aboutsummaryrefslogtreecommitdiff
path: root/gdb/gdbserver/linux-low.c
blob: da638f56751d80d3d71185394d5e6e10ff1b37a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
/* Low level interface to ptrace, for the remote server for GDB.
   Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2006, 2007, 2008 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "server.h"
#include "linux-low.h"

#include <sys/wait.h>
#include <stdio.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sched.h>

#ifndef PTRACE_GETSIGINFO
# define PTRACE_GETSIGINFO 0x4202
# define PTRACE_SETSIGINFO 0x4203
#endif

#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#endif

/* If the system headers did not provide the constants, hard-code the normal
   values.  */
#ifndef PTRACE_EVENT_FORK

#define PTRACE_SETOPTIONS	0x4200
#define PTRACE_GETEVENTMSG	0x4201

/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD	0x00000001
#define PTRACE_O_TRACEFORK	0x00000002
#define PTRACE_O_TRACEVFORK	0x00000004
#define PTRACE_O_TRACECLONE	0x00000008
#define PTRACE_O_TRACEEXEC	0x00000010
#define PTRACE_O_TRACEVFORKDONE	0x00000020
#define PTRACE_O_TRACEEXIT	0x00000040

/* Wait extended result codes for the above trace options.  */
#define PTRACE_EVENT_FORK	1
#define PTRACE_EVENT_VFORK	2
#define PTRACE_EVENT_CLONE	3
#define PTRACE_EVENT_EXEC	4
#define PTRACE_EVENT_VFORK_DONE	5
#define PTRACE_EVENT_EXIT	6

#endif /* PTRACE_EVENT_FORK */

/* We can't always assume that this flag is available, but all systems
   with the ptrace event handlers also have __WALL, so it's safe to use
   in some contexts.  */
#ifndef __WALL
#define __WALL          0x40000000 /* Wait for any child.  */
#endif

#ifdef __UCLIBC__
#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
#define HAS_NOMMU
#endif
#endif

/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
   representation of the thread ID.

   ``all_processes'' is keyed by the process ID - which on Linux is (presently)
   the same as the LWP ID.  */

struct inferior_list all_processes;

/* A list of all unknown processes which receive stop signals.  Some other
   process will presumably claim each of these as forked children
   momentarily.  */

struct inferior_list stopped_pids;

/* FIXME this is a bit of a hack, and could be removed.  */
int stopping_threads;

/* FIXME make into a target method?  */
int using_threads = 1;
static int thread_db_active;

static int must_set_ptrace_flags;

/* This flag is true iff we've just created or attached to a new inferior
   but it has not stopped yet.  As soon as it does, we need to call the
   low target's arch_setup callback.  */
static int new_inferior;

static void linux_resume_one_process (struct inferior_list_entry *entry,
				      int step, int signal, siginfo_t *info);
static void linux_resume (struct thread_resume *resume_info);
static void stop_all_processes (void);
static int linux_wait_for_event (struct thread_info *child);
static int check_removed_breakpoint (struct process_info *event_child);
static void *add_process (unsigned long pid);

struct pending_signals
{
  int signal;
  siginfo_t info;
  struct pending_signals *prev;
};

#define PTRACE_ARG3_TYPE long
#define PTRACE_XFER_TYPE long

#ifdef HAVE_LINUX_REGSETS
static int use_regsets_p = 1;
#endif

#define pid_of(proc) ((proc)->head.id)

/* FIXME: Delete eventually.  */
#define inferior_pid (pid_of (get_thread_process (current_inferior)))

static void
handle_extended_wait (struct process_info *event_child, int wstat)
{
  int event = wstat >> 16;
  struct process_info *new_process;

  if (event == PTRACE_EVENT_CLONE)
    {
      unsigned long new_pid;
      int ret, status;

      ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);

      /* If we haven't already seen the new PID stop, wait for it now.  */
      if (! pull_pid_from_list (&stopped_pids, new_pid))
	{
	  /* The new child has a pending SIGSTOP.  We can't affect it until it
	     hits the SIGSTOP, but we're already attached.  */

	  do {
	    ret = waitpid (new_pid, &status, __WALL);
	  } while (ret == -1 && errno == EINTR);

	  if (ret == -1)
	    perror_with_name ("waiting for new child");
	  else if (ret != new_pid)
	    warning ("wait returned unexpected PID %d", ret);
	  else if (!WIFSTOPPED (status))
	    warning ("wait returned unexpected status 0x%x", status);
	}

      ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);

      new_process = (struct process_info *) add_process (new_pid);
      add_thread (new_pid, new_process, new_pid);
      new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));

      /* Normally we will get the pending SIGSTOP.  But in some cases
	 we might get another signal delivered to the group first.
         If we do, be sure not to lose it.  */
      if (WSTOPSIG (status) == SIGSTOP)
	{
	  if (stopping_threads)
	    new_process->stopped = 1;
	  else
	    ptrace (PTRACE_CONT, new_pid, 0, 0);
	}
      else
	{
	  new_process->stop_expected = 1;
	  if (stopping_threads)
	    {
	      new_process->stopped = 1;
	      new_process->status_pending_p = 1;
	      new_process->status_pending = status;
	    }
	  else
	    /* Pass the signal on.  This is what GDB does - except
	       shouldn't we really report it instead?  */
	    ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
	}

      /* Always resume the current thread.  If we are stopping
	 threads, it will have a pending SIGSTOP; we may as well
	 collect it now.  */
      linux_resume_one_process (&event_child->head,
				event_child->stepping, 0, NULL);
    }
}

/* This function should only be called if the process got a SIGTRAP.
   The SIGTRAP could mean several things.

   On i386, where decr_pc_after_break is non-zero:
   If we were single-stepping this process using PTRACE_SINGLESTEP,
   we will get only the one SIGTRAP (even if the instruction we
   stepped over was a breakpoint).  The value of $eip will be the
   next instruction.
   If we continue the process using PTRACE_CONT, we will get a
   SIGTRAP when we hit a breakpoint.  The value of $eip will be
   the instruction after the breakpoint (i.e. needs to be
   decremented).  If we report the SIGTRAP to GDB, we must also
   report the undecremented PC.  If we cancel the SIGTRAP, we
   must resume at the decremented PC.

