1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
|
/* GNU/Linux/AArch64 specific low level interface, for the remote server for
GDB.
Copyright (C) 2009-2015 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "server.h"
#include "linux-low.h"
#include "elf/common.h"
#include <signal.h>
#include <sys/user.h>
#include <sys/ptrace.h>
#include <asm/ptrace.h>
#include <sys/uio.h>
#include "gdb_proc_service.h"
/* Defined in auto-generated files. */
void init_registers_aarch64 (void);
extern const struct target_desc *tdesc_aarch64;
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#define AARCH64_X_REGS_NUM 31
#define AARCH64_V_REGS_NUM 32
#define AARCH64_X0_REGNO 0
#define AARCH64_SP_REGNO 31
#define AARCH64_PC_REGNO 32
#define AARCH64_CPSR_REGNO 33
#define AARCH64_V0_REGNO 34
#define AARCH64_FPSR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM)
#define AARCH64_FPCR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 1)
#define AARCH64_NUM_REGS (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 2)
static int
aarch64_regmap [] =
{
/* These offsets correspond to GET/SETREGSET */
/* x0... */
0*8, 1*8, 2*8, 3*8, 4*8, 5*8, 6*8, 7*8,
8*8, 9*8, 10*8, 11*8, 12*8, 13*8, 14*8, 15*8,
16*8, 17*8, 18*8, 19*8, 20*8, 21*8, 22*8, 23*8,
24*8, 25*8, 26*8, 27*8, 28*8,
29*8,
30*8, /* x30 lr */
31*8, /* x31 sp */
32*8, /* pc */
33*8, /* cpsr 4 bytes!*/
/* FP register offsets correspond to GET/SETFPREGSET */
0*16, 1*16, 2*16, 3*16, 4*16, 5*16, 6*16, 7*16,
8*16, 9*16, 10*16, 11*16, 12*16, 13*16, 14*16, 15*16,
16*16, 17*16, 18*16, 19*16, 20*16, 21*16, 22*16, 23*16,
24*16, 25*16, 26*16, 27*16, 28*16, 29*16, 30*16, 31*16
};
/* Here starts the macro definitions, data structures, and code for
the hardware breakpoint and hardware watchpoint support. The
following is the abbreviations that are used frequently in the code
and comment:
hw - hardware
bp - breakpoint
wp - watchpoint */
/* Maximum number of hardware breakpoint and watchpoint registers.
Neither of these values may exceed the width of dr_changed_t
measured in bits. */
#define AARCH64_HBP_MAX_NUM 16
#define AARCH64_HWP_MAX_NUM 16
/* Alignment requirement in bytes of hardware breakpoint and
watchpoint address. This is the requirement for the addresses that
can be written to the hardware breakpoint/watchpoint value
registers. The kernel currently does not do any alignment on
addresses when receiving a writing request (via ptrace call) to
these debug registers, and it will reject any address that is
unaligned.
Some limited support has been provided in this gdbserver port for
unaligned watchpoints, so that from a gdb user point of view, an
unaligned watchpoint can still be set. This is achieved by
minimally enlarging the watched area to meet the alignment
requirement, and if necessary, splitting the watchpoint over
several hardware watchpoint registers. */
#define AARCH64_HBP_ALIGNMENT 4
#define AARCH64_HWP_ALIGNMENT 8
/* The maximum length of a memory region that can be watched by one
hardware watchpoint register. */
#define AARCH64_HWP_MAX_LEN_PER_REG 8
/* Each bit of a variable of this type is used to indicate whether a
hardware breakpoint or watchpoint setting has been changed since
the last updating. Bit N corresponds to the Nth hardware
breakpoint or watchpoint setting which is managed in
aarch64_debug_reg_state. Where N is valid between 0 and the total
number of the hardware breakpoint or watchpoint debug registers
minus 1. When the bit N is 1, it indicates the corresponding
breakpoint or watchpoint setting is changed, and thus the
corresponding hardware debug register needs to be updated via the
ptrace interface.
In the per-thread arch-specific data area, we define two such
variables for per-thread hardware breakpoint and watchpoint
settings respectively.
