aboutsummaryrefslogtreecommitdiff
path: root/gdb/gdbserver/low-nbsd.c
blob: 8bec0d98e57f8bba96fa4356ed48c82c29fc3c22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/* Low level interface to ptrace, for the remote server for GDB.
   Copyright 1986, 1987, 1993, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "server.h"
#include <sys/types.h>
#include <sys/wait.h>
#include "frame.h"
#include "inferior.h"

#include <stdio.h>
#include <errno.h>

/***************Begin MY defs*********************/
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
/***************End MY defs*********************/

#include <sys/ptrace.h>
#include <machine/reg.h>

#define RF(dst, src) \
	memcpy(&registers[REGISTER_BYTE(dst)], &src, sizeof(src))

#define RS(src, dst) \
	memcpy(&dst, &registers[REGISTER_BYTE(src)], sizeof(dst))

#ifdef __i386__
struct env387
  {
    unsigned short control;
    unsigned short r0;
    unsigned short status;
    unsigned short r1;
    unsigned short tag;  
    unsigned short r2;
    unsigned long eip;
    unsigned short code_seg;
    unsigned short opcode;
    unsigned long operand; 
    unsigned short operand_seg;
    unsigned short r3;
    unsigned char regs[8][10];
  };

/* i386_register_raw_size[i] is the number of bytes of storage in the
   actual machine representation for register i.  */
int i386_register_raw_size[MAX_NUM_REGS] = {
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,  
   4,  4,  4,  4,
  10, 10, 10, 10, 
  10, 10, 10, 10,
   4,  4,  4,  4,
   4,  4,  4,  4, 
  16, 16, 16, 16,
  16, 16, 16, 16, 
  4
}; 
   
int i386_register_byte[MAX_NUM_REGS];

static void       
initialize_arch (void)
{
  /* Initialize the table saying where each register starts in the
     register file.  */
  {
    int i, offset;

    offset = 0;
    for (i = 0; i < MAX_NUM_REGS; i++)
      {
        i386_register_byte[i] = offset;
        offset += i386_register_raw_size[i];
      }
  }   
}       
#endif	/* !__i386__ */

#ifdef __m68k__
static void
initialize_arch (void)
{
}
#endif	/* !__m68k__ */

#ifdef __ns32k__
static void
initialize_arch (void)
{
}
#endif	/* !__ns32k__ */

#ifdef __powerpc__
#include "ppc-tdep.h"

static void
initialize_arch (void)
{
}
#endif	/* !__powerpc__ */


/* Start an inferior process and returns its pid.
   ALLARGS is a vector of program-name and args. */

int
create_inferior (char *program, char **allargs)
{
  int pid;

  pid = fork ();
  if (pid < 0)
    perror_with_name ("fork");

  if (pid == 0)
    {
      ptrace (PT_TRACE_ME, 0, 0, 0);

      execv (program, allargs);

      fprintf (stderr, "Cannot exec %s: %s.\n", program,
	       errno < sys_nerr ? sys_errlist[errno] : "unknown error");
      fflush (stderr);
      _exit (0177);
    }

  return pid;
}

/* Attaching is not supported.  */
int
myattach (int pid)
{
  return -1;
}

/* Kill the inferior process.  Make us have no inferior.  */

void
kill_inferior (void)
{
  if (inferior_pid == 0)
    return;
  ptrace (PT_KILL, inferior_pid, 0, 0);
  wait (0);
  /*************inferior_died ();****VK**************/
}

/* Return nonzero if the given thread is still alive.  */
int
mythread_alive (int pid)
{
  return 1;
}

/* Wait for process, returns status */

unsigned char
mywait (char *status)
{
  int pid;
  int w;

  enable_async_io ();
  pid = waitpid (inferior_pid, &w, 0);
  disable_async_io ();
  if (pid != inferior_pid)
    perror_with_name ("wait");

  if (WIFEXITED (w))
    {
      fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
      *status = 'W';
      return ((unsigned char) WEXITSTATUS (w));
    }
  else if (!WIFSTOPPED (w))
    {
      fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
      *status = 'X';
      return ((unsigned char) WTERMSIG (w));
    }

  fetch_inferior_registers (0);

  *status = 'T';
  return ((unsigned char) WSTOPSIG (w));
}

/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */

void
myresume (int step, int signal)
{
  errno = 0;
  ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid, 
	  (PTRACE_ARG3_TYPE) 1, signal);
  if (errno)
    perror_with_name ("ptrace");
}


#ifdef __i386__
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */

void
fetch_inferior_registers (int ignored)
{
  struct reg inferior_registers;
  struct env387 inferior_fp_registers;

  ptrace (PT_GETREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) &inferior_registers, 0);
  ptrace (PT_GETFPREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);

