1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
|
/* Abstraction of GNU v3 abi.
Contributed by Jim Blandy <jimb@redhat.com>
Copyright (C) 2001-2019 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "value.h"
#include "cp-abi.h"
#include "cp-support.h"
#include "demangle.h"
#include "objfiles.h"
#include "valprint.h"
#include "c-lang.h"
#include "typeprint.h"
#include <algorithm>
static struct cp_abi_ops gnu_v3_abi_ops;
/* A gdbarch key for std::type_info, in the event that it can't be
found in the debug info. */
static struct gdbarch_data *std_type_info_gdbarch_data;
static int
gnuv3_is_vtable_name (const char *name)
{
return startswith (name, "_ZTV");
}
static int
gnuv3_is_operator_name (const char *name)
{
return startswith (name, CP_OPERATOR_STR);
}
/* To help us find the components of a vtable, we build ourselves a
GDB type object representing the vtable structure. Following the
V3 ABI, it goes something like this:
struct gdb_gnu_v3_abi_vtable {
/ * An array of virtual call and virtual base offsets. The real
length of this array depends on the class hierarchy; we use
negative subscripts to access the elements. Yucky, but
better than the alternatives. * /
ptrdiff_t vcall_and_vbase_offsets[0];
/ * The offset from a virtual pointer referring to this table
to the top of the complete object. * /
ptrdiff_t offset_to_top;
/ * The type_info pointer for this class. This is really a
std::type_info *, but GDB doesn't really look at the
type_info object itself, so we don't bother to get the type
exactly right. * /
void *type_info;
/ * Virtual table pointers in objects point here. * /
/ * Virtual function pointers. Like the vcall/vbase array, the
real length of this table depends on the class hierarchy. * /
void (*virtual_functions[0]) ();
};
The catch, of course, is that the exact layout of this table
depends on the ABI --- word size, endianness, alignment, etc. So
the GDB type object is actually a per-architecture kind of thing.
vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
which refers to the struct type * for this structure, laid out
appropriately for the architecture. */
static struct gdbarch_data *vtable_type_gdbarch_data;
/* Human-readable names for the numbers of the fields above. */
enum {
vtable_field_vcall_and_vbase_offsets,
vtable_field_offset_to_top,
vtable_field_type_info,
vtable_field_virtual_functions
};
/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
described above, laid out appropriately for ARCH.
We use this function as the gdbarch per-architecture data
initialization function. */
static void *
build_gdb_vtable_type (struct gdbarch *arch)
{
struct type *t;
struct field *field_list, *field;
int offset;
struct type *void_ptr_type
= builtin_type (arch)->builtin_data_ptr;
struct type *ptr_to_void_fn_type
= builtin_type (arch)->builtin_func_ptr;
/* ARCH can't give us the true ptrdiff_t type, so we guess. */
struct type *ptrdiff_type
= arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
/* We assume no padding is necessary, since GDB doesn't know
anything about alignment at the moment. If this assumption bites
us, we should add a gdbarch method which, given a type, returns
the alignment that type requires, and then use that here. */
/* Build the field list. */
field_list = XCNEWVEC (struct field, 4);
field = &field_list[0];
offset = 0;
/* ptrdiff_t vcall_and_vbase_offsets[0]; */
FIELD_NAME (*field) = "vcall_and_vbase_offsets";
FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
/* ptrdiff_t offset_to_top; */
FIELD_NAME (*field) = "offset_to_top";
FIELD_TYPE (*field) = ptrdiff_type;
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
/* void *type_info; */
FIELD_NAME (*field) = "type_info";
FIELD_TYPE (*field) = void_ptr_type;
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
/* void (*virtual_functions[0]) (); */
FIELD_NAME (*field) = "virtual_functions";
FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
/* We assumed in the allocation above that there were four fields. */
gdb_assert (field == (field_list + 4));
t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
TYPE_NFIELDS (t) = field - field_list;
TYPE_FIELDS (t) = field_list;
TYPE_NAME (t) = "gdb_gnu_v3_abi_vtable";
INIT_CPLUS_SPECIFIC (t);
return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
}
/* Return the ptrdiff_t type used in the vtable type. */
static struct type *
vtable_ptrdiff_type (struct gdbarch *gdbarch)
{
struct type *vtable_type
= (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
/* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
}
/* Return the offset from the start of the imaginary `struct
gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
