aboutsummaryrefslogtreecommitdiff
path: root/gdb/h8300-tdep.c
blob: ac7d9397f003d7425a76d374914e851512d51403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
/* Target-machine dependent code for Hitachi H8/300, for GDB.

   Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/*
   Contributed by Steve Chamberlain
   sac@cygnus.com
 */

#include "defs.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "arch-utils.h"
#include "regcache.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "gdbcmd.h"
#include "gdb_assert.h"

/* Extra info which is saved in each frame_info. */
struct frame_extra_info
{
  CORE_ADDR from_pc;
  CORE_ADDR args_pointer;
  CORE_ADDR locals_pointer;
};

#define E_NUM_REGS (h8300smode ? 14 : 13)

enum
{
  h8300_reg_size = 2,
  h8300h_reg_size = 4,
  h8300_max_reg_size = 4,
};
#define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)

enum gdb_regnum
{
  E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
  E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM,
  E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
  E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
  E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
  E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
  E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
  E_SP_REGNUM,
  E_CCR_REGNUM,
  E_PC_REGNUM,
  E_CYCLES_REGNUM,
  E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
  E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
  E_INSTS_REGNUM
};

#define UNSIGNED_SHORT(X) ((X) & 0xffff)

#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_SUB4_SP(x) (x==0x1b97)
#define IS_SUBL_SP(x) (x==0x7a37)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_R5SP(x) (x==0x1957)

/* If the instruction at PC is an argument register spill, return its
   length.  Otherwise, return zero.

   An argument register spill is an instruction that moves an argument
   from the register in which it was passed to the stack slot in which
   it really lives.  It is a byte, word, or longword move from an
   argument register to a negative offset from the frame pointer.  */

static int
h8300_is_argument_spill (CORE_ADDR pc)
{
  int w = read_memory_unsigned_integer (pc, 2);

  if ((w & 0xfff0) == 0x6ee0                  /* mov.b Rs,@(d:16,er6) */
      && 8 <= (w & 0xf) && (w & 0xf) <= 10)   /* Rs is R0L, R1L, or R2L  */
    {
      int w2 = read_memory_integer (pc + 2, 2);

      /* ... and d:16 is negative.  */
      if (w2 < 0)
        return 4;
    }
  else if (w == 0x7860)
    {
      int w2 = read_memory_integer (pc + 2, 2);

      if ((w2 & 0xfff0) == 0x6aa0)              /* mov.b Rs, @(d:24,er6) */
        {
          LONGEST disp = read_memory_integer (pc + 4, 4);

          /* ... and d:24 is negative.  */
          if (disp < 0 && disp > 0xffffff)
            return 8;
        }
    }
  else if ((w & 0xfff0) == 0x6fe0             /* mov.w Rs,@(d:16,er6) */
           && (w & 0xf) <= 2)                 /* Rs is R0, R1, or R2 */
    {
      int w2 = read_memory_integer (pc + 2, 2);

      /* ... and d:16 is negative.  */
      if (w2 < 0)
        return 4;
    }
  else if (w == 0x78e0)
    {
      int w2 = read_memory_integer (pc + 2, 2);

      if ((w2 & 0xfff0) == 0x6ba0)              /* mov.b Rs, @(d:24,er6) */
        {
          LONGEST disp = read_memory_integer (pc + 4, 4);

          /* ... and d:24 is negative.  */
          if (disp < 0 && disp > 0xffffff)
            return 8;
        }
    }
  else if (w == 0x0100)
    {
      int w2 = read_memory_integer (pc + 2, 2);

      if ((w2 & 0xfff0) == 0x6fe0             /* mov.l Rs,@(d:16,er6) */
          && (w2 & 0xf) <= 2)                /* Rs is ER0, ER1, or ER2 */
        {
          int w3 = read_memory_integer (pc + 4, 2);

          /* ... and d:16 is negative.  */
          if (w3 < 0)
            return 6;
        }
      else if (w2 == 0x78e0)
        {
          int w3 = read_memory_integer (pc + 4, 2);

          if ((w3 & 0xfff0) == 0x6ba0)          /* mov.l Rs, @(d:24,er6) */
            {
              LONGEST disp = read_memory_integer (pc + 6, 4);

