1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
|
/* Target-dependent code for HP-UX on PA-RISC.
Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "arch-utils.h"
#include "gdbcore.h"
#include "osabi.h"
#include "frame.h"
#include "frame-unwind.h"
#include "trad-frame.h"
#include "symtab.h"
#include "objfiles.h"
#include "inferior.h"
#include "infcall.h"
#include "observer.h"
#include "hppa-tdep.h"
#include "solib-som.h"
#include "solib-pa64.h"
#include "regset.h"
#include "regcache.h"
#include "exceptions.h"
#include "gdb_string.h"
#define IS_32BIT_TARGET(_gdbarch) \
((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
/* Bit in the `ss_flag' member of `struct save_state' that indicates
that the 64-bit register values are live. From
<machine/save_state.h>. */
#define HPPA_HPUX_SS_WIDEREGS 0x40
/* Offsets of various parts of `struct save_state'. From
<machine/save_state.h>. */
#define HPPA_HPUX_SS_FLAGS_OFFSET 0
#define HPPA_HPUX_SS_NARROW_OFFSET 4
#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
#define HPPA_HPUX_SS_WIDE_OFFSET 640
/* The size of `struct save_state. */
#define HPPA_HPUX_SAVE_STATE_SIZE 1152
/* The size of `struct pa89_save_state', which corresponds to PA-RISC
1.1, the lowest common denominator that we support. */
#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
/* Forward declarations. */
extern void _initialize_hppa_hpux_tdep (void);
extern initialize_file_ftype _initialize_hppa_hpux_tdep;
typedef struct
{
struct minimal_symbol *msym;
CORE_ADDR solib_handle;
CORE_ADDR return_val;
}
args_for_find_stub;
static int
in_opd_section (CORE_ADDR pc)
{
struct obj_section *s;
int retval = 0;
s = find_pc_section (pc);
retval = (s != NULL
&& s->the_bfd_section->name != NULL
&& strcmp (s->the_bfd_section->name, ".opd") == 0);
return (retval);
}
/* Return one if PC is in the call path of a trampoline, else return zero.
Note we return one for *any* call trampoline (long-call, arg-reloc), not
just shared library trampolines (import, export). */
static int
hppa32_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
{
struct minimal_symbol *minsym;
struct unwind_table_entry *u;
/* First see if PC is in one of the two C-library trampolines. */
if (pc == hppa_symbol_address("$$dyncall")
|| pc == hppa_symbol_address("_sr4export"))
return 1;
minsym = lookup_minimal_symbol_by_pc (pc);
if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
return 1;
/* Get the unwind descriptor corresponding to PC, return zero
if no unwind was found. */
u = find_unwind_entry (pc);
if (!u)
return 0;
/* If this isn't a linker stub, then return now. */
if (u->stub_unwind.stub_type == 0)
return 0;
/* By definition a long-branch stub is a call stub. */
if (u->stub_unwind.stub_type == LONG_BRANCH)
return 1;
/* The call and return path execute the same instructions within
an IMPORT stub! So an IMPORT stub is both a call and return
trampoline. */
if (u->stub_unwind.stub_type == IMPORT)
return 1;
/* Parameter relocation stubs always have a call path and may have a
return path. */
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|| u->stub_unwind.stub_type == EXPORT)
{
CORE_ADDR addr;
/* Search forward from the current PC until we hit a branch
or the end of the stub. */
for (addr = pc; addr <= u->region_end; addr += 4)
{
unsigned long insn;
insn = read_memory_integer (addr, 4);
/* Does it look like a bl? If so then it's the call path, if
we find a bv or be first, then we're on the return path. */
if ((insn & 0xfc00e000) == 0xe8000000)
return 1;
else if ((insn & 0xfc00e001) == 0xe800c000
|| (insn & 0xfc000000) == 0xe0000000)
return 0;
}
/* Should never happen. */
warning (_("Unable to find branch in parameter relocation stub."));
return 0;
}
/* Unknown stub type. For now, just return zero. */
return 0;
}
static int
hppa64_hpux_in_solib_call_trampoline (CORE_ADDR pc, char *name)
{
/* PA64 has a completely different stub/trampoline scheme. Is it
better? Maybe. It's certainly harder to determine with any
certainty that we are in a stub because we can not refer to the
unwinders to help.
The heuristic is simple. Try to lookup the current PC value in th
minimal symbol table. If that fails, then assume we are not in a
stub and return.
Then see if the PC value falls within the section bounds for the
section containing the minimal symbol we found in the first
step. If it does, then assume we are not in a stub and return.
Finally peek at the instructions to see if they look like a stub. */
struct minimal_symbol *minsym;
asection *sec;
CORE_ADDR addr;
int insn, i;
minsym = lookup_minimal_symbol_by_pc (pc);
if (! minsym)
return 0;
sec = SYMBOL_BFD_SECTION (minsym);
if (bfd_get_section_vma (sec->owner, sec) <= pc
&& pc < (bfd_get_section_vma (sec->owner, sec)
+ bfd_section_size (sec->owner, sec)))
return 0;
/* We might be in a stub. Peek at the instructions. Stubs are 3
instructions long. */
insn = read_memory_integer (pc, 4);
/* Find out where we think we are within the stub. */
if ((insn & 0xffffc00e) == 0x53610000)
addr = pc;
else if ((insn & 0xffffffff) == 0xe820d000)
addr = pc - 4;
else if ((insn & 0xffffc00e) == 0x537b0000)
addr = pc - 8;
else
return 0;
/* Now verify each insn in the range looks like a stub instruction. */
insn = read_memory_integer (addr, 4);
if ((insn & 0xffffc00e) != 0x53610000)
return 0;
/* Now verify each insn in the range looks like a stub instruction. */
insn = read_memory_integer (addr + 4, 4);
if ((insn & 0xffffffff) != 0xe820d000)
return 0;
/* Now verify each insn in the range looks like a stub instruction. */
insn = read_memory_integer (addr + 8, 4);
if ((insn & 0xffffc00e) != 0x537b0000)
return 0;
/* Looks like a stub. */
return 1;
}
/* Return one if PC is in the return path of a trampoline, else return zero.
Note we return one for *any* call trampoline (long-call, arg-reloc), not
just shared library trampolines (import, export). */
static int
hppa_hpux_in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
struct unwind_table_entry *u;
/* Get the unwind descriptor corresponding to PC, return zero
if no unwind was found. */
u = find_unwind_entry (pc);
if (!u)
return 0;
/* If this isn't a linker stub or it's just a long branch stub, then
return zero. */
if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
return 0;
/* The call and return path execute the same instructions within
an IMPORT stub! So an IMPORT stub is both a call and return
trampoline. */
if (u->stub_unwind.stub_type == IMPORT)
return 1;
/* Parameter relocation stubs always have a call path and may have a
return path. */
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|| u->stub_unwind.stub_type == EXPORT)
{
CORE_ADDR addr;
/* Search forward from the current PC until we hit a branch
or the end of the stub. */
for (addr = pc; addr <= u->region_end; addr += 4)
{
unsigned long insn;
insn = read_memory_integer (addr, 4);
/* Does it look like a bl? If so then it's the call path, if
we find a bv or be first, then we're on the return path. */
if ((insn & 0xfc00e000) == 0xe8000000)
return 0;
else if ((insn & 0xfc00e001) == 0xe800c000
|| (insn & 0xfc000000) == 0xe0000000)
return 1;
}
/* Should never happen. */
warning (_("Unable to find branch in parameter relocation stub."));
return 0;
}
/* Unknown stub type. For now, just return zero. */
return 0;
}
/* Figure out if PC is in a trampoline, and if so find out where
the trampoline will jump to. If not in a trampoline, return zero.
