aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
blob: ff046f32a0753e8429fbab1b960d181c58bfc399 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
/* Machine-dependent code which would otherwise be in inflow.c and core.c,
   for GDB, the GNU debugger.  This code is for the HP PA-RISC cpu.
   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.

   Contributed by the Center for Software Science at the
   University of Utah (pa-gdb-bugs@cs.utah.edu).

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "value.h"

/* For argument passing to the inferior */
#include "symtab.h"

#ifdef USG
#include <sys/types.h>
#endif

#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>

#ifdef COFF_ENCAPSULATE
#include "a.out.encap.h"
#else
#include <a.out.h>
#endif
#ifndef N_SET_MAGIC
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
#endif

/*#include <sys/user.h>		After a.out.h  */
#include <sys/file.h>
#include <sys/stat.h>
#include <machine/psl.h>
#include "wait.h"

#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "symfile.h"
#include "objfiles.h"

static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
static int hppa_alignof PARAMS ((struct type *arg));
CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
static int prologue_inst_adjust_sp PARAMS ((unsigned long));
static int is_branch PARAMS ((unsigned long));
static int inst_saves_gr PARAMS ((unsigned long));
static int inst_saves_fr PARAMS ((unsigned long));
static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
static int pc_in_linker_stub PARAMS ((CORE_ADDR));


/* Routines to extract various sized constants out of hppa 
   instructions. */

/* This assumes that no garbage lies outside of the lower bits of 
   value. */

int
sign_extend (val, bits)
     unsigned val, bits;
{
  return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
}

/* For many immediate values the sign bit is the low bit! */

int
low_sign_extend (val, bits)
     unsigned val, bits;
{
  return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
}
/* extract the immediate field from a ld{bhw}s instruction */

unsigned
get_field (val, from, to)
     unsigned val, from, to;
{
  val = val >> 31 - to;
  return val & ((1 << 32 - from) - 1);
}

unsigned
set_field (val, from, to, new_val)
     unsigned *val, from, to;
{
  unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
  return *val = *val & mask | (new_val << (31 - from));
}

/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */

extract_3 (word)
     unsigned word;
{
  return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
}
       
extract_5_load (word)
     unsigned word;
{
  return low_sign_extend (word >> 16 & MASK_5, 5);
}

/* extract the immediate field from a st{bhw}s instruction */

int
extract_5_store (word)
     unsigned word;
{
  return low_sign_extend (word & MASK_5, 5);
}

/* extract the immediate field from a break instruction */

unsigned
extract_5r_store (word)
     unsigned word;
{
  return (word & MASK_5);
}

/* extract the immediate field from a {sr}sm instruction */

unsigned
extract_5R_store (word)
     unsigned word;
{
  return (word >> 16 & MASK_5);
}

/* extract an 11 bit immediate field */

int
extract_11 (word)
     unsigned word;
{
  return low_sign_extend (word & MASK_11, 11);
}

/* extract a 14 bit immediate field */

int
extract_14 (word)
     unsigned word;
{
  return low_sign_extend (word & MASK_14, 14);
}

/* deposit a 14 bit constant in a word */

unsigned
deposit_14 (opnd, word)
     int opnd;
     unsigned word;
{
  unsigned sign = (opnd < 0 ? 1 : 0);

  return word | ((unsigned)opnd << 1 & MASK_14)  | sign;
}

/* extract a 21 bit constant */

int
extract_21 (word)
     unsigned word;
{
  int val;

  word &= MASK_21;
  word <<= 11;
  val = GET_FIELD (word, 20, 20);
  val <<= 11;
  val |= GET_FIELD (word, 9, 19);
  val <<= 2;
  val |= GET_FIELD (word, 5, 6);
  val <<= 5;
  val |= GET_FIELD (word, 0, 4);
  val <<= 2;
  val |= GET_FIELD (word, 7, 8);
  return sign_extend (val, 21) << 11;
}

/* deposit a 21 bit constant in a word. Although 21 bit constants are
   usually the top 21 bits of a 32 bit constant, we assume that only
   the low 21 bits of opnd are relevant */

unsigned
deposit_21 (opnd, word)
     unsigned opnd, word;
{
  unsigned val = 0;

  val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
  val <<= 2;
  val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
  val <<= 2;
  val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
  val <<= 11;
  val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
  val <<= 1;
  val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
  return word | val;
}

/* extract a 12 bit constant from branch instructions */

int
extract_12 (word)
     unsigned word;
{
  return sign_extend (GET_FIELD (word, 19, 28) |
		      GET_FIELD (word, 29, 29) << 10 |
		      (word & 0x1) << 11, 12) << 2;
}

/* extract a 17 bit constant from branch instructions, returning the
   19 bit signed value. */

int
extract_17 (word)
     unsigned word;
{
  return sign_extend (GET_FIELD (word, 19, 28) |
		      GET_FIELD (word, 29, 29) << 10 |
		      GET_FIELD (word, 11, 15) << 11 |
		      (word & 0x1) << 16, 17) << 2;
}

/* Lookup the unwind (stack backtrace) info for the given PC.  We search all
   of the objfiles seeking the unwind table entry for this PC.  Each objfile
   contains a sorted list of struct unwind_table_entry.  Since we do a binary
   search of the unwind tables, we depend upon them to be sorted.  */

static struct unwind_table_entry *
find_unwind_entry(pc)
     CORE_ADDR pc;
{
  int first, middle, last;
  struct objfile *objfile;

