aboutsummaryrefslogtreecommitdiff
path: root/gdb/findvar.c
blob: 1d22e645305e0bd6ddb0d55f226039e7db4cf5e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/* Find a variable's value in memory, for GDB, the GNU debugger.

   Copyright (C) 1986-2022 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "symfile.h"		/* for overlay functions */
#include "regcache.h"
#include "user-regs.h"
#include "block.h"
#include "objfiles.h"
#include "language.h"
#include "dwarf2/loc.h"
#include "gdbsupport/selftest.h"

/* Basic byte-swapping routines.  All 'extract' functions return a
   host-format integer from a target-format integer at ADDR which is
   LEN bytes long.  */

#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
you lose
#endif

template<typename T, typename>
T
extract_integer (gdb::array_view<const gdb_byte> buf, enum bfd_endian byte_order)
{
  typename std::make_unsigned<T>::type retval = 0;

  if (buf.size () > (int) sizeof (T))
    error (_("\
That operation is not available on integers of more than %d bytes."),
	   (int) sizeof (T));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  if (byte_order == BFD_ENDIAN_BIG)
    {
      size_t i = 0;

      if (std::is_signed<T>::value)
	{
	  /* Do the sign extension once at the start.  */
	  retval = ((LONGEST) buf[i] ^ 0x80) - 0x80;
	  ++i;
	}
      for (; i < buf.size (); ++i)
	retval = (retval << 8) | buf[i];
    }
  else
    {
      ssize_t i = buf.size () - 1;

      if (std::is_signed<T>::value)
	{
	  /* Do the sign extension once at the start.  */
	  retval = ((LONGEST) buf[i] ^ 0x80) - 0x80;
	  --i;
	}
      for (; i >= 0; --i)
	retval = (retval << 8) | buf[i];
    }
  return retval;
}

/* Explicit instantiations.  */
template LONGEST extract_integer<LONGEST> (gdb::array_view<const gdb_byte> buf,
					   enum bfd_endian byte_order);
template ULONGEST extract_integer<ULONGEST>
  (gdb::array_view<const gdb_byte> buf, enum bfd_endian byte_order);

/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */

int
extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
			       enum bfd_endian byte_order, LONGEST *pval)
{
  const gdb_byte *p;
  const gdb_byte *first_addr;
  int len;

  len = orig_len;
  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = addr;
	   len > (int) sizeof (LONGEST) && p < addr + orig_len;
	   p++)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
      first_addr = p;
    }
  else
    {
      first_addr = addr;
      for (p = addr + orig_len - 1;
	   len > (int) sizeof (LONGEST) && p >= addr;
	   p--)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
    }

  if (len <= (int) sizeof (LONGEST))
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
						  sizeof (LONGEST),
						  byte_order);
      return 1;
    }

  return 0;
}


/* Treat the bytes at BUF as a pointer of type TYPE, and return the
   address it represents.  */
CORE_ADDR
extract_typed_address (const gdb_byte *buf, struct type *type)
{
  if (!type->is_pointer_or_reference ())
    internal_error (__FILE__, __LINE__,
		    _("extract_typed_address: "
		    "type is not a pointer or reference"));

  return gdbarch_pointer_to_address (type->arch (), type, buf);
}

/* All 'store' functions accept a host-format integer and store a
   target-format integer at ADDR which is LEN bytes long.  */
template<typename T, typename>
void
store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
	       T val)
{
  gdb_byte *p;
  gdb_byte *startaddr = addr;
  gdb_byte *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (byte_order == BFD_ENDIAN_BIG)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

/* Explicit instantiations.  */
template void store_integer (gdb_byte *addr, int len,
			     enum bfd_endian byte_order,
			     LONGEST val);

template void store_integer (gdb_byte *addr, int len,
			     enum bfd_endian byte_order,
			     ULONGEST val);

/* Store the address ADDR as a pointer of type TYPE at BUF, in target
   form.  */
void
store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
{
  if (!type->is_pointer_or_reference ())
    internal_error (__FILE__, __LINE__,
		    _("store_typed_address: "
		    "type is not a pointer or reference"));

  gdbarch_address_to_pointer (type->arch (), type, buf, addr);
}

/* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
   bytes.  If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
   significant bytes.  If SOURCE_SIZE is less than DEST_SIZE then either sign
   or zero extended according to IS_SIGNED.  Values are stored in memory with
   endianness BYTE_ORDER.  */

void
copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
		      int source_size, bool is_signed,
		      enum bfd_endian byte_order)
{
  signed int size_diff = dest_size - source_size;