Simple code examination probably is not a good idea since the code
sequences in trampolines can also appear in user code.
We use unwinds and information from the minimal symbol table to
determine when we're in a trampoline. This won't work for ELF
(yet) since it doesn't create stub unwind entries. Whether or
not ELF will create stub unwinds or normal unwinds for linker
stubs is still being debated.
This should handle simple calls through dyncall or sr4export,
long calls, argument relocation stubs, and dyncall/sr4export
calling an argument relocation stub. It even handles some stubs
used in dynamic executables. */
static CORE_ADDR
hppa_hpux_skip_trampoline_code (CORE_ADDR pc)
{
long orig_pc = pc;
long prev_inst, curr_inst, loc;
struct minimal_symbol *msym;
struct unwind_table_entry *u;
/* Addresses passed to dyncall may *NOT* be the actual address
of the function. So we may have to do something special. */
if (pc == hppa_symbol_address("$$dyncall"))
{
pc = (CORE_ADDR) read_register (22);
/* If bit 30 (counting from the left) is on, then pc is the address of
the PLT entry for this function, not the address of the function
itself. Bit 31 has meaning too, but only for MPE. */
if (pc & 0x2)
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
}
if (pc == hppa_symbol_address("$$dyncall_external"))
{
pc = (CORE_ADDR) read_register (22);
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
}
else if (pc == hppa_symbol_address("_sr4export"))
pc = (CORE_ADDR) (read_register (22));
/* Get the unwind descriptor corresponding to PC, return zero
if no unwind was found. */
u = find_unwind_entry (pc);
if (!u)
return 0;
/* If this isn't a linker stub, then return now. */
/* elz: attention here! (FIXME) because of a compiler/linker
error, some stubs which should have a non zero stub_unwind.stub_type
have unfortunately a value of zero. So this function would return here
as if we were not in a trampoline. To fix this, we go look at the partial
symbol information, which reports this guy as a stub.
(FIXME): Unfortunately, we are not that lucky: it turns out that the
partial symbol information is also wrong sometimes. This is because
when it is entered (somread.c::som_symtab_read()) it can happen that
if the type of the symbol (from the som) is Entry, and the symbol is
in a shared library, then it can also be a trampoline. This would
be OK, except that I believe the way they decide if we are ina shared library
does not work. SOOOO..., even if we have a regular function w/o trampolines
its minimal symbol can be assigned type mst_solib_trampoline.
Also, if we find that the symbol is a real stub, then we fix the unwind
descriptor, and define the stub type to be EXPORT.
Hopefully this is correct most of the times. */
if (u->stub_unwind.stub_type == 0)
{
/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
we can delete all the code which appears between the lines */
/*--------------------------------------------------------------------------*/
msym = lookup_minimal_symbol_by_pc (pc);
if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
return orig_pc == pc ? 0 : pc & ~0x3;
else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
{
struct objfile *objfile;
struct minimal_symbol *msymbol;
int function_found = 0;
/* go look if there is another minimal symbol with the same name as
this one, but with type mst_text. This would happen if the msym
is an actual trampoline, in which case there would be another
symbol with the same name corresponding to the real function */
ALL_MSYMBOLS (objfile, msymbol)
{
if (MSYMBOL_TYPE (msymbol) == mst_text
&& DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
{
function_found = 1;
break;
}
}
if (function_found)
/* the type of msym is correct (mst_solib_trampoline), but
the unwind info is wrong, so set it to the correct value */
u->stub_unwind.stub_type = EXPORT;
else
/* the stub type info in the unwind is correct (this is not a
trampoline), but the msym type information is wrong, it
should be mst_text. So we need to fix the msym, and also
get out of this function */
{
MSYMBOL_TYPE (msym) = mst_text;
return orig_pc == pc ? 0 : pc & ~0x3;
}
}
/*--------------------------------------------------------------------------*/
}
/* It's a stub. Search for a branch and figure out where it goes.
Note we have to handle multi insn branch sequences like ldil;ble.
Most (all?) other branches can be determined by examining the contents
of certain registers and the stack. */
loc = pc;
curr_inst = 0;
prev_inst = 0;
while (1)
{
/* Make sure we haven't walked outside the range of this stub. */
if (u != find_unwind_entry (loc))
{
warning (_("Unable to find branch in linker stub"));
return orig_pc == pc ? 0 : pc & ~0x3;
}
prev_inst = curr_inst;
curr_inst = read_memory_integer (loc, 4);
/* Does it look like a branch external using %r1? Then it's the
branch from the stub to the actual function. */
if ((curr_inst & 0xffe0e000) == 0xe0202000)
{
/* Yup. See if the previous instruction loaded
a value into %r1. If so compute and return the jump address. */
if ((prev_inst & 0xffe00000) == 0x20200000)
return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
else
{
warning (_("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."));
return orig_pc == pc ? 0 : pc & ~0x3;
}
}
/* Does it look like a be 0(sr0,%r21)? OR
Does it look like a be, n 0(sr0,%r21)? OR
Does it look like a bve (r21)? (this is on PA2.0)
Does it look like a bve, n(r21)? (this is also on PA2.0)
That's the branch from an
import stub to an export stub.
It is impossible to determine the target of the branch via
simple examination of instructions and/or data (consider
that the address in the plabel may be the address of the
bind-on-reference routine in the dynamic loader).
So we have try an alternative approach.
Get the name of the symbol at our current location; it should
be a stub symbol with the same name as the symbol in the
shared library.