  ALL_OBJFILES (objfile)
    {
      struct obj_unwind_info *ui;

      ui = OBJ_UNWIND_INFO (objfile);

      if (!ui)
	continue;

      /* First, check the cache */

      if (ui->cache
	  && pc >= ui->cache->region_start
	  && pc <= ui->cache->region_end)
	return ui->cache;

      /* Not in the cache, do a binary search */

      first = 0;
      last = ui->last;

      while (first <= last)
	{
	  middle = (first + last) / 2;
	  if (pc >= ui->table[middle].region_start
	      && pc <= ui->table[middle].region_end)
	    {
	      ui->cache = &ui->table[middle];
	      return &ui->table[middle];
	    }

	  if (pc < ui->table[middle].region_start)
	    last = middle - 1;
	  else
	    first = middle + 1;
	}
    }				/* ALL_OBJFILES() */
  return NULL;
}

/* Called to determine if PC is in an interrupt handler of some
   kind.  */

static int
pc_in_interrupt_handler (pc)
     CORE_ADDR pc;
{
  struct unwind_table_entry *u;
  struct minimal_symbol *msym_us;

  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* Oh joys.  HPUX sets the interrupt bit for _sigreturn even though
     its frame isn't a pure interrupt frame.  Deal with this.  */
  msym_us = lookup_minimal_symbol_by_pc (pc);

  return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
}

/* Called when no unwind descriptor was found for PC.  Returns 1 if it
   appears that PC is in a linker stub.  */

static int
pc_in_linker_stub (pc)
     CORE_ADDR pc;
{
  int found_magic_instruction = 0;
  int i;
  char buf[4];

  /* If unable to read memory, assume pc is not in a linker stub.  */
  if (target_read_memory (pc, buf, 4) != 0)
    return 0;

  /* We are looking for something like

     ; $$dyncall jams RP into this special spot in the frame (RP')
     ; before calling the "call stub"
     ldw     -18(sp),rp

     ldsid   (rp),r1         ; Get space associated with RP into r1
     mtsp    r1,sp           ; Move it into space register 0
     be,n    0(sr0),rp)      ; back to your regularly scheduled program
     */

  /* Maximum known linker stub size is 4 instructions.  Search forward
     from the given PC, then backward.  */
  for (i = 0; i < 4; i++)
    {
      /* If we hit something with an unwind, stop searching this direction.  */

      if (find_unwind_entry (pc + i * 4) != 0)
	break;

      /* Check for ldsid (rp),r1 which is the magic instruction for a 
	 return from a cross-space function call.  */
      if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
	{
	  found_magic_instruction = 1;
	  break;
	}
      /* Add code to handle long call/branch and argument relocation stubs
	 here.  */
    }

  if (found_magic_instruction != 0)
    return 1;

  /* Now look backward.  */
  for (i = 0; i < 4; i++)
    {
      /* If we hit something with an unwind, stop searching this direction.  */

      if (find_unwind_entry (pc - i * 4) != 0)
	break;

      /* Check for ldsid (rp),r1 which is the magic instruction for a 
	 return from a cross-space function call.  */
      if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
	{
	  found_magic_instruction = 1;
	  break;
	}
      /* Add code to handle long call/branch and argument relocation stubs
	 here.  */
    }
  return found_magic_instruction;
}

static int
find_return_regnum(pc)
     CORE_ADDR pc;
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (pc);

  if (!u)
    return RP_REGNUM;

  if (u->Millicode)
    return 31;

  return RP_REGNUM;
}

/* Return size of frame, or -1 if we should use a frame pointer.  */
int
find_proc_framesize (pc)
     CORE_ADDR pc;
{
  struct unwind_table_entry *u;
  struct minimal_symbol *msym_us;

  u = find_unwind_entry (pc);

  if (!u)
    {
      if (pc_in_linker_stub (pc))
	/* Linker stubs have a zero size frame.  */
	return 0;
      else
	return -1;
    }

  msym_us = lookup_minimal_symbol_by_pc (pc);

  /* If Save_SP is set, and we're not in an interrupt or signal caller,
     then we have a frame pointer.  Use it.  */
  if (u->Save_SP && !pc_in_interrupt_handler (pc)
      && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
    return -1;

  return u->Total_frame_size << 3;
}

/* Return offset from sp at which rp is saved, or 0 if not saved.  */
static int rp_saved PARAMS ((CORE_ADDR));

static int
rp_saved (pc)
     CORE_ADDR pc;
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (pc);

  if (!u)
    {
      if (pc_in_linker_stub (pc))
	/* This is the so-called RP'.  */
	return -24;
      else
	return 0;
    }

  if (u->Save_RP)
    return -20;
  else if (u->stub_type != 0)
    {
      switch (u->stub_type)
	{
	case EXPORT:
	  return -24;
	case PARAMETER_RELOCATION:
	  return -8;
	default:
	  return 0;
	}
    }
  else
    return 0;
}

int
frameless_function_invocation (frame)
     FRAME frame;
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (frame->pc);

  if (u == 0)
    return frameless_look_for_prologue (frame);

  return (u->Total_frame_size == 0 && u->stub_type == 0);
}

CORE_ADDR
saved_pc_after_call (frame)
     FRAME frame;
{
  int ret_regnum;

  ret_regnum = find_return_regnum (get_frame_pc (frame));

  return read_register (ret_regnum) & ~0x3;
}

CORE_ADDR
frame_saved_pc (frame)
     FRAME frame;
{
  CORE_ADDR pc = get_frame_pc (frame);