  RF ( 0, inferior_registers.r_eax); 
  RF ( 1, inferior_registers.r_ecx);
  RF ( 2, inferior_registers.r_edx);
  RF ( 3, inferior_registers.r_ebx);
  RF ( 4, inferior_registers.r_esp);
  RF ( 5, inferior_registers.r_ebp);
  RF ( 6, inferior_registers.r_esi);
  RF ( 7, inferior_registers.r_edi);
  RF ( 8, inferior_registers.r_eip);
  RF ( 9, inferior_registers.r_eflags);
  RF (10, inferior_registers.r_cs);
  RF (11, inferior_registers.r_ss);
  RF (12, inferior_registers.r_ds);
  RF (13, inferior_registers.r_es);
  RF (14, inferior_registers.r_fs);
  RF (15, inferior_registers.r_gs);

  RF (FP0_REGNUM,     inferior_fp_registers.regs[0]);
  RF (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
  RF (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
  RF (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
  RF (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
  RF (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
  RF (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
  RF (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
  
  RF (FCTRL_REGNUM,   inferior_fp_registers.control);
  RF (FSTAT_REGNUM,   inferior_fp_registers.status);
  RF (FTAG_REGNUM,    inferior_fp_registers.tag);
  RF (FCS_REGNUM,     inferior_fp_registers.code_seg);
  RF (FCOFF_REGNUM,   inferior_fp_registers.eip);
  RF (FDS_REGNUM,     inferior_fp_registers.operand_seg);
  RF (FDOFF_REGNUM,   inferior_fp_registers.operand);
  RF (FOP_REGNUM,     inferior_fp_registers.opcode);
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (int ignored)
{
  struct reg inferior_registers;
  struct env387 inferior_fp_registers;

  RS ( 0, inferior_registers.r_eax); 
  RS ( 1, inferior_registers.r_ecx);
  RS ( 2, inferior_registers.r_edx);
  RS ( 3, inferior_registers.r_ebx);
  RS ( 4, inferior_registers.r_esp);
  RS ( 5, inferior_registers.r_ebp);
  RS ( 6, inferior_registers.r_esi);
  RS ( 7, inferior_registers.r_edi);
  RS ( 8, inferior_registers.r_eip);
  RS ( 9, inferior_registers.r_eflags);
  RS (10, inferior_registers.r_cs);
  RS (11, inferior_registers.r_ss);
  RS (12, inferior_registers.r_ds);
  RS (13, inferior_registers.r_es);
  RS (14, inferior_registers.r_fs);
  RS (15, inferior_registers.r_gs);

  RS (FP0_REGNUM,     inferior_fp_registers.regs[0]);
  RS (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
  RS (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
  RS (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
  RS (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
  RS (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
  RS (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
  RS (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
  
  RS (FCTRL_REGNUM,   inferior_fp_registers.control);
  RS (FSTAT_REGNUM,   inferior_fp_registers.status);
  RS (FTAG_REGNUM,    inferior_fp_registers.tag);
  RS (FCS_REGNUM,     inferior_fp_registers.code_seg);
  RS (FCOFF_REGNUM,   inferior_fp_registers.eip);
  RS (FDS_REGNUM,     inferior_fp_registers.operand_seg);
  RS (FDOFF_REGNUM,   inferior_fp_registers.operand);
  RS (FOP_REGNUM,     inferior_fp_registers.opcode);

  ptrace (PT_SETREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) &inferior_registers, 0);
  ptrace (PT_SETFPREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
}
#endif	/* !__i386__ */

#ifdef __m68k__
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */

void
fetch_inferior_registers (int regno)
{
  struct reg inferior_registers;
  struct fpreg inferior_fp_registers;

  ptrace (PT_GETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
  memcpy (&registers[REGISTER_BYTE (0)], &inferior_registers,
          sizeof (inferior_registers));

  ptrace (PT_GETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
  memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
          sizeof (inferior_fp_registers));
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (int regno)
{
  struct reg inferior_registers;
  struct fpreg inferior_fp_registers;

  memcpy (&inferior_registers, &registers[REGISTER_BYTE (0)],
          sizeof (inferior_registers));
  ptrace (PT_SETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);

  memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
          sizeof (inferior_fp_registers));
  ptrace (PT_SETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
}
#endif	/* !__m68k__ */


#ifdef __ns32k__
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */

void
fetch_inferior_registers (int regno)
{
  struct reg inferior_registers;
  struct fpreg inferior_fpregisters;

  ptrace (PT_GETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
  ptrace (PT_GETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);