Then lookup a minimal symbol with the same name; we should
get the minimal symbol for the target routine in the shared
library as those take precedence of import/export stubs. */
if ((curr_inst == 0xe2a00000) ||
(curr_inst == 0xe2a00002) ||
(curr_inst == 0xeaa0d000) ||
(curr_inst == 0xeaa0d002))
{
struct minimal_symbol *stubsym, *libsym;
stubsym = lookup_minimal_symbol_by_pc (loc);
if (stubsym == NULL)
{
warning (_("Unable to find symbol for 0x%lx"), loc);
return orig_pc == pc ? 0 : pc & ~0x3;
}
libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
if (libsym == NULL)
{
warning (_("Unable to find library symbol for %s."),
DEPRECATED_SYMBOL_NAME (stubsym));
return orig_pc == pc ? 0 : pc & ~0x3;
}
return SYMBOL_VALUE (libsym);
}
/* Does it look like bl X,%rp or bl X,%r0? Another way to do a
branch from the stub to the actual function. */
/*elz */
else if ((curr_inst & 0xffe0e000) == 0xe8400000
|| (curr_inst & 0xffe0e000) == 0xe8000000
|| (curr_inst & 0xffe0e000) == 0xe800A000)
return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
/* Does it look like bv (rp)? Note this depends on the
current stack pointer being the same as the stack
pointer in the stub itself! This is a branch on from the
stub back to the original caller. */
/*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
else if ((curr_inst & 0xffe0f000) == 0xe840c000)
{
/* Yup. See if the previous instruction loaded
rp from sp - 8. */
if (prev_inst == 0x4bc23ff1)
return (read_memory_integer
(read_register (HPPA_SP_REGNUM) - 8, 4)) & ~0x3;
else
{
warning (_("Unable to find restore of %%rp before bv (%%rp)."));
return orig_pc == pc ? 0 : pc & ~0x3;
}
}
/* elz: added this case to capture the new instruction
at the end of the return part of an export stub used by
the PA2.0: BVE, n (rp) */
else if ((curr_inst & 0xffe0f000) == 0xe840d000)
{
return (read_memory_integer
(read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
}
/* What about be,n 0(sr0,%rp)? It's just another way we return to
the original caller from the stub. Used in dynamic executables. */
else if (curr_inst == 0xe0400002)
{
/* The value we jump to is sitting in sp - 24. But that's
loaded several instructions before the be instruction.
I guess we could check for the previous instruction being
mtsp %r1,%sr0 if we want to do sanity checking. */
return (read_memory_integer
(read_register (HPPA_SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
}
/* Haven't found the branch yet, but we're still in the stub.
Keep looking. */
loc += 4;
}
}
static void
hppa_skip_permanent_breakpoint (struct regcache *regcache)
{
/* To step over a breakpoint instruction on the PA takes some
fiddling with the instruction address queue.
When we stop at a breakpoint, the IA queue front (the instruction
we're executing now) points at the breakpoint instruction, and
the IA queue back (the next instruction to execute) points to
whatever instruction we would execute after the breakpoint, if it
were an ordinary instruction. This is the case even if the
breakpoint is in the delay slot of a branch instruction.
Clearly, to step past the breakpoint, we need to set the queue
front to the back. But what do we put in the back? What
instruction comes after that one? Because of the branch delay
slot, the next insn is always at the back + 4. */
ULONGEST pcoq_tail, pcsq_tail;
regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
/* We can leave the tail's space the same, since there's no jump. */
}
/* Exception handling support for the HP-UX ANSI C++ compiler.
The compiler (aCC) provides a callback for exception events;
GDB can set a breakpoint on this callback and find out what
exception event has occurred. */
/* The name of the hook to be set to point to the callback function. */
static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
/* The name of the function to be used to set the hook value. */
static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
/* The name of the callback function in end.o */
static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
/* Name of function in end.o on which a break is set (called by above). */
static char HP_ACC_EH_break[] = "__d_eh_break";
/* Name of flag (in end.o) that enables catching throws. */
static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
/* Name of flag (in end.o) that enables catching catching. */
static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
/* The enum used by aCC. */
typedef enum
{
__EH_NOTIFY_THROW,
__EH_NOTIFY_CATCH
}
__eh_notification;
/* Is exception-handling support available with this executable? */
static int hp_cxx_exception_support = 0;
/* Has the initialize function been run? */
static int hp_cxx_exception_support_initialized = 0;
/* Address of __eh_notify_hook */
static CORE_ADDR eh_notify_hook_addr = 0;
/* Address of __d_eh_notify_callback */
static CORE_ADDR eh_notify_callback_addr = 0;
/* Address of __d_eh_break */
static CORE_ADDR eh_break_addr = 0;
/* Address of __d_eh_catch_catch */
static CORE_ADDR eh_catch_catch_addr = 0;
/* Address of __d_eh_catch_throw */
static CORE_ADDR eh_catch_throw_addr = 0;
/* Sal for __d_eh_break */
static struct symtab_and_line *break_callback_sal = 0;
/* Code in end.c expects __d_pid to be set in the inferior,
otherwise __d_eh_notify_callback doesn't bother to call
__d_eh_break! So we poke the pid into this symbol
ourselves.
0 => success
1 => failure */
static int
setup_d_pid_in_inferior (void)
{
CORE_ADDR anaddr;
struct minimal_symbol *msymbol;
char buf[4]; /* FIXME 32x64? */
/* Slam the pid of the process into __d_pid; failing is only a warning! */
msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
if (msymbol == NULL)
{
warning (_("Unable to find __d_pid symbol in object file.\n"
"Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."));
return 1;
}
anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
{
warning (_("Unable to write __d_pid.\n"
"Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."));
return 1;
}
return 0;
}
/* elz: Used to lookup a symbol in the shared libraries.
This function calls shl_findsym, indirectly through a
call to __d_shl_get. __d_shl_get is in end.c, which is always
linked in by the hp compilers/linkers.
The call to shl_findsym cannot be made directly because it needs
to be active in target address space.
inputs: - minimal symbol pointer for the function we want to look up
- address in target space of the descriptor for the library
where we want to look the symbol up.
This address is retrieved using the
som_solib_get_solib_by_pc function (somsolib.c).
output: - real address in the library of the function.
note: the handle can be null, in which case shl_findsym will look for
the symbol in all the loaded shared libraries.
files to look at if you need reference on this stuff:
dld.c, dld_shl_findsym.c
end.c
man entry for shl_findsym */
static CORE_ADDR
find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
{
struct symbol *get_sym, *symbol2;
struct minimal_symbol *buff_minsym, *msymbol;
struct type *ftype;
struct value **args;
struct value *funcval;
struct value *val;
int x, namelen, err_value, tmp = -1;
CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
CORE_ADDR stub_addr;
args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
funcval = find_function_in_inferior ("__d_shl_get");
get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
value_return_addr = endo_buff_addr + namelen;
ftype = check_typedef (SYMBOL_TYPE (get_sym));
/* do alignment */
if ((x = value_return_addr % 64) != 0)
value_return_addr = value_return_addr + 64 - x;
errno_return_addr = value_return_addr + 64;
/* set up stuff needed by __d_shl_get in buffer in end.o */
target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
target_write_memory (value_return_addr, (char *) &tmp, 4);
target_write_memory (errno_return_addr, (char *) &tmp, 4);
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
(char *) &handle, 4);
/* now prepare the arguments for the call */
args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), 3 /* TYPE_PROCEDURE */);
args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
/* now call the function */
val = call_function_by_hand (funcval, 6, args);
/* now get the results */
target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
if (stub_addr <= 0)
error (_("call to __d_shl_get failed, error code is %d"), err_value);
return (stub_addr);
}
/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
static int
cover_find_stub_with_shl_get (void *args_untyped)
{
args_for_find_stub *args = args_untyped;
args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
return 0;
}
/* Initialize exception catchpoint support by looking for the
necessary hooks/callbacks in end.o, etc., and set the hook value
to point to the required debug function.