   (Presumably, not yet tested) On a non-decr_pc_after_break machine
   with hardware or kernel single-step:
   If we single-step over a breakpoint instruction, our PC will
   point at the following instruction.  If we continue and hit a
   breakpoint instruction, our PC will point at the breakpoint
   instruction.  */

static CORE_ADDR
get_stop_pc (void)
{
  CORE_ADDR stop_pc = (*the_low_target.get_pc) ();

  if (get_thread_process (current_inferior)->stepping)
    return stop_pc;
  else
    return stop_pc - the_low_target.decr_pc_after_break;
}

static void *
add_process (unsigned long pid)
{
  struct process_info *process;

  process = (struct process_info *) malloc (sizeof (*process));
  memset (process, 0, sizeof (*process));

  process->head.id = pid;
  process->lwpid = pid;

  add_inferior_to_list (&all_processes, &process->head);

  return process;
}

/* Start an inferior process and returns its pid.
   ALLARGS is a vector of program-name and args. */

static int
linux_create_inferior (char *program, char **allargs)
{
  void *new_process;
  int pid;

#if defined(__UCLIBC__) && defined(HAS_NOMMU)
  pid = vfork ();
#else
  pid = fork ();
#endif
  if (pid < 0)
    perror_with_name ("fork");

  if (pid == 0)
    {
      ptrace (PTRACE_TRACEME, 0, 0, 0);

      signal (__SIGRTMIN + 1, SIG_DFL);

      setpgid (0, 0);

      execv (program, allargs);
      if (errno == ENOENT)
	execvp (program, allargs);

      fprintf (stderr, "Cannot exec %s: %s.\n", program,
	       strerror (errno));
      fflush (stderr);
      _exit (0177);
    }

  new_process = add_process (pid);
  add_thread (pid, new_process, pid);
  must_set_ptrace_flags = 1;
  new_inferior = 1;

  return pid;
}

/* Attach to an inferior process.  */

void
linux_attach_lwp (unsigned long pid)
{
  struct process_info *new_process;

  if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
    {
      if (all_threads.head != NULL)
	{
	  /* If we fail to attach to an LWP, just warn.  */
	  fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
		   strerror (errno), errno);
	  fflush (stderr);
	  return;
	}
      else
	/* If we fail to attach to a process, report an error.  */
	error ("Cannot attach to process %ld: %s (%d)\n", pid,
	       strerror (errno), errno);
    }

  ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);

  new_process = (struct process_info *) add_process (pid);
  add_thread (pid, new_process, pid);
  new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));

  /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
     brings it to a halt.  We should ignore that SIGSTOP and resume the process
     (unless this is the first process, in which case the flag will be cleared
     in linux_attach).

     On the other hand, if we are currently trying to stop all threads, we
     should treat the new thread as if we had sent it a SIGSTOP.  This works
     because we are guaranteed that add_process added us to the end of the
     list, and so the new thread has not yet reached wait_for_sigstop (but
     will).  */
  if (! stopping_threads)
    new_process->stop_expected = 1;
}

int
linux_attach (unsigned long pid)
{
  struct process_info *process;

  linux_attach_lwp (pid);

  /* Don't ignore the initial SIGSTOP if we just attached to this process.
     It will be collected by wait shortly.  */
  process = (struct process_info *) find_inferior_id (&all_processes, pid);
  process->stop_expected = 0;

  new_inferior = 1;

  return 0;
}

/* Kill the inferior process.  Make us have no inferior.  */

static void
linux_kill_one_process (struct inferior_list_entry *entry)
{
  struct thread_info *thread = (struct thread_info *) entry;
  struct process_info *process = get_thread_process (thread);
  int wstat;

  /* We avoid killing the first thread here, because of a Linux kernel (at
     least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
     the children get a chance to be reaped, it will remain a zombie
     forever.  */
  if (entry == all_threads.head)
    return;

  do
    {
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);

      /* Make sure it died.  The loop is most likely unnecessary.  */
      wstat = linux_wait_for_event (thread);
    } while (WIFSTOPPED (wstat));
}

static void
linux_kill (void)
{
  struct thread_info *thread = (struct thread_info *) all_threads.head;
  struct process_info *process;
  int wstat;

  if (thread == NULL)
    return;

  for_each_inferior (&all_threads, linux_kill_one_process);

  /* See the comment in linux_kill_one_process.  We did not kill the first
     thread in the list, so do so now.  */
  process = get_thread_process (thread);
  do
    {
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);

      /* Make sure it died.  The loop is most likely unnecessary.  */
      wstat = linux_wait_for_event (thread);
    } while (WIFSTOPPED (wstat));

  clear_inferiors ();
  free (all_processes.head);
  all_processes.head = all_processes.tail = NULL;
}

static void
linux_detach_one_process (struct inferior_list_entry *entry)
{
  struct thread_info *thread = (struct thread_info *) entry;
  struct process_info *process = get_thread_process (thread);

  /* Make sure the process isn't stopped at a breakpoint that's
     no longer there.  */
  check_removed_breakpoint (process);

  /* If this process is stopped but is expecting a SIGSTOP, then make
     sure we take care of that now.  This isn't absolutely guaranteed
     to collect the SIGSTOP, but is fairly likely to.  */
  if (process->stop_expected)
    {
      /* Clear stop_expected, so that the SIGSTOP will be reported.  */
      process->stop_expected = 0;
      if (process->stopped)
	linux_resume_one_process (&process->head, 0, 0, NULL);
      linux_wait_for_event (thread);
    }

  /* Flush any pending changes to the process's registers.  */
  regcache_invalidate_one ((struct inferior_list_entry *)
			   get_process_thread (process));

  /* Finally, let it resume.  */
  ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
}

static int
linux_detach (void)
{
  delete_all_breakpoints ();
  for_each_inferior (&all_threads, linux_detach_one_process);
  clear_inferiors ();
  free (all_processes.head);
  all_processes.head = all_processes.tail = NULL;
  return 0;
}

static void
linux_join (void)
{
  extern unsigned long signal_pid;
  int status, ret;

  do {
    ret = waitpid (signal_pid, &status, 0);
    if (WIFEXITED (status) || WIFSIGNALED (status))
      break;
  } while (ret != -1 || errno != ECHILD);
}

/* Return nonzero if the given thread is still alive.  */
static int
linux_thread_alive (unsigned long lwpid)
{
  if (find_inferior_id (&all_threads, lwpid) != NULL)
    return 1;
  else
    return 0;
}

/* Return nonzero if this process stopped at a breakpoint which
   no longer appears to be inserted.  Also adjust the PC
   appropriately to resume where the breakpoint used to be.  */
static int
check_removed_breakpoint (struct process_info *event_child)
{
  CORE_ADDR stop_pc;
  struct thread_info *saved_inferior;

  if (event_child->pending_is_breakpoint == 0)
    return 0;

  if (debug_threads)
    fprintf (stderr, "Checking for breakpoint in process %ld.\n",
	     event_child->lwpid);

  saved_inferior = current_inferior;
  current_inferior = get_process_thread (event_child);

  stop_pc = get_stop_pc ();