              /* ... and d:24 is negative.  */
              if (disp < 0 && disp > 0xffffff)
                return 10;
            }
        }
    }

  return 0;
}

static CORE_ADDR
h8300_skip_prologue (CORE_ADDR start_pc)
{
  short int w;
  int adjust = 0;

  /* Skip past all push and stm insns.  */
  while (1)
    {
      w = read_memory_unsigned_integer (start_pc, 2);
      /* First look for push insns.  */
      if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
	{
	  w = read_memory_unsigned_integer (start_pc + 2, 2);
	  adjust = 2;
	}

      if (IS_PUSH (w))
	{
	  start_pc += 2 + adjust;
	  w = read_memory_unsigned_integer (start_pc, 2);
	  continue;
	}
      adjust = 0;
      break;
    }

  /* Skip past a move to FP, either word or long sized */
  w = read_memory_unsigned_integer (start_pc, 2);
  if (w == 0x0100)
    {
      w = read_memory_unsigned_integer (start_pc + 2, 2);
      adjust += 2;
    }

  if (IS_MOVE_FP (w))
    {
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Check for loading either a word constant into r5;
     long versions are handled by the SUBL_SP below.  */
  if (IS_MOVK_R5 (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Now check for subtracting r5 from sp, word sized only.  */
  if (IS_SUB_R5SP (w))
    {
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Check for subs #2 and subs #4. */
  while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
    {
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Check for a 32bit subtract.  */
  if (IS_SUBL_SP (w))
    start_pc += 6 + adjust;

  /* Check for spilling an argument register to the stack frame.
     This could also be an initializing store from non-prologue code,
     but I don't think there's any harm in skipping that.  */
  for (;;)
    {
      int spill_size = h8300_is_argument_spill (start_pc);
      if (spill_size == 0)
        break;
      start_pc += spill_size;
    }

  return start_pc;
}

static int
gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info)
{
  if (h8300smode)
    return print_insn_h8300s (memaddr, info);
  else if (h8300hmode)
    return print_insn_h8300h (memaddr, info);
  else
    return print_insn_h8300 (memaddr, info);
}

/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
   is not the address of a valid instruction, the address of the next
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   of the instruction. */

static CORE_ADDR
h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1)
{
  char buf[2];
  if (addr < lim + 8)
    {
      read_memory (addr, buf, 2);
      *pword1 = extract_signed_integer (buf, 2);

      return addr + 2;
    }
  return 0;
}

/* Examine the prologue of a function.  `ip' points to the first instruction.
   `limit' is the limit of the prologue (e.g. the addr of the first
   linenumber, or perhaps the program counter if we're stepping through).
   `frame_sp' is the stack pointer value in use in this frame.
   `fsr' is a pointer to a frame_saved_regs structure into which we put
   info about the registers saved by this frame.
   `fi' is a struct frame_info pointer; we fill in various fields in it
   to reflect the offsets of the arg pointer and the locals pointer.  */

/* Any function with a frame looks like this
   SECOND ARG
   FIRST ARG
   RET PC
   SAVED R2
   SAVED R3
   SAVED FP   <-FP POINTS HERE
   LOCALS0
   LOCALS1    <-SP POINTS HERE
 */

static CORE_ADDR
h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
			CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
			struct frame_info *fi)
{
  register CORE_ADDR next_ip;
  int r;
  int have_fp = 0;
  unsigned short insn_word;
  /* Number of things pushed onto stack, starts at 2/4, 'cause the
     PC is already there */
  unsigned int reg_save_depth = BINWORD;

  unsigned int auto_depth = 0;	/* Number of bytes of autos */

  char in_frame[11];		/* One for each reg */

  int adjust = 0;

  memset (in_frame, 1, 11);
  for (r = 0; r < 8; r++)
    {
      fsr[r] = 0;
    }
  if (after_prolog_fp == 0)
    {
      after_prolog_fp = read_register (E_SP_REGNUM);
    }

  /* If the PC isn't valid, quit now.  */
  if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
    return 0;

  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);

  if (insn_word == 0x0100)
    {
      insn_word = read_memory_unsigned_integer (ip + 2, 2);
      adjust = 2;
    }