Return 0 => failure
1 => success */
static int
initialize_hp_cxx_exception_support (void)
{
struct symtabs_and_lines sals;
struct cleanup *old_chain;
struct cleanup *canonical_strings_chain = NULL;
int i;
char *addr_start;
char *addr_end = NULL;
char **canonical = (char **) NULL;
int thread = -1;
struct symbol *sym = NULL;
struct minimal_symbol *msym = NULL;
struct objfile *objfile;
asection *shlib_info;
/* Detect and disallow recursion. On HP-UX with aCC, infinite
recursion is a possibility because finding the hook for exception
callbacks involves making a call in the inferior, which means
re-inserting breakpoints which can re-invoke this code. */
static int recurse = 0;
if (recurse > 0)
{
hp_cxx_exception_support_initialized = 0;
deprecated_exception_support_initialized = 0;
return 0;
}
hp_cxx_exception_support = 0;
/* First check if we have seen any HP compiled objects; if not,
it is very unlikely that HP's idiosyncratic callback mechanism
for exception handling debug support will be available!
This will percolate back up to breakpoint.c, where our callers
will decide to try the g++ exception-handling support instead. */
if (!deprecated_hp_som_som_object_present)
return 0;
/* We have a SOM executable with SOM debug info; find the hooks. */
/* First look for the notify hook provided by aCC runtime libs */
/* If we find this symbol, we conclude that the executable must
have HP aCC exception support built in. If this symbol is not
found, even though we're a HP SOM-SOM file, we may have been
built with some other compiler (not aCC). This results percolates
back up to our callers in breakpoint.c which can decide to
try the g++ style of exception support instead.
If this symbol is found but the other symbols we require are
not found, there is something weird going on, and g++ support
should *not* be tried as an alternative.
ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
/* libCsup has this hook; it'll usually be non-debuggable */
msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
if (msym)
{
eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
hp_cxx_exception_support = 1;
}
else
{
warning (_("\
Unable to find exception callback hook (%s).\n\
Executable may not have been compiled debuggable with HP aCC.\n\
GDB will be unable to intercept exception events."),
HP_ACC_EH_notify_hook);
eh_notify_hook_addr = 0;
hp_cxx_exception_support = 0;
return 0;
}
/* Next look for the notify callback routine in end.o */
/* This is always available in the SOM symbol dictionary if end.o is
linked in. */
msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
if (msym)
{
eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
hp_cxx_exception_support = 1;
}
else
{
warning (_("\
Unable to find exception callback routine (%s).\n\
Suggest linking executable with -g (links in /opt/langtools/lib/end.o).\n\
GDB will be unable to intercept exception events."),
HP_ACC_EH_notify_callback);
eh_notify_callback_addr = 0;
return 0;
}
if (!gdbarch_tdep (current_gdbarch)->is_elf)
{
/* Check whether the executable is dynamically linked or archive bound */
/* With an archive-bound executable we can use the raw addresses we find
for the callback function, etc. without modification. For an executable
with shared libraries, we have to do more work to find the plabel, which
can be the target of a call through $$dyncall from the aCC runtime
support library (libCsup) which is linked shared by default by aCC. */
/* This test below was copied from somsolib.c/somread.c. It may not be a very
reliable one to test that an executable is linked shared.
pai/1997-07-18 */
shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
{
/* The minsym we have has the local code address, but that's not
the plabel that can be used by an inter-load-module call. */
/* Find solib handle for main image (which has end.o), and use
that and the min sym as arguments to __d_shl_get() (which
does the equivalent of shl_findsym()) to find the plabel. */
args_for_find_stub args;
args.solib_handle = gdbarch_tdep (current_gdbarch)->solib_get_solib_by_pc (eh_notify_callback_addr);
args.msym = msym;
args.return_val = 0;
recurse++;
catch_errors (cover_find_stub_with_shl_get, &args,
_("Error while finding exception callback hook:\n"),
RETURN_MASK_ALL);
eh_notify_callback_addr = args.return_val;
recurse--;
deprecated_exception_catchpoints_are_fragile = 1;
if (!eh_notify_callback_addr)
{
/* We can get here either if there is no plabel in the export list
for the main image, or if something strange happened (?) */
warning (_("\
Couldn't find a plabel (indirect function label) for the exception callback.\n\
GDB will not be able to intercept exception events."));
return 0;
}
}
else
deprecated_exception_catchpoints_are_fragile = 0;
}
/* Now, look for the breakpointable routine in end.o */
/* This should also be available in the SOM symbol dict. if end.o linked in */
msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
if (msym)
{
eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
hp_cxx_exception_support = 1;
}
else
{
warning (_("\
Unable to find exception callback routine to set breakpoint (%s).\n\
Suggest linking executable with -g (link in /opt/langtools/lib/end.o).\n\
GDB will be unable to intercept exception events."),
HP_ACC_EH_break);
eh_break_addr = 0;
return 0;
}
/* Next look for the catch enable flag provided in end.o */
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
VAR_DOMAIN, 0, (struct symtab **) NULL);
if (sym) /* sometimes present in debug info */
{
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
hp_cxx_exception_support = 1;
}
else
/* otherwise look in SOM symbol dict. */
{
msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
if (msym)
{
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
hp_cxx_exception_support = 1;
}
else
{
warning (_("\
Unable to enable interception of exception catches.\n\
Executable may not have been compiled debuggable with HP aCC.\n\
Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."));
return 0;
}
}
/* Next look for the catch enable flag provided end.o */
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
VAR_DOMAIN, 0, (struct symtab **) NULL);
if (sym) /* sometimes present in debug info */
{
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
hp_cxx_exception_support = 1;
}
else
/* otherwise look in SOM symbol dict. */
{
msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
if (msym)
{
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
hp_cxx_exception_support = 1;
}
else
{
warning (_("\
Unable to enable interception of exception throws.\n\
Executable may not have been compiled debuggable with HP aCC.\n\
Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."));
return 0;
}
}
/* Set the flags */
hp_cxx_exception_support = 2; /* everything worked so far */
hp_cxx_exception_support_initialized = 1;
deprecated_exception_support_initialized = 1;
return 1;
}
/* Target operation for enabling or disabling interception of
exception events.
KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
ENABLE is either 0 (disable) or 1 (enable).