(i.e., where objects' virtual table pointers point). */
static int
vtable_address_point_offset (struct gdbarch *gdbarch)
{
struct type *vtable_type
= (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
/ TARGET_CHAR_BIT);
}
/* Determine whether structure TYPE is a dynamic class. Cache the
result. */
static int
gnuv3_dynamic_class (struct type *type)
{
int fieldnum, fieldelem;
type = check_typedef (type);
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION);
if (TYPE_CODE (type) == TYPE_CODE_UNION)
return 0;
if (TYPE_CPLUS_DYNAMIC (type))
return TYPE_CPLUS_DYNAMIC (type) == 1;
ALLOCATE_CPLUS_STRUCT_TYPE (type);
for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
|| gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
{
TYPE_CPLUS_DYNAMIC (type) = 1;
return 1;
}
for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
fieldelem++)
{
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
{
TYPE_CPLUS_DYNAMIC (type) = 1;
return 1;
}
}
TYPE_CPLUS_DYNAMIC (type) = -1;
return 0;
}
/* Find the vtable for a value of CONTAINER_TYPE located at
CONTAINER_ADDR. Return a value of the correct vtable type for this
architecture, or NULL if CONTAINER does not have a vtable. */
static struct value *
gnuv3_get_vtable (struct gdbarch *gdbarch,
struct type *container_type, CORE_ADDR container_addr)
{
struct type *vtable_type
= (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
struct type *vtable_pointer_type;
struct value *vtable_pointer;
CORE_ADDR vtable_address;
container_type = check_typedef (container_type);
gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT);
/* If this type does not have a virtual table, don't read the first
field. */
if (!gnuv3_dynamic_class (container_type))
return NULL;
/* We do not consult the debug information to find the virtual table.
The ABI specifies that it is always at offset zero in any class,
and debug information may not represent it.
We avoid using value_contents on principle, because the object might
be large. */
/* Find the type "pointer to virtual table". */
vtable_pointer_type = lookup_pointer_type (vtable_type);
/* Load it from the start of the class. */
vtable_pointer = value_at (vtable_pointer_type, container_addr);
vtable_address = value_as_address (vtable_pointer);
/* Correct it to point at the start of the virtual table, rather
than the address point. */
return value_at_lazy (vtable_type,
vtable_address
- vtable_address_point_offset (gdbarch));
}
static struct type *
gnuv3_rtti_type (struct value *value,
int *full_p, LONGEST *top_p, int *using_enc_p)
{
struct gdbarch *gdbarch;
struct type *values_type = check_typedef (value_type (value));
struct value *vtable;
struct minimal_symbol *vtable_symbol;
const char *vtable_symbol_name;
const char *class_name;
struct type *run_time_type;
LONGEST offset_to_top;
const char *atsign;
/* We only have RTTI for dynamic class objects. */
if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT
|| !gnuv3_dynamic_class (values_type))
return NULL;
/* Determine architecture. */
gdbarch = get_type_arch (values_type);
if (using_enc_p)
*using_enc_p = 0;
vtable = gnuv3_get_vtable (gdbarch, values_type,
value_as_address (value_addr (value)));
if (vtable == NULL)
return NULL;
/* Find the linker symbol for this vtable. */
vtable_symbol
= lookup_minimal_symbol_by_pc (value_address (vtable)
+ value_embedded_offset (vtable)).minsym;
if (! vtable_symbol)
return NULL;
/* The symbol's demangled name should be something like "vtable for
CLASS", where CLASS is the name of the run-time type of VALUE.
If we didn't like this approach, we could instead look in the
type_info object itself to get the class name. But this way
should work just as well, and doesn't read target memory. */
vtable_symbol_name = MSYMBOL_DEMANGLED_NAME (vtable_symbol);
if (vtable_symbol_name == NULL
|| !startswith (vtable_symbol_name, "vtable for "))
{
warning (_("can't find linker symbol for virtual table for `%s' value"),
TYPE_SAFE_NAME (values_type));
if (vtable_symbol_name)
warning (_(" found `%s' instead"), vtable_symbol_name);
return NULL;
}
class_name = vtable_symbol_name + 11;
/* Strip off @plt and version suffixes. */
atsign = strchr (class_name, '@');
if (atsign != NULL)
{
char *copy;
copy = (char *) alloca (atsign - class_name + 1);
memcpy (copy, class_name, atsign - class_name);
copy[atsign - class_name] = '\0';
class_name = copy;
}
/* Try to look up the class name as a type name. */
/* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
run_time_type = cp_lookup_rtti_type (class_name, NULL);
if (run_time_type == NULL)
return NULL;
/* Get the offset from VALUE to the top of the complete object.