  /* Skip over any fp push instructions */
  fsr[E_FP_REGNUM] = after_prolog_fp;
  while (next_ip && IS_PUSH_FP (insn_word))
    {
      ip = next_ip + adjust;

      in_frame[insn_word & 0x7] = reg_save_depth;
      next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
      reg_save_depth += 2 + adjust;
    }

  /* Is this a move into the fp */
  if (next_ip && IS_MOV_SP_FP (insn_word))
    {
      ip = next_ip;
      next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
      have_fp = 1;
    }

  /* Skip over any stack adjustment, happens either with a number of
     sub#2,sp or a mov #x,r5 sub r5,sp */

  if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
    {
      while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
	{
	  auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
	  ip = next_ip;
	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	}
    }
  else
    {
      if (next_ip && IS_MOVK_R5 (insn_word))
	{
	  ip = next_ip;
	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	  auto_depth += insn_word;

	  next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
	  auto_depth += insn_word;
	}
      if (next_ip && IS_SUBL_SP (insn_word))
	{
	  ip = next_ip;
	  auto_depth += read_memory_unsigned_integer (ip, 4);
	  ip += 4;

	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	}
    }

  /* Now examine the push insns to determine where everything lives
     on the stack.  */
  while (1)
    {
      adjust = 0;
      if (!next_ip)
	break;

      if (insn_word == 0x0100)
	{
	  ip = next_ip;
	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	  adjust = 2;
	}

      if (IS_PUSH (insn_word))
	{
	  auto_depth += 2 + adjust;
	  fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
	  ip = next_ip;
	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	  continue;
	}

      /* Now check for push multiple insns.  */
      if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
	{
	  int count = ((insn_word >> 4) & 0xf) + 1;
	  int start, i;

	  ip = next_ip;
	  next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
	  start = insn_word & 0x7;

	  for (i = start; i < start + count; i++)
	    {
	      auto_depth += 4;
	      fsr[i] = after_prolog_fp - auto_depth;
	    }
	}
      break;
    }

  /* The args are always reffed based from the stack pointer */
  fi->extra_info->args_pointer = after_prolog_fp;
  /* Locals are always reffed based from the fp */
  fi->extra_info->locals_pointer = after_prolog_fp;
  /* The PC is at a known place */
  fi->extra_info->from_pc =
    read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);

  /* Rememeber any others too */
  in_frame[E_PC_REGNUM] = 0;

  if (have_fp)
    /* We keep the old FP in the SP spot */
    fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD);
  else
    fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;

  return (ip);
}

static void
h8300_frame_init_saved_regs (struct frame_info *fi)
{
  CORE_ADDR func_addr, func_end;

  if (!fi->saved_regs)
    {
      frame_saved_regs_zalloc (fi);

      /* Find the beginning of this function, so we can analyze its
	 prologue. */
      if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
        {
	  struct symtab_and_line sal = find_pc_line (func_addr, 0);
	  CORE_ADDR limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
	  /* This will fill in fields in fi. */
	  h8300_examine_prologue (func_addr, limit, fi->frame, fi->saved_regs, fi);
	}
      /* Else we're out of luck (can't debug completely stripped code). 
	 FIXME. */
    }
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

   For us, the frame address is its stack pointer value, so we look up
   the function prologue to determine the caller's sp value, and return it.  */

static CORE_ADDR
h8300_frame_chain (struct frame_info *thisframe)
{
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
    {				/* initialize the from_pc now */
      thisframe->extra_info->from_pc =
	deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
					E_PC_REGNUM);
      return thisframe->frame;
    }
  return thisframe->saved_regs[E_SP_REGNUM];
}

/* Return the saved PC from this frame.

   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   just use the register SRP_REGNUM itself.  */

static CORE_ADDR
h8300_frame_saved_pc (struct frame_info *frame)
{
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    return deprecated_read_register_dummy (frame->pc, frame->frame,
					   E_PC_REGNUM);
  else
    return frame->extra_info->from_pc;
}

static void
h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  if (!fi->extra_info)
    {
      fi->extra_info = (struct frame_extra_info *)
        frame_obstack_alloc (sizeof (struct frame_extra_info));
      fi->extra_info->from_pc = 0;
      fi->extra_info->args_pointer = 0;		/* Unknown */
      fi->extra_info->locals_pointer = 0;	/* Unknown */
      
      if (!fi->pc)
        {
	  if (fi->next)
	    fi->pc = h8300_frame_saved_pc (fi->next);
	}
      h8300_frame_init_saved_regs (fi);
    }
}

static CORE_ADDR
h8300_frame_locals_address (struct frame_info *fi)
{
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return (CORE_ADDR) 0;	/* Not sure what else to do... */
  return fi->extra_info->locals_pointer;
}