Return value is NULL if no support found;
-1 if something went wrong,
or a pointer to a symtab/line struct if the breakpointable
address was found. */
struct symtab_and_line *
child_enable_exception_callback (enum exception_event_kind kind, int enable)
{
char buf[4];
if (!deprecated_exception_support_initialized
|| !hp_cxx_exception_support_initialized)
if (!initialize_hp_cxx_exception_support ())
return NULL;
switch (hp_cxx_exception_support)
{
case 0:
/* Assuming no HP support at all */
return NULL;
case 1:
/* HP support should be present, but something went wrong */
return (struct symtab_and_line *) -1; /* yuck! */
/* there may be other cases in the future */
}
/* Set the EH hook to point to the callback routine. */
store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
/* pai: (temp) FIXME should there be a pack operation first? */
if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
{
warning (_("\
Could not write to target memory for exception event callback.\n\
Interception of exception events may not work."));
return (struct symtab_and_line *) -1;
}
if (enable)
{
/* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
if (PIDGET (inferior_ptid) > 0)
{
if (setup_d_pid_in_inferior ())
return (struct symtab_and_line *) -1;
}
else
{
warning (_("Internal error: Invalid inferior pid? Cannot intercept exception events."));
return (struct symtab_and_line *) -1;
}
}
switch (kind)
{
case EX_EVENT_THROW:
store_unsigned_integer (buf, 4, enable ? 1 : 0);
if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
{
warning (_("Couldn't enable exception throw interception."));
return (struct symtab_and_line *) -1;
}
break;
case EX_EVENT_CATCH:
store_unsigned_integer (buf, 4, enable ? 1 : 0);
if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
{
warning (_("Couldn't enable exception catch interception."));
return (struct symtab_and_line *) -1;
}
break;
default:
error (_("Request to enable unknown or unsupported exception event."));
}
/* Copy break address into new sal struct, malloc'ing if needed. */
if (!break_callback_sal)
break_callback_sal = XMALLOC (struct symtab_and_line);
init_sal (break_callback_sal);
break_callback_sal->symtab = NULL;
break_callback_sal->pc = eh_break_addr;
break_callback_sal->line = 0;
break_callback_sal->end = eh_break_addr;
return break_callback_sal;
}
/* Record some information about the current exception event */
static struct exception_event_record current_ex_event;
/* Report current exception event. Returns a pointer to a record
that describes the kind of the event, where it was thrown from,
and where it will be caught. More information may be reported
in the future */
struct exception_event_record *
child_get_current_exception_event (void)
{
CORE_ADDR event_kind;
CORE_ADDR throw_addr;
CORE_ADDR catch_addr;
struct frame_info *fi, *curr_frame;
int level = 1;
curr_frame = get_current_frame ();
if (!curr_frame)
return (struct exception_event_record *) NULL;
/* Go up one frame to __d_eh_notify_callback, because at the
point when this code is executed, there's garbage in the
arguments of __d_eh_break. */
fi = find_relative_frame (curr_frame, &level);
if (level != 0)
return (struct exception_event_record *) NULL;
select_frame (fi);
/* Read in the arguments */
/* __d_eh_notify_callback() is called with 3 arguments:
1. event kind catch or throw
2. the target address if known
3. a flag -- not sure what this is. pai/1997-07-17 */
event_kind = read_register (HPPA_ARG0_REGNUM);
catch_addr = read_register (HPPA_ARG1_REGNUM);
/* Now go down to a user frame */
/* For a throw, __d_eh_break is called by
__d_eh_notify_callback which is called by
__notify_throw which is called
from user code.
For a catch, __d_eh_break is called by
__d_eh_notify_callback which is called by
<stackwalking stuff> which is called by
__throw__<stuff> or __rethrow_<stuff> which is called
from user code. */
/* FIXME: Don't use such magic numbers; search for the frames */
level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
fi = find_relative_frame (curr_frame, &level);
if (level != 0)
return (struct exception_event_record *) NULL;
select_frame (fi);
throw_addr = get_frame_pc (fi);
/* Go back to original (top) frame */
select_frame (curr_frame);
current_ex_event.kind = (enum exception_event_kind) event_kind;
current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
return ¤t_ex_event;
}
/* Signal frames. */
struct hppa_hpux_sigtramp_unwind_cache
{
CORE_ADDR base;
struct trad_frame_saved_reg *saved_regs;
};
static int hppa_hpux_tramp_reg[] = {
HPPA_SAR_REGNUM,
HPPA_PCOQ_HEAD_REGNUM,
HPPA_PCSQ_HEAD_REGNUM,
HPPA_PCOQ_TAIL_REGNUM,
HPPA_PCSQ_TAIL_REGNUM,
HPPA_EIEM_REGNUM,
HPPA_IIR_REGNUM,
HPPA_ISR_REGNUM,
HPPA_IOR_REGNUM,
HPPA_IPSW_REGNUM,
-1,
HPPA_SR4_REGNUM,
HPPA_SR4_REGNUM + 1,
HPPA_SR4_REGNUM + 2,
HPPA_SR4_REGNUM + 3,
HPPA_SR4_REGNUM + 4,
HPPA_SR4_REGNUM + 5,
HPPA_SR4_REGNUM + 6,
HPPA_SR4_REGNUM + 7,
HPPA_RCR_REGNUM,
HPPA_PID0_REGNUM,
HPPA_PID1_REGNUM,
HPPA_CCR_REGNUM,
HPPA_PID2_REGNUM,
HPPA_PID3_REGNUM,
HPPA_TR0_REGNUM,
HPPA_TR0_REGNUM + 1,
HPPA_TR0_REGNUM + 2,
HPPA_CR27_REGNUM
};
static struct hppa_hpux_sigtramp_unwind_cache *
hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (next_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct hppa_hpux_sigtramp_unwind_cache *info;
unsigned int flag;
CORE_ADDR sp, scptr, off;
int i, incr, szoff;
if (*this_cache)
return *this_cache;
info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
*this_cache = info;
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
if (IS_32BIT_TARGET (gdbarch))
scptr = sp - 1352;
else
scptr = sp - 1520;
off = scptr;
/* See /usr/include/machine/save_state.h for the structure of the save_state_t
structure. */
flag = read_memory_unsigned_integer(scptr + HPPA_HPUX_SS_FLAGS_OFFSET, 4);
if (!(flag & HPPA_HPUX_SS_WIDEREGS))
{
/* Narrow registers. */
off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
incr = 4;
szoff = 0;
}
else
{
/* Wide registers. */
off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
incr = 8;
szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
}
for (i = 1; i < 32; i++)
{
info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
off += incr;
}
for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
{
if (hppa_hpux_tramp_reg[i] > 0)
info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
off += incr;
}
/* TODO: fp regs */
info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
return info;
}
static void
hppa_hpux_sigtramp_frame_this_id (struct frame_info *next_frame,
void **this_prologue_cache,
struct frame_id *this_id)
{
struct hppa_hpux_sigtramp_unwind_cache *info
= hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
*this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
}
static void
hppa_hpux_sigtramp_frame_prev_register (struct frame_info *next_frame,
void **this_prologue_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp,
CORE_ADDR *addrp,
int *realnump, gdb_byte *valuep)
{
struct hppa_hpux_sigtramp_unwind_cache *info
= hppa_hpux_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
SIGTRAMP_FRAME,
hppa_hpux_sigtramp_frame_this_id,
hppa_hpux_sigtramp_frame_prev_register
};
static const struct frame_unwind *
hppa_hpux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
{
struct unwind_table_entry *u;
CORE_ADDR pc = frame_pc_unwind (next_frame);
u = find_unwind_entry (pc);
/* If this is an export stub, try to get the unwind descriptor for
the actual function itself. */
if (u && u->stub_unwind.stub_type == EXPORT)
{
gdb_byte buf[HPPA_INSN_SIZE];
unsigned long insn;
