aboutsummaryrefslogtreecommitdiff
path: root/gdb/fr30-tdep.c
blob: 12e9f7ea3136ca7b3342ff88df703e3dd636392c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// OBSOLETE /* Target-dependent code for the Fujitsu FR30.
// OBSOLETE    Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
// OBSOLETE 
// OBSOLETE    This file is part of GDB.
// OBSOLETE 
// OBSOLETE    This program is free software; you can redistribute it and/or modify
// OBSOLETE    it under the terms of the GNU General Public License as published by
// OBSOLETE    the Free Software Foundation; either version 2 of the License, or
// OBSOLETE    (at your option) any later version.
// OBSOLETE 
// OBSOLETE    This program is distributed in the hope that it will be useful,
// OBSOLETE    but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// OBSOLETE    GNU General Public License for more details.
// OBSOLETE 
// OBSOLETE    You should have received a copy of the GNU General Public License
// OBSOLETE    along with this program; if not, write to the Free Software
// OBSOLETE    Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE    Boston, MA 02111-1307, USA.  */
// OBSOLETE 
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "obstack.h"
// OBSOLETE #include "target.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "bfd.h"
// OBSOLETE #include "gdb_string.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symfile.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE 
// OBSOLETE /* An expression that tells us whether the function invocation represented
// OBSOLETE    by FI does not have a frame on the stack associated with it.  */
// OBSOLETE int
// OBSOLETE fr30_frameless_function_invocation (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int frameless;
// OBSOLETE   CORE_ADDR func_start, after_prologue;
// OBSOLETE   func_start = (get_pc_function_start ((fi)->pc) +
// OBSOLETE 		FUNCTION_START_OFFSET);
// OBSOLETE   after_prologue = func_start;
// OBSOLETE   after_prologue = SKIP_PROLOGUE (after_prologue);
// OBSOLETE   frameless = (after_prologue == func_start);
// OBSOLETE   return frameless;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: pop_frame
// OBSOLETE    This routine gets called when either the user uses the `return'
// OBSOLETE    command, or the call dummy breakpoint gets hit.  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE fr30_pop_frame (void)
// OBSOLETE {
// OBSOLETE   struct frame_info *frame = get_current_frame ();
// OBSOLETE   int regnum;
// OBSOLETE   CORE_ADDR sp = read_register (SP_REGNUM);
// OBSOLETE 
// OBSOLETE   if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
// OBSOLETE     generic_pop_dummy_frame ();
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
// OBSOLETE 
// OBSOLETE       for (regnum = 0; regnum < NUM_REGS; regnum++)
// OBSOLETE 	if (frame->fsr.regs[regnum] != 0)
// OBSOLETE 	  {
// OBSOLETE 	    write_register (regnum,
// OBSOLETE 		      read_memory_unsigned_integer (frame->fsr.regs[regnum],
// OBSOLETE 					       REGISTER_RAW_SIZE (regnum)));
// OBSOLETE 	  }
// OBSOLETE       write_register (SP_REGNUM, sp + frame->framesize);
// OBSOLETE     }
// OBSOLETE   flush_cached_frames ();
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: fr30_store_return_value
// OBSOLETE    Put a value where a caller expects to see it.  Used by the 'return'
// OBSOLETE    command.  */
// OBSOLETE void
// OBSOLETE fr30_store_return_value (struct type *type,
// OBSOLETE 			 char *valbuf)
// OBSOLETE {
// OBSOLETE   /* Here's how the FR30 returns values (gleaned from gcc/config/
// OBSOLETE      fr30/fr30.h):
// OBSOLETE 
// OBSOLETE      If the return value is 32 bits long or less, it goes in r4.
// OBSOLETE 
// OBSOLETE      If the return value is 64 bits long or less, it goes in r4 (most
// OBSOLETE      significant word) and r5 (least significant word.
