aboutsummaryrefslogtreecommitdiff
path: root/gdb/h8300-tdep.c
blob: f2a2d02222a44b7691eecf81319824ad590a0a88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/* Target-machine dependent code for Hitachi H8/300, for GDB.
   Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/*
 Contributed by Steve Chamberlain
                sac@cygnus.com
 */

#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include <dis-asm.h>
#undef NUM_REGS
#define NUM_REGS 11

#define UNSIGNED_SHORT(X) ((X) & 0xffff)

/* an easy to debug H8 stack frame looks like:
0x6df6		push	r6
0x0d76  	mov.w   r7,r6
0x6dfn          push    reg
0x7905 nnnn  	mov.w  #n,r5    or   0x1b87  subs #2,sp
0x1957       	sub.w  r5,sp

 */

#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_MOVE_FP(x) (x == 0x0d76)
#define IS_MOV_SP_FP(x) (x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_R5SP(x) (x==0x1957)
CORE_ADDR examine_prologue ();

void frame_find_saved_regs ();
CORE_ADDR 
h8300_skip_prologue (start_pc)
     CORE_ADDR start_pc;
{
  short int w;

  w = read_memory_unsigned_integer (start_pc, 2);
  /* Skip past all push insns */
  while (IS_PUSH_FP (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Skip past a move to FP */
  if (IS_MOVE_FP (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  /* Skip the stack adjust */

  if (IS_MOVK_R5 (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }
  if (IS_SUB_R5SP (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }
  while (IS_SUB2_SP (w))
    {
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
    }

  return start_pc;
}

int
print_insn (memaddr, stream)
     CORE_ADDR memaddr;
     FILE *stream;
{
  disassemble_info info;
  GDB_INIT_DISASSEMBLE_INFO(info, stream);
  if (HMODE)
    return print_insn_h8300h (memaddr, &info);
  else
    return print_insn_h8300 (memaddr, &info);
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

   For us, the frame address is its stack pointer value, so we look up
   the function prologue to determine the caller's sp value, and return it.  */

FRAME_ADDR
FRAME_CHAIN (thisframe)
     FRAME thisframe;
{
  frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
  return thisframe->fsr->regs[SP_REGNUM];
}

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.

   We cache the result of doing this in the frame_cache_obstack, since
   it is fairly expensive.  */

void
frame_find_saved_regs (fi, fsr)
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
{
  register CORE_ADDR next_addr;
  register CORE_ADDR *saved_regs;
  register int regnum;
  register struct frame_saved_regs *cache_fsr;
  extern struct obstack frame_cache_obstack;
  CORE_ADDR ip;
  struct symtab_and_line sal;
  CORE_ADDR limit;

  if (!fi->fsr)
    {
      cache_fsr = (struct frame_saved_regs *)
	obstack_alloc (&frame_cache_obstack,
		       sizeof (struct frame_saved_regs));
      bzero (cache_fsr, sizeof (struct frame_saved_regs));

      fi->fsr = cache_fsr;

      /* Find the start and end of the function prologue.  If the PC
	 is in the function prologue, we only consider the part that
	 has executed already.  */

      ip = get_pc_function_start (fi->pc);
      sal = find_pc_line (ip, 0);
      limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;

      /* This will fill in fields in *fi as well as in cache_fsr.  */
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
    }

  if (fsr)
    *fsr = *fi->fsr;
}

/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
   is not the address of a valid instruction, the address of the next
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   of the instruction.*/

CORE_ADDR
NEXT_PROLOGUE_INSN (addr, lim, pword1)
     CORE_ADDR addr;
     CORE_ADDR lim;
     short *pword1;
{
  if (addr < lim + 8)
    {
      read_memory (addr, pword1, sizeof (*pword1));
      SWAP_TARGET_AND_HOST (pword1, sizeof (short));

      return addr + 2;
    }
  return 0;
}

/* Examine the prologue of a function.  `ip' points to the first instruction.
   `limit' is the limit of the prologue (e.g. the addr of the first
   linenumber, or perhaps the program counter if we're stepping through).
   `frame_sp' is the stack pointer value in use in this frame.
   `fsr' is a pointer to a frame_saved_regs structure into which we put
   info about the registers saved by this frame.
   `fi' is a struct frame_info pointer; we fill in various fields in it
   to reflect the offsets of the arg pointer and the locals pointer.  */

static CORE_ADDR
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
     register CORE_ADDR ip;
     register CORE_ADDR limit;
     FRAME_ADDR after_prolog_fp;
     struct frame_saved_regs *fsr;
     struct frame_info *fi;
{
  register CORE_ADDR next_ip;
  int r;
  int i;
  int have_fp = 0;
  register int src;
  register struct pic_prologue_code *pcode;
  INSN_WORD insn_word;
  int size, offset;
  /* Number of things pushed onto stack, starts at 2/4, 'cause the
     PC is already there */
  unsigned int reg_save_depth = HMODE ? 4 : 2;

  unsigned int auto_depth = 0;	/* Number of bytes of autos */

  char in_frame[11];		/* One for each reg */

  memset (in_frame, 1, 11);
  for (r = 0; r < 8; r++)
    {
      fsr->regs[r] = 0;
    }
  if (after_prolog_fp == 0)
    {
      after_prolog_fp = read_register (SP_REGNUM);
    }
  if (ip == 0 || ip & (HMODE ? ~0xffff : ~0xffff))
    return 0;