NOTE: this is the reverse of the meaning of *TOP_P. */
offset_to_top
= value_as_long (value_field (vtable, vtable_field_offset_to_top));
if (full_p)
*full_p = (- offset_to_top == value_embedded_offset (value)
&& (TYPE_LENGTH (value_enclosing_type (value))
>= TYPE_LENGTH (run_time_type)));
if (top_p)
*top_p = - offset_to_top;
return run_time_type;
}
/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
function, of type FNTYPE. */
static struct value *
gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
struct type *fntype, int vtable_index)
{
struct value *vtable, *vfn;
/* Every class with virtual functions must have a vtable. */
vtable = gnuv3_get_vtable (gdbarch, value_type (container),
value_as_address (value_addr (container)));
gdb_assert (vtable != NULL);
/* Fetch the appropriate function pointer from the vtable. */
vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
vtable_index);
/* If this architecture uses function descriptors directly in the vtable,
then the address of the vtable entry is actually a "function pointer"
(i.e. points to the descriptor). We don't need to scale the index
by the size of a function descriptor; GCC does that before outputing
debug information. */
if (gdbarch_vtable_function_descriptors (gdbarch))
vfn = value_addr (vfn);
/* Cast the function pointer to the appropriate type. */
vfn = value_cast (lookup_pointer_type (fntype), vfn);
return vfn;
}
/* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
for a description of the arguments. */
static struct value *
gnuv3_virtual_fn_field (struct value **value_p,
struct fn_field *f, int j,
struct type *vfn_base, int offset)
{
struct type *values_type = check_typedef (value_type (*value_p));
struct gdbarch *gdbarch;
/* Some simple sanity checks. */
if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
error (_("Only classes can have virtual functions."));
/* Determine architecture. */
gdbarch = get_type_arch (values_type);
/* Cast our value to the base class which defines this virtual
function. This takes care of any necessary `this'
adjustments. */
if (vfn_base != values_type)
*value_p = value_cast (vfn_base, *value_p);
return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
TYPE_FN_FIELD_VOFFSET (f, j));
}
/* Compute the offset of the baseclass which is
the INDEXth baseclass of class TYPE,
for value at VALADDR (in host) at ADDRESS (in target).
The result is the offset of the baseclass value relative
to (the address of)(ARG) + OFFSET.
-1 is returned on error. */
static int
gnuv3_baseclass_offset (struct type *type, int index,
const bfd_byte *valaddr, LONGEST embedded_offset,
CORE_ADDR address, const struct value *val)
{
struct gdbarch *gdbarch;
struct type *ptr_type;
struct value *vtable;
struct value *vbase_array;
long int cur_base_offset, base_offset;
/* Determine architecture. */
gdbarch = get_type_arch (type);
ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
/* If it isn't a virtual base, this is easy. The offset is in the
type definition. */
if (!BASETYPE_VIA_VIRTUAL (type, index))
return TYPE_BASECLASS_BITPOS (type, index) / 8;
/* To access a virtual base, we need to use the vbase offset stored in
our vtable. Recent GCC versions provide this information. If it isn't
available, we could get what we needed from RTTI, or from drawing the
complete inheritance graph based on the debug info. Neither is
worthwhile. */
cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
error (_("Expected a negative vbase offset (old compiler?)"));
cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
error (_("Misaligned vbase offset."));
cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
gdb_assert (vtable != NULL);
vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
return base_offset;
}
/* Locate a virtual method in DOMAIN or its non-virtual base classes
which has virtual table index VOFFSET. The method has an associated
"this" adjustment of ADJUSTMENT bytes. */
static const char *
gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
LONGEST adjustment)
{
int i;
/* Search this class first. */
if (adjustment == 0)
{
int len;
len = TYPE_NFN_FIELDS (domain);
for (i = 0; i < len; i++)
{
int len2, j;
struct fn_field *f;
f = TYPE_FN_FIELDLIST1 (domain, i);
len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
check_stub_method_group (domain, i);
for (j = 0; j < len2; j++)