// OBSOLETE 
// OBSOLETE      If the function returns a structure, of any size, the caller
// OBSOLETE      passes the function an invisible first argument where the callee
// OBSOLETE      should store the value.  But GDB doesn't let you do that anyway.
// OBSOLETE 
// OBSOLETE      If you're returning a value smaller than a word, it's not really
// OBSOLETE      necessary to zero the upper bytes of the register; the caller is
// OBSOLETE      supposed to ignore them.  However, the FR30 typically keeps its
// OBSOLETE      values extended to the full register width, so we should emulate
// OBSOLETE      that.  */
// OBSOLETE 
// OBSOLETE   /* The FR30 is big-endian, so if we return a small value (like a
// OBSOLETE      short or a char), we need to position it correctly within the
// OBSOLETE      register.  We round the size up to a register boundary, and then
// OBSOLETE      adjust the offset so as to place the value at the right end.  */
// OBSOLETE   int value_size = TYPE_LENGTH (type);
// OBSOLETE   int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1);
// OBSOLETE   int offset = (REGISTER_BYTE (RETVAL_REG)
// OBSOLETE 		+ (returned_size - value_size));
// OBSOLETE   char *zeros = alloca (returned_size);
// OBSOLETE   memset (zeros, 0, returned_size);
// OBSOLETE 
// OBSOLETE   write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size);
// OBSOLETE   write_register_bytes (offset, valbuf, value_size);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: skip_prologue
// OBSOLETE    Return the address of the first code past the prologue of the function.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE fr30_skip_prologue (CORE_ADDR pc)
// OBSOLETE {
// OBSOLETE   CORE_ADDR func_addr, func_end;
// OBSOLETE 
// OBSOLETE   /* See what the symbol table says */
// OBSOLETE 
// OBSOLETE   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
// OBSOLETE     {
// OBSOLETE       struct symtab_and_line sal;
// OBSOLETE 
// OBSOLETE       sal = find_pc_line (func_addr, 0);
// OBSOLETE 
// OBSOLETE       if (sal.line != 0 && sal.end < func_end)
// OBSOLETE 	{
// OBSOLETE 	  return sal.end;
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE /* Either we didn't find the start of this function (nothing we can do),
// OBSOLETE    or there's no line info, or the line after the prologue is after
// OBSOLETE    the end of the function (there probably isn't a prologue). */
// OBSOLETE 
// OBSOLETE   return pc;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: push_arguments
// OBSOLETE    Setup arguments and RP for a call to the target.  First four args
// OBSOLETE    go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
// OBSOLETE    Structs are passed by reference.  XXX not right now Z.R.
// OBSOLETE    64 bit quantities (doubles and long longs) may be split between
// OBSOLETE    the regs and the stack.
// OBSOLETE    When calling a function that returns a struct, a pointer to the struct
// OBSOLETE    is passed in as a secret first argument (always in FIRST_ARGREG).
// OBSOLETE 
// OBSOLETE    Stack space for the args has NOT been allocated: that job is up to us.