This type is part of the mechanism which helps reduce the number of
ptrace calls to the kernel, i.e. avoid asking the kernel to write
to the debug registers with unchanged values. */
typedef unsigned long long dr_changed_t;
/* Set each of the lower M bits of X to 1; assert X is wide enough. */
#define DR_MARK_ALL_CHANGED(x, m) \
do \
{ \
gdb_assert (sizeof ((x)) * 8 >= (m)); \
(x) = (((dr_changed_t)1 << (m)) - 1); \
} while (0)
#define DR_MARK_N_CHANGED(x, n) \
do \
{ \
(x) |= ((dr_changed_t)1 << (n)); \
} while (0)
#define DR_CLEAR_CHANGED(x) \
do \
{ \
(x) = 0; \
} while (0)
#define DR_HAS_CHANGED(x) ((x) != 0)
#define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
/* Structure for managing the hardware breakpoint/watchpoint resources.
DR_ADDR_* stores the address, DR_CTRL_* stores the control register
content, and DR_REF_COUNT_* counts the numbers of references to the
corresponding bp/wp, by which way the limited hardware resources
are not wasted on duplicated bp/wp settings (though so far gdb has
done a good job by not sending duplicated bp/wp requests). */
struct aarch64_debug_reg_state
{
/* hardware breakpoint */
CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
/* hardware watchpoint */
CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
};
/* Per-process arch-specific data we want to keep. */
struct arch_process_info
{
/* Hardware breakpoint/watchpoint data.
The reason for them to be per-process rather than per-thread is
due to the lack of information in the gdbserver environment;
gdbserver is not told that whether a requested hardware
breakpoint/watchpoint is thread specific or not, so it has to set
each hw bp/wp for every thread in the current process. The
higher level bp/wp management in gdb will resume a thread if a hw
bp/wp trap is not expected for it. Since the hw bp/wp setting is
same for each thread, it is reasonable for the data to live here.
*/
struct aarch64_debug_reg_state debug_reg_state;
};
/* Per-thread arch-specific data we want to keep. */
struct arch_lwp_info
{
/* When bit N is 1, it indicates the Nth hardware breakpoint or
watchpoint register pair needs to be updated when the thread is
resumed; see aarch64_linux_prepare_to_resume. */
dr_changed_t dr_changed_bp;
dr_changed_t dr_changed_wp;
};
/* Number of hardware breakpoints/watchpoints the target supports.
They are initialized with values obtained via the ptrace calls
with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
static int aarch64_num_bp_regs;
static int aarch64_num_wp_regs;
static int
aarch64_cannot_store_register (int regno)
{
return regno >= AARCH64_NUM_REGS;
}
static int
aarch64_cannot_fetch_register (int regno)
{
return regno >= AARCH64_NUM_REGS;
}
static void
aarch64_fill_gregset (struct regcache *regcache, void *buf)
{
struct user_pt_regs *regset = buf;
int i;
for (i = 0; i < AARCH64_X_REGS_NUM; i++)
collect_register (regcache, AARCH64_X0_REGNO + i, ®set->regs[i]);
collect_register (regcache, AARCH64_SP_REGNO, ®set->sp);
collect_register (regcache, AARCH64_PC_REGNO, ®set->pc);
collect_register (regcache, AARCH64_CPSR_REGNO, ®set->pstate);
}
static void
aarch64_store_gregset (struct regcache *regcache, const void *buf)
{
const struct user_pt_regs *regset = buf;
int i;
for (i = 0; i < AARCH64_X_REGS_NUM; i++)
supply_register (regcache, AARCH64_X0_REGNO + i, ®set->regs[i]);
supply_register (regcache, AARCH64_SP_REGNO, ®set->sp);
supply_register (regcache, AARCH64_PC_REGNO, ®set->pc);
supply_register (regcache, AARCH64_CPSR_REGNO, ®set->pstate);
}
static void
aarch64_fill_fpregset (struct regcache *regcache, void *buf)
{
struct user_fpsimd_state *regset = buf;
int i;
for (i = 0; i < AARCH64_V_REGS_NUM; i++)
collect_register (regcache, AARCH64_V0_REGNO + i, ®set->vregs[i]);
collect_register (regcache, AARCH64_FPSR_REGNO, ®set->fpsr);
collect_register (regcache, AARCH64_FPCR_REGNO, ®set->fpcr);
}
static void
aarch64_store_fpregset (struct regcache *regcache, const void *buf)
{
const struct user_fpsimd_state *regset = buf;
int i;
for (i = 0; i < AARCH64_V_REGS_NUM; i++)
supply_register (regcache, AARCH64_V0_REGNO + i, ®set->vregs[i]);
supply_register (regcache, AARCH64_FPSR_REGNO, ®set->fpsr);
supply_register (regcache, AARCH64_FPCR_REGNO, ®set->fpcr);
}
/* Enable miscellaneous debugging output. The name is historical - it
was originally used to debug LinuxThreads support. */
extern int debug_threads;
static CORE_ADDR
aarch64_get_pc (struct regcache *regcache)
{
unsigned long pc;
collect_register_by_name (regcache, "pc", &pc);
if (debug_threads)
debug_printf ("stop pc is %08lx\n", pc);
return pc;
}
static void
aarch64_set_pc (struct regcache *regcache, CORE_ADDR pc)
{
unsigned long newpc = pc;
supply_register_by_name (regcache, "pc", &newpc);
}
/* Correct in either endianness. */
#define aarch64_breakpoint_len 4
static const unsigned long aarch64_breakpoint = 0x00800011;
static int
aarch64_breakpoint_at (CORE_ADDR where)
{
unsigned long insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 4);
if (insn == aarch64_breakpoint)
return 1;
return 0;
}
/* Print the values of the cached breakpoint/watchpoint registers.