  /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
     at the base of the frame in an interrupt handler.  Registers within
     are saved in the exact same order as GDB numbers registers.  How
     convienent.  */
  if (pc_in_interrupt_handler (pc))
    return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;

  /* Deal with signal handler caller frames too.  */
  if (frame->signal_handler_caller)
    {
      CORE_ADDR rp;
      FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
      return rp;
    }

  if (frameless_function_invocation (frame))
    {
      int ret_regnum;

      ret_regnum = find_return_regnum (pc);

      /* If the next frame is an interrupt frame or a signal
	 handler caller, then we need to look in the saved
	 register area to get the return pointer (the values
	 in the registers may not correspond to anything useful).  */
      if (frame->next 
	  && (frame->next->signal_handler_caller
	      || pc_in_interrupt_handler (frame->next->pc)))
	{
	  struct frame_info *fi;
	  struct frame_saved_regs saved_regs;

	  fi = get_frame_info (frame->next);
	  get_frame_saved_regs (fi, &saved_regs);
	  if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
	    return read_memory_integer (saved_regs.regs[31], 4);
	  else
	    return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
	}
      else
	return read_register (ret_regnum) & ~0x3;
    }
  else
    {
      int rp_offset = rp_saved (pc);

      /* Similar to code in frameless function case.  If the next
	 frame is a signal or interrupt handler, then dig the right
	 information out of the saved register info.  */
      if (rp_offset == 0
	  && frame->next
	  && (frame->next->signal_handler_caller
	      || pc_in_interrupt_handler (frame->next->pc)))
	{
	  struct frame_info *fi;
	  struct frame_saved_regs saved_regs;

	  fi = get_frame_info (frame->next);
	  get_frame_saved_regs (fi, &saved_regs);
	  if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
	    return read_memory_integer (saved_regs.regs[31], 4);
	  else
	    return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
	}
      else if (rp_offset == 0)
	return read_register (RP_REGNUM) & ~0x3;
      else
	return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
    }
}

/* We need to correct the PC and the FP for the outermost frame when we are
   in a system call.  */

void
init_extra_frame_info (fromleaf, frame)
     int fromleaf;
     struct frame_info *frame;
{
  int flags;
  int framesize;

  if (frame->next && !fromleaf)
    return;

  /* If the next frame represents a frameless function invocation
     then we have to do some adjustments that are normally done by
     FRAME_CHAIN.  (FRAME_CHAIN is not called in this case.)  */
  if (fromleaf)
    {
      /* Find the framesize of *this* frame without peeking at the PC
	 in the current frame structure (it isn't set yet).  */
      framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));

      /* Now adjust our base frame accordingly.  If we have a frame pointer
	 use it, else subtract the size of this frame from the current
	 frame.  (we always want frame->frame to point at the lowest address
	 in the frame).  */
      if (framesize == -1)
	frame->frame = read_register (FP_REGNUM);
      else
	frame->frame -= framesize;
      return;
    }

  flags = read_register (FLAGS_REGNUM);
  if (flags & 2)	/* In system call? */
    frame->pc = read_register (31) & ~0x3;

  /* The outermost frame is always derived from PC-framesize

     One might think frameless innermost frames should have
     a frame->frame that is the same as the parent's frame->frame.
     That is wrong; frame->frame in that case should be the *high*
     address of the parent's frame.  It's complicated as hell to
     explain, but the parent *always* creates some stack space for
     the child.  So the child actually does have a frame of some
     sorts, and its base is the high address in its parent's frame.  */
  framesize = find_proc_framesize(frame->pc);
  if (framesize == -1)
    frame->frame = read_register (FP_REGNUM);
  else
    frame->frame = read_register (SP_REGNUM) - framesize;
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

   This may involve searching through prologues for several functions
   at boundaries where GCC calls HP C code, or where code which has
   a frame pointer calls code without a frame pointer.  */
  

FRAME_ADDR
frame_chain (frame)
     struct frame_info *frame;
{
  int my_framesize, caller_framesize;
  struct unwind_table_entry *u;
  CORE_ADDR frame_base;

  /* Handle HPUX, BSD, and OSF1 style interrupt frames first.  These
     are easy; at *sp we have a full save state strucutre which we can
     pull the old stack pointer from.  Also see frame_saved_pc for
     code to dig a saved PC out of the save state structure.  */
  if (pc_in_interrupt_handler (frame->pc))
    frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
  else if (frame->signal_handler_caller)
    {
      FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
    }
  else
    frame_base = frame->frame;

  /* Get frame sizes for the current frame and the frame of the 
     caller.  */
  my_framesize = find_proc_framesize (frame->pc);
  caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));

  /* If caller does not have a frame pointer, then its frame
     can be found at current_frame - caller_framesize.  */
  if (caller_framesize != -1)
    return frame_base - caller_framesize;

  /* Both caller and callee have frame pointers and are GCC compiled
     (SAVE_SP bit in unwind descriptor is on for both functions.
     The previous frame pointer is found at the top of the current frame.  */
  if (caller_framesize == -1 && my_framesize == -1)
    return read_memory_integer (frame_base, 4);

  /* Caller has a frame pointer, but callee does not.  This is a little
     more difficult as GCC and HP C lay out locals and callee register save
     areas very differently.

     The previous frame pointer could be in a register, or in one of 
     several areas on the stack.