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE fr30_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
// OBSOLETE 		     int struct_return, CORE_ADDR struct_addr)
// OBSOLETE {
// OBSOLETE   int argreg;
// OBSOLETE   int argnum;
// OBSOLETE   int stack_offset;
// OBSOLETE   struct stack_arg
// OBSOLETE     {
// OBSOLETE       char *val;
// OBSOLETE       int len;
// OBSOLETE       int offset;
// OBSOLETE     };
// OBSOLETE   struct stack_arg *stack_args =
// OBSOLETE   (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
// OBSOLETE   int nstack_args = 0;
// OBSOLETE 
// OBSOLETE   argreg = FIRST_ARGREG;
// OBSOLETE 
// OBSOLETE   /* the struct_return pointer occupies the first parameter-passing reg */
// OBSOLETE   if (struct_return)
// OBSOLETE     write_register (argreg++, struct_addr);
// OBSOLETE 
// OBSOLETE   stack_offset = 0;
// OBSOLETE 
// OBSOLETE   /* Process args from left to right.  Store as many as allowed in
// OBSOLETE      registers, save the rest to be pushed on the stack */
// OBSOLETE   for (argnum = 0; argnum < nargs; argnum++)
// OBSOLETE     {
// OBSOLETE       char *val;
// OBSOLETE       struct value *arg = args[argnum];
// OBSOLETE       struct type *arg_type = check_typedef (VALUE_TYPE (arg));
// OBSOLETE       struct type *target_type = TYPE_TARGET_TYPE (arg_type);
// OBSOLETE       int len = TYPE_LENGTH (arg_type);
// OBSOLETE       enum type_code typecode = TYPE_CODE (arg_type);
// OBSOLETE       CORE_ADDR regval;
// OBSOLETE       int newarg;
// OBSOLETE 
// OBSOLETE       val = (char *) VALUE_CONTENTS (arg);
// OBSOLETE 
// OBSOLETE       {
// OBSOLETE 	/* Copy the argument to general registers or the stack in
// OBSOLETE 	   register-sized pieces.  Large arguments are split between
// OBSOLETE 	   registers and stack.  */
// OBSOLETE 	while (len > 0)
// OBSOLETE 	  {
// OBSOLETE 	    if (argreg <= LAST_ARGREG)
// OBSOLETE 	      {
// OBSOLETE 		int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
// OBSOLETE 		regval = extract_address (val, partial_len);
// OBSOLETE 
// OBSOLETE 		/* It's a simple argument being passed in a general
// OBSOLETE 		   register.  */
// OBSOLETE 		write_register (argreg, regval);
// OBSOLETE 		argreg++;
// OBSOLETE 		len -= partial_len;
// OBSOLETE 		val += partial_len;
// OBSOLETE 	      }
// OBSOLETE 	    else
// OBSOLETE 	      {
// OBSOLETE 		/* keep for later pushing */
// OBSOLETE 		stack_args[nstack_args].val = val;
// OBSOLETE 		stack_args[nstack_args++].len = len;
// OBSOLETE 		break;
// OBSOLETE 	      }
// OBSOLETE 	  }
// OBSOLETE       }
// OBSOLETE     }
// OBSOLETE   /* now do the real stack pushing, process args right to left */
// OBSOLETE   while (nstack_args--)
// OBSOLETE     {
// OBSOLETE       sp -= stack_args[nstack_args].len;
// OBSOLETE       write_memory (sp, stack_args[nstack_args].val,
// OBSOLETE 		    stack_args[nstack_args].len);
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   /* Return adjusted stack pointer.  */
// OBSOLETE   return sp;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void _initialize_fr30_tdep (void);
// OBSOLETE 
// OBSOLETE void
// OBSOLETE _initialize_fr30_tdep (void)
// OBSOLETE {
// OBSOLETE   extern int print_insn_fr30 (bfd_vma, disassemble_info *);
// OBSOLETE   tm_print_insn = print_insn_fr30;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: check_prologue_cache
// OBSOLETE    Check if prologue for this frame's PC has already been scanned.
// OBSOLETE    If it has, copy the relevant information about that prologue and
// OBSOLETE    return non-zero.  Otherwise do not copy anything and return zero.
// OBSOLETE 
// OBSOLETE    The information saved in the cache includes:
// OBSOLETE    * the frame register number;
// OBSOLETE    * the size of the stack frame;
// OBSOLETE    * the offsets of saved regs (relative to the old SP); and
// OBSOLETE    * the offset from the stack pointer to the frame pointer
// OBSOLETE 
// OBSOLETE    The cache contains only one entry, since this is adequate
// OBSOLETE    for the typical sequence of prologue scan requests we get.
// OBSOLETE    When performing a backtrace, GDB will usually ask to scan
// OBSOLETE    the same function twice in a row (once to get the frame chain,
// OBSOLETE    and once to fill in the extra frame information).