  /* If the PC has changed since we stopped, then we shouldn't do
     anything.  This happens if, for instance, GDB handled the
     decr_pc_after_break subtraction itself.  */
  if (stop_pc != event_child->pending_stop_pc)
    {
      if (debug_threads)
	fprintf (stderr, "Ignoring, PC was changed.  Old PC was 0x%08llx\n",
		 event_child->pending_stop_pc);

      event_child->pending_is_breakpoint = 0;
      current_inferior = saved_inferior;
      return 0;
    }

  /* If the breakpoint is still there, we will report hitting it.  */
  if ((*the_low_target.breakpoint_at) (stop_pc))
    {
      if (debug_threads)
	fprintf (stderr, "Ignoring, breakpoint is still present.\n");
      current_inferior = saved_inferior;
      return 0;
    }

  if (debug_threads)
    fprintf (stderr, "Removed breakpoint.\n");

  /* For decr_pc_after_break targets, here is where we perform the
     decrement.  We go immediately from this function to resuming,
     and can not safely call get_stop_pc () again.  */
  if (the_low_target.set_pc != NULL)
    (*the_low_target.set_pc) (stop_pc);

  /* We consumed the pending SIGTRAP.  */
  event_child->pending_is_breakpoint = 0;
  event_child->status_pending_p = 0;
  event_child->status_pending = 0;

  current_inferior = saved_inferior;
  return 1;
}

/* Return 1 if this process has an interesting status pending.  This function
   may silently resume an inferior process.  */
static int
status_pending_p (struct inferior_list_entry *entry, void *dummy)
{
  struct process_info *process = (struct process_info *) entry;

  if (process->status_pending_p)
    if (check_removed_breakpoint (process))
      {
	/* This thread was stopped at a breakpoint, and the breakpoint
	   is now gone.  We were told to continue (or step...) all threads,
	   so GDB isn't trying to single-step past this breakpoint.
	   So instead of reporting the old SIGTRAP, pretend we got to
	   the breakpoint just after it was removed instead of just
	   before; resume the process.  */
	linux_resume_one_process (&process->head, 0, 0, NULL);
	return 0;
      }

  return process->status_pending_p;
}

static void
linux_wait_for_process (struct process_info **childp, int *wstatp)
{
  int ret;
  int to_wait_for = -1;

  if (*childp != NULL)
    to_wait_for = (*childp)->lwpid;

retry:
  while (1)
    {
      ret = waitpid (to_wait_for, wstatp, WNOHANG);

      if (ret == -1)
	{
	  if (errno != ECHILD)
	    perror_with_name ("waitpid");
	}
      else if (ret > 0)
	break;

      ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);

      if (ret == -1)
	{
	  if (errno != ECHILD)
	    perror_with_name ("waitpid (WCLONE)");
	}
      else if (ret > 0)
	break;

      usleep (1000);
    }

  if (debug_threads
      && (!WIFSTOPPED (*wstatp)
	  || (WSTOPSIG (*wstatp) != 32
	      && WSTOPSIG (*wstatp) != 33)))
    fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);

  if (to_wait_for == -1)
    *childp = (struct process_info *) find_inferior_id (&all_processes, ret);

  /* If we didn't find a process, one of two things presumably happened:
     - A process we started and then detached from has exited.  Ignore it.
     - A process we are controlling has forked and the new child's stop
     was reported to us by the kernel.  Save its PID.  */
  if (*childp == NULL && WIFSTOPPED (*wstatp))
    {
      add_pid_to_list (&stopped_pids, ret);
      goto retry;
    }
  else if (*childp == NULL)
    goto retry;

  (*childp)->stopped = 1;
  (*childp)->pending_is_breakpoint = 0;

  (*childp)->last_status = *wstatp;

  /* Architecture-specific setup after inferior is running.
     This needs to happen after we have attached to the inferior
     and it is stopped for the first time, but before we access
     any inferior registers.  */
  if (new_inferior)
    {
      the_low_target.arch_setup ();
      new_inferior = 0;
    }

  if (debug_threads
      && WIFSTOPPED (*wstatp))
    {
      current_inferior = (struct thread_info *)
	find_inferior_id (&all_threads, (*childp)->lwpid);
      /* For testing only; i386_stop_pc prints out a diagnostic.  */
      if (the_low_target.get_pc != NULL)
	get_stop_pc ();
    }
}

static int
linux_wait_for_event (struct thread_info *child)
{
  CORE_ADDR stop_pc;
  struct process_info *event_child;
  int wstat;
  int bp_status;

  /* Check for a process with a pending status.  */
  /* It is possible that the user changed the pending task's registers since
     it stopped.  We correctly handle the change of PC if we hit a breakpoint
     (in check_removed_breakpoint); signals should be reported anyway.  */
  if (child == NULL)
    {
      event_child = (struct process_info *)
	find_inferior (&all_processes, status_pending_p, NULL);
      if (debug_threads && event_child)
	fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
    }
  else
    {
      event_child = get_thread_process (child);
      if (event_child->status_pending_p
	  && check_removed_breakpoint (event_child))
	event_child = NULL;
    }

  if (event_child != NULL)
    {
      if (event_child->status_pending_p)
	{
	  if (debug_threads)
	    fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
		     event_child->lwpid, event_child->status_pending);
	  wstat = event_child->status_pending;
	  event_child->status_pending_p = 0;
	  event_child->status_pending = 0;
	  current_inferior = get_process_thread (event_child);
	  return wstat;
	}
    }

  /* We only enter this loop if no process has a pending wait status.  Thus
     any action taken in response to a wait status inside this loop is
     responding as soon as we detect the status, not after any pending
     events.  */
  while (1)
    {
      if (child == NULL)
	event_child = NULL;
      else
	event_child = get_thread_process (child);

      linux_wait_for_process (&event_child, &wstat);

      if (event_child == NULL)
	error ("event from unknown child");

      current_inferior = (struct thread_info *)
	find_inferior_id (&all_threads, event_child->lwpid);

      /* Check for thread exit.  */
      if (! WIFSTOPPED (wstat))
	{
	  if (debug_threads)
	    fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);

	  /* If the last thread is exiting, just return.  */
	  if (all_threads.head == all_threads.tail)
	    return wstat;

	  dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));

	  remove_inferior (&all_processes, &event_child->head);
	  free (event_child);
	  remove_thread (current_inferior);
	  current_inferior = (struct thread_info *) all_threads.head;

	  /* If we were waiting for this particular child to do something...
	     well, it did something.  */
	  if (child != NULL)
	    return wstat;