     Walk from the current frame to the innermost frame examining 
     unwind descriptors to determine if %r3 ever gets saved into the
     stack.  If so return whatever value got saved into the stack.
     If it was never saved in the stack, then the value in %r3 is still
     valid, so use it. 

     We use information from unwind descriptors to determine if %r3
     is saved into the stack (Entry_GR field has this information).  */

  while (frame)
    {
      u = find_unwind_entry (frame->pc);

      if (!u)
	{
	  /* We could find this information by examining prologues.  I don't
	     think anyone has actually written any tools (not even "strip")
	     which leave them out of an executable, so maybe this is a moot
	     point.  */
	  warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
	  return 0;
	}

      /* Entry_GR specifies the number of callee-saved general registers
	 saved in the stack.  It starts at %r3, so %r3 would be 1.  */
      if (u->Entry_GR >= 1 || u->Save_SP
	  || frame->signal_handler_caller
	  || pc_in_interrupt_handler (frame->pc))
	break;
      else
	frame = frame->next;
    }

  if (frame)
    {
      /* We may have walked down the chain into a function with a frame
	 pointer.  */
      if (u->Save_SP
	  && !frame->signal_handler_caller
	  && !pc_in_interrupt_handler (frame->pc))
	return read_memory_integer (frame->frame, 4);
      /* %r3 was saved somewhere in the stack.  Dig it out.  */
      else 
	{
	  struct frame_info *fi;
	  struct frame_saved_regs saved_regs;

	  fi = get_frame_info (frame);
	  get_frame_saved_regs (fi, &saved_regs);
	  return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
	}
    }
  else
    {
      /* The value in %r3 was never saved into the stack (thus %r3 still
	 holds the value of the previous frame pointer).  */
      return read_register (FP_REGNUM);
    }
}


/* To see if a frame chain is valid, see if the caller looks like it
   was compiled with gcc. */

int
frame_chain_valid (chain, thisframe)
     FRAME_ADDR chain;
     FRAME thisframe;
{
  struct minimal_symbol *msym_us;
  struct minimal_symbol *msym_start;
  struct unwind_table_entry *u, *next_u = NULL;
  FRAME next;

  if (!chain)
    return 0;

  u = find_unwind_entry (thisframe->pc);

  if (u == NULL)
    return 1;

  /* We can't just check that the same of msym_us is "_start", because
     someone idiotically decided that they were going to make a Ltext_end
     symbol with the same address.  This Ltext_end symbol is totally
     indistinguishable (as nearly as I can tell) from the symbol for a function
     which is (legitimately, since it is in the user's namespace)
     named Ltext_end, so we can't just ignore it.  */
  msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
  msym_start = lookup_minimal_symbol ("_start", NULL);
  if (msym_us
      && msym_start
      && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
    return 0;

  next = get_next_frame (thisframe);
  if (next)
    next_u = find_unwind_entry (next->pc);

  /* If this frame does not save SP, has no stack, isn't a stub,
     and doesn't "call" an interrupt routine or signal handler caller,
     then its not valid.  */
  if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
      || (thisframe->next && thisframe->next->signal_handler_caller)
      || (next_u && next_u->HP_UX_interrupt_marker))
    return 1;

  if (pc_in_linker_stub (thisframe->pc))
    return 1;

  return 0;
}

/*
 * These functions deal with saving and restoring register state
 * around a function call in the inferior. They keep the stack
 * double-word aligned; eventually, on an hp700, the stack will have
 * to be aligned to a 64-byte boundary.
 */

int
push_dummy_frame ()
{
  register CORE_ADDR sp;
  register int regnum;
  int int_buffer;
  double freg_buffer;

  /* Space for "arguments"; the RP goes in here. */
  sp = read_register (SP_REGNUM) + 48;
  int_buffer = read_register (RP_REGNUM) | 0x3;
  write_memory (sp - 20, (char *)&int_buffer, 4);

  int_buffer = read_register (FP_REGNUM);
  write_memory (sp, (char *)&int_buffer, 4);

  write_register (FP_REGNUM, sp);

  sp += 8;

  for (regnum = 1; regnum < 32; regnum++)
    if (regnum != RP_REGNUM && regnum != FP_REGNUM)
      sp = push_word (sp, read_register (regnum));

  sp += 4;

  for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
    {
      read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
      sp = push_bytes (sp, (char *)&freg_buffer, 8);
    }
  sp = push_word (sp, read_register (IPSW_REGNUM));
  sp = push_word (sp, read_register (SAR_REGNUM));
  sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
  sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
  sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
  sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
  write_register (SP_REGNUM, sp);
}

find_dummy_frame_regs (frame, frame_saved_regs)
     struct frame_info *frame;
     struct frame_saved_regs *frame_saved_regs;
{
  CORE_ADDR fp = frame->frame;
  int i;

  frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
  frame_saved_regs->regs[FP_REGNUM] = fp;
  frame_saved_regs->regs[1] = fp + 8;

  for (fp += 12, i = 3; i < 32; i++)
    {
      if (i != FP_REGNUM)
	{
	  frame_saved_regs->regs[i] = fp;
	  fp += 4;
	}
    }

  fp += 4;
  for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
    frame_saved_regs->regs[i] = fp;

  frame_saved_regs->regs[IPSW_REGNUM] = fp;
  frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
  frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
  frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
  frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
  frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
}

int
hppa_pop_frame ()
{
  register FRAME frame = get_current_frame ();
  register CORE_ADDR fp;
  register int regnum;
  struct frame_saved_regs fsr;
  struct frame_info *fi;
  double freg_buffer;

  fi = get_frame_info (frame);
  fp = fi->frame;
  get_frame_saved_regs (fi, &fsr);