This is enabled via the "set debug-hw-points" monitor command. */
static void
aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
const char *func, CORE_ADDR addr,
int len, enum target_hw_bp_type type)
{
int i;
fprintf (stderr, "%s", func);
if (addr || len)
fprintf (stderr, " (addr=0x%08lx, len=%d, type=%s)",
(unsigned long) addr, len,
type == hw_write ? "hw-write-watchpoint"
: (type == hw_read ? "hw-read-watchpoint"
: (type == hw_access ? "hw-access-watchpoint"
: (type == hw_execute ? "hw-breakpoint"
: "??unknown??"))));
fprintf (stderr, ":\n");
fprintf (stderr, "\tBREAKPOINTs:\n");
for (i = 0; i < aarch64_num_bp_regs; i++)
fprintf (stderr, "\tBP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
i, paddress (state->dr_addr_bp[i]),
state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
fprintf (stderr, "\tWATCHPOINTs:\n");
for (i = 0; i < aarch64_num_wp_regs; i++)
fprintf (stderr, "\tWP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
i, paddress (state->dr_addr_wp[i]),
state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
}
static void
aarch64_init_debug_reg_state (struct aarch64_debug_reg_state *state)
{
int i;
for (i = 0; i < AARCH64_HBP_MAX_NUM; ++i)
{
state->dr_addr_bp[i] = 0;
state->dr_ctrl_bp[i] = 0;
state->dr_ref_count_bp[i] = 0;
}
for (i = 0; i < AARCH64_HWP_MAX_NUM; ++i)
{
state->dr_addr_wp[i] = 0;
state->dr_ctrl_wp[i] = 0;
state->dr_ref_count_wp[i] = 0;
}
}
/* ptrace expects control registers to be formatted as follows:
31 13 5 3 1 0
+--------------------------------+----------+------+------+----+
| RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
+--------------------------------+----------+------+------+----+
The TYPE field is ignored for breakpoints. */
#define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
#define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
/* Utility function that returns the length in bytes of a watchpoint
according to the content of a hardware debug control register CTRL.
Note that the kernel currently only supports the following Byte
Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
that for a hardware watchpoint, its valid length can only be 1
byte, 2 bytes, 4 bytes or 8 bytes. */
static inline unsigned int
aarch64_watchpoint_length (unsigned int ctrl)
{
switch (DR_CONTROL_LENGTH (ctrl))
{
case 0x01:
return 1;
case 0x03:
return 2;
case 0x0f:
return 4;
case 0xff:
return 8;
default:
return 0;
}
}
/* Given the hardware breakpoint or watchpoint type TYPE and its
length LEN, return the expected encoding for a hardware
breakpoint/watchpoint control register. */
static unsigned int
aarch64_point_encode_ctrl_reg (enum target_hw_bp_type type, int len)
{
unsigned int ctrl, ttype;
/* type */
switch (type)
{
case hw_write:
ttype = 2;
break;
case hw_read:
ttype = 1;
break;
case hw_access:
ttype = 3;
break;
case hw_execute:
ttype = 0;
break;
default:
perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
}
/* type */
ctrl = ttype << 3;
/* length bitmask */
ctrl |= ((1 << len) - 1) << 5;
/* enabled at el0 */
ctrl |= (2 << 1) | 1;
return ctrl;
}
/* Addresses to be written to the hardware breakpoint and watchpoint
value registers need to be aligned; the alignment is 4-byte and
8-type respectively. Linux kernel rejects any non-aligned address
it receives from the related ptrace call. Furthermore, the kernel
currently only supports the following Byte Address Select (BAS)
values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
watchpoint to be accepted by the kernel (via ptrace call), its
valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
Despite these limitations, the unaligned watchpoint is supported in
this gdbserver port.
Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
static int
aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
{
unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
: AARCH64_HBP_ALIGNMENT;
if (addr & (alignment - 1))
return 0;
if (len != 8 && len != 4 && len != 2 && len != 1)
return 0;
return 1;
}
/* Given the (potentially unaligned) watchpoint address in ADDR and
length in LEN, return the aligned address and aligned length in
*ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
aligned address and length will be valid to be written to the
hardware watchpoint value and control registers. See the comment
above aarch64_point_is_aligned for the information about the
alignment requirement. The given watchpoint may get truncated if
more than one hardware register is needed to cover the watched
region. *NEXT_ADDR_P and *NEXT_LEN_P, if non-NULL, will return the
address and length of the remaining part of the watchpoint (which
can be processed by calling this routine again to generate another
aligned address and length pair.
Essentially, unaligned watchpoint is achieved by minimally
enlarging the watched area to meet the alignment requirement, and
if necessary, splitting the watchpoint over several hardware
watchpoint registers. The trade-off is that there will be
false-positive hits for the read-type or the access-type hardware
watchpoints; for the write type, which is more commonly used, there
will be no such issues, as the higher-level breakpoint management
in gdb always examines the exact watched region for any content
change, and transparently resumes a thread from a watchpoint trap
if there is no change to the watched region.
Another limitation is that because the watched region is enlarged,
the watchpoint fault address returned by
aarch64_stopped_data_address may be outside of the original watched
region, especially when the triggering instruction is accessing a
larger region. When the fault address is not within any known
range, watchpoints_triggered in gdb will get confused, as the
higher-level watchpoint management is only aware of original
watched regions, and will think that some unknown watchpoint has
been triggered. In such a case, gdb may stop without displaying
any detailed information.
Once the kernel provides the full support for Byte Address Select
(BAS) in the hardware watchpoint control register, these
limitations can be largely relaxed with some further work. */
static void
aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
int *aligned_len_p, CORE_ADDR *next_addr_p,
int *next_len_p)
{
int aligned_len;
unsigned int offset;
CORE_ADDR aligned_addr;
const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
/* As assumed by the algorithm. */
gdb_assert (alignment == max_wp_len);
if (len <= 0)
return;
/* Address to be put into the hardware watchpoint value register
must be aligned. */
offset = addr & (alignment - 1);
aligned_addr = addr - offset;
gdb_assert (offset >= 0 && offset < alignment);
gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
gdb_assert ((offset + len) > 0);
if (offset + len >= max_wp_len)
{
/* Need more than one watchpoint registers; truncate it at the
alignment boundary. */
aligned_len = max_wp_len;
len -= (max_wp_len - offset);
addr += (max_wp_len - offset);
gdb_assert ((addr & (alignment - 1)) == 0);
}
else
{
/* Find the smallest valid length that is large enough to
accommodate this watchpoint. */
static const unsigned char
aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
{ 1, 2, 4, 4, 8, 8, 8, 8 };
aligned_len = aligned_len_array[offset + len - 1];
addr += len;
len = 0;
}
if (aligned_addr_p != NULL)
*aligned_addr_p = aligned_addr;
if (aligned_len_p != NULL)
*aligned_len_p = aligned_len;
if (next_addr_p != NULL)
*next_addr_p = addr;
if (next_len_p != NULL)
*next_len_p = len;
}
/* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
registers with data from *STATE. */
static void
aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
int tid, int watchpoint)
{
int i, count;
struct iovec iov;
struct user_hwdebug_state regs;
const CORE_ADDR *addr;
const unsigned int *ctrl;
memset (®s, 0, sizeof (regs));
iov.iov_base = ®s;
count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
if (count == 0)
return;
iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
+ sizeof (regs.dbg_regs [count - 1]));
for (i = 0; i < count; i++)
{
regs.dbg_regs[i].addr = addr[i];
regs.dbg_regs[i].ctrl = ctrl[i];
}
if (ptrace (PTRACE_SETREGSET, tid,
watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
(void *) &iov))
error (_("Unexpected error setting hardware debug registers"));
}
struct aarch64_dr_update_callback_param
{
int pid;
int is_watchpoint;
unsigned int idx;
};
/* Callback function which records the information about the change of
one hardware breakpoint/watchpoint setting for the thread ENTRY.
The information is passed in via PTR.
