catch_sal = find_pc_line (catch_addr, 1);

  return &current_ex_event;
}

static void
unwind_command (char *exp, int from_tty)
{
  CORE_ADDR address;
  struct unwind_table_entry *u;

  /* If we have an expression, evaluate it and use it as the address.  */

  if (exp != 0 && *exp != 0)
    address = parse_and_eval_address (exp);
  else
    return;

  u = find_unwind_entry (address);

  if (!u)
    {
      printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
      return;
    }

  printf_unfiltered ("unwind_table_entry (0x%s):\n",
		     paddr_nz (host_pointer_to_address (u)));

  printf_unfiltered ("\tregion_start = ");
  print_address (u->region_start, gdb_stdout);

  printf_unfiltered ("\n\tregion_end = ");
  print_address (u->region_end, gdb_stdout);

#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);

  printf_unfiltered ("\n\tflags =");
  pif (Cannot_unwind);
  pif (Millicode);
  pif (Millicode_save_sr0);
  pif (Entry_SR);
  pif (Args_stored);
  pif (Variable_Frame);
  pif (Separate_Package_Body);
  pif (Frame_Extension_Millicode);
  pif (Stack_Overflow_Check);
  pif (Two_Instruction_SP_Increment);
  pif (Ada_Region);
  pif (Save_SP);
  pif (Save_RP);
  pif (Save_MRP_in_frame);
  pif (extn_ptr_defined);
  pif (Cleanup_defined);
  pif (MPE_XL_interrupt_marker);
  pif (HP_UX_interrupt_marker);
  pif (Large_frame);

  putchar_unfiltered ('\n');

#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);

  pin (Region_description);
  pin (Entry_FR);
  pin (Entry_GR);
  pin (Total_frame_size);
}

#ifdef PREPARE_TO_PROCEED

/* If the user has switched threads, and there is a breakpoint
   at the old thread's pc location, then switch to that thread
   and return TRUE, else return FALSE and don't do a thread
   switch (or rather, don't seem to have done a thread switch).

   Ptrace-based gdb will always return FALSE to the thread-switch
   query, and thus also to PREPARE_TO_PROCEED.

   The important thing is whether there is a BPT instruction,
   not how many user breakpoints there are.  So we have to worry
   about things like these:

   o  Non-bp stop -- NO

   o  User hits bp, no switch -- NO

   o  User hits bp, switches threads -- YES

   o  User hits bp, deletes bp, switches threads -- NO

   o  User hits bp, deletes one of two or more bps
   at that PC, user switches threads -- YES

   o  Plus, since we're buffering events, the user may have hit a
   breakpoint, deleted the breakpoint and then gotten another
   hit on that same breakpoint on another thread which
   actually hit before the delete. (FIXME in breakpoint.c
   so that "dead" breakpoints are ignored?) -- NO

   For these reasons, we have to violate information hiding and
   call "breakpoint_here_p".  If core gdb thinks there is a bpt
   here, that's what counts, as core gdb is the one which is
   putting the BPT instruction in and taking it out.

   Note that this implementation is potentially redundant now that
   default_prepare_to_proceed() has been added.

   FIXME This may not support switching threads after Ctrl-C
   correctly. The default implementation does support this. */
int
hppa_prepare_to_proceed (void)
{
  pid_t old_thread;
  pid_t current_thread;

  old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
  if (old_thread != 0)
    {
      /* Switched over from "old_thread".  Try to do
         as little work as possible, 'cause mostly
         we're going to switch back. */
      CORE_ADDR new_pc;
      CORE_ADDR old_pc = read_pc ();

      /* Yuk, shouldn't use global to specify current
         thread.  But that's how gdb does it. */
      current_thread = PIDGET (inferior_ptid);
      inferior_ptid = pid_to_ptid (old_thread);

      new_pc = read_pc ();
      if (new_pc != old_pc	/* If at same pc, no need */
	  && breakpoint_here_p (new_pc))
	{
	  /* User hasn't deleted the BP.
	     Return TRUE, finishing switch to "old_thread". */
	  flush_cached_frames ();
	  registers_changed ();
#if 0
	  printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
		  current_thread, PIDGET (inferior_ptid));
#endif

	  return 1;
	}

      /* Otherwise switch back to the user-chosen thread. */
      inferior_ptid = pid_to_ptid (current_thread);
      new_pc = read_pc ();	/* Re-prime register cache */
    }

  return 0;
}
#endif /* PREPARE_TO_PROCEED */

void
hppa_skip_permanent_breakpoint (void)
{
  /* To step over a breakpoint instruction on the PA takes some
     fiddling with the instruction address queue.