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE static struct frame_info prologue_cache;
// OBSOLETE 
// OBSOLETE static int
// OBSOLETE check_prologue_cache (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int i;
// OBSOLETE 
// OBSOLETE   if (fi->pc == prologue_cache.pc)
// OBSOLETE     {
// OBSOLETE       fi->framereg = prologue_cache.framereg;
// OBSOLETE       fi->framesize = prologue_cache.framesize;
// OBSOLETE       fi->frameoffset = prologue_cache.frameoffset;
// OBSOLETE       for (i = 0; i <= NUM_REGS; i++)
// OBSOLETE 	fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
// OBSOLETE       return 1;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     return 0;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: save_prologue_cache
// OBSOLETE    Copy the prologue information from fi to the prologue cache.
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE static void
// OBSOLETE save_prologue_cache (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int i;
// OBSOLETE 
// OBSOLETE   prologue_cache.pc = fi->pc;
// OBSOLETE   prologue_cache.framereg = fi->framereg;
// OBSOLETE   prologue_cache.framesize = fi->framesize;
// OBSOLETE   prologue_cache.frameoffset = fi->frameoffset;
// OBSOLETE 
// OBSOLETE   for (i = 0; i <= NUM_REGS; i++)
// OBSOLETE     {
// OBSOLETE       prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
// OBSOLETE     }
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: scan_prologue
// OBSOLETE    Scan the prologue of the function that contains PC, and record what
// OBSOLETE    we find in PI.  PI->fsr must be zeroed by the called.  Returns the
// OBSOLETE    pc after the prologue.  Note that the addresses saved in pi->fsr
// OBSOLETE    are actually just frame relative (negative offsets from the frame
// OBSOLETE    pointer).  This is because we don't know the actual value of the
// OBSOLETE    frame pointer yet.  In some circumstances, the frame pointer can't
// OBSOLETE    be determined till after we have scanned the prologue.  */
// OBSOLETE 
// OBSOLETE static void
// OBSOLETE fr30_scan_prologue (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int sp_offset, fp_offset;
// OBSOLETE   CORE_ADDR prologue_start, prologue_end, current_pc;
// OBSOLETE 
// OBSOLETE   /* Check if this function is already in the cache of frame information. */
// OBSOLETE   if (check_prologue_cache (fi))
// OBSOLETE     return;
// OBSOLETE 
// OBSOLETE   /* Assume there is no frame until proven otherwise.  */
// OBSOLETE   fi->framereg = SP_REGNUM;
// OBSOLETE   fi->framesize = 0;
// OBSOLETE   fi->frameoffset = 0;
// OBSOLETE 
// OBSOLETE   /* Find the function prologue.  If we can't find the function in
// OBSOLETE      the symbol table, peek in the stack frame to find the PC.  */
// OBSOLETE   if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
// OBSOLETE     {
// OBSOLETE       /* Assume the prologue is everything between the first instruction
// OBSOLETE          in the function and the first source line.  */
// OBSOLETE       struct symtab_and_line sal = find_pc_line (prologue_start, 0);
// OBSOLETE 
// OBSOLETE       if (sal.line == 0)	/* no line info, use current PC */
// OBSOLETE 	prologue_end = fi->pc;
// OBSOLETE       else if (sal.end < prologue_end)	/* next line begins after fn end */
// OBSOLETE 	prologue_end = sal.end;	/* (probably means no prologue)  */
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       /* XXX Z.R. What now??? The following is entirely bogus */
// OBSOLETE       prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
// OBSOLETE       prologue_end = prologue_start + 40;
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   /* Now search the prologue looking for instructions that set up the