N.B. The actual updating of hardware debug registers is not
carried out until the moment the thread is resumed. */
static int
debug_reg_change_callback (struct inferior_list_entry *entry, void *ptr)
{
struct thread_info *thread = (struct thread_info *) entry;
struct lwp_info *lwp = get_thread_lwp (thread);
struct aarch64_dr_update_callback_param *param_p
= (struct aarch64_dr_update_callback_param *) ptr;
int pid = param_p->pid;
int idx = param_p->idx;
int is_watchpoint = param_p->is_watchpoint;
struct arch_lwp_info *info = lwp->arch_private;
dr_changed_t *dr_changed_ptr;
dr_changed_t dr_changed;
if (show_debug_regs)
{
fprintf (stderr, "debug_reg_change_callback: \n\tOn entry:\n");
fprintf (stderr, "\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
"dr_changed_wp=0x%llx\n",
pid, lwpid_of (thread), info->dr_changed_bp,
info->dr_changed_wp);
}
dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
: &info->dr_changed_bp;
dr_changed = *dr_changed_ptr;
/* Only update the threads of this process. */
if (pid_of (thread) == pid)
{
gdb_assert (idx >= 0
&& (idx <= (is_watchpoint ? aarch64_num_wp_regs
: aarch64_num_bp_regs)));
/* The following assertion is not right, as there can be changes
that have not been made to the hardware debug registers
before new changes overwrite the old ones. This can happen,
for instance, when the breakpoint/watchpoint hit one of the
threads and the user enters continue; then what happens is:
1) all breakpoints/watchpoints are removed for all threads;
2) a single step is carried out for the thread that was hit;
3) all of the points are inserted again for all threads;
4) all threads are resumed.
The 2nd step will only affect the one thread in which the
bp/wp was hit, which means only that one thread is resumed;
remember that the actual updating only happen in
aarch64_linux_prepare_to_resume, so other threads remain
stopped during the removal and insertion of bp/wp. Therefore
for those threads, the change of insertion of the bp/wp
overwrites that of the earlier removals. (The situation may
be different when bp/wp is steppable, or in the non-stop
mode.) */
/* gdb_assert (DR_N_HAS_CHANGED (dr_changed, idx) == 0); */
/* The actual update is done later just before resuming the lwp,
we just mark that one register pair needs updating. */
DR_MARK_N_CHANGED (dr_changed, idx);
*dr_changed_ptr = dr_changed;
/* If the lwp isn't stopped, force it to momentarily pause, so
we can update its debug registers. */
if (!lwp->stopped)
linux_stop_lwp (lwp);
}
if (show_debug_regs)
{
fprintf (stderr, "\tOn exit:\n\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
"dr_changed_wp=0x%llx\n",
pid, lwpid_of (thread), info->dr_changed_bp,
info->dr_changed_wp);
}
return 0;
}
/* Notify each thread that their IDXth breakpoint/watchpoint register
pair needs to be updated. The message will be recorded in each
thread's arch-specific data area, the actual updating will be done
when the thread is resumed. */
void
aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
int is_watchpoint, unsigned int idx)
{
struct aarch64_dr_update_callback_param param;
/* Only update the threads of this process. */
param.pid = pid_of (current_thread);
param.is_watchpoint = is_watchpoint;
param.idx = idx;
find_inferior (&all_threads, debug_reg_change_callback, (void *) ¶m);
}
/* Return the pointer to the debug register state structure in the
current process' arch-specific data area. */
static struct aarch64_debug_reg_state *
aarch64_get_debug_reg_state ()
{
struct process_info *proc;
proc = current_process ();
return &proc->priv->arch_private->debug_reg_state;
}
/* Record the insertion of one breakpoint/watchpoint, as represented
by ADDR and CTRL, in the process' arch-specific data area *STATE. */
static int
aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
enum target_hw_bp_type type,
CORE_ADDR addr, int len)
{
int i, idx, num_regs, is_watchpoint;
unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
CORE_ADDR *dr_addr_p;
/* Set up state pointers. */
is_watchpoint = (type != hw_execute);
gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
if (is_watchpoint)
{
num_regs = aarch64_num_wp_regs;
dr_addr_p = state->dr_addr_wp;
dr_ctrl_p = state->dr_ctrl_wp;
dr_ref_count = state->dr_ref_count_wp;
}
else
{
num_regs = aarch64_num_bp_regs;
dr_addr_p = state->dr_addr_bp;
dr_ctrl_p = state->dr_ctrl_bp;
dr_ref_count = state->dr_ref_count_bp;
}
ctrl = aarch64_point_encode_ctrl_reg (type, len);
/* Find an existing or free register in our cache. */