#ifndef NO_PC_SPACE_QUEUE_RESTORE
  if (fsr.regs[IPSW_REGNUM])    /* Restoring a call dummy frame */
    restore_pc_queue (&fsr);
#endif

  for (regnum = 31; regnum > 0; regnum--)
    if (fsr.regs[regnum])
      write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));

  for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
    if (fsr.regs[regnum])
      {
	read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
        write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
      }

  if (fsr.regs[IPSW_REGNUM])
    write_register (IPSW_REGNUM,
                    read_memory_integer (fsr.regs[IPSW_REGNUM], 4));

  if (fsr.regs[SAR_REGNUM])
    write_register (SAR_REGNUM,
                    read_memory_integer (fsr.regs[SAR_REGNUM], 4));

  /* If the PC was explicitly saved, then just restore it.  */
  if (fsr.regs[PCOQ_TAIL_REGNUM])
    write_register (PCOQ_TAIL_REGNUM,
                    read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));

  /* Else use the value in %rp to set the new PC.  */
  else 
    target_write_pc (read_register (RP_REGNUM));

  write_register (FP_REGNUM, read_memory_integer (fp, 4));

  if (fsr.regs[IPSW_REGNUM])    /* call dummy */
    write_register (SP_REGNUM, fp - 48);
  else
    write_register (SP_REGNUM, fp);

  flush_cached_frames ();
  set_current_frame (create_new_frame (read_register (FP_REGNUM),
                                       read_pc ()));
}

/*
 * After returning to a dummy on the stack, restore the instruction
 * queue space registers. */

static int
restore_pc_queue (fsr)
     struct frame_saved_regs *fsr;
{
  CORE_ADDR pc = read_pc ();
  CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
  int pid;
  struct target_waitstatus w;
  int insn_count;

  /* Advance past break instruction in the call dummy. */
  write_register (PCOQ_HEAD_REGNUM, pc + 4);
  write_register (PCOQ_TAIL_REGNUM, pc + 8);

  /*
   * HPUX doesn't let us set the space registers or the space
   * registers of the PC queue through ptrace. Boo, hiss.
   * Conveniently, the call dummy has this sequence of instructions
   * after the break:
   *    mtsp r21, sr0
   *    ble,n 0(sr0, r22)
   *
   * So, load up the registers and single step until we are in the
   * right place.
   */

  write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
  write_register (22, new_pc);

  for (insn_count = 0; insn_count < 3; insn_count++)
    {
      /* FIXME: What if the inferior gets a signal right now?  Want to
	 merge this into wait_for_inferior (as a special kind of
	 watchpoint?  By setting a breakpoint at the end?  Is there
	 any other choice?  Is there *any* way to do this stuff with
	 ptrace() or some equivalent?).  */
      resume (1, 0);
      target_wait (inferior_pid, &w);

      if (w.kind == TARGET_WAITKIND_SIGNALLED)
        {
          stop_signal = w.value.sig;
          terminal_ours_for_output ();
          printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
			     target_signal_to_name (stop_signal),
			     target_signal_to_string (stop_signal));
          gdb_flush (gdb_stdout);
          return 0;
        }
    }
  target_terminal_ours ();
  fetch_inferior_registers (-1);
  return 1;
}

CORE_ADDR
hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     int struct_return;
     CORE_ADDR struct_addr;
{
  /* array of arguments' offsets */
  int *offset = (int *)alloca(nargs * sizeof (int));
  int cum = 0;
  int i, alignment;
  
  for (i = 0; i < nargs; i++)
    {
      /* Coerce chars to int & float to double if necessary */
      args[i] = value_arg_coerce (args[i]);

      cum += TYPE_LENGTH (VALUE_TYPE (args[i]));

    /* value must go at proper alignment. Assume alignment is a
	 power of two.*/
      alignment = hppa_alignof (VALUE_TYPE (args[i]));
      if (cum % alignment)
	cum = (cum + alignment) & -alignment;
      offset[i] = -cum;
    }
  sp += max ((cum + 7) & -8, 16);

  for (i = 0; i < nargs; i++)
    write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
		  TYPE_LENGTH (VALUE_TYPE (args[i])));

  if (struct_return)
    write_register (28, struct_addr);
  return sp + 32;
}

/*
 * Insert the specified number of args and function address
 * into a call sequence of the above form stored at DUMMYNAME.
 *
 * On the hppa we need to call the stack dummy through $$dyncall.
 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
 * real_pc, which is the location where gdb should start up the
 * inferior to do the function call.
 */