/* Return the address of the argument block for the frame
   described by FI.  Returns 0 if the address is unknown.  */

static CORE_ADDR
h8300_frame_args_address (struct frame_info *fi)
{
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return (CORE_ADDR) 0;	/* Not sure what else to do... */
  return fi->extra_info->args_pointer;
}

/* Round N up or down to the nearest multiple of UNIT.
   Evaluate N only once, UNIT several times.
   UNIT must be a power of two.  */
#define round_up(n, unit)   (((n) + (unit) - 1) & -(unit))
#define round_down(n, unit) ((n) & -(unit))

/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.
   In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
   on the H8/300H.

   There are actually two ABI's here: -mquickcall (the default) and
   -mno-quickcall.  With -mno-quickcall, all arguments are passed on
   the stack after the return address, word-aligned.  With
   -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
   GCC doesn't indicate in the object file which ABI was used to
   compile it, GDB only supports the default --- -mquickcall.

   Here are the rules for -mquickcall, in detail:

   Each argument, whether scalar or aggregate, is padded to occupy a
   whole number of words.  Arguments smaller than a word are padded at
   the most significant end; those larger than a word are padded at
   the least significant end.

   The initial arguments are passed in r0 -- r2.  Earlier arguments go in
   lower-numbered registers.  Multi-word arguments are passed in
   consecutive registers, with the most significant end in the
   lower-numbered register.

   If an argument doesn't fit entirely in the remaining registers, it
   is passed entirely on the stack.  Stack arguments begin just after
   the return address.  Once an argument has overflowed onto the stack
   this way, all subsequent arguments are passed on the stack.

   The above rule has odd consequences.  For example, on the h8/300s,
   if a function takes two longs and an int as arguments:
   - the first long will be passed in r0/r1,
   - the second long will be passed entirely on the stack, since it
     doesn't fit in r2,
   - and the int will be passed on the stack, even though it could fit
     in r2.

   A weird exception: if an argument is larger than a word, but not a
   whole number of words in length (before padding), it is passed on
   the stack following the rules for stack arguments above, even if
   there are sufficient registers available to hold it.  Stranger
   still, the argument registers are still `used up' --- even though
   there's nothing in them.

   So, for example, on the h8/300s, if a function expects a three-byte
   structure and an int, the structure will go on the stack, and the
   int will go in r2, not r0.
  
   If the function returns an aggregate type (struct, union, or class)
   by value, the caller must allocate space to hold the return value,
   and pass the callee a pointer to this space as an invisible first
   argument, in R0.

   For varargs functions, the last fixed argument and all the variable
   arguments are always passed on the stack.  This means that calls to
   varargs functions don't work properly unless there is a prototype
   in scope.

   Basically, this ABI is not good, for the following reasons:
   - You can't call vararg functions properly unless a prototype is in scope.
   - Structure passing is inconsistent, to no purpose I can see.
   - It often wastes argument registers, of which there are only three
     to begin with.  */

static CORE_ADDR
h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		      int struct_return, CORE_ADDR struct_addr)
{
  int stack_align, stack_alloc, stack_offset;
  int wordsize = BINWORD;
  int reg;
  int argument;

  /* First, make sure the stack is properly aligned.  */
  sp = round_down (sp, wordsize);

  /* Now make sure there's space on the stack for the arguments.  We
     may over-allocate a little here, but that won't hurt anything.  */
  stack_alloc = 0;
  for (argument = 0; argument < nargs; argument++)
    stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
                             wordsize);
  sp -= stack_alloc;

  /* Now load as many arguments as possible into registers, and push
     the rest onto the stack.  */
  reg = E_ARG0_REGNUM;
  stack_offset = 0;