idx = -1;
for (i = 0; i < num_regs; ++i)
{
if ((dr_ctrl_p[i] & 1) == 0)
{
gdb_assert (dr_ref_count[i] == 0);
idx = i;
/* no break; continue hunting for an exising one. */
}
else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
{
gdb_assert (dr_ref_count[i] != 0);
idx = i;
break;
}
}
/* No space. */
if (idx == -1)
return -1;
/* Update our cache. */
if ((dr_ctrl_p[idx] & 1) == 0)
{
/* new entry */
dr_addr_p[idx] = addr;
dr_ctrl_p[idx] = ctrl;
dr_ref_count[idx] = 1;
/* Notify the change. */
aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
}
else
{
/* existing entry */
dr_ref_count[idx]++;
}
return 0;
}
/* Record the removal of one breakpoint/watchpoint, as represented by
ADDR and CTRL, in the process' arch-specific data area *STATE. */
static int
aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
enum target_hw_bp_type type,
CORE_ADDR addr, int len)
{
int i, num_regs, is_watchpoint;
unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
CORE_ADDR *dr_addr_p;
/* Set up state pointers. */
is_watchpoint = (type != hw_execute);
gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
if (is_watchpoint)
{
num_regs = aarch64_num_wp_regs;
dr_addr_p = state->dr_addr_wp;
dr_ctrl_p = state->dr_ctrl_wp;
dr_ref_count = state->dr_ref_count_wp;
}
else
{
num_regs = aarch64_num_bp_regs;
dr_addr_p = state->dr_addr_bp;
dr_ctrl_p = state->dr_ctrl_bp;
dr_ref_count = state->dr_ref_count_bp;
}
ctrl = aarch64_point_encode_ctrl_reg (type, len);
/* Find the entry that matches the ADDR and CTRL. */
for (i = 0; i < num_regs; ++i)
if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
{
gdb_assert (dr_ref_count[i] != 0);
break;
}
/* Not found. */
if (i == num_regs)
return -1;
/* Clear our cache. */
if (--dr_ref_count[i] == 0)
{
/* Clear the enable bit. */
ctrl &= ~1;
dr_addr_p[i] = 0;
dr_ctrl_p[i] = ctrl;
/* Notify the change. */
aarch64_notify_debug_reg_change (state, is_watchpoint, i);
}
return 0;
}
static int
aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
int len, int is_insert)
{
struct aarch64_debug_reg_state *state;
/* The hardware breakpoint on AArch64 should always be 4-byte
aligned. */
if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
return -1;
state = aarch64_get_debug_reg_state ();
if (is_insert)
return aarch64_dr_state_insert_one_point (state, type, addr, len);
else
return aarch64_dr_state_remove_one_point (state, type, addr, len);
}
/* This is essentially the same as aarch64_handle_breakpoint, apart
from that it is an aligned watchpoint to be handled. */
static int
aarch64_handle_aligned_watchpoint (enum target_hw_bp_type type,
CORE_ADDR addr, int len, int is_insert)
{
struct aarch64_debug_reg_state *state;
state = aarch64_get_debug_reg_state ();
if (is_insert)
return aarch64_dr_state_insert_one_point (state, type, addr, len);
else
return aarch64_dr_state_remove_one_point (state, type, addr, len);
}
/* Insert/remove unaligned watchpoint by calling
aarch64_align_watchpoint repeatedly until the whole watched region,
as represented by ADDR and LEN, has been properly aligned and ready
to be written to one or more hardware watchpoint registers.
IS_INSERT indicates whether this is an insertion or a deletion.
Return 0 if succeed. */
static int
aarch64_handle_unaligned_watchpoint (enum target_hw_bp_type type,
CORE_ADDR addr, int len, int is_insert)
{
struct aarch64_debug_reg_state *state
= aarch64_get_debug_reg_state ();
while (len > 0)
{
CORE_ADDR aligned_addr;
int aligned_len, ret;
aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
&addr, &len);
if (is_insert)
ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
aligned_len);
else
ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
aligned_len);
if (show_debug_regs)
fprintf (stderr,
"handle_unaligned_watchpoint: is_insert: %d\n"
" aligned_addr: 0x%s, aligned_len: %d\n"
" next_addr: 0x%s, next_len: %d\n",
is_insert, paddress (aligned_addr), aligned_len,
paddress (addr), len);
if (ret != 0)
return ret;
}
return 0;
}
static int
aarch64_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
int len, int is_insert)
{
if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
else
return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
}
static int
aarch64_supports_z_point_type (char z_type)
{
switch (z_type)
{
case Z_PACKET_HW_BP:
case Z_PACKET_WRITE_WP:
case Z_PACKET_READ_WP:
case Z_PACKET_ACCESS_WP:
return 1;
default:
/* Leave the handling of sw breakpoints with the gdb client. */
return 0;
}
}
/* Insert a hardware breakpoint/watchpoint.