if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
return TYPE_FN_FIELD_PHYSNAME (f, j);
}
}
/* Next search non-virtual bases. If it's in a virtual base,
we're out of luck. */
for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
{
int pos;
struct type *basetype;
if (BASETYPE_VIA_VIRTUAL (domain, i))
continue;
pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
basetype = TYPE_FIELD_TYPE (domain, i);
/* Recurse with a modified adjustment. We don't need to adjust
voffset. */
if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
}
return NULL;
}
/* Decode GNU v3 method pointer. */
static int
gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
const gdb_byte *contents,
CORE_ADDR *value_p,
LONGEST *adjustment_p)
{
struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
struct type *offset_type = vtable_ptrdiff_type (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR ptr_value;
LONGEST voffset, adjustment;
int vbit;
/* Extract the pointer to member. The first element is either a pointer
or a vtable offset. For pointers, we need to use extract_typed_address
to allow the back-end to convert the pointer to a GDB address -- but
vtable offsets we must handle as integers. At this point, we do not
yet know which case we have, so we extract the value under both
interpretations and choose the right one later on. */
ptr_value = extract_typed_address (contents, funcptr_type);
voffset = extract_signed_integer (contents,
TYPE_LENGTH (funcptr_type), byte_order);
contents += TYPE_LENGTH (funcptr_type);
adjustment = extract_signed_integer (contents,
TYPE_LENGTH (offset_type), byte_order);
if (!gdbarch_vbit_in_delta (gdbarch))
{
vbit = voffset & 1;
voffset = voffset ^ vbit;
}
else
{
vbit = adjustment & 1;
adjustment = adjustment >> 1;
}
*value_p = vbit? voffset : ptr_value;
*adjustment_p = adjustment;
return vbit;
}
/* GNU v3 implementation of cplus_print_method_ptr. */
static void
gnuv3_print_method_ptr (const gdb_byte *contents,
struct type *type,
struct ui_file *stream)
{
struct type *self_type = TYPE_SELF_TYPE (type);
struct gdbarch *gdbarch = get_type_arch (self_type);
CORE_ADDR ptr_value;
LONGEST adjustment;
int vbit;
/* Extract the pointer to member. */
vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
/* Check for NULL. */
if (ptr_value == 0 && vbit == 0)
{
fprintf_filtered (stream, "NULL");
return;
}
/* Search for a virtual method. */
if (vbit)
{
CORE_ADDR voffset;
const char *physname;
/* It's a virtual table offset, maybe in this class. Search
for a field with the correct vtable offset. First convert it
to an index, as used in TYPE_FN_FIELD_VOFFSET. */
voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
physname = gnuv3_find_method_in (self_type, voffset, adjustment);
/* If we found a method, print that. We don't bother to disambiguate
possible paths to the method based on the adjustment. */
if (physname)
{
char *demangled_name = gdb_demangle (physname,
DMGL_ANSI | DMGL_PARAMS);
fprintf_filtered (stream, "&virtual ");
if (demangled_name == NULL)
fputs_filtered (physname, stream);
else
{
fputs_filtered (demangled_name, stream);
xfree (demangled_name);
}
return;
}
}
else if (ptr_value != 0)
{
/* Found a non-virtual function: print out the type. */
fputs_filtered ("(", stream);
c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
fputs_filtered (") ", stream);
}
/* We didn't find it; print the raw data. */
if (vbit)
{
fprintf_filtered (stream, "&virtual table offset ");
print_longest (stream, 'd', 1, ptr_value);
}
else
{
struct value_print_options opts;
get_user_print_options (&opts);
print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
}
if (adjustment)
{
fprintf_filtered (stream, ", this adjustment ");
print_longest (stream, 'd', 1, adjustment);
}
}
/* GNU v3 implementation of cplus_method_ptr_size. */
static int
gnuv3_method_ptr_size (struct type *type)
{
struct gdbarch *gdbarch = get_type_arch (type);
return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
}
/* GNU v3 implementation of cplus_make_method_ptr. */
static void
gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
CORE_ADDR value, int is_virtual)
{
struct gdbarch *gdbarch = get_type_arch (type);
int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* FIXME drow/2006-12-24: The adjustment of "this" is currently
always zero, since the method pointer is of the correct type.