if (!safe_frame_unwind_memory (next_frame, u->region_start,
buf, sizeof buf))
return NULL;
insn = extract_unsigned_integer (buf, sizeof buf);
if ((insn & 0xffe0e000) == 0xe8400000)
u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
}
if (u && u->HP_UX_interrupt_marker)
return &hppa_hpux_sigtramp_frame_unwind;
return NULL;
}
static CORE_ADDR
hppa32_hpux_find_global_pointer (struct value *function)
{
CORE_ADDR faddr;
faddr = value_as_address (function);
/* Is this a plabel? If so, dereference it to get the gp value. */
if (faddr & 2)
{
int status;
char buf[4];
faddr &= ~3;
status = target_read_memory (faddr + 4, buf, sizeof (buf));
if (status == 0)
return extract_unsigned_integer (buf, sizeof (buf));
}
return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
}
static CORE_ADDR
hppa64_hpux_find_global_pointer (struct value *function)
{
CORE_ADDR faddr;
char buf[32];
faddr = value_as_address (function);
if (in_opd_section (faddr))
{
target_read_memory (faddr, buf, sizeof (buf));
return extract_unsigned_integer (&buf[24], 8);
}
else
{
return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
}
}
static unsigned int ldsid_pattern[] = {
0x000010a0, /* ldsid (rX),rY */
0x00001820, /* mtsp rY,sr0 */
0xe0000000 /* be,n (sr0,rX) */
};
static CORE_ADDR
hppa_hpux_search_pattern (CORE_ADDR start, CORE_ADDR end,
unsigned int *patterns, int count)
{
int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
unsigned int *insns;
gdb_byte *buf;
int offset, i;
buf = alloca (num_insns * HPPA_INSN_SIZE);
insns = alloca (num_insns * sizeof (unsigned int));
read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
for (offset = 0; offset <= num_insns - count; offset++)
{
for (i = 0; i < count; i++)
{
if ((insns[offset + i] & patterns[i]) != patterns[i])
break;
}
if (i == count)
break;
}
if (offset <= num_insns - count)
return start + offset * HPPA_INSN_SIZE;
else
return 0;
}
static CORE_ADDR
hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
int *argreg)
{
struct objfile *obj;
struct obj_section *sec;
struct hppa_objfile_private *priv;
struct frame_info *frame;
struct unwind_table_entry *u;
CORE_ADDR addr, rp;
char buf[4];
unsigned int insn;
sec = find_pc_section (pc);
obj = sec->objfile;
priv = objfile_data (obj, hppa_objfile_priv_data);
if (!priv)
priv = hppa_init_objfile_priv_data (obj);
if (!priv)
error (_("Internal error creating objfile private data."));
/* Use the cached value if we have one. */
if (priv->dummy_call_sequence_addr != 0)
{
*argreg = priv->dummy_call_sequence_reg;
return priv->dummy_call_sequence_addr;
}
/* First try a heuristic; if we are in a shared library call, our return
pointer is likely to point at an export stub. */
frame = get_current_frame ();
rp = frame_unwind_register_unsigned (frame, 2);
u = find_unwind_entry (rp);
if (u && u->stub_unwind.stub_type == EXPORT)
{
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
ldsid_pattern,
ARRAY_SIZE (ldsid_pattern));
if (addr)
goto found_pattern;
}
/* Next thing to try is to look for an export stub. */
if (priv->unwind_info)
{
int i;
for (i = 0; i < priv->unwind_info->last; i++)
{
struct unwind_table_entry *u;
u = &priv->unwind_info->table[i];
if (u->stub_unwind.stub_type == EXPORT)
{
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
ldsid_pattern,
ARRAY_SIZE (ldsid_pattern));
if (addr)
{
goto found_pattern;
}
}
}
}
/* Finally, if this is the main executable, try to locate a sequence
from noshlibs */
addr = hppa_symbol_address ("noshlibs");
sec = find_pc_section (addr);
if (sec && sec->objfile == obj)
{
CORE_ADDR start, end;
find_pc_partial_function (addr, NULL, &start, &end);
if (start != 0 && end != 0)
{
addr = hppa_hpux_search_pattern (start, end, ldsid_pattern,
ARRAY_SIZE (ldsid_pattern));
if (addr)
goto found_pattern;
}
}
/* Can't find a suitable sequence. */
return 0;
found_pattern:
target_read_memory (addr, buf, sizeof (buf));
insn = extract_unsigned_integer (buf, sizeof (buf));
priv->dummy_call_sequence_addr = addr;
priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
*argreg = priv->dummy_call_sequence_reg;
return priv->dummy_call_sequence_addr;
}
static CORE_ADDR
hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
int *argreg)
{
struct objfile *obj;
struct obj_section *sec;
struct hppa_objfile_private *priv;
CORE_ADDR addr;
struct minimal_symbol *msym;
int i;
sec = find_pc_section (pc);
obj = sec->objfile;
priv = objfile_data (obj, hppa_objfile_priv_data);
if (!priv)
priv = hppa_init_objfile_priv_data (obj);
if (!priv)
error (_("Internal error creating objfile private data."));
/* Use the cached value if we have one. */
if (priv->dummy_call_sequence_addr != 0)
{
*argreg = priv->dummy_call_sequence_reg;
return priv->dummy_call_sequence_addr;
}
/* FIXME: Without stub unwind information, locating a suitable sequence is
fairly difficult. For now, we implement a very naive and inefficient
scheme; try to read in blocks of code, and look for a "bve,n (rp)"
instruction. These are likely to occur at the end of functions, so
we only look at the last two instructions of each function. */
for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
{
CORE_ADDR begin, end;
char *name;
gdb_byte buf[2 * HPPA_INSN_SIZE];
int offset;
find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
&begin, &end);
if (name == NULL || begin == 0 || end == 0)
continue;
if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
{
for (offset = 0; offset < sizeof (buf); offset++)
{
unsigned int insn;
insn = extract_unsigned_integer (buf + offset, HPPA_INSN_SIZE);
if (insn == 0xe840d002) /* bve,n (rp) */
{
addr = (end - sizeof (buf)) + offset;
goto found_pattern;
}
}
}
}
/* Can't find a suitable sequence. */
return 0;
found_pattern:
priv->dummy_call_sequence_addr = addr;
/* Right now we only look for a "bve,l (rp)" sequence, so the register is
always HPPA_RP_REGNUM. */
priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
*argreg = priv->dummy_call_sequence_reg;
return priv->dummy_call_sequence_addr;
}
static CORE_ADDR
hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
{
struct objfile *objfile;
struct minimal_symbol *funsym, *stubsym;
CORE_ADDR stubaddr;
funsym = lookup_minimal_symbol_by_pc (funcaddr);
stubaddr = 0;
ALL_OBJFILES (objfile)
{
stubsym = lookup_minimal_symbol_solib_trampoline
(SYMBOL_LINKAGE_NAME (funsym), objfile);
if (stubsym)
{
struct unwind_table_entry *u;
u = find_unwind_entry (SYMBOL_VALUE (stubsym));
if (u == NULL
|| (u->stub_unwind.stub_type != IMPORT
&& u->stub_unwind.stub_type != IMPORT_SHLIB))
continue;
stubaddr = SYMBOL_VALUE (stubsym);
/* If we found an IMPORT stub, then we can stop searching;
if we found an IMPORT_SHLIB, we want to continue the search
in the hopes that we will find an IMPORT stub. */
if (u->stub_unwind.stub_type == IMPORT)
break;
}
}
return stubaddr;
}
static int
hppa_hpux_sr_for_addr (CORE_ADDR addr)
{
int sr;
/* The space register to use is encoded in the top 2 bits of the address. */
sr = addr >> (gdbarch_tdep (current_gdbarch)->bytes_per_address * 8 - 2);
return sr + 4;
}
static CORE_ADDR
hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
{
/* In order for us to restore the space register to its starting state,
we need the dummy trampoline to return to the an instruction address in
the same space as where we started the call. We used to place the
breakpoint near the current pc, however, this breaks nested dummy calls
as the nested call will hit the breakpoint address and terminate
prematurely. Instead, we try to look for an address in the same space to
put the breakpoint.