	  /* Wait for a more interesting event.  */
	  continue;
	}

      if (WIFSTOPPED (wstat)
	  && WSTOPSIG (wstat) == SIGSTOP
	  && event_child->stop_expected)
	{
	  if (debug_threads)
	    fprintf (stderr, "Expected stop.\n");
	  event_child->stop_expected = 0;
	  linux_resume_one_process (&event_child->head,
				    event_child->stepping, 0, NULL);
	  continue;
	}

      if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
	  && wstat >> 16 != 0)
	{
	  handle_extended_wait (event_child, wstat);
	  continue;
	}

      /* If GDB is not interested in this signal, don't stop other
	 threads, and don't report it to GDB.  Just resume the
	 inferior right away.  We do this for threading-related
	 signals as well as any that GDB specifically requested we
	 ignore.  But never ignore SIGSTOP if we sent it ourselves,
	 and do not ignore signals when stepping - they may require
	 special handling to skip the signal handler.  */
      /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
	 thread library?  */
      if (WIFSTOPPED (wstat)
	  && !event_child->stepping
	  && (
#ifdef USE_THREAD_DB
	      (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
				    || WSTOPSIG (wstat) == __SIGRTMIN + 1))
	      ||
#endif
	      (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
	       && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
	{
	  siginfo_t info, *info_p;

	  if (debug_threads)
	    fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
		     WSTOPSIG (wstat), event_child->head.id);

	  if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
	    info_p = &info;
	  else
	    info_p = NULL;
	  linux_resume_one_process (&event_child->head,
				    event_child->stepping,
				    WSTOPSIG (wstat), info_p);
	  continue;
	}

      /* If this event was not handled above, and is not a SIGTRAP, report
	 it.  */
      if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
	return wstat;

      /* If this target does not support breakpoints, we simply report the
	 SIGTRAP; it's of no concern to us.  */
      if (the_low_target.get_pc == NULL)
	return wstat;

      stop_pc = get_stop_pc ();

      /* bp_reinsert will only be set if we were single-stepping.
	 Notice that we will resume the process after hitting
	 a gdbserver breakpoint; single-stepping to/over one
	 is not supported (yet).  */
      if (event_child->bp_reinsert != 0)
	{
	  if (debug_threads)
	    fprintf (stderr, "Reinserted breakpoint.\n");
	  reinsert_breakpoint (event_child->bp_reinsert);
	  event_child->bp_reinsert = 0;

	  /* Clear the single-stepping flag and SIGTRAP as we resume.  */
	  linux_resume_one_process (&event_child->head, 0, 0, NULL);
	  continue;
	}

      bp_status = check_breakpoints (stop_pc);

      if (bp_status != 0)
	{
	  if (debug_threads)
	    fprintf (stderr, "Hit a gdbserver breakpoint.\n");

	  /* We hit one of our own breakpoints.  We mark it as a pending
	     breakpoint, so that check_removed_breakpoint () will do the PC
	     adjustment for us at the appropriate time.  */
	  event_child->pending_is_breakpoint = 1;
	  event_child->pending_stop_pc = stop_pc;

	  /* We may need to put the breakpoint back.  We continue in the event
	     loop instead of simply replacing the breakpoint right away,
	     in order to not lose signals sent to the thread that hit the
	     breakpoint.  Unfortunately this increases the window where another
	     thread could sneak past the removed breakpoint.  For the current
	     use of server-side breakpoints (thread creation) this is
	     acceptable; but it needs to be considered before this breakpoint
	     mechanism can be used in more general ways.  For some breakpoints
	     it may be necessary to stop all other threads, but that should
	     be avoided where possible.

	     If breakpoint_reinsert_addr is NULL, that means that we can
	     use PTRACE_SINGLESTEP on this platform.  Uninsert the breakpoint,
	     mark it for reinsertion, and single-step.

	     Otherwise, call the target function to figure out where we need
	     our temporary breakpoint, create it, and continue executing this
	     process.  */
	  if (bp_status == 2)
	    /* No need to reinsert.  */
	    linux_resume_one_process (&event_child->head, 0, 0, NULL);
	  else if (the_low_target.breakpoint_reinsert_addr == NULL)
	    {
	      event_child->bp_reinsert = stop_pc;
	      uninsert_breakpoint (stop_pc);
	      linux_resume_one_process (&event_child->head, 1, 0, NULL);
	    }
	  else
	    {
	      reinsert_breakpoint_by_bp
		(stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
	      linux_resume_one_process (&event_child->head, 0, 0, NULL);
	    }

	  continue;
	}

      if (debug_threads)
	fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");

      /* If we were single-stepping, we definitely want to report the
	 SIGTRAP.  The single-step operation has completed, so also
         clear the stepping flag; in general this does not matter,
	 because the SIGTRAP will be reported to the client, which
	 will give us a new action for this thread, but clear it for
	 consistency anyway.  It's safe to clear the stepping flag
         because the only consumer of get_stop_pc () after this point
	 is check_removed_breakpoint, and pending_is_breakpoint is not
	 set.  It might be wiser to use a step_completed flag instead.  */
      if (event_child->stepping)
	{
	  event_child->stepping = 0;
	  return wstat;
	}

      /* A SIGTRAP that we can't explain.  It may have been a breakpoint.
	 Check if it is a breakpoint, and if so mark the process information
	 accordingly.  This will handle both the necessary fiddling with the
	 PC on decr_pc_after_break targets and suppressing extra threads
	 hitting a breakpoint if two hit it at once and then GDB removes it
	 after the first is reported.  Arguably it would be better to report
	 multiple threads hitting breakpoints simultaneously, but the current
	 remote protocol does not allow this.  */
      if ((*the_low_target.breakpoint_at) (stop_pc))
	{
	  event_child->pending_is_breakpoint = 1;
	  event_child->pending_stop_pc = stop_pc;
	}

      return wstat;
    }

  /* NOTREACHED */
  return 0;
}

/* Wait for process, returns status.  */

static unsigned char
linux_wait (char *status)
{
  int w;
  struct thread_info *child = NULL;

retry:
  /* If we were only supposed to resume one thread, only wait for
     that thread - if it's still alive.  If it died, however - which
     can happen if we're coming from the thread death case below -
     then we need to make sure we restart the other threads.  We could
     pick a thread at random or restart all; restarting all is less
     arbitrary.  */
  if (cont_thread != 0 && cont_thread != -1)
    {
      child = (struct thread_info *) find_inferior_id (&all_threads,
						       cont_thread);

      /* No stepping, no signal - unless one is pending already, of course.  */
      if (child == NULL)
	{
	  struct thread_resume resume_info;
	  resume_info.thread = -1;
	  resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
	  linux_resume (&resume_info);
	}
    }

  w = linux_wait_for_event (child);
  stop_all_processes ();

  if (must_set_ptrace_flags)
    {
      ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
      must_set_ptrace_flags = 0;
    }

  /* If we are waiting for a particular child, and it exited,
     linux_wait_for_event will return its exit status.  Similarly if
     the last child exited.  If this is not the last child, however,
     do not report it as exited until there is a 'thread exited' response
     available in the remote protocol.  Instead, just wait for another event.
     This should be safe, because if the thread crashed we will already
     have reported the termination signal to GDB; that should stop any
     in-progress stepping operations, etc.