But if the method pointer came from a base class, this is
incorrect - it should be the offset to the base. The best
fix might be to create the pointer to member pointing at the
base class and cast it to the derived class, but that requires
support for adjusting pointers to members when casting them -
not currently supported by GDB. */
if (!gdbarch_vbit_in_delta (gdbarch))
{
store_unsigned_integer (contents, size, byte_order, value | is_virtual);
store_unsigned_integer (contents + size, size, byte_order, 0);
}
else
{
store_unsigned_integer (contents, size, byte_order, value);
store_unsigned_integer (contents + size, size, byte_order, is_virtual);
}
}
/* GNU v3 implementation of cplus_method_ptr_to_value. */
static struct value *
gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
{
struct gdbarch *gdbarch;
const gdb_byte *contents = value_contents (method_ptr);
CORE_ADDR ptr_value;
struct type *self_type, *final_type, *method_type;
LONGEST adjustment;
int vbit;
self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
final_type = lookup_pointer_type (self_type);
method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
/* Extract the pointer to member. */
gdbarch = get_type_arch (self_type);
vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
/* First convert THIS to match the containing type of the pointer to
member. This cast may adjust the value of THIS. */
*this_p = value_cast (final_type, *this_p);
/* Then apply whatever adjustment is necessary. This creates a somewhat
strange pointer: it claims to have type FINAL_TYPE, but in fact it
might not be a valid FINAL_TYPE. For instance, it might be a
base class of FINAL_TYPE. And if it's not the primary base class,
then printing it out as a FINAL_TYPE object would produce some pretty
garbage.
But we don't really know the type of the first argument in
METHOD_TYPE either, which is why this happens. We can't
dereference this later as a FINAL_TYPE, but once we arrive in the
called method we'll have debugging information for the type of
"this" - and that'll match the value we produce here.
You can provoke this case by casting a Base::* to a Derived::*, for
instance. */
*this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
*this_p = value_ptradd (*this_p, adjustment);
*this_p = value_cast (final_type, *this_p);
if (vbit)
{
LONGEST voffset;
voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
method_type, voffset);
}
else
return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
}
/* Objects of this type are stored in a hash table and a vector when
printing the vtables for a class. */
struct value_and_voffset
{
/* The value representing the object. */
struct value *value;
/* The maximum vtable offset we've found for any object at this
offset in the outermost object. */
int max_voffset;
};
/* Hash function for value_and_voffset. */
static hashval_t
hash_value_and_voffset (const void *p)
{
const struct value_and_voffset *o = (const struct value_and_voffset *) p;
return value_address (o->value) + value_embedded_offset (o->value);
}
/* Equality function for value_and_voffset. */
static int
eq_value_and_voffset (const void *a, const void *b)
{
const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
return (value_address (ova->value) + value_embedded_offset (ova->value)
== value_address (ovb->value) + value_embedded_offset (ovb->value));
}
/* Comparison function for value_and_voffset. */
static bool
compare_value_and_voffset (const struct value_and_voffset *va,
const struct value_and_voffset *vb)
{
CORE_ADDR addra = (value_address (va->value)
+ value_embedded_offset (va->value));
CORE_ADDR addrb = (value_address (vb->value)
+ value_embedded_offset (vb->value));
return addra < addrb;
}
/* A helper function used when printing vtables. This determines the
key (most derived) sub-object at each address and also computes the
maximum vtable offset seen for the corresponding vtable. Updates
OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
needed. VALUE is the object to examine. */