It actually only records the info of the to-be-inserted bp/wp;
the actual insertion will happen when threads are resumed.
Return 0 if succeed;
Return 1 if TYPE is unsupported type;
Return -1 if an error occurs. */
static int
aarch64_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
int len, struct raw_breakpoint *bp)
{
int ret;
enum target_hw_bp_type targ_type;
if (show_debug_regs)
fprintf (stderr, "insert_point on entry (addr=0x%08lx, len=%d)\n",
(unsigned long) addr, len);
/* Determine the type from the raw breakpoint type. */
targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
if (targ_type != hw_execute)
ret =
aarch64_handle_watchpoint (targ_type, addr, len, 1 /* is_insert */);
else
ret =
aarch64_handle_breakpoint (targ_type, addr, len, 1 /* is_insert */);
if (show_debug_regs)
aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
"insert_point", addr, len, targ_type);
return ret;
}
/* Remove a hardware breakpoint/watchpoint.
It actually only records the info of the to-be-removed bp/wp,
the actual removal will be done when threads are resumed.
Return 0 if succeed;
Return 1 if TYPE is an unsupported type;
Return -1 if an error occurs. */
static int
aarch64_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
int len, struct raw_breakpoint *bp)
{
int ret;
enum target_hw_bp_type targ_type;
if (show_debug_regs)
fprintf (stderr, "remove_point on entry (addr=0x%08lx, len=%d)\n",
(unsigned long) addr, len);
/* Determine the type from the raw breakpoint type. */
targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
/* Set up state pointers. */
if (targ_type != hw_execute)
ret =
aarch64_handle_watchpoint (targ_type, addr, len, 0 /* is_insert */);
else
ret =
aarch64_handle_breakpoint (targ_type, addr, len, 0 /* is_insert */);
if (show_debug_regs)
aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
"remove_point", addr, len, targ_type);
return ret;
}
/* Returns the address associated with the watchpoint that hit, if
any; returns 0 otherwise. */
static CORE_ADDR
aarch64_stopped_data_address (void)
{
siginfo_t siginfo;
int pid, i;
struct aarch64_debug_reg_state *state;
pid = lwpid_of (current_thread);
/* Get the siginfo. */
if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) != 0)
return (CORE_ADDR) 0;
/* Need to be a hardware breakpoint/watchpoint trap. */
if (siginfo.si_signo != SIGTRAP
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return (CORE_ADDR) 0;
/* Check if the address matches any watched address. */
state = aarch64_get_debug_reg_state ();
for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
{
const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
const CORE_ADDR addr_watch = state->dr_addr_wp[i];
if (state->dr_ref_count_wp[i]
&& DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
&& addr_trap >= addr_watch
&& addr_trap < addr_watch + len)
return addr_trap;
}
return (CORE_ADDR) 0;
}
/* Returns 1 if target was stopped due to a watchpoint hit, 0
otherwise. */
static int
aarch64_stopped_by_watchpoint (void)
{
if (aarch64_stopped_data_address () != 0)
return 1;
else
return 0;
}
/* Fetch the thread-local storage pointer for libthread_db. */
ps_err_e
ps_get_thread_area (const struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
struct iovec iovec;
uint64_t reg;
iovec.iov_base = ®
iovec.iov_len = sizeof (reg);
if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
return PS_ERR;
/* IDX is the bias from the thread pointer to the beginning of the
thread descriptor. It has to be subtracted due to implementation
quirks in libthread_db. */
*base = (void *) (reg - idx);
return PS_OK;
}
/* Called when a new process is created. */
static struct arch_process_info *
aarch64_linux_new_process (void)
{
struct arch_process_info *info = xcalloc (1, sizeof (*info));
aarch64_init_debug_reg_state (&info->debug_reg_state);
return info;
}
/* Called when a new thread is detected. */
static struct arch_lwp_info *
aarch64_linux_new_thread (void)
{
struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
/* Mark that all the hardware breakpoint/watchpoint register pairs
for this thread need to be initialized (with data from
aarch_process_info.debug_reg_state). */
DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
return info;
}
/* Called when resuming a thread.