     Report the exit status of the last thread to exit.  This matches
     LinuxThreads' behavior.  */

  if (all_threads.head == all_threads.tail)
    {
      if (WIFEXITED (w))
	{
	  fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
	  *status = 'W';
	  clear_inferiors ();
	  free (all_processes.head);
	  all_processes.head = all_processes.tail = NULL;
	  return WEXITSTATUS (w);
	}
      else if (!WIFSTOPPED (w))
	{
	  fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
	  *status = 'X';
	  clear_inferiors ();
	  free (all_processes.head);
	  all_processes.head = all_processes.tail = NULL;
	  return target_signal_from_host (WTERMSIG (w));
	}
    }
  else
    {
      if (!WIFSTOPPED (w))
	goto retry;
    }

  *status = 'T';
  return target_signal_from_host (WSTOPSIG (w));
}

/* Send a signal to an LWP.  For LinuxThreads, kill is enough; however, if
   thread groups are in use, we need to use tkill.  */

static int
kill_lwp (unsigned long lwpid, int signo)
{
  static int tkill_failed;

  errno = 0;

#ifdef SYS_tkill
  if (!tkill_failed)
    {
      int ret = syscall (SYS_tkill, lwpid, signo);
      if (errno != ENOSYS)
        return ret;
      errno = 0;
      tkill_failed = 1;
    }
#endif

  return kill (lwpid, signo);
}

static void
send_sigstop (struct inferior_list_entry *entry)
{
  struct process_info *process = (struct process_info *) entry;

  if (process->stopped)
    return;

  /* If we already have a pending stop signal for this process, don't
     send another.  */
  if (process->stop_expected)
    {
      if (debug_threads)
	fprintf (stderr, "Have pending sigstop for process %ld\n",
		 process->lwpid);

      /* We clear the stop_expected flag so that wait_for_sigstop
	 will receive the SIGSTOP event (instead of silently resuming and
	 waiting again).  It'll be reset below.  */
      process->stop_expected = 0;
      return;
    }

  if (debug_threads)
    fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);

  kill_lwp (process->head.id, SIGSTOP);
}

static void
wait_for_sigstop (struct inferior_list_entry *entry)
{
  struct process_info *process = (struct process_info *) entry;
  struct thread_info *saved_inferior, *thread;
  int wstat;
  unsigned long saved_tid;

  if (process->stopped)
    return;

  saved_inferior = current_inferior;
  saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
  thread = (struct thread_info *) find_inferior_id (&all_threads,
						    process->lwpid);
  wstat = linux_wait_for_event (thread);

  /* If we stopped with a non-SIGSTOP signal, save it for later
     and record the pending SIGSTOP.  If the process exited, just
     return.  */
  if (WIFSTOPPED (wstat)
      && WSTOPSIG (wstat) != SIGSTOP)
    {
      if (debug_threads)
	fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
		 process->lwpid, wstat);
      process->status_pending_p = 1;
      process->status_pending = wstat;
      process->stop_expected = 1;
    }

  if (linux_thread_alive (saved_tid))
    current_inferior = saved_inferior;
  else
    {
      if (debug_threads)
	fprintf (stderr, "Previously current thread died.\n");

      /* Set a valid thread as current.  */
      set_desired_inferior (0);
    }
}

static void
stop_all_processes (void)
{
  stopping_threads = 1;
  for_each_inferior (&all_processes, send_sigstop);
  for_each_inferior (&all_processes, wait_for_sigstop);
  stopping_threads = 0;
}

/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */

static void
linux_resume_one_process (struct inferior_list_entry *entry,
			  int step, int signal, siginfo_t *info)
{
  struct process_info *process = (struct process_info *) entry;
  struct thread_info *saved_inferior;

  if (process->stopped == 0)
    return;

  /* If we have pending signals or status, and a new signal, enqueue the
     signal.  Also enqueue the signal if we are waiting to reinsert a
     breakpoint; it will be picked up again below.  */
  if (signal != 0
      && (process->status_pending_p || process->pending_signals != NULL
	  || process->bp_reinsert != 0))
    {
      struct pending_signals *p_sig;
      p_sig = malloc (sizeof (*p_sig));
      p_sig->prev = process->pending_signals;
      p_sig->signal = signal;
      if (info == NULL)
	memset (&p_sig->info, 0, sizeof (siginfo_t));
      else
	memcpy (&p_sig->info, info, sizeof (siginfo_t));
      process->pending_signals = p_sig;
    }

  if (process->status_pending_p && !check_removed_breakpoint (process))
    return;

  saved_inferior = current_inferior;
  current_inferior = get_process_thread (process);

  if (debug_threads)
    fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
	     step ? "step" : "continue", signal,
	     process->stop_expected ? "expected" : "not expected");

  /* This bit needs some thinking about.  If we get a signal that
     we must report while a single-step reinsert is still pending,
     we often end up resuming the thread.  It might be better to
     (ew) allow a stack of pending events; then we could be sure that
     the reinsert happened right away and not lose any signals.

     Making this stack would also shrink the window in which breakpoints are
     uninserted (see comment in linux_wait_for_process) but not enough for
     complete correctness, so it won't solve that problem.  It may be
     worthwhile just to solve this one, however.  */
  if (process->bp_reinsert != 0)
    {
      if (debug_threads)
	fprintf (stderr, "  pending reinsert at %08lx", (long)process->bp_reinsert);
      if (step == 0)
	fprintf (stderr, "BAD - reinserting but not stepping.\n");
      step = 1;

      /* Postpone any pending signal.  It was enqueued above.  */
      signal = 0;
    }

  check_removed_breakpoint (process);

  if (debug_threads && the_low_target.get_pc != NULL)
    {
      fprintf (stderr, "  ");
      (*the_low_target.get_pc) ();
    }

  /* If we have pending signals, consume one unless we are trying to reinsert
     a breakpoint.  */
  if (process->pending_signals != NULL && process->bp_reinsert == 0)
    {
      struct pending_signals **p_sig;

      p_sig = &process->pending_signals;
      while ((*p_sig)->prev != NULL)
	p_sig = &(*p_sig)->prev;

      signal = (*p_sig)->signal;
      if ((*p_sig)->info.si_signo != 0)
	ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);

      free (*p_sig);
      *p_sig = NULL;
    }

  regcache_invalidate_one ((struct inferior_list_entry *)
			   get_process_thread (process));
  errno = 0;
  process->stopped = 0;
  process->stepping = step;
  ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);

  current_inferior = saved_inferior;
  if (errno)
    perror_with_name ("ptrace");
}

static struct thread_resume *resume_ptr;

/* This function is called once per thread.  We look up the thread
   in RESUME_PTR, and mark the thread with a pointer to the appropriate
   resume request.