  RF (R0_REGNUM + 0, inferior_registers.r_r0);
  RF (R0_REGNUM + 1, inferior_registers.r_r1);
  RF (R0_REGNUM + 2, inferior_registers.r_r2);
  RF (R0_REGNUM + 3, inferior_registers.r_r3);
  RF (R0_REGNUM + 4, inferior_registers.r_r4);
  RF (R0_REGNUM + 5, inferior_registers.r_r5);
  RF (R0_REGNUM + 6, inferior_registers.r_r6);
  RF (R0_REGNUM + 7, inferior_registers.r_r7);

  RF (SP_REGNUM, inferior_registers.r_sp);
  RF (DEPRECATED_FP_REGNUM, inferior_registers.r_fp);
  RF (PC_REGNUM, inferior_registers.r_pc);
  RF (PS_REGNUM, inferior_registers.r_psr);

  RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
  RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
  RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
  RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
  RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
  RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
  RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
  RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
  RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (int regno)
{
  struct reg inferior_registers;
  struct fpreg inferior_fpregisters;

  RS (R0_REGNUM + 0, inferior_registers.r_r0);
  RS (R0_REGNUM + 1, inferior_registers.r_r1);
  RS (R0_REGNUM + 2, inferior_registers.r_r2);
  RS (R0_REGNUM + 3, inferior_registers.r_r3);
  RS (R0_REGNUM + 4, inferior_registers.r_r4);
  RS (R0_REGNUM + 5, inferior_registers.r_r5);
  RS (R0_REGNUM + 6, inferior_registers.r_r6);
  RS (R0_REGNUM + 7, inferior_registers.r_r7);
  
  RS (SP_REGNUM, inferior_registers.r_sp);
  RS (DEPRECATED_FP_REGNUM, inferior_registers.r_fp);
  RS (PC_REGNUM, inferior_registers.r_pc);
  RS (PS_REGNUM, inferior_registers.r_psr);
  
  RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
  RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
  RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
  RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
  RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
  RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
  RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
  RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
  RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
  
  ptrace (PT_SETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
  ptrace (PT_SETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);

}
#endif	/* !__ns32k__ */

#ifdef __powerpc__
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */

void
fetch_inferior_registers (int regno)
{
  struct reg inferior_registers;
#ifdef PT_GETFPREGS
  struct fpreg inferior_fp_registers;
#endif
  int i;

  ptrace (PT_GETREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) & inferior_registers, 0);
  for (i = 0; i < 32; i++)
    RF (i, inferior_registers.fixreg[i]);
  RF (PPC_LR_REGNUM, inferior_registers.lr);
  RF (PPC_CR_REGNUM, inferior_registers.cr);
  RF (PPC_XER_REGNUM, inferior_registers.xer);
  RF (PPC_CTR_REGNUM, inferior_registers.ctr);
  RF (PC_REGNUM, inferior_registers.pc);

#ifdef PT_GETFPREGS
  ptrace (PT_GETFPREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
  for (i = 0; i < 32; i++)
    RF (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
#endif
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (int regno)
{
  struct reg inferior_registers;
#ifdef PT_SETFPREGS
  struct fpreg inferior_fp_registers;
#endif
  int i;

  for (i = 0; i < 32; i++)
    RS (i, inferior_registers.fixreg[i]);
  RS (PPC_LR_REGNUM, inferior_registers.lr);
  RS (PPC_CR_REGNUM, inferior_registers.cr);
  RS (PPC_XER_REGNUM, inferior_registers.xer);
  RS (PPC_CTR_REGNUM, inferior_registers.ctr);
  RS (PC_REGNUM, inferior_registers.pc);
  ptrace (PT_SETREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) & inferior_registers, 0);

#ifdef PT_SETFPREGS
  for (i = 0; i < 32; i++)
    RS (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
  ptrace (PT_SETFPREGS, inferior_pid,
	  (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
#endif
}
#endif	/* !__powerpc__ */

/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
   in the NEW_SUN_PTRACE case.
   It ought to be straightforward.  But it appears that writing did
   not write the data that I specified.  I cannot understand where
   it got the data that it actually did write.  */

/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */

void
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));

  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
      buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
    }

  /* Copy appropriate bytes out of the buffer.  */
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}

/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   returns the value of errno.  */

int
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  extern int errno;

  /* Fill start and end extra bytes of buffer with existing memory data.  */

  buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);

  if (count > 1)
    {
      buffer[count - 1]
	= ptrace (PT_READ_D, inferior_pid,
		  (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
    }

  /* Copy data to be written over corresponding part of buffer */

  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);

  /* Write the entire buffer.  */

  for (i = 0; i < count; i++, addr += sizeof (int))
    {
      errno = 0;
      ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      if (errno)
	return errno;
    }

  return 0;
}

void 
initialize_low (void)
{
  initialize_arch ();
}