If the debug regs have changed, update the thread's copies. */
static void
aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
{
struct thread_info *thread = get_lwp_thread (lwp);
ptid_t ptid = ptid_of (thread);
struct arch_lwp_info *info = lwp->arch_private;
if (DR_HAS_CHANGED (info->dr_changed_bp)
|| DR_HAS_CHANGED (info->dr_changed_wp))
{
int tid = ptid_get_lwp (ptid);
struct process_info *proc = find_process_pid (ptid_get_pid (ptid));
struct aarch64_debug_reg_state *state
= &proc->priv->arch_private->debug_reg_state;
if (show_debug_regs)
fprintf (stderr, "prepare_to_resume thread %ld\n", lwpid_of (thread));
/* Watchpoints. */
if (DR_HAS_CHANGED (info->dr_changed_wp))
{
aarch64_linux_set_debug_regs (state, tid, 1);
DR_CLEAR_CHANGED (info->dr_changed_wp);
}
/* Breakpoints. */
if (DR_HAS_CHANGED (info->dr_changed_bp))
{
aarch64_linux_set_debug_regs (state, tid, 0);
DR_CLEAR_CHANGED (info->dr_changed_bp);
}
}
}
/* ptrace hardware breakpoint resource info is formatted as follows:
31 24 16 8 0
+---------------+--------------+---------------+---------------+
| RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
+---------------+--------------+---------------+---------------+ */
#define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
#define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
#define AARCH64_DEBUG_ARCH_V8 0x6
static void
aarch64_arch_setup (void)
{
int pid;
struct iovec iov;
struct user_hwdebug_state dreg_state;
current_process ()->tdesc = tdesc_aarch64;
pid = lwpid_of (current_thread);
iov.iov_base = &dreg_state;
iov.iov_len = sizeof (dreg_state);
/* Get hardware watchpoint register info. */
if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_WATCH, &iov) == 0
&& AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
{
aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
{
warning ("Unexpected number of hardware watchpoint registers reported"
" by ptrace, got %d, expected %d.",
aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
}
}
else
{
warning ("Unable to determine the number of hardware watchpoints"
" available.");
aarch64_num_wp_regs = 0;
}
/* Get hardware breakpoint register info. */
if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_BREAK, &iov) == 0
&& AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
{
aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
{
warning ("Unexpected number of hardware breakpoint registers reported"
" by ptrace, got %d, expected %d.",
aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
}
}
else
{
warning ("Unable to determine the number of hardware breakpoints"
" available.");
aarch64_num_bp_regs = 0;
}
}
static struct regset_info aarch64_regsets[] =
{
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS,
sizeof (struct user_pt_regs), GENERAL_REGS,
aarch64_fill_gregset, aarch64_store_gregset },
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_FPREGSET,
sizeof (struct user_fpsimd_state), FP_REGS,
aarch64_fill_fpregset, aarch64_store_fpregset
},
{ 0, 0, 0, -1, -1, NULL, NULL }
};
static struct regsets_info aarch64_regsets_info =
{
aarch64_regsets, /* regsets */
0, /* num_regsets */
NULL, /* disabled_regsets */
};
static struct usrregs_info aarch64_usrregs_info =
{
AARCH64_NUM_REGS,
aarch64_regmap,
};
static struct regs_info regs_info =
{
NULL, /* regset_bitmap */
&aarch64_usrregs_info,
&aarch64_regsets_info,
};
static const struct regs_info *
aarch64_regs_info (void)
{
return ®s_info;
}
struct linux_target_ops the_low_target =
{
aarch64_arch_setup,
aarch64_regs_info,
aarch64_cannot_fetch_register,
aarch64_cannot_store_register,
NULL,
aarch64_get_pc,
aarch64_set_pc,
(const unsigned char *) &aarch64_breakpoint,
aarch64_breakpoint_len,
NULL,
0,
aarch64_breakpoint_at,
aarch64_supports_z_point_type,
aarch64_insert_point,
aarch64_remove_point,
aarch64_stopped_by_watchpoint,
aarch64_stopped_data_address,
NULL,
NULL,
NULL,
aarch64_linux_new_process,
aarch64_linux_new_thread,
aarch64_linux_prepare_to_resume,
};
void
initialize_low_arch (void)
{
init_registers_aarch64 ();
initialize_regsets_info (&aarch64_regsets_info);
}
|