CORE_ADDR
hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
     char *dummy;
     CORE_ADDR pc;
     CORE_ADDR fun;
     int nargs;
     value_ptr *args;
     struct type *type;
     int gcc_p;
{
  CORE_ADDR dyncall_addr, sr4export_addr;
  struct minimal_symbol *msymbol;
  int flags = read_register (FLAGS_REGNUM);

  msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
  if (msymbol == NULL)
    error ("Can't find an address for $$dyncall trampoline");

  dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);

  msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
  if (msymbol == NULL)
    error ("Can't find an address for _sr4export trampoline");

  sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);

  store_unsigned_integer
    (&dummy[9*REGISTER_SIZE],
     REGISTER_SIZE,
     deposit_21 (fun >> 11,
		 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
					   REGISTER_SIZE)));
  store_unsigned_integer
    (&dummy[10*REGISTER_SIZE],
     REGISTER_SIZE,
     deposit_14 (fun & MASK_11,
		 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
					   REGISTER_SIZE)));
  store_unsigned_integer
    (&dummy[12*REGISTER_SIZE],
     REGISTER_SIZE,
     deposit_21 (sr4export_addr >> 11,
		 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
					   REGISTER_SIZE)));
  store_unsigned_integer
    (&dummy[13*REGISTER_SIZE],
     REGISTER_SIZE,
     deposit_14 (sr4export_addr & MASK_11,
		 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
					   REGISTER_SIZE)));

  write_register (22, pc);

  /* If we are in a syscall, then we should call the stack dummy
     directly.  $$dyncall is not needed as the kernel sets up the
     space id registers properly based on the value in %r31.  In
     fact calling $$dyncall will not work because the value in %r22
     will be clobbered on the syscall exit path.  */
  if (flags & 2)
    return pc;
  else
    return dyncall_addr;

}

/* Get the PC from %r31 if currently in a syscall.  Also mask out privilege
   bits.  */
CORE_ADDR
target_read_pc ()
{
  int flags = read_register (FLAGS_REGNUM);

  if (flags & 2)
    return read_register (31) & ~0x3;
  return read_register (PC_REGNUM) & ~0x3;
}

/* Write out the PC.  If currently in a syscall, then also write the new
   PC value into %r31.  */
void
target_write_pc (v)
     CORE_ADDR v;
{
  int flags = read_register (FLAGS_REGNUM);

  /* If in a syscall, then set %r31.  Also make sure to get the 
     privilege bits set correctly.  */
  if (flags & 2)
    write_register (31, (long) (v | 0x3));

  write_register (PC_REGNUM, (long) v);
  write_register (NPC_REGNUM, (long) v + 4);
}

/* return the alignment of a type in bytes. Structures have the maximum
   alignment required by their fields. */

static int
hppa_alignof (arg)
     struct type *arg;
{
  int max_align, align, i;
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_INT:
    case TYPE_CODE_FLT:
      return TYPE_LENGTH (arg);
    case TYPE_CODE_ARRAY:
      return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      max_align = 2;
      for (i = 0; i < TYPE_NFIELDS (arg); i++)
	{
	  /* Bit fields have no real alignment. */
	  if (!TYPE_FIELD_BITPOS (arg, i))
	    {
	      align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
	      max_align = max (max_align, align);
	    }
	}
      return max_align;
    default:
      return 4;
    }
}

/* Print the register regnum, or all registers if regnum is -1 */

pa_do_registers_info (regnum, fpregs)
     int regnum;
     int fpregs;
{
  char raw_regs [REGISTER_BYTES];
  int i;
  
  for (i = 0; i < NUM_REGS; i++)
    read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
  if (regnum == -1)
    pa_print_registers (raw_regs, regnum, fpregs);
  else if (regnum < FP0_REGNUM)
    printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
						    REGISTER_BYTE (regnum)));
  else
    pa_print_fp_reg (regnum);
}

pa_print_registers (raw_regs, regnum, fpregs)
     char *raw_regs;
     int regnum;
     int fpregs;
{
  int i;

  for (i = 0; i < 18; i++)
    printf_unfiltered ("%8.8s: %8x  %8.8s: %8x  %8.8s: %8x  %8.8s: %8x\n",
	    reg_names[i],
	    *(int *)(raw_regs + REGISTER_BYTE (i)),
	    reg_names[i + 18],
	    *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
	    reg_names[i + 36],
	    *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
	    reg_names[i + 54],
	    *(int *)(raw_regs + REGISTER_BYTE (i + 54)));

  if (fpregs)
    for (i = 72; i < NUM_REGS; i++)
      pa_print_fp_reg (i);
}

pa_print_fp_reg (i)
     int i;
{
  unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
  unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];

  /* Get the data in raw format.  */
  read_relative_register_raw_bytes (i, raw_buffer);

  /* Convert raw data to virtual format if necessary.  */
#ifdef REGISTER_CONVERTIBLE
  if (REGISTER_CONVERTIBLE (i))
    {
      REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
				   raw_buffer, virtual_buffer);
    }
  else
#endif
    memcpy (virtual_buffer, raw_buffer,
	    REGISTER_VIRTUAL_SIZE (i));

  fputs_filtered (reg_names[i], gdb_stdout);
  print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);

  val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
	     1, 0, Val_pretty_default);
  printf_filtered ("\n");
}

/* Function calls that pass into a new compilation unit must pass through a
   small piece of code that does long format (`external' in HPPA parlance)
   jumps.  We figure out where the trampoline is going to end up, and return
   the PC of the final destination.  If we aren't in a trampoline, we just
   return NULL. 

   For computed calls, we just extract the new PC from r22.  */

CORE_ADDR
skip_trampoline_code (pc, name)
     CORE_ADDR pc;
     char *name;
{
  long inst0, inst1;
  static CORE_ADDR dyncall = 0;
  struct minimal_symbol *msym;

/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */

  if (!dyncall)
    {
      msym = lookup_minimal_symbol ("$$dyncall", NULL);
      if (msym)
	dyncall = SYMBOL_VALUE_ADDRESS (msym);
      else
	dyncall = -1;
    }

  if (pc == dyncall)
    return (CORE_ADDR)(read_register (22) & ~0x3);

  inst0 = read_memory_integer (pc, 4);
  inst1 = read_memory_integer (pc+4, 4);

  if (   (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
      && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
    pc = extract_21 (inst0) + extract_17 (inst1);
  else
    pc = (CORE_ADDR)NULL;

  return pc;
}

/* For the given instruction (INST), return any adjustment it makes
   to the stack pointer or zero for no adjustment. 