  /* If we're returning a structure by value, then we must pass a
     pointer to the buffer for the return value as an invisible first
     argument.  */
  if (struct_return)
    write_register (reg++, struct_addr);

  for (argument = 0; argument < nargs; argument++)
    {
      struct type *type = VALUE_TYPE (args[argument]);
      int len = TYPE_LENGTH (type);
      char *contents = (char *) VALUE_CONTENTS (args[argument]);

      /* Pad the argument appropriately.  */
      int padded_len = round_up (len, wordsize);
      char *padded = alloca (padded_len);

      memset (padded, 0, padded_len);
      memcpy (len < wordsize ? padded + padded_len - len : padded,
              contents, len);

      /* Could the argument fit in the remaining registers?  */
      if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
        {
          /* Are we going to pass it on the stack anyway, for no good
             reason?  */
          if (len > wordsize && len % wordsize)
            {
              /* I feel so unclean.  */
              write_memory (sp + stack_offset, padded, padded_len);
              stack_offset += padded_len;

              /* That's right --- even though we passed the argument
                 on the stack, we consume the registers anyway!  Love
                 me, love my dog.  */
              reg += padded_len / wordsize;
            }
          else
            {
              /* Heavens to Betsy --- it's really going in registers!
                 It would be nice if we could use write_register_bytes
                 here, but on the h8/300s, there are gaps between
                 the registers in the register file.  */
              int offset;

              for (offset = 0; offset < padded_len; offset += wordsize)
                {
                  ULONGEST word = extract_address (padded + offset, wordsize);
                  write_register (reg++, word);
                }
            }
        }
      else
        {
          /* It doesn't fit in registers!  Onto the stack it goes.  */
          write_memory (sp + stack_offset, padded, padded_len);
          stack_offset += padded_len;

          /* Once one argument has spilled onto the stack, all
             subsequent arguments go on the stack.  */
          reg = E_ARGLAST_REGNUM + 1;
        }
    }

  return sp;
}

/* Function: push_return_address
   Setup the return address for a dummy frame, as called by
   call_function_by_hand.  Only necessary when you are using an
   empty CALL_DUMMY, ie. the target will not actually be executing
   a JSR/BSR instruction.  */

static CORE_ADDR
h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  unsigned char buf[4];
  int wordsize = BINWORD;

  sp -= wordsize;
  store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
  write_memory (sp, buf, wordsize);
  return sp;
}

/* Function: h8300_pop_frame
   Restore the machine to the state it had before the current frame 
   was created.  Usually used either by the "RETURN" command, or by
   call_function_by_hand after the dummy_frame is finished. */

static void
h8300_pop_frame (void)
{
  unsigned regno;
  struct frame_info *frame = get_current_frame ();

  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    {
      generic_pop_dummy_frame ();
    }
  else
    {
      for (regno = 0; regno < 8; regno++)
	{
	  /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
	     actual value we want, not the address of the value we want.  */
	  if (frame->saved_regs[regno] && regno != E_SP_REGNUM)
	    write_register (regno,
			    read_memory_integer (frame->saved_regs[regno],
			    			 BINWORD));
	  else if (frame->saved_regs[regno] && regno == E_SP_REGNUM)
	    write_register (regno, frame->frame + 2 * BINWORD);
	}

      /* Don't forget to update the PC too!  */
      write_register (E_PC_REGNUM, frame->extra_info->from_pc);
    }
  flush_cached_frames ();
}

/* Function: extract_return_value
   Figure out where in REGBUF the called function has left its return value.
   Copy that into VALBUF.  Be sure to account for CPU type.   */

static void
h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  int wordsize = BINWORD;
  int len = TYPE_LENGTH (type);

  switch (len)
    {
    case 1:			/* (char) */
    case 2:			/* (short), (int) */
      memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
      break;
    case 4:			/* (long), (float) */
      if (wordsize == 4)
	{
	  memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
	}
      else
	{
	  memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
	  memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
	}
      break;
    case 8:			/* (double) (doesn't seem to happen, which is good,
				   because this almost certainly isn't right.  */
      error ("I don't know how a double is returned.");
      break;
    }
}