static void
compute_vtable_size (htab_t offset_hash,
std::vector<value_and_voffset *> *offset_vec,
struct value *value)
{
int i;
struct type *type = check_typedef (value_type (value));
void **slot;
struct value_and_voffset search_vo, *current_vo;
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
/* If the object is not dynamic, then we are done; as it cannot have
dynamic base types either. */
if (!gnuv3_dynamic_class (type))
return;
/* Update the hash and the vec, if needed. */
search_vo.value = value;
slot = htab_find_slot (offset_hash, &search_vo, INSERT);
if (*slot)
current_vo = (struct value_and_voffset *) *slot;
else
{
current_vo = XNEW (struct value_and_voffset);
current_vo->value = value;
current_vo->max_voffset = -1;
*slot = current_vo;
offset_vec->push_back (current_vo);
}
/* Update the value_and_voffset object with the highest vtable
offset from this class. */
for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
{
int j;
struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
{
if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
{
int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
if (voffset > current_vo->max_voffset)
current_vo->max_voffset = voffset;
}
}
}
/* Recurse into base classes. */
for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
}
/* Helper for gnuv3_print_vtable that prints a single vtable. */
static void
print_one_vtable (struct gdbarch *gdbarch, struct value *value,
int max_voffset,
struct value_print_options *opts)
{
int i;
struct type *type = check_typedef (value_type (value));
struct value *vtable;
CORE_ADDR vt_addr;
vtable = gnuv3_get_vtable (gdbarch, type,
value_address (value)
+ value_embedded_offset (value));
vt_addr = value_address (value_field (vtable,
vtable_field_virtual_functions));
printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
TYPE_SAFE_NAME (type),
paddress (gdbarch, vt_addr),
paddress (gdbarch, (value_address (value)
+ value_embedded_offset (value))));
for (i = 0; i <= max_voffset; ++i)
{
/* Initialize it just to avoid a GCC false warning. */
CORE_ADDR addr = 0;
int got_error = 0;
struct value *vfn;
printf_filtered ("[%d]: ", i);
vfn = value_subscript (value_field (vtable,
vtable_field_virtual_functions),
i);
if (gdbarch_vtable_function_descriptors (gdbarch))
vfn = value_addr (vfn);
try
{
addr = value_as_address (vfn);
}
catch (const gdb_exception_RETURN_MASK_ERROR &ex)
{
printf_filtered (_("<error: %s>"), ex.what ());
got_error = 1;
}
if (!got_error)
print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
printf_filtered ("\n");
}
}
/* Implementation of the print_vtable method. */
static void
gnuv3_print_vtable (struct value *value)
{
struct gdbarch *gdbarch;
struct type *type;
struct value *vtable;
struct value_print_options opts;
int count;
value = coerce_ref (value);
type = check_typedef (value_type (value));
if (TYPE_CODE (type) == TYPE_CODE_PTR)
{
value = value_ind (value);
type = check_typedef (value_type (value));
}
get_user_print_options (&opts);
/* Respect 'set print object'. */
if (opts.objectprint)
{
value = value_full_object (value, NULL, 0, 0, 0);
type = check_typedef (value_type (value));
}
gdbarch = get_type_arch (type);
vtable = NULL;
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
vtable = gnuv3_get_vtable (gdbarch, type,
value_as_address (value_addr (value)));
if (!vtable)
{
printf_filtered (_("This object does not have a virtual function table\n"));
return;
}
htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
eq_value_and_voffset,
xfree, xcalloc, xfree));
std::vector<value_and_voffset *> result_vec;
compute_vtable_size (offset_hash.get (), &result_vec, value);
std::sort (result_vec.begin (), result_vec.end (),
compare_value_and_voffset);
count = 0;
for (value_and_voffset *iter : result_vec)
{
if (iter->max_voffset >= 0)
{
if (count > 0)
printf_filtered ("\n");
print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
++count;
}
}
}
/* Return a GDB type representing `struct std::type_info', laid out
appropriately for ARCH.