// OBSOLETE      frame pointer, adjust the stack pointer, and save registers.  */
// OBSOLETE 
// OBSOLETE   sp_offset = fp_offset = 0;
// OBSOLETE   for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
// OBSOLETE     {
// OBSOLETE       unsigned int insn;
// OBSOLETE 
// OBSOLETE       insn = read_memory_unsigned_integer (current_pc, 2);
// OBSOLETE 
// OBSOLETE       if ((insn & 0xfe00) == 0x8e00)	/* stm0 or stm1 */
// OBSOLETE 	{
// OBSOLETE 	  int reg, mask = insn & 0xff;
// OBSOLETE 
// OBSOLETE 	  /* scan in one sweep - create virtual 16-bit mask from either insn's mask */
// OBSOLETE 	  if ((insn & 0x0100) == 0)
// OBSOLETE 	    {
// OBSOLETE 	      mask <<= 8;	/* stm0 - move to upper byte in virtual mask */
// OBSOLETE 	    }
// OBSOLETE 
// OBSOLETE 	  /* Calculate offsets of saved registers (to be turned later into addresses). */
// OBSOLETE 	  for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
// OBSOLETE 	    if (mask & (1 << (15 - reg)))
// OBSOLETE 	      {
// OBSOLETE 		sp_offset -= 4;
// OBSOLETE 		fi->fsr.regs[reg] = sp_offset;
// OBSOLETE 	      }
// OBSOLETE 	}
// OBSOLETE       else if ((insn & 0xfff0) == 0x1700)	/* st rx,@-r15 */
// OBSOLETE 	{
// OBSOLETE 	  int reg = insn & 0xf;
// OBSOLETE 
// OBSOLETE 	  sp_offset -= 4;
// OBSOLETE 	  fi->fsr.regs[reg] = sp_offset;
// OBSOLETE 	}
// OBSOLETE       else if ((insn & 0xff00) == 0x0f00)	/* enter */
// OBSOLETE 	{
// OBSOLETE 	  fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
// OBSOLETE 	  sp_offset -= 4 * (insn & 0xff);
// OBSOLETE 	  fi->framereg = FP_REGNUM;
// OBSOLETE 	}
// OBSOLETE       else if (insn == 0x1781)	/* st rp,@-sp */
// OBSOLETE 	{
// OBSOLETE 	  sp_offset -= 4;
// OBSOLETE 	  fi->fsr.regs[RP_REGNUM] = sp_offset;
// OBSOLETE 	}
// OBSOLETE       else if (insn == 0x170e)	/* st fp,@-sp */
// OBSOLETE 	{
// OBSOLETE 	  sp_offset -= 4;
// OBSOLETE 	  fi->fsr.regs[FP_REGNUM] = sp_offset;
// OBSOLETE 	}
// OBSOLETE       else if (insn == 0x8bfe)	/* mov sp,fp */
// OBSOLETE 	{
// OBSOLETE 	  fi->framereg = FP_REGNUM;
// OBSOLETE 	}
// OBSOLETE       else if ((insn & 0xff00) == 0xa300)	/* addsp xx */
// OBSOLETE 	{
// OBSOLETE 	  sp_offset += 4 * (signed char) (insn & 0xff);
// OBSOLETE 	}
// OBSOLETE       else if ((insn & 0xff0f) == 0x9b00 &&	/* ldi:20 xx,r0 */
// OBSOLETE 	       read_memory_unsigned_integer (current_pc + 4, 2)
// OBSOLETE 	       == 0xac0f)	/* sub r0,sp */
// OBSOLETE 	{
// OBSOLETE 	  /* large stack adjustment */
// OBSOLETE 	  sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2));
// OBSOLETE 	  current_pc += 4;
// OBSOLETE 	}
// OBSOLETE       else if (insn == 0x9f80 &&	/* ldi:32 xx,r0 */
// OBSOLETE 	       read_memory_unsigned_integer (current_pc + 6, 2)
// OBSOLETE 	       == 0xac0f)	/* sub r0,sp */
// OBSOLETE 	{
// OBSOLETE 	  /* large stack adjustment */
// OBSOLETE 	  sp_offset -=
// OBSOLETE 	    (read_memory_unsigned_integer (current_pc + 2, 2) << 16 |
// OBSOLETE 	     read_memory_unsigned_integer (current_pc + 4, 2));
// OBSOLETE 	  current_pc += 6;
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   /* The frame size is just the negative of the offset (from the original SP)
// OBSOLETE      of the last thing thing we pushed on the stack.  The frame offset is
// OBSOLETE      [new FP] - [new SP].  */
// OBSOLETE   fi->framesize = -sp_offset;
// OBSOLETE   fi->frameoffset = fp_offset - sp_offset;
// OBSOLETE 
// OBSOLETE   save_prologue_cache (fi);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: init_extra_frame_info
// OBSOLETE    Setup the frame's frame pointer, pc, and frame addresses for saved
// OBSOLETE    registers.  Most of the work is done in scan_prologue().