/* Function: store_return_value
   Place the appropriate value in the appropriate registers.
   Primarily used by the RETURN command.  */

static void
h8300_store_return_value (struct type *type, char *valbuf)
{
  int regval;
  int wordsize = BINWORD;
  int len = TYPE_LENGTH (type);

  switch (len)
    {
    case 1:			/* char */
    case 2:			/* short, int */
      regval = extract_address (valbuf, len);
      write_register (0, regval);
      break;
    case 4:			/* long, float */
      regval = extract_address (valbuf, len);
      if (wordsize == 4)
	{
	  write_register (0, regval);
	}
      else
	{
	  write_register (0, regval >> 16);
	  write_register (1, regval & 0xffff);
	}
      break;
    case 8:			/* presumeably double, but doesn't seem to happen */
      error ("I don't know how to return a double.");
      break;
    }
}

static struct cmd_list_element *setmachinelist;

static const char *
h8300_register_name (int regno)
{
  /* The register names change depending on whether the h8300h processor
     type is selected. */
  static char *h8300_register_names[] = {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6",
    "sp", "ccr","pc","cycles", "tick", "inst", ""
  };
  static char *h8300s_register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
  };
  char **register_names =
  		h8300smode ? h8300s_register_names : h8300_register_names;
  if (regno < 0 || regno >= E_NUM_REGS)
    internal_error (__FILE__, __LINE__,
		    "h8300_register_name: illegal register number %d", regno);
  else
    return register_names[regno];
}

static void
h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
		      struct frame_info *frame, int regno)
{
  ULONGEST rval;
  long val;
  const char *name = h8300_register_name (regno);

  if (!name || !*name)
    return;

  /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at
     least 4 bytes (32 bits) in size and hence is large enough to hold
     the largest h8300 register.  Should instead be using ULONGEST and
     the phex() functions.  */
  gdb_assert (sizeof (val) >= 4);
  frame_read_unsigned_register (frame, regno, &rval);
  val = rval;

  fprintf_filtered (file, "%-14s ", name);
  if (h8300hmode)
    {
      if (val)
	fprintf_filtered (file, "0x%08lx   %-8ld", val, val);
      else
	fprintf_filtered (file, "0x%-8lx   %-8ld", val, val);
    }
  else
    {
      if (val)
	fprintf_filtered (file, "0x%04lx   %-4ld", val, val);
      else
	fprintf_filtered (file, "0x%-4lx   %-4ld", val, val);
    }
  if (regno == E_CCR_REGNUM)
    {
      /* CCR register */
      int C, Z, N, V;
      unsigned char b[h8300h_reg_size];
      unsigned char l;
      frame_register_read (selected_frame, regno, b);
      l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1];
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
      fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
      fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
      fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
      N = (l & 0x8) != 0;
      Z = (l & 0x4) != 0;
      V = (l & 0x2) != 0;
      C = (l & 0x1) != 0;
      fprintf_filtered (file, "N-%d ", N);
      fprintf_filtered (file, "Z-%d ", Z);
      fprintf_filtered (file, "V-%d ", V);
      fprintf_filtered (file, "C-%d ", C);
      if ((C | Z) == 0)
	fprintf_filtered (file, "u> ");
      if ((C | Z) == 1)
	fprintf_filtered (file, "u<= ");
      if ((C == 0))
	fprintf_filtered (file, "u>= ");
      if (C == 1)
	fprintf_filtered (file, "u< ");
      if (Z == 0)
	fprintf_filtered (file, "!= ");
      if (Z == 1)
	fprintf_filtered (file, "== ");
      if ((N ^ V) == 0)
	fprintf_filtered (file, ">= ");
      if ((N ^ V) == 1)
	fprintf_filtered (file, "< ");
      if ((Z | (N ^ V)) == 0)
	fprintf_filtered (file, "> ");
      if ((Z | (N ^ V)) == 1)
	fprintf_filtered (file, "<= ");
    }
  else if (regno == E_EXR_REGNUM && h8300smode)
    {
      /* EXR register */
      unsigned char b[h8300h_reg_size];
      unsigned char l;
      frame_register_read (selected_frame, regno, b);
      l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1];
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
      fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
      fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
      fprintf_filtered (file, "I0-%d", (l & 1) != 0);
    }
  fprintf_filtered (file, "\n");
}

static void
h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			    struct frame_info *frame, int regno, int cpregs)
{
  if (regno < 0)
    for (regno = 0; regno < E_NUM_REGS; ++regno)
      h8300_print_register (gdbarch, file, frame, regno);
  else
    h8300_print_register (gdbarch, file, frame, regno);
}