   This only handles instructions commonly found in prologues.  */

static int
prologue_inst_adjust_sp (inst)
     unsigned long inst;
{
  /* This must persist across calls.  */
  static int save_high21;

  /* The most common way to perform a stack adjustment ldo X(sp),sp */
  if ((inst & 0xffffc000) == 0x37de0000)
    return extract_14 (inst);

  /* stwm X,D(sp) */
  if ((inst & 0xffe00000) == 0x6fc00000)
    return extract_14 (inst);

  /* addil high21,%r1; ldo low11,(%r1),%r30)
     save high bits in save_high21 for later use.  */
  if ((inst & 0xffe00000) == 0x28200000)
    {
      save_high21 = extract_21 (inst);
      return 0;
    }

  if ((inst & 0xffff0000) == 0x343e0000)
    return save_high21 + extract_14 (inst);

  /* fstws as used by the HP compilers.  */
  if ((inst & 0xffffffe0) == 0x2fd01220)
    return extract_5_load (inst);

  /* No adjustment.  */
  return 0;
}

/* Return nonzero if INST is a branch of some kind, else return zero.  */

static int
is_branch (inst)
     unsigned long inst;
{
  switch (inst >> 26)
    {
    case 0x20:
    case 0x21:
    case 0x22:
    case 0x23:
    case 0x28:
    case 0x29:
    case 0x2a:
    case 0x2b:
    case 0x30:
    case 0x31:
    case 0x32:
    case 0x33:
    case 0x38:
    case 0x39:
    case 0x3a:
      return 1;

    default:
      return 0;
    }
}

/* Return the register number for a GR which is saved by INST or
   zero it INST does not save a GR.

   Note we only care about full 32bit register stores (that's the only
   kind of stores the prologue will use).  */

static int
inst_saves_gr (inst)
     unsigned long inst;
{
  /* Does it look like a stw?  */
  if ((inst >> 26) == 0x1a)
    return extract_5R_store (inst);

  /* Does it look like a stwm?  */
  if ((inst >> 26) == 0x1b)
    return extract_5R_store (inst);

  return 0;
}

/* Return the register number for a FR which is saved by INST or
   zero it INST does not save a FR.

   Note we only care about full 64bit register stores (that's the only
   kind of stores the prologue will use).  */

static int
inst_saves_fr (inst)
     unsigned long inst;
{
  if ((inst & 0xfc1fffe0) == 0x2c101220)
    return extract_5r_store (inst);
  return 0;
}

/* Advance PC across any function entry prologue instructions
   to reach some "real" code. 

   Use information in the unwind table to determine what exactly should
   be in the prologue.  */

CORE_ADDR
skip_prologue(pc)
     CORE_ADDR pc;
{
  char buf[4];
  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
  int status, i;
  struct unwind_table_entry *u;

  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* This is how much of a frame adjustment we need to account for.  */
  stack_remaining = u->Total_frame_size << 3;

  /* Magic register saves we want to know about.  */
  save_rp = u->Save_RP;
  save_sp = u->Save_SP;

  /* Turn the Entry_GR field into a bitmask.  */
  save_gr = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == FP_REGNUM)
	continue;

      save_gr |= (1 << i);
    }

  /* Turn the Entry_FR field into a bitmask too.  */
  save_fr = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    save_fr |= (1 << i);

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimzied GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
    {
      status = target_read_memory (pc, buf, 4);
      inst = extract_unsigned_integer (buf, 4);

      /* Yow! */
      if (status != 0)
	return pc;

      /* Note the interesting effects of this instruction.  */
      stack_remaining -= prologue_inst_adjust_sp (inst);

      /* There is only one instruction used for saving RP into the stack.  */
      if (inst == 0x6bc23fd9)
	save_rp = 0;

      /* This is the only way we save SP into the stack.  At this time
	 the HP compilers never bother to save SP into the stack.  */
      if ((inst & 0xffffc000) == 0x6fc10000)
	save_sp = 0;

      /* Account for general and floating-point register saves.  */
      save_gr &= ~(1 << inst_saves_gr (inst));
      save_fr &= ~(1 << inst_saves_fr (inst));

      /* Quit if we hit any kind of branch.  This can happen if a prologue
	 instruction is in the delay slot of the first call/branch.  */
      if (is_branch (inst))
	break;

      /* Bump the PC.  */
      pc += 4;
    }

  return pc;
}

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

void
hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
     struct frame_info *frame_info;
     struct frame_saved_regs *frame_saved_regs;
{
  CORE_ADDR pc;
  struct unwind_table_entry *u;
  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
  int status, i, reg;
  char buf[4];
  int fp_loc = -1;

  /* Zero out everything.  */
  memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));

  /* Call dummy frames always look the same, so there's no need to
     examine the dummy code to determine locations of saved registers;
     instead, let find_dummy_frame_regs fill in the correct offsets
     for the saved registers.  */
  if ((frame_info->pc >= frame_info->frame
       && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
			     + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
			     + 6 * 4)))
    find_dummy_frame_regs (frame_info, frame_saved_regs);