   This algorithm is O(threads * resume elements), but resume elements
   is small (and will remain small at least until GDB supports thread
   suspension).  */
static void
linux_set_resume_request (struct inferior_list_entry *entry)
{
  struct process_info *process;
  struct thread_info *thread;
  int ndx;

  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);

  ndx = 0;
  while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
    ndx++;

  process->resume = &resume_ptr[ndx];
}

/* This function is called once per thread.  We check the thread's resume
   request, which will tell us whether to resume, step, or leave the thread
   stopped; and what signal, if any, it should be sent.  For threads which
   we aren't explicitly told otherwise, we preserve the stepping flag; this
   is used for stepping over gdbserver-placed breakpoints.  */

static void
linux_continue_one_thread (struct inferior_list_entry *entry)
{
  struct process_info *process;
  struct thread_info *thread;
  int step;

  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);

  if (process->resume->leave_stopped)
    return;

  if (process->resume->thread == -1)
    step = process->stepping || process->resume->step;
  else
    step = process->resume->step;

  linux_resume_one_process (&process->head, step, process->resume->sig, NULL);

  process->resume = NULL;
}

/* This function is called once per thread.  We check the thread's resume
   request, which will tell us whether to resume, step, or leave the thread
   stopped; and what signal, if any, it should be sent.  We queue any needed
   signals, since we won't actually resume.  We already have a pending event
   to report, so we don't need to preserve any step requests; they should
   be re-issued if necessary.  */

static void
linux_queue_one_thread (struct inferior_list_entry *entry)
{
  struct process_info *process;
  struct thread_info *thread;

  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);

  if (process->resume->leave_stopped)
    return;

  /* If we have a new signal, enqueue the signal.  */
  if (process->resume->sig != 0)
    {
      struct pending_signals *p_sig;
      p_sig = malloc (sizeof (*p_sig));
      p_sig->prev = process->pending_signals;
      p_sig->signal = process->resume->sig;
      memset (&p_sig->info, 0, sizeof (siginfo_t));

      /* If this is the same signal we were previously stopped by,
	 make sure to queue its siginfo.  We can ignore the return
	 value of ptrace; if it fails, we'll skip
	 PTRACE_SETSIGINFO.  */
      if (WIFSTOPPED (process->last_status)
	  && WSTOPSIG (process->last_status) == process->resume->sig)
	ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);

      process->pending_signals = p_sig;
    }

  process->resume = NULL;
}

/* Set DUMMY if this process has an interesting status pending.  */
static int
resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
{
  struct process_info *process = (struct process_info *) entry;

  /* Processes which will not be resumed are not interesting, because
     we might not wait for them next time through linux_wait.  */
  if (process->resume->leave_stopped)
    return 0;

  /* If this thread has a removed breakpoint, we won't have any
     events to report later, so check now.  check_removed_breakpoint
     may clear status_pending_p.  We avoid calling check_removed_breakpoint
     for any thread that we are not otherwise going to resume - this
     lets us preserve stopped status when two threads hit a breakpoint.
     GDB removes the breakpoint to single-step a particular thread
     past it, then re-inserts it and resumes all threads.  We want
     to report the second thread without resuming it in the interim.  */
  if (process->status_pending_p)
    check_removed_breakpoint (process);

  if (process->status_pending_p)
    * (int *) flag_p = 1;

  return 0;
}

static void
linux_resume (struct thread_resume *resume_info)
{
  int pending_flag;

  /* Yes, the use of a global here is rather ugly.  */
  resume_ptr = resume_info;

  for_each_inferior (&all_threads, linux_set_resume_request);

  /* If there is a thread which would otherwise be resumed, which
     has a pending status, then don't resume any threads - we can just
     report the pending status.  Make sure to queue any signals
     that would otherwise be sent.  */
  pending_flag = 0;
  find_inferior (&all_processes, resume_status_pending_p, &pending_flag);

  if (debug_threads)
    {
      if (pending_flag)
	fprintf (stderr, "Not resuming, pending status\n");
      else
	fprintf (stderr, "Resuming, no pending status\n");
    }

  if (pending_flag)
    for_each_inferior (&all_threads, linux_queue_one_thread);
  else
    for_each_inferior (&all_threads, linux_continue_one_thread);
}

#ifdef HAVE_LINUX_USRREGS

int
register_addr (int regnum)
{
  int addr;

  if (regnum < 0 || regnum >= the_low_target.num_regs)
    error ("Invalid register number %d.", regnum);

  addr = the_low_target.regmap[regnum];

  return addr;
}

/* Fetch one register.  */
static void
fetch_register (int regno)
{
  CORE_ADDR regaddr;
  int i, size;
  char *buf;

  if (regno >= the_low_target.num_regs)
    return;
  if ((*the_low_target.cannot_fetch_register) (regno))
    return;

  regaddr = register_addr (regno);
  if (regaddr == -1)
    return;
  size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
         & - sizeof (PTRACE_XFER_TYPE);
  buf = alloca (size);
  for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
    {
      errno = 0;
      *(PTRACE_XFER_TYPE *) (buf + i) =
	ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
	{
	  /* Warning, not error, in case we are attached; sometimes the
	     kernel doesn't let us at the registers.  */
	  char *err = strerror (errno);
	  char *msg = alloca (strlen (err) + 128);
	  sprintf (msg, "reading register %d: %s", regno, err);
	  error (msg);
	  goto error_exit;
	}
    }

  if (the_low_target.supply_ptrace_register)
    the_low_target.supply_ptrace_register (regno, buf);
  else
    supply_register (regno, buf);

error_exit:;
}

/* Fetch all registers, or just one, from the child process.  */
static void
usr_fetch_inferior_registers (int regno)
{
  if (regno == -1 || regno == 0)
    for (regno = 0; regno < the_low_target.num_regs; regno++)
      fetch_register (regno);
  else
    fetch_register (regno);
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
static void
usr_store_inferior_registers (int regno)
{
  CORE_ADDR regaddr;
  int i, size;
  char *buf;

  if (regno >= 0)
    {
      if (regno >= the_low_target.num_regs)
	return;

      if ((*the_low_target.cannot_store_register) (regno) == 1)
	return;