We use this function as the gdbarch per-architecture data
initialization function. */
static void *
build_std_type_info_type (struct gdbarch *arch)
{
struct type *t;
struct field *field_list, *field;
int offset;
struct type *void_ptr_type
= builtin_type (arch)->builtin_data_ptr;
struct type *char_type
= builtin_type (arch)->builtin_char;
struct type *char_ptr_type
= make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
field_list = XCNEWVEC (struct field, 2);
field = &field_list[0];
offset = 0;
/* The vtable. */
FIELD_NAME (*field) = "_vptr.type_info";
FIELD_TYPE (*field) = void_ptr_type;
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
/* The name. */
FIELD_NAME (*field) = "__name";
FIELD_TYPE (*field) = char_ptr_type;
SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
offset += TYPE_LENGTH (FIELD_TYPE (*field));
field++;
gdb_assert (field == (field_list + 2));
t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
TYPE_NFIELDS (t) = field - field_list;
TYPE_FIELDS (t) = field_list;
TYPE_NAME (t) = "gdb_gnu_v3_type_info";
INIT_CPLUS_SPECIFIC (t);
return t;
}
/* Implement the 'get_typeid_type' method. */
static struct type *
gnuv3_get_typeid_type (struct gdbarch *gdbarch)
{
struct symbol *typeinfo;
struct type *typeinfo_type;
typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
NULL).symbol;
if (typeinfo == NULL)
typeinfo_type
= (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
else
typeinfo_type = SYMBOL_TYPE (typeinfo);
return typeinfo_type;
}
/* Implement the 'get_typeid' method. */
static struct value *
gnuv3_get_typeid (struct value *value)
{
struct type *typeinfo_type;
struct type *type;
struct gdbarch *gdbarch;
struct value *result;
std::string type_name, canonical;
/* We have to handle values a bit trickily here, to allow this code
to work properly with non_lvalue values that are really just
disguised types. */
if (value_lval_const (value) == lval_memory)
value = coerce_ref (value);
type = check_typedef (value_type (value));
/* In the non_lvalue case, a reference might have slipped through
here. */
if (TYPE_CODE (type) == TYPE_CODE_REF)
type = check_typedef (TYPE_TARGET_TYPE (type));
/* Ignore top-level cv-qualifiers. */
type = make_cv_type (0, 0, type, NULL);
gdbarch = get_type_arch (type);
type_name = type_to_string (type);
if (type_name.empty ())
error (_("cannot find typeinfo for unnamed type"));
/* We need to canonicalize the type name here, because we do lookups
using the demangled name, and so we must match the format it
uses. E.g., GDB tends to use "const char *" as a type name, but
the demangler uses "char const *". */
canonical = cp_canonicalize_string (type_name.c_str ());
if (!canonical.empty ())
type_name = canonical;
typeinfo_type = gnuv3_get_typeid_type (gdbarch);
/* We check for lval_memory because in the "typeid (type-id)" case,
the type is passed via a not_lval value object. */
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& value_lval_const (value) == lval_memory
&& gnuv3_dynamic_class (type))
{
struct value *vtable, *typeinfo_value;
CORE_ADDR address = value_address (value) + value_embedded_offset (value);
vtable = gnuv3_get_vtable (gdbarch, type, address);
if (vtable == NULL)
error (_("cannot find typeinfo for object of type '%s'"),
type_name.c_str ());
typeinfo_value = value_field (vtable, vtable_field_type_info);
result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
typeinfo_value));
}
else
{
std::string sym_name = std::string ("typeinfo for ") + type_name;
bound_minimal_symbol minsym
= lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
if (minsym.minsym == NULL)
error (_("could not find typeinfo symbol for '%s'"), type_name.c_str ());
result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
}
return result;
}
/* Implement the 'get_typename_from_type_info' method. */
static std::string
gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
{
struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
struct bound_minimal_symbol typeinfo_sym;
CORE_ADDR addr;
const char *symname;
const char *class_name;
const char *atsign;
addr = value_as_address (type_info_ptr);
typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
if (typeinfo_sym.minsym == NULL)
error (_("could not find minimal symbol for typeinfo address %s"),
paddress (gdbarch, addr));
#define TYPEINFO_PREFIX "typeinfo for "
#define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
symname = MSYMBOL_DEMANGLED_NAME (typeinfo_sym.minsym);
if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
TYPEINFO_PREFIX_LEN))
error (_("typeinfo symbol '%s' has unexpected name"),
MSYMBOL_LINKAGE_NAME (typeinfo_sym.minsym));
class_name = symname + TYPEINFO_PREFIX_LEN;
/* Strip off @plt and version suffixes. */
atsign = strchr (class_name, '@');
if (atsign != NULL)
return std::string (class_name, atsign - class_name);
return class_name;
}
/* Implement the 'get_type_from_type_info' method. */
static struct type *
gnuv3_get_type_from_type_info (struct value *type_info_ptr)
{
/* We have to parse the type name, since in general there is not a
symbol for a type. This is somewhat bogus since there may be a
mis-parse. Another approach might be to re-use the demangler's
internal form to reconstruct the type somehow. */
std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
expression_up expr (parse_expression (type_name.c_str ()));
struct value *type_val = evaluate_type (expr.get ());
return value_type (type_val);
}
/* Determine if we are currently in a C++ thunk. If so, get the address
of the routine we are thunking to and continue to there instead. */
static CORE_ADDR
gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
{
CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
struct bound_minimal_symbol thunk_sym, fn_sym;
struct obj_section *section;
const char *thunk_name, *fn_name;
real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
if (real_stop_pc == 0)
real_stop_pc = stop_pc;
/* Find the linker symbol for this potential thunk. */
thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
section = find_pc_section (real_stop_pc);
if (thunk_sym.minsym == NULL || section == NULL)
return 0;
/* The symbol's demangled name should be something like "virtual
thunk to FUNCTION", where FUNCTION is the name of the function
being thunked to. */
thunk_name = MSYMBOL_DEMANGLED_NAME (thunk_sym.minsym);
if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
return 0;
fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
if (fn_sym.minsym == NULL)
return 0;
method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
/* Some targets have minimal symbols pointing to function descriptors
(powerpc 64 for example). Make sure to retrieve the address
of the real function from the function descriptor before passing on
the address to other layers of GDB. */
func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
current_top_target ());
if (func_addr != 0)
method_stop_pc = func_addr;
real_stop_pc = gdbarch_skip_trampoline_code
(gdbarch, frame, method_stop_pc);
if (real_stop_pc == 0)
real_stop_pc = method_stop_pc;
return real_stop_pc;
}
/* Return nonzero if a type should be passed by reference.