This is similar in spirit to putting the breakpoint at the "entry point"
of an executable. */
struct obj_section *sec;
struct unwind_table_entry *u;
struct minimal_symbol *msym;
CORE_ADDR func;
int i;
sec = find_pc_section (addr);
if (sec)
{
/* First try the lowest address in the section; we can use it as long
as it is "regular" code (i.e. not a stub) */
u = find_unwind_entry (sec->addr);
if (!u || u->stub_unwind.stub_type == 0)
return sec->addr;
/* Otherwise, we need to find a symbol for a regular function. We
do this by walking the list of msymbols in the objfile. The symbol
we find should not be the same as the function that was passed in. */
/* FIXME: this is broken, because we can find a function that will be
called by the dummy call target function, which will still not
work. */
find_pc_partial_function (addr, NULL, &func, NULL);
for (i = 0, msym = sec->objfile->msymbols;
i < sec->objfile->minimal_symbol_count;
i++, msym++)
{
u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
if (func != SYMBOL_VALUE_ADDRESS (msym)
&& (!u || u->stub_unwind.stub_type == 0))
return SYMBOL_VALUE_ADDRESS (msym);
}
}
warning (_("Cannot find suitable address to place dummy breakpoint; nested "
"calls may fail."));
return addr - 4;
}
static CORE_ADDR
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
CORE_ADDR funcaddr, int using_gcc,
struct value **args, int nargs,
struct type *value_type,
CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
{
CORE_ADDR pc, stubaddr;
int argreg = 0;
pc = read_pc ();
/* Note: we don't want to pass a function descriptor here; push_dummy_call
fills in the PIC register for us. */
funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
/* The simple case is where we call a function in the same space that we are
currently in; in that case we don't really need to do anything. */
if (hppa_hpux_sr_for_addr (pc) == hppa_hpux_sr_for_addr (funcaddr))
{
/* Intraspace call. */
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
*real_pc = funcaddr;
regcache_cooked_write_unsigned (current_regcache, HPPA_RP_REGNUM, *bp_addr);
return sp;
}
/* In order to make an interspace call, we need to go through a stub.
gcc supplies an appropriate stub called "__gcc_plt_call", however, if
an application is compiled with HP compilers then this stub is not
available. We used to fallback to "__d_plt_call", however that stub
is not entirely useful for us because it doesn't do an interspace
return back to the caller. Also, on hppa64-hpux, there is no
__gcc_plt_call available. In order to keep the code uniform, we
instead don't use either of these stubs, but instead write our own
onto the stack.
A problem arises since the stack is located in a different space than
code, so in order to branch to a stack stub, we will need to do an
interspace branch. Previous versions of gdb did this by modifying code
at the current pc and doing single-stepping to set the pcsq. Since this
is highly undesirable, we use a different scheme:
All we really need to do the branch to the stub is a short instruction
sequence like this:
PA1.1:
ldsid (rX),r1
mtsp r1,sr0
be,n (sr0,rX)
PA2.0:
bve,n (sr0,rX)
Instead of writing these sequences ourselves, we can find it in
the instruction stream that belongs to the current space. While this
seems difficult at first, we are actually guaranteed to find the sequences
in several places:
For 32-bit code:
- in export stubs for shared libraries
- in the "noshlibs" routine in the main module
For 64-bit code:
- at the end of each "regular" function
We cache the address of these sequences in the objfile's private data
since these operations can potentially be quite expensive.
So, what we do is:
- write a stack trampoline
- look for a suitable instruction sequence in the current space
- point the sequence at the trampoline
- set the return address of the trampoline to the current space
(see hppa_hpux_find_dummy_call_bpaddr)
- set the continuing address of the "dummy code" as the sequence.