  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);

  /* Skip over any fp push instructions */
  fsr->regs[6] = after_prolog_fp;
  while (next_ip && IS_PUSH_FP (insn_word))
    {
      ip = next_ip;

      in_frame[insn_word & 0x7] = reg_save_depth;
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      reg_save_depth += 2;
    }

  /* Is this a move into the fp */
  if (next_ip && IS_MOV_SP_FP (insn_word))
    {
      ip = next_ip;
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      have_fp = 1;
    }

  /* Skip over any stack adjustment, happens either with a number of
     sub#2,sp or a mov #x,r5 sub r5,sp */

  if (next_ip && IS_SUB2_SP (insn_word))
    {
      while (next_ip && IS_SUB2_SP (insn_word))
	{
	  auto_depth += 2;
	  ip = next_ip;
	  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
	}
    }
  else
    {
      if (next_ip && IS_MOVK_R5 (insn_word))
	{
	  ip = next_ip;
	  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
	  auto_depth += insn_word;

	  next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
	  auto_depth += insn_word;
	}
    }
  /* Work out which regs are stored where */
  while (next_ip && IS_PUSH (insn_word))
    {
      ip = next_ip;
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      fsr->regs[r] = after_prolog_fp + auto_depth;
      auto_depth += 2;
    }

  /* The args are always reffed based from the stack pointer */
  fi->args_pointer = after_prolog_fp;
  /* Locals are always reffed based from the fp */
  fi->locals_pointer = after_prolog_fp;
  /* The PC is at a known place */
  fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);

  /* Rememeber any others too */
  in_frame[PC_REGNUM] = 0;

  if (have_fp)
    /* We keep the old FP in the SP spot */
    fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
  else
    fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;

  return (ip);
}

void
init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     struct frame_info *fi;
{
  fi->fsr = 0;			/* Not yet allocated */
  fi->args_pointer = 0;		/* Unknown */
  fi->locals_pointer = 0;	/* Unknown */
  fi->from_pc = 0;
}

/* Return the saved PC from this frame.

   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   just use the register SRP_REGNUM itself.  */

CORE_ADDR
frame_saved_pc (frame)
     FRAME frame;
{
  return frame->from_pc;
}

CORE_ADDR
frame_locals_address (fi)
     struct frame_info *fi;
{
  if (!fi->locals_pointer)
    {
      struct frame_saved_regs ignore;

      get_frame_saved_regs (fi, &ignore);

    }
  return fi->locals_pointer;
}

/* Return the address of the argument block for the frame
   described by FI.  Returns 0 if the address is unknown.  */

CORE_ADDR
frame_args_address (fi)
     struct frame_info *fi;
{
  if (!fi->args_pointer)
    {
      struct frame_saved_regs ignore;

      get_frame_saved_regs (fi, &ignore);

    }

  return fi->args_pointer;
}

void 
h8300_pop_frame ()
{
  unsigned regnum;
  struct frame_saved_regs fsr;
  struct frame_info *fi;

  FRAME frame = get_current_frame ();

  fi = get_frame_info (frame);
  get_frame_saved_regs (fi, &fsr);

  for (regnum = 0; regnum < 8; regnum++)
    {
      if (fsr.regs[regnum])
	{
	  write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
	}

      flush_cached_frames ();
      set_current_frame (create_new_frame (read_register (FP_REGNUM),
					   read_pc ()));
    }
}

void
print_register_hook (regno)
{
  if (regno == 8)
    {
      /* CCR register */

      int C, Z, N, V;
      unsigned char b[2];
      unsigned char l;

      read_relative_register_raw_bytes (regno, b);
      l = b[1];
      printf ("\t");
      printf ("I-%d - ", (l & 0x80) != 0);
      printf ("H-%d - ", (l & 0x20) != 0);
      N = (l & 0x8) != 0;
      Z = (l & 0x4) != 0;
      V = (l & 0x2) != 0;
      C = (l & 0x1) != 0;
      printf ("N-%d ", N);
      printf ("Z-%d ", Z);
      printf ("V-%d ", V);
      printf ("C-%d ", C);
      if ((C | Z) == 0)
	printf ("u> ");
      if ((C | Z) == 1)
	printf ("u<= ");
      if ((C == 0))
	printf ("u>= ");
      if (C == 1)
	printf ("u< ");
      if (Z == 0)
	printf ("!= ");
      if (Z == 1)
	printf ("== ");
      if ((N ^ V) == 0)
	printf (">= ");
      if ((N ^ V) == 1)
	printf ("< ");
      if ((Z | (N ^ V)) == 0)
	printf ("> ");
      if ((Z | (N ^ V)) == 1)
	printf ("<= ");
    }
}