1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/* GNU/Linux/ARM specific low level interface, for the remote server for GDB.
Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "server.h"
#include "linux-low.h"
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#define arm_num_regs 26
static int arm_regmap[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
64
};
static int
arm_cannot_store_register (int regno)
{
return (regno >= arm_num_regs);
}
static int
arm_cannot_fetch_register (int regno)
{
return (regno >= arm_num_regs);
}
extern int debug_threads;
static CORE_ADDR
arm_get_pc ()
{
unsigned long pc;
collect_register_by_name ("pc", &pc);
if (debug_threads)
fprintf (stderr, "stop pc is %08lx\n", pc);
return pc;
}
static void
arm_set_pc (CORE_ADDR pc)
{
unsigned long newpc = pc;
supply_register_by_name ("pc", &newpc);
}
/* Correct in either endianness. We do not support Thumb yet. */
static const unsigned long arm_breakpoint = 0xef9f0001;
#define arm_breakpoint_len 4
/* For new EABI binaries. We recognize it regardless of which ABI
is used for gdbserver, so single threaded debugging should work
OK, but for multi-threaded debugging we only insert the current
ABI's breakpoint instruction. For now at least. */
static const unsigned long arm_eabi_breakpoint = 0xe7f001f0;
static int
arm_breakpoint_at (CORE_ADDR where)
{
unsigned long insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 4);
if (insn == arm_breakpoint)
return 1;
if (insn == arm_eabi_breakpoint)
return 1;
/* If necessary, recognize more trap instructions here. GDB only uses the
two. */
return 0;
}
/* We only place breakpoints in empty marker functions, and thread locking
is outside of the function. So rather than importing software single-step,
we can just run until exit. */
static CORE_ADDR
arm_reinsert_addr ()
{
unsigned long pc;
collect_register_by_name ("lr", &pc);
return pc;
}
struct linux_target_ops the_low_target = {
arm_num_regs,
arm_regmap,
arm_cannot_fetch_register,
arm_cannot_store_register,
arm_get_pc,
arm_set_pc,
#ifndef __ARM_EABI__
(const unsigned char *) &arm_breakpoint,
#else
(const unsigned char *) &arm_eabi_breakpoint,
#endif
arm_breakpoint_len,
arm_reinsert_addr,
0,
arm_breakpoint_at,
};
|