  /* Copy across everything from SOURCE that can fit into DEST.  */

  if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
    memcpy (dest + size_diff, source, source_size);
  else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
    memcpy (dest, source - size_diff, dest_size);
  else
    memcpy (dest, source, std::min (source_size, dest_size));

  /* Fill the remaining space in DEST by either zero extending or sign
     extending.  */

  if (size_diff > 0)
    {
      gdb_byte extension = 0;
      if (is_signed
	  && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
	      || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
	extension = 0xff;

      /* Extend into MSBs of SOURCE.  */
      if (byte_order == BFD_ENDIAN_BIG)
	memset (dest, extension, size_diff);
      else
	memset (dest + source_size, extension, size_diff);
    }
}

/* Return a `value' with the contents of (virtual or cooked) register
   REGNUM as found in the specified FRAME.  The register's type is
   determined by register_type ().  */

struct value *
value_of_register (int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct value *reg_val;

  /* User registers lie completely outside of the range of normal
     registers.  Catch them early so that the target never sees them.  */
  if (regnum >= gdbarch_num_cooked_regs (gdbarch))
    return value_of_user_reg (regnum, frame);

  reg_val = value_of_register_lazy (frame, regnum);
  value_fetch_lazy (reg_val);
  return reg_val;
}

/* Return a `value' with the contents of (virtual or cooked) register
   REGNUM as found in the specified FRAME.  The register's type is
   determined by register_type ().  The value is not fetched.  */

struct value *
value_of_register_lazy (struct frame_info *frame, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct value *reg_val;
  struct frame_info *next_frame;

  gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));

  gdb_assert (frame != NULL);

  next_frame = get_next_frame_sentinel_okay (frame);

  /* In some cases NEXT_FRAME may not have a valid frame-id yet.  This can
     happen if we end up trying to unwind a register as part of the frame
     sniffer.  The only time that we get here without a valid frame-id is
     if NEXT_FRAME is an inline frame.  If this is the case then we can
     avoid getting into trouble here by skipping past the inline frames.  */
  while (get_frame_type (next_frame) == INLINE_FRAME)
    next_frame = get_next_frame_sentinel_okay (next_frame);

  /* We should have a valid next frame.  */
  gdb_assert (frame_id_p (get_frame_id (next_frame)));

  reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
  VALUE_LVAL (reg_val) = lval_register;
  VALUE_REGNUM (reg_val) = regnum;
  VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);

  return reg_val;
}

/* Given a pointer of type TYPE in target form in BUF, return the
   address it represents.  */
CORE_ADDR
unsigned_pointer_to_address (struct gdbarch *gdbarch,
			     struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = type_byte_order (type);

  return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
}

CORE_ADDR
signed_pointer_to_address (struct gdbarch *gdbarch,
			   struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = type_byte_order (type);

  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
}

/* Given an address, store it as a pointer of type TYPE in target
   format in BUF.  */
void
unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
			     gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = type_byte_order (type);

  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}

void
address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
			   gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = type_byte_order (type);

  store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}

/* See value.h.  */

enum symbol_needs_kind
symbol_read_needs (struct symbol *sym)
{
  if (SYMBOL_COMPUTED_OPS (sym) != NULL)
    return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);

  switch (sym->aclass ())
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
	 we failed to consider one.  */
    case LOC_COMPUTED:
      gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");

    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
      return SYMBOL_NEEDS_FRAME;

    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_TYPEDEF:

    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
	 even if some *uses* of that address wouldn't work so well without
	 the right frame.  */

    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
      return SYMBOL_NEEDS_NONE;
    }
  return SYMBOL_NEEDS_FRAME;
}

/* See value.h.  */

int
symbol_read_needs_frame (struct symbol *sym)
{
  return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
}

/* Private data to be used with minsym_lookup_iterator_cb.  */

struct minsym_lookup_data
{
  /* The name of the minimal symbol we are searching for.  */
  const char *name;

  /* The field where the callback should store the minimal symbol
     if found.  It should be initialized to NULL before the search
     is started.  */
  struct bound_minimal_symbol result;
};

/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
   It searches by name for a minimal symbol within the given OBJFILE.
   The arguments are passed via CB_DATA, which in reality is a pointer
   to struct minsym_lookup_data.  */

static int
minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
{
  struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;

  gdb_assert (data->result.minsym == NULL);

  data->result = lookup_minimal_symbol (data->name, NULL, objfile);