*/
if (IS_32BIT_TARGET (gdbarch))
{
static unsigned int hppa32_tramp[] = {
0x0fdf1291, /* stw r31,-8(,sp) */
0x02c010a1, /* ldsid (,r22),r1 */
0x00011820, /* mtsp r1,sr0 */
0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
0x081f0242, /* copy r31,rp */
0x0fd11082, /* ldw -8(,sp),rp */
0x004010a1, /* ldsid (,rp),r1 */
0x00011820, /* mtsp r1,sr0 */
0xe0400000, /* be 0(sr0,rp) */
0x08000240 /* nop */
};
/* for hppa32, we must call the function through a stub so that on
return it can return to the space of our trampoline. */
stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
if (stubaddr == 0)
error (_("Cannot call external function not referenced by application "
"(no import stub).\n"));
regcache_cooked_write_unsigned (current_regcache, 22, stubaddr);
write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
*real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
if (*real_pc == 0)
error (_("Cannot make interspace call from here."));
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
sp += sizeof (hppa32_tramp);
}
else
{
static unsigned int hppa64_tramp[] = {
0xeac0f000, /* bve,l (r22),%r2 */
0x0fdf12d1, /* std r31,-8(,sp) */
0x0fd110c2, /* ldd -8(,sp),rp */
0xe840d002, /* bve,n (rp) */
0x08000240 /* nop */
};
/* for hppa64, we don't need to call through a stub; all functions
return via a bve. */
regcache_cooked_write_unsigned (current_regcache, 22, funcaddr);
write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
*bp_addr = pc - 4;
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
*real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
if (*real_pc == 0)
error (_("Cannot make interspace call from here."));
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
sp += sizeof (hppa64_tramp);
}
sp = gdbarch_frame_align (gdbarch, sp);
return sp;
}
static void
hppa_hpux_supply_ss_narrow (struct regcache *regcache,
int regnum, const char *save_state)
{
const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
int i, offset = 0;
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
{
if (regnum == i || regnum == -1)
regcache_raw_supply (regcache, i, ss_narrow + offset);
offset += 4;
}
}
static void
hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
int regnum, const char *save_state)
{
const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
int i, offset = 0;
/* FIXME: We view the floating-point state as 64 single-precision
registers for 32-bit code, and 32 double-precision register for
64-bit code. This distinction is artificial and should be
eliminated. If that ever happens, we should remove the if-clause
below. */
if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
{
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
{
if (regnum == i || regnum == -1)
regcache_raw_supply (regcache, i, ss_fpblock + offset);
offset += 4;
}
}
else
{
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
{
if (regnum == i || regnum == -1)
regcache_raw_supply (regcache, i, ss_fpblock + offset);
offset += 8;
}
}
}
static void
hppa_hpux_supply_ss_wide (struct regcache *regcache,
int regnum, const char *save_state)
{
const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
int i, offset = 8;
if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
offset += 4;
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
{
if (regnum == i || regnum == -1)
regcache_raw_supply (regcache, i, ss_wide + offset);
offset += 8;
}
}
static void
hppa_hpux_supply_save_state (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *regs, size_t len)
{
const char *proc_info = regs;
const char *save_state = proc_info + 8;
ULONGEST flags;
flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, 4);
if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
{
struct gdbarch *arch = get_regcache_arch (regcache);
size_t size = register_size (arch, HPPA_FLAGS_REGNUM);
char buf[8];
store_unsigned_integer (buf, size, flags);
regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
}
/* If the SS_WIDEREGS flag is set, we really do need the full
`struct save_state'. */
if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
error (_("Register set contents too small"));
if (flags & HPPA_HPUX_SS_WIDEREGS)
hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
else
hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
}
/* HP-UX register set. */
static struct regset hppa_hpux_regset =
{
NULL,
hppa_hpux_supply_save_state
};
static const struct regset *
hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
const char *sect_name, size_t sect_size)
{
if (strcmp (sect_name, ".reg") == 0
&& sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
return &hppa_hpux_regset;
return NULL;
}
/* Bit in the `ss_flag' member of `struct save_state' that indicates
the state was saved from a system call. From
<machine/save_state.h>. */
#define HPPA_HPUX_SS_INSYSCALL 0x02
static CORE_ADDR
hppa_hpux_read_pc (ptid_t ptid)
{
ULONGEST flags;
/* If we're currently in a system call return the contents of %r31. */
flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
if (flags & HPPA_HPUX_SS_INSYSCALL)
return read_register_pid (HPPA_R31_REGNUM, ptid) & ~0x3;
return hppa_read_pc (ptid);
}
static void
hppa_hpux_write_pc (CORE_ADDR pc, ptid_t ptid)
{
ULONGEST flags;
/* If we're currently in a system call also write PC into %r31. */
flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
if (flags & HPPA_HPUX_SS_INSYSCALL)
write_register_pid (HPPA_R31_REGNUM, pc | 0x3, ptid);
return hppa_write_pc (pc, ptid);
}
static CORE_ADDR
hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
ULONGEST flags;
/* If we're currently in a system call return the contents of %r31. */
flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
if (flags & HPPA_HPUX_SS_INSYSCALL)
return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
return hppa_unwind_pc (gdbarch, next_frame);
}
static void
hppa_hpux_inferior_created (struct target_ops *objfile, int from_tty)
{
/* Some HP-UX related globals to clear when a new "main"
symbol file is loaded. HP-specific. */
deprecated_hp_som_som_object_present = 0;
hp_cxx_exception_support_initialized = 0;
}
/* Given the current value of the pc, check to see if it is inside a stub, and
if so, change the value of the pc to point to the caller of the stub.
NEXT_FRAME is the next frame in the current list of frames.
BASE contains to stack frame base of the current frame.
SAVE_REGS is the register file stored in the frame cache. */
static void
hppa_hpux_unwind_adjust_stub (struct frame_info *next_frame, CORE_ADDR base,
struct trad_frame_saved_reg *saved_regs)
{
int optimized, realreg;
enum lval_type lval;
CORE_ADDR addr;
char buffer[sizeof(ULONGEST)];
ULONGEST val;
CORE_ADDR stubpc;
struct unwind_table_entry *u;
trad_frame_get_prev_register (next_frame, saved_regs,
HPPA_PCOQ_HEAD_REGNUM,
&optimized, &lval, &addr, &realreg, buffer);
val = extract_unsigned_integer (buffer,
register_size (get_frame_arch (next_frame),
HPPA_PCOQ_HEAD_REGNUM));
u = find_unwind_entry (val);
if (u && u->stub_unwind.stub_type == EXPORT)
{
stubpc = read_memory_integer (base - 24, TARGET_PTR_BIT / 8);
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
}
else if (hppa_symbol_address ("__gcc_plt_call")
== get_pc_function_start (val))
{
stubpc = read_memory_integer (base - 8, TARGET_PTR_BIT / 8);
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
}
}
static void
hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (IS_32BIT_TARGET (gdbarch))
tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
else
tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
set_gdbarch_in_solib_return_trampoline
(gdbarch, hppa_hpux_in_solib_return_trampoline);
set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
set_gdbarch_skip_permanent_breakpoint
(gdbarch, hppa_skip_permanent_breakpoint);
set_gdbarch_regset_from_core_section
(gdbarch, hppa_hpux_regset_from_core_section);
frame_unwind_append_sniffer (gdbarch, hppa_hpux_sigtramp_unwind_sniffer);
observer_attach_inferior_created (hppa_hpux_inferior_created);
}
static void
hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
tdep->is_elf = 0;
tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
hppa_hpux_init_abi (info, gdbarch);
som_solib_select (tdep);
}
static void
hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
tdep->is_elf = 1;
tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
hppa_hpux_init_abi (info, gdbarch);
pa64_solib_select (tdep);
}
static enum gdb_osabi
hppa_hpux_core_osabi_sniffer (bfd *abfd)
{
if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
return GDB_OSABI_HPUX_SOM;
else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
{
asection *section;
section = bfd_get_section_by_name (abfd, ".kernel");
if (section)
{
bfd_size_type size;
char *contents;
size = bfd_section_size (abfd, section);
contents = alloca (size);
if (bfd_get_section_contents (abfd, section, contents,
(file_ptr) 0, size)
&& strcmp (contents, "HP-UX") == 0)
return GDB_OSABI_HPUX_ELF;
}
}
return GDB_OSABI_UNKNOWN;
}
void
_initialize_hppa_hpux_tdep (void)
{
/* BFD doesn't set a flavour for HP-UX style core files. It doesn't
set the architecture either. */
gdbarch_register_osabi_sniffer (bfd_arch_unknown,
bfd_target_unknown_flavour,
hppa_hpux_core_osabi_sniffer);
gdbarch_register_osabi_sniffer (bfd_arch_hppa,
bfd_target_elf_flavour,
hppa_hpux_core_osabi_sniffer);
gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
hppa_hpux_som_init_abi);
gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
hppa_hpux_elf_init_abi);
}
|