      regaddr = register_addr (regno);
      if (regaddr == -1)
	return;
      errno = 0;
      size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
	     & - sizeof (PTRACE_XFER_TYPE);
      buf = alloca (size);
      memset (buf, 0, size);

      if (the_low_target.collect_ptrace_register)
	the_low_target.collect_ptrace_register (regno, buf);
      else
	collect_register (regno, buf);

      for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
	{
	  errno = 0;
	  ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
		  *(PTRACE_XFER_TYPE *) (buf + i));
	  if (errno != 0)
	    {
	      if ((*the_low_target.cannot_store_register) (regno) == 0)
		{
		  char *err = strerror (errno);
		  char *msg = alloca (strlen (err) + 128);
		  sprintf (msg, "writing register %d: %s",
			   regno, err);
		  error (msg);
		  return;
		}
	    }
	  regaddr += sizeof (PTRACE_XFER_TYPE);
	}
    }
  else
    for (regno = 0; regno < the_low_target.num_regs; regno++)
      usr_store_inferior_registers (regno);
}
#endif /* HAVE_LINUX_USRREGS */



#ifdef HAVE_LINUX_REGSETS

static int
regsets_fetch_inferior_registers ()
{
  struct regset_info *regset;
  int saw_general_regs = 0;

  regset = target_regsets;

  while (regset->size >= 0)
    {
      void *buf;
      int res;

      if (regset->size == 0)
	{
	  regset ++;
	  continue;
	}

      buf = malloc (regset->size);
      res = ptrace (regset->get_request, inferior_pid, 0, buf);
      if (res < 0)
	{
	  if (errno == EIO)
	    {
	      /* If we get EIO on the first regset, do not try regsets again.
		 If we get EIO on a later regset, disable that regset.  */
	      if (regset == target_regsets)
		{
		  use_regsets_p = 0;
		  return -1;
		}
	      else
		{
		  regset->size = 0;
		  continue;
		}
	    }
	  else
	    {
	      char s[256];
	      sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
		       inferior_pid);
	      perror (s);
	    }
	}
      else if (regset->type == GENERAL_REGS)
	saw_general_regs = 1;
      regset->store_function (buf);
      regset ++;
    }
  if (saw_general_regs)
    return 0;
  else
    return 1;
}

static int
regsets_store_inferior_registers ()
{
  struct regset_info *regset;
  int saw_general_regs = 0;

  regset = target_regsets;

  while (regset->size >= 0)
    {
      void *buf;
      int res;

      if (regset->size == 0)
	{
	  regset ++;
	  continue;
	}

      buf = malloc (regset->size);

      /* First fill the buffer with the current register set contents,
	 in case there are any items in the kernel's regset that are
	 not in gdbserver's regcache.  */
      res = ptrace (regset->get_request, inferior_pid, 0, buf);

      if (res == 0)
	{
	  /* Then overlay our cached registers on that.  */
	  regset->fill_function (buf);

	  /* Only now do we write the register set.  */
	  res = ptrace (regset->set_request, inferior_pid, 0, buf);
	}

      if (res < 0)
	{
	  if (errno == EIO)
	    {
	      /* If we get EIO on the first regset, do not try regsets again.
		 If we get EIO on a later regset, disable that regset.  */
	      if (regset == target_regsets)
		{
		  use_regsets_p = 0;
		  return -1;
		}
	      else
		{
		  regset->size = 0;
		  continue;
		}
	    }
	  else
	    {
	      perror ("Warning: ptrace(regsets_store_inferior_registers)");
	    }
	}
      else if (regset->type == GENERAL_REGS)
	saw_general_regs = 1;
      regset ++;
      free (buf);
    }
  if (saw_general_regs)
    return 0;
  else
    return 1;
  return 0;
}

#endif /* HAVE_LINUX_REGSETS */


void
linux_fetch_registers (int regno)
{
#ifdef HAVE_LINUX_REGSETS
  if (use_regsets_p)
    {
      if (regsets_fetch_inferior_registers () == 0)
	return;
    }
#endif
#ifdef HAVE_LINUX_USRREGS
  usr_fetch_inferior_registers (regno);
#endif
}

void
linux_store_registers (int regno)
{
#ifdef HAVE_LINUX_REGSETS
  if (use_regsets_p)
    {
      if (regsets_store_inferior_registers () == 0)
	return;
    }
#endif
#ifdef HAVE_LINUX_USRREGS
  usr_store_inferior_registers (regno);
#endif
}


/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */

static int
linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
      / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer
    = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  int fd;
  char filename[64];

  /* Try using /proc.  Don't bother for one word.  */
  if (len >= 3 * sizeof (long))
    {
      /* We could keep this file open and cache it - possibly one per
	 thread.  That requires some juggling, but is even faster.  */
      sprintf (filename, "/proc/%ld/mem", inferior_pid);
      fd = open (filename, O_RDONLY | O_LARGEFILE);
      if (fd == -1)
	goto no_proc;

      /* If pread64 is available, use it.  It's faster if the kernel
	 supports it (only one syscall), and it's 64-bit safe even on
	 32-bit platforms (for instance, SPARC debugging a SPARC64
	 application).  */
#ifdef HAVE_PREAD64
      if (pread64 (fd, myaddr, len, memaddr) != len)
#else
      if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
#endif
	{
	  close (fd);
	  goto no_proc;
	}

      close (fd);
      return 0;
    }

 no_proc:
  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
    {
      errno = 0;
      buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
      if (errno)
	return errno;
    }

  /* Copy appropriate bytes out of the buffer.  */
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);

  return 0;
}

/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   returns the value of errno.  */

static int
linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  extern int errno;

  if (debug_threads)
    {
      fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
    }

  /* Fill start and end extra bytes of buffer with existing memory data.  */

  buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
		      (PTRACE_ARG3_TYPE) addr, 0);

  if (count > 1)
    {
      buffer[count - 1]
	= ptrace (PTRACE_PEEKTEXT, inferior_pid,
		  (PTRACE_ARG3_TYPE) (addr + (count - 1)
				      * sizeof (PTRACE_XFER_TYPE)),
		  0);
    }

  /* Copy data to be written over corresponding part of buffer */

  memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);

  /* Write the entire buffer.  */

  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
    {
      errno = 0;
      ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      if (errno)
	return errno;
    }

  return 0;
}

static int linux_supports_tracefork_flag;

/* Helper functions for linux_test_for_tracefork, called via clone ().  */

static int
linux_tracefork_grandchild (void *arg)
{
  _exit (0);
}

#define STACK_SIZE 4096

static int
linux_tracefork_child (void *arg)
{
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  kill (getpid (), SIGSTOP);
#ifdef __ia64__
  __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
	    CLONE_VM | SIGCHLD, NULL);
#else
  clone (linux_tracefork_grandchild, arg + STACK_SIZE,
	 CLONE_VM | SIGCHLD, NULL);
#endif
  _exit (0);
}