// OBSOLETE 
// OBSOLETE    Note that when we are called for the last frame (currently active frame),
// OBSOLETE    that fi->pc and fi->frame will already be setup.  However, fi->frame will
// OBSOLETE    be valid only if this routine uses FP.  For previous frames, fi-frame will
// OBSOLETE    always be correct (since that is derived from fr30_frame_chain ()).
// OBSOLETE 
// OBSOLETE    We can be called with the PC in the call dummy under two circumstances.
// OBSOLETE    First, during normal backtracing, second, while figuring out the frame
// OBSOLETE    pointer just prior to calling the target function (see run_stack_dummy).  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE fr30_init_extra_frame_info (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int reg;
// OBSOLETE 
// OBSOLETE   if (fi->next)
// OBSOLETE     fi->pc = FRAME_SAVED_PC (fi->next);
// OBSOLETE 
// OBSOLETE   memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
// OBSOLETE 
// OBSOLETE   if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     {
// OBSOLETE       /* We need to setup fi->frame here because run_stack_dummy gets it wrong
// OBSOLETE          by assuming it's always FP.  */
// OBSOLETE       fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
// OBSOLETE       fi->framesize = 0;
// OBSOLETE       fi->frameoffset = 0;
// OBSOLETE       return;
// OBSOLETE     }
// OBSOLETE   fr30_scan_prologue (fi);
// OBSOLETE 
// OBSOLETE   if (!fi->next)		/* this is the innermost frame? */
// OBSOLETE     fi->frame = read_register (fi->framereg);
// OBSOLETE   else
// OBSOLETE     /* not the innermost frame */
// OBSOLETE     /* If we have an FP,  the callee saved it. */
// OBSOLETE     if (fi->framereg == FP_REGNUM)
// OBSOLETE       if (fi->next->fsr.regs[fi->framereg] != 0)
// OBSOLETE 	fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
// OBSOLETE 
// OBSOLETE   /* Calculate actual addresses of saved registers using offsets determined
// OBSOLETE      by fr30_scan_prologue.  */
// OBSOLETE   for (reg = 0; reg < NUM_REGS; reg++)
// OBSOLETE     if (fi->fsr.regs[reg] != 0)
// OBSOLETE       {
// OBSOLETE 	fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
// OBSOLETE       }
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: find_callers_reg
// OBSOLETE    Find REGNUM on the stack.  Otherwise, it's in an active register.