static CORE_ADDR
h8300_saved_pc_after_call (struct frame_info *ignore)
{
  return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
}

static int
h8300_register_byte (int regno)
{
  if (regno < 0 || regno >= E_NUM_REGS)
    internal_error (__FILE__, __LINE__,
		    "h8300_register_byte: illegal register number %d", regno);
  else
    return regno * BINWORD;
}

static int
h8300_register_raw_size (int regno)
{
  if (regno < 0 || regno >= E_NUM_REGS)
    internal_error (__FILE__, __LINE__,
		    "h8300_register_raw_size: illegal register number %d",
		    regno);
  else
    return BINWORD;
}

static struct type *
h8300_register_virtual_type (int regno)
{
  if (regno < 0 || regno >= E_NUM_REGS)
    internal_error (__FILE__, __LINE__,
		    "h8300_register_virtual_type: illegal register number %d",
		    regno);
  else
    return h8300hmode ?
	   builtin_type_unsigned_long : builtin_type_unsigned_short;
}

static void
h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{ 
  write_register (0, addr);
}

static int
h8300_use_struct_convention (int gcc_p, struct type *type)
{
  return 1;
}

static CORE_ADDR
h8300_extract_struct_value_address (char *regbuf)
{
  return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM),
			  h8300_register_raw_size (E_ARG0_REGNUM));
}

const static unsigned char *
h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/	/* ??? */
  static unsigned char breakpoint[] = { 0x01, 0x80 };		/* Sleep */

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

static void
h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
			struct frame_info *frame, const char *args)
{
  fprintf_filtered (file, "\
No floating-point info available for this processor.\n");
}

static struct gdbarch *
h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST call_dummy_words[1] = { 0 };
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch *gdbarch;

  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

#if 0
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif

  if (info.bfd_arch_info->arch != bfd_arch_h8300)
    return NULL;

  switch (info.bfd_arch_info->mach)
    {
      case bfd_mach_h8300:
	h8300smode = 0;
	h8300hmode = 0;
	break;
      case bfd_mach_h8300h:
	h8300smode = 0;
	h8300hmode = 1;
	break;
      case bfd_mach_h8300s:
	h8300smode = 1;
	h8300hmode = 1;
	break;
    }

  gdbarch = gdbarch_alloc (&info, 0);

  /*
   * Basic register fields and methods.
   */

  set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_register_name (gdbarch, h8300_register_name);
  set_gdbarch_register_size (gdbarch, BINWORD);
  set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD);
  set_gdbarch_register_byte (gdbarch, h8300_register_byte);
  set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size);
  set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size);
  set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size);
  set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size);
  set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type);
  set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
  set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);

  /*
   * Frame Info
   */
  set_gdbarch_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info);
  set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs);
  set_gdbarch_frame_chain (gdbarch, h8300_frame_chain);
  set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call);
  set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
  set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
  set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address);
  set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address);

  /* 
   * Miscelany
   */
  /* Stack grows up. */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  /* PC stops zero byte after a trap instruction
     (which means: exactly on trap instruction). */
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  /* This value is almost never non-zero... */
  set_gdbarch_function_start_offset (gdbarch, 0);
  /* This value is almost never non-zero... */
  set_gdbarch_frame_args_skip (gdbarch, 0);
  /* OK to default this value to 'unknown'. */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_frameless_function_invocation (gdbarch,
					     frameless_look_for_prologue);

  /* W/o prototype, coerce float args to double. */
  /* set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double); */

  /*
   * Call Dummies
   * 
   * These values and methods are used when gdb calls a target function.  */
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_return_address (gdbarch, h8300_push_return_address);
  set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value);
  set_gdbarch_push_arguments (gdbarch, h8300_push_arguments);
  set_gdbarch_pop_frame (gdbarch, h8300_pop_frame);
  set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return);
  set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value);
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  /* set_gdbarch_call_dummy_stack_adjust */
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);

  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT);

  /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
  set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  return gdbarch;
}

void
_initialize_h8300_tdep (void)
{
  tm_print_insn = gdb_print_insn_h8300;
  register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
}