/* Wrapper function for waitpid which handles EINTR.  */

static int
my_waitpid (int pid, int *status, int flags)
{
  int ret;
  do
    {
      ret = waitpid (pid, status, flags);
    }
  while (ret == -1 && errno == EINTR);

  return ret;
}

/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.  Make
   sure that we can enable the option, and that it had the desired
   effect.  */

static void
linux_test_for_tracefork (void)
{
  int child_pid, ret, status;
  long second_pid;
  char *stack = malloc (STACK_SIZE * 4);

  linux_supports_tracefork_flag = 0;

  /* Use CLONE_VM instead of fork, to support uClinux (no MMU).  */
#ifdef __ia64__
  child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
			CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
#else
  child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
		     CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
#endif
  if (child_pid == -1)
    perror_with_name ("clone");

  ret = my_waitpid (child_pid, &status, 0);
  if (ret == -1)
    perror_with_name ("waitpid");
  else if (ret != child_pid)
    error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
  if (! WIFSTOPPED (status))
    error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);

  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
	{
	  warning ("linux_test_for_tracefork: failed to kill child");
	  return;
	}

      ret = my_waitpid (child_pid, &status, 0);
      if (ret != child_pid)
	warning ("linux_test_for_tracefork: failed to wait for killed child");
      else if (!WIFSIGNALED (status))
	warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
		 "killed child", status);

      return;
    }

  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  if (ret != 0)
    warning ("linux_test_for_tracefork: failed to resume child");

  ret = my_waitpid (child_pid, &status, 0);

  if (ret == child_pid && WIFSTOPPED (status)
      && status >> 16 == PTRACE_EVENT_FORK)
    {
      second_pid = 0;
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      if (ret == 0 && second_pid != 0)
	{
	  int second_status;

	  linux_supports_tracefork_flag = 1;
	  my_waitpid (second_pid, &second_status, 0);
	  ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
	  if (ret != 0)
	    warning ("linux_test_for_tracefork: failed to kill second child");
	  my_waitpid (second_pid, &status, 0);
	}
    }
  else
    warning ("linux_test_for_tracefork: unexpected result from waitpid "
	     "(%d, status 0x%x)", ret, status);

  do
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
	warning ("linux_test_for_tracefork: failed to kill child");
      my_waitpid (child_pid, &status, 0);
    }
  while (WIFSTOPPED (status));

  free (stack);
}


static void
linux_look_up_symbols (void)
{
#ifdef USE_THREAD_DB
  if (thread_db_active)
    return;

  thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
#endif
}

static void
linux_request_interrupt (void)
{
  extern unsigned long signal_pid;

  if (cont_thread != 0 && cont_thread != -1)
    {
      struct process_info *process;

      process = get_thread_process (current_inferior);
      kill_lwp (process->lwpid, SIGINT);
    }
  else
    kill_lwp (signal_pid, SIGINT);
}

/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
   to debugger memory starting at MYADDR.  */

static int
linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
{
  char filename[PATH_MAX];
  int fd, n;

  snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);

  fd = open (filename, O_RDONLY);
  if (fd < 0)
    return -1;

  if (offset != (CORE_ADDR) 0
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
    n = -1;
  else
    n = read (fd, myaddr, len);

  close (fd);

  return n;
}

/* These watchpoint related wrapper functions simply pass on the function call
   if the target has registered a corresponding function.  */

static int
linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
{
  if (the_low_target.insert_watchpoint != NULL)
    return the_low_target.insert_watchpoint (type, addr, len);
  else
    /* Unsupported (see target.h).  */
    return 1;
}

static int
linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
{
  if (the_low_target.remove_watchpoint != NULL)
    return the_low_target.remove_watchpoint (type, addr, len);
  else
    /* Unsupported (see target.h).  */
    return 1;
}

static int
linux_stopped_by_watchpoint (void)
{
  if (the_low_target.stopped_by_watchpoint != NULL)
    return the_low_target.stopped_by_watchpoint ();
  else
    return 0;
}

static CORE_ADDR
linux_stopped_data_address (void)
{
  if (the_low_target.stopped_data_address != NULL)
    return the_low_target.stopped_data_address ();
  else
    return 0;
}

#if defined(__UCLIBC__) && defined(HAS_NOMMU)
#if defined(__mcoldfire__)
/* These should really be defined in the kernel's ptrace.h header.  */
#define PT_TEXT_ADDR 49*4
#define PT_DATA_ADDR 50*4
#define PT_TEXT_END_ADDR  51*4
#endif

/* Under uClinux, programs are loaded at non-zero offsets, which we need
   to tell gdb about.  */

static int
linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
{
#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
  unsigned long text, text_end, data;
  int pid = get_thread_process (current_inferior)->head.id;

  errno = 0;

  text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
  text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
  data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);

  if (errno == 0)
    {
      /* Both text and data offsets produced at compile-time (and so
         used by gdb) are relative to the beginning of the program,
         with the data segment immediately following the text segment.
         However, the actual runtime layout in memory may put the data
         somewhere else, so when we send gdb a data base-address, we
         use the real data base address and subtract the compile-time
         data base-address from it (which is just the length of the
         text segment).  BSS immediately follows data in both
         cases.  */
      *text_p = text;
      *data_p = data - (text_end - text);
      
      return 1;
    }
#endif
 return 0;
}
#endif

static struct target_ops linux_target_ops = {
  linux_create_inferior,
  linux_attach,
  linux_kill,
  linux_detach,
  linux_join,
  linux_thread_alive,
  linux_resume,
  linux_wait,
  linux_fetch_registers,
  linux_store_registers,
  linux_read_memory,
  linux_write_memory,
  linux_look_up_symbols,
  linux_request_interrupt,
  linux_read_auxv,
  linux_insert_watchpoint,
  linux_remove_watchpoint,
  linux_stopped_by_watchpoint,
  linux_stopped_data_address,
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
  linux_read_offsets,
#else
  NULL,
#endif
#ifdef USE_THREAD_DB
  thread_db_get_tls_address,
#else
  NULL,
#endif
  NULL,
  hostio_last_error_from_errno,
};

static void
linux_init_signals ()
{
  /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
     to find what the cancel signal actually is.  */
  signal (__SIGRTMIN+1, SIG_IGN);
}

void
initialize_low (void)
{
  thread_db_active = 0;
  set_target_ops (&linux_target_ops);
  set_breakpoint_data (the_low_target.breakpoint,
		       the_low_target.breakpoint_len);
  linux_init_signals ();
  linux_test_for_tracefork ();
}