  /* The iterator should stop iff a match was found.  */
  return (data->result.minsym != NULL);
}

/* Given static link expression and the frame it lives in, look for the frame
   the static links points to and return it.  Return NULL if we could not find
   such a frame.   */

static struct frame_info *
follow_static_link (struct frame_info *frame,
		    const struct dynamic_prop *static_link)
{
  CORE_ADDR upper_frame_base;

  if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
    return NULL;

  /* Now climb up the stack frame until we reach the frame we are interested
     in.  */
  for (; frame != NULL; frame = get_prev_frame (frame))
    {
      struct symbol *framefunc = get_frame_function (frame);

      /* Stacks can be quite deep: give the user a chance to stop this.  */
      QUIT;

      /* If we don't know how to compute FRAME's base address, don't give up:
	 maybe the frame we are looking for is upper in the stack frame.  */
      if (framefunc != NULL
	  && SYMBOL_BLOCK_OPS (framefunc) != NULL
	  && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
	  && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
	      == upper_frame_base))
	break;
    }

  return frame;
}

/* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
   rules, look for the frame that is actually hosting VAR and return it.  If,
   for some reason, we found no such frame, return NULL.

   This kind of computation is necessary to correctly handle lexically nested
   functions.

   Note that in some cases, we know what scope VAR comes from but we cannot
   reach the specific frame that hosts the instance of VAR we are looking for.
   For backward compatibility purposes (with old compilers), we then look for
   the first frame that can host it.  */

static struct frame_info *
get_hosting_frame (struct symbol *var, const struct block *var_block,
		   struct frame_info *frame)
{
  const struct block *frame_block = NULL;

  if (!symbol_read_needs_frame (var))
    return NULL;

  /* Some symbols for local variables have no block: this happens when they are
     not produced by a debug information reader, for instance when GDB creates
     synthetic symbols.  Without block information, we must assume they are
     local to FRAME. In this case, there is nothing to do.  */
  else if (var_block == NULL)
    return frame;

  /* We currently assume that all symbols with a location list need a frame.
     This is true in practice because selecting the location description
     requires to compute the CFA, hence requires a frame.  However we have
     tests that embed global/static symbols with null location lists.
     We want to get <optimized out> instead of <frame required> when evaluating
     them so return a frame instead of raising an error.  */
  else if (var_block == block_global_block (var_block)
	   || var_block == block_static_block (var_block))
    return frame;

  /* We have to handle the "my_func::my_local_var" notation.  This requires us
     to look for upper frames when we find no block for the current frame: here
     and below, handle when frame_block == NULL.  */
  if (frame != NULL)
    frame_block = get_frame_block (frame, NULL);

  /* Climb up the call stack until reaching the frame we are looking for.  */
  while (frame != NULL && frame_block != var_block)
    {
      /* Stacks can be quite deep: give the user a chance to stop this.  */
      QUIT;

      if (frame_block == NULL)
	{
	  frame = get_prev_frame (frame);
	  if (frame == NULL)
	    break;
	  frame_block = get_frame_block (frame, NULL);
	}

      /* If we failed to find the proper frame, fallback to the heuristic
	 method below.  */
      else if (frame_block == block_global_block (frame_block))
	{
	  frame = NULL;
	  break;
	}

      /* Assuming we have a block for this frame: if we are at the function
	 level, the immediate upper lexical block is in an outer function:
	 follow the static link.  */
      else if (BLOCK_FUNCTION (frame_block))
	{
	  const struct dynamic_prop *static_link
	    = block_static_link (frame_block);
	  int could_climb_up = 0;

	  if (static_link != NULL)
	    {
	      frame = follow_static_link (frame, static_link);
	      if (frame != NULL)
		{
		  frame_block = get_frame_block (frame, NULL);
		  could_climb_up = frame_block != NULL;
		}
	    }
	  if (!could_climb_up)
	    {
	      frame = NULL;
	      break;
	    }
	}

      else
	/* We must be in some function nested lexical block.  Just get the
	   outer block: both must share the same frame.  */
	frame_block = BLOCK_SUPERBLOCK (frame_block);
    }

  /* Old compilers may not provide a static link, or they may provide an
     invalid one.  For such cases, fallback on the old way to evaluate
     non-local references: just climb up the call stack and pick the first
     frame that contains the variable we are looking for.  */
  if (frame == NULL)
    {
      frame = block_innermost_frame (var_block);
      if (frame == NULL)
	{
	  if (BLOCK_FUNCTION (var_block)
	      && !block_inlined_p (var