  /* Interrupt handlers are special too.  They lay out the register
     state in the exact same order as the register numbers in GDB.  */
  if (pc_in_interrupt_handler (frame_info->pc))
    {
      for (i = 0; i < NUM_REGS; i++)
	{
	  /* SP is a little special.  */
	  if (i == SP_REGNUM)
	    frame_saved_regs->regs[SP_REGNUM]
	      = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
	  else
	    frame_saved_regs->regs[i] = frame_info->frame + i * 4;
	}
      return;
    }

  /* Handle signal handler callers.  */
  if (frame_info->signal_handler_caller)
    {
      FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
      return;
    }

  /* Get the starting address of the function referred to by the PC
     saved in frame_info.  */
  pc = get_pc_function_start (frame_info->pc);

  /* Yow! */
  u = find_unwind_entry (pc);
  if (!u)
    return;

  /* This is how much of a frame adjustment we need to account for.  */
  stack_remaining = u->Total_frame_size << 3;

  /* Magic register saves we want to know about.  */
  save_rp = u->Save_RP;
  save_sp = u->Save_SP;

  /* Turn the Entry_GR field into a bitmask.  */
  save_gr = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == FP_REGNUM)
	continue;

      save_gr |= (1 << i);
    }

  /* Turn the Entry_FR field into a bitmask too.  */
  save_fr = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    save_fr |= (1 << i);

  /* The frame always represents the value of %sp at entry to the
     current function (and is thus equivalent to the "saved" stack
     pointer.  */
  frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimzied GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
    {
      status = target_read_memory (pc, buf, 4);
      inst = extract_unsigned_integer (buf, 4);

      /* Yow! */
      if (status != 0)
	return;

      /* Note the interesting effects of this instruction.  */
      stack_remaining -= prologue_inst_adjust_sp (inst);

      /* There is only one instruction used for saving RP into the stack.  */
      if (inst == 0x6bc23fd9)
	{
	  save_rp = 0;
	  frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
	}

      /* Just note that we found the save of SP into the stack.  The
	 value for frame_saved_regs was computed above.  */
      if ((inst & 0xffffc000) == 0x6fc10000)
	save_sp = 0;

      /* Account for general and floating-point register saves.  */
      reg = inst_saves_gr (inst);
      if (reg >= 3 && reg <= 18
	  && (!u->Save_SP || reg != FP_REGNUM))
	{
	  save_gr &= ~(1 << reg);

	  /* stwm with a positive displacement is a *post modify*.  */
	  if ((inst >> 26) == 0x1b
	      && extract_14 (inst) >= 0)
	    frame_saved_regs->regs[reg] = frame_info->frame;
	  else
	    {
	      /* Handle code with and without frame pointers.  */
	      if (u->Save_SP)
		frame_saved_regs->regs[reg]
		  = frame_info->frame + extract_14 (inst);
	      else
		frame_saved_regs->regs[reg]
		  = frame_info->frame + (u->Total_frame_size << 3)
		    + extract_14 (inst);
	    }
	}


      /* GCC handles callee saved FP regs a little differently.  

	 It emits an instruction to put the value of the start of
	 the FP store area into %r1.  It then uses fstds,ma with
	 a basereg of %r1 for the stores.

	 HP CC emits them at the current stack pointer modifying
	 the stack pointer as it stores each register.  */

      /* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
      if ((inst & 0xffffc000) == 0x34610000
	  || (inst & 0xffffc000) == 0x37c10000)
	fp_loc = extract_14 (inst);
	
      reg = inst_saves_fr (inst);
      if (reg >= 12 && reg <= 21)
	{
	  /* Note +4 braindamage below is necessary because the FP status
	     registers are internally 8 registers rather than the expected
	     4 registers.  */
	  save_fr &= ~(1 << reg);
	  if (fp_loc == -1)
	    {
	      /* 1st HP CC FP register store.  After this instruction
		 we've set enough state that the GCC and HPCC code are
		 both handled in the same manner.  */
	      frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
	      fp_loc = 8;
	    }
	  else
	    {
	      frame_saved_regs->regs[reg + FP0_REGNUM + 4]
		= frame_info->frame + fp_loc;
	      fp_loc += 8;
	    }
	}

      /* Quit if we hit any kind of branch.  This can happen if a prologue
	 instruction is in the delay slot of the first call/branch.  */
      if (is_branch (inst))
	break;

      /* Bump the PC.  */
      pc += 4;
    }
}

#ifdef MAINTENANCE_CMDS

static void
unwind_command (exp, from_tty)
     char *exp;
     int from_tty;
{
  CORE_ADDR address;
  union
    {
      int *foo;
      struct unwind_table_entry *u;
    } xxx;

  /* If we have an expression, evaluate it and use it as the address.  */

  if (exp != 0 && *exp != 0)
    address = parse_and_eval_address (exp);
  else
    return;

  xxx.u = find_unwind_entry (address);

  if (!xxx.u)
    {
      printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
      return;
    }

  printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
	  xxx.foo[3]);
}
#endif /* MAINTENANCE_CMDS */

void
_initialize_hppa_tdep ()
{
#ifdef MAINTENANCE_CMDS
  add_cmd ("unwind", class_maintenance, unwind_command,
	   "Print unwind table entry at given address.",
	   &maintenanceprintlist);
#endif /* MAINTENANCE_CMDS */
}