// OBSOLETE    One thing we might want to do here is to check REGNUM against the
// OBSOLETE    clobber mask, and somehow flag it as invalid if it isn't saved on
// OBSOLETE    the stack somewhere.  This would provide a graceful failure mode
// OBSOLETE    when trying to get the value of caller-saves registers for an inner
// OBSOLETE    frame.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE fr30_find_callers_reg (struct frame_info *fi, int regnum)
// OBSOLETE {
// OBSOLETE   for (; fi; fi = fi->next)
// OBSOLETE     if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE       return generic_read_register_dummy (fi->pc, fi->frame, regnum);
// OBSOLETE     else if (fi->fsr.regs[regnum] != 0)
// OBSOLETE       return read_memory_unsigned_integer (fi->fsr.regs[regnum],
// OBSOLETE 					   REGISTER_RAW_SIZE (regnum));
// OBSOLETE 
// OBSOLETE   return read_register (regnum);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: frame_chain
// OBSOLETE    Figure out the frame prior to FI.  Unfortunately, this involves
// OBSOLETE    scanning the prologue of the caller, which will also be done
// OBSOLETE    shortly by fr30_init_extra_frame_info.  For the dummy frame, we
// OBSOLETE    just return the stack pointer that was in use at the time the
// OBSOLETE    function call was made.  */
// OBSOLETE 
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE fr30_frame_chain (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   CORE_ADDR fn_start, callers_pc, fp;
// OBSOLETE   struct frame_info caller_fi;
// OBSOLETE   int framereg;
// OBSOLETE 
// OBSOLETE   /* is this a dummy frame? */
// OBSOLETE   if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     return fi->frame;		/* dummy frame same as caller's frame */
// OBSOLETE 
// OBSOLETE   /* is caller-of-this a dummy frame? */
// OBSOLETE   callers_pc = FRAME_SAVED_PC (fi);	/* find out who called us: */
// OBSOLETE   fp = fr30_find_callers_reg (fi, FP_REGNUM);
// OBSOLETE   if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
// OBSOLETE     return fp;			/* dummy frame's frame may bear no relation to ours */
// OBSOLETE 
// OBSOLETE   if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
// OBSOLETE     if (fn_start == entry_point_address ())
// OBSOLETE       return 0;			/* in _start fn, don't chain further */
// OBSOLETE 
// OBSOLETE   framereg = fi->framereg;
// OBSOLETE 
// OBSOLETE   /* If the caller is the startup code, we're at the end of the chain.  */
// OBSOLETE   if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
// OBSOLETE     if (fn_start == entry_point_address ())
// OBSOLETE       return 0;
// OBSOLETE 
// OBSOLETE   memset (&caller_fi, 0, sizeof (caller_fi));
// OBSOLETE   caller_fi.pc = callers_pc;
// OBSOLETE   fr30_scan_prologue (&caller_fi);
// OBSOLETE   framereg = caller_fi.framereg;
// OBSOLETE 
// OBSOLETE   /* If the caller used a frame register, return its value.
// OBSOLETE      Otherwise, return the caller's stack pointer.  */
// OBSOLETE   if (framereg == FP_REGNUM)
// OBSOLETE     return fr30_find_callers_reg (fi, framereg);
// OBSOLETE   else
// OBSOLETE     return fi->frame + fi->framesize;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: frame_saved_pc 
// OBSOLETE    Find the caller of this frame.  We do this by seeing if RP_REGNUM
// OBSOLETE    is saved in the stack anywhere, otherwise we get it from the
// OBSOLETE    registers.  If the inner frame is a dummy frame, return its PC
// OBSOLETE    instead of RP, because that's where "caller" of the dummy-frame
// OBSOLETE    will be found.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE fr30_frame_saved_pc (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
// OBSOLETE   else
// OBSOLETE     return fr30_find_callers_reg (fi, RP_REGNUM);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: fix_call_dummy
// OBSOLETE    Pokes the callee function's address into the CALL_DUMMY assembly stub.
// OBSOLETE    Assumes that the CALL_DUMMY looks like this:
// OBSOLETE    jarl <offset24>, r31
// OBSOLETE    trap
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE int
// OBSOLETE fr30_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
// OBSOLETE 		     struct value **args, struct type *type, int gcc_p)
// OBSOLETE {
// OBSOLETE   long offset24;
// OBSOLETE 
// OBSOLETE   offset24 = (long) fun - (long) entry_point_address ();
// OBSOLETE   offset24 &= 0x3fffff;
// OBSOLETE   offset24 |= 0xff800000;	/* jarl <offset24>, r31 */
// OBSOLETE 
// OBSOLETE   store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
// OBSOLETE   store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
// OBSOLETE   return 0;
// OBSOLETE }