     When we stop at a breakpoint, the IA queue front (the instruction
     we're executing now) points at the breakpoint instruction, and
     the IA queue back (the next instruction to execute) points to
     whatever instruction we would execute after the breakpoint, if it
     were an ordinary instruction.  This is the case even if the
     breakpoint is in the delay slot of a branch instruction.

     Clearly, to step past the breakpoint, we need to set the queue
     front to the back.  But what do we put in the back?  What
     instruction comes after that one?  Because of the branch delay
     slot, the next insn is always at the back + 4.  */
  write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
  write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));

  write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
  /* We can leave the tail's space the same, since there's no jump.  */
}

void
_initialize_hppa_tdep (void)
{
  struct cmd_list_element *c;
  void break_at_finish_command (char *arg, int from_tty);
  void tbreak_at_finish_command (char *arg, int from_tty);
  void break_at_finish_at_depth_command (char *arg, int from_tty);

  tm_print_insn = print_insn_hppa;

  add_cmd ("unwind", class_maintenance, unwind_command,
	   "Print unwind table entry at given address.",
	   &maintenanceprintlist);

  deprecate_cmd (add_com ("xbreak", class_breakpoint, 
			  break_at_finish_command,
			  concat ("Set breakpoint at procedure exit. \n\
Argument may be function name, or \"*\" and an address.\n\
If function is specified, break at end of code for that function.\n\
If an address is specified, break at the end of the function that contains \n\
that exact address.\n",
		   "With no arg, uses current execution address of selected stack frame.\n\
This is useful for breaking on return to a stack frame.\n\
\n\
Multiple breakpoints at one place are permitted, and useful if conditional.\n\
\n\
Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
  deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
  deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
  deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
  deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);

  deprecate_cmd (c = add_com ("txbreak", class_breakpoint, 
			      tbreak_at_finish_command,
"Set temporary breakpoint at procedure exit.  Either there should\n\
be no argument or the argument must be a depth.\n"), NULL);
  set_cmd_completer (c, location_completer);
  
  if (xdb_commands)
    deprecate_cmd (add_com ("bx", class_breakpoint, 
			    break_at_finish_at_depth_command,
"Set breakpoint at procedure exit.  Either there should\n\
be no argument or the argument must be a depth.\n"), NULL);
}

/* Copy the function value from VALBUF into the proper location
   for a function return.

   Called only in the context of the "return" command.  */

void
hppa_store_return_value (struct type *type, char *valbuf)
{
  /* For software floating point, the return value goes into the
     integer registers.  But we do not have any flag to key this on,
     so we always store the value into the integer registers.

     If its a float value, then we also store it into the floating
     point registers.  */
  write_register_bytes (REGISTER_BYTE (28)
		        + (TYPE_LENGTH (type) > 4
			   ? (8 - TYPE_LENGTH (type))
			   : (4 - TYPE_LENGTH (type))),
			valbuf,
			TYPE_LENGTH (type));
  if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
    write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
			  valbuf,
			  TYPE_LENGTH (type));
}

/* Copy the function's return value into VALBUF.

   This function is called only in the context of "target function calls",
   ie. when the debugger forces a function to be called in the child, and
   when the debugger forces a fucntion to return prematurely via the
   "return" command.  */

void
hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
    memcpy (valbuf,
	    (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
	    TYPE_LENGTH (type));
  else
    memcpy (valbuf,
	    ((char *)regbuf
	     + REGISTER_BYTE (28)
	     + (TYPE_LENGTH (type) > 4
		? (8 - TYPE_LENGTH (type))
		: (4 - TYPE_LENGTH (type)))),
	    TYPE_LENGTH (type));
}