The rule in the v3 ABI document comes from section 3.1.1. If the
type has a non-trivial copy constructor or destructor, then the
caller must make a copy (by calling the copy constructor if there
is one or perform the copy itself otherwise), pass the address of
the copy, and then destroy the temporary (if necessary).
For return values with non-trivial copy constructors or
destructors, space will be allocated in the caller, and a pointer
will be passed as the first argument (preceding "this").
We don't have a bulletproof mechanism for determining whether a
constructor or destructor is trivial. For GCC and DWARF2 debug
information, we can check the artificial flag.
We don't do anything with the constructors or destructors,
but we have to get the argument passing right anyway. */
static int
gnuv3_pass_by_reference (struct type *type)
{
int fieldnum, fieldelem;
type = check_typedef (type);
/* We're only interested in things that can have methods. */
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
return 0;
/* A dynamic class has a non-trivial copy constructor.
See c++98 section 12.8 Copying class objects [class.copy]. */
if (gnuv3_dynamic_class (type))
return 1;
for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
fieldelem++)
{
struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
/* If this function is marked as artificial, it is compiler-generated,
and we assume it is trivial. */
if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
continue;
/* If we've found a destructor, we must pass this by reference. */
if (name[0] == '~')
return 1;
/* If the mangled name of this method doesn't indicate that it
is a constructor, we're not interested.
FIXME drow/2007-09-23: We could do this using the name of
the method and the name of the class instead of dealing
with the mangled name. We don't have a convenient function
to strip off both leading scope qualifiers and trailing
template arguments yet. */
if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
&& !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
continue;
/* If this method takes two arguments, and the second argument is
a reference to this class, then it is a copy constructor. */
if (TYPE_NFIELDS (fieldtype) == 2)
{
struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1);
if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
{
struct type *arg_target_type;
arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
if (class_types_same_p (arg_target_type, type))
return 1;
}
}
}
/* Even if all the constructors and destructors were artificial, one
of them may have invoked a non-artificial constructor or
destructor in a base class. If any base class needs to be passed
by reference, so does this class. Similarly for members, which
are constructed whenever this class is. We do not need to worry
about recursive loops here, since we are only looking at members
of complete class type. Also ignore any static members. */
for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
if (! field_is_static (&TYPE_FIELD (type, fieldnum))
&& gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
return 1;
return 0;
}
static void
init_gnuv3_ops (void)
{
vtable_type_gdbarch_data
= gdbarch_data_register_post_init (build_gdb_vtable_type);
std_type_info_gdbarch_data
= gdbarch_data_register_post_init (build_std_type_info_type);
gnu_v3_abi_ops.shortname = "gnu-v3";
gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
gnu_v3_abi_ops.is_destructor_name =
(enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
gnu_v3_abi_ops.is_constructor_name =
(enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
gnu_v3_abi_ops.get_typename_from_type_info
= gnuv3_get_typename_from_type_info;
gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
}
void
_initialize_gnu_v3_abi (void)
{
init_gnuv3_ops ();
register_cp_abi (&gnu_v3_abi_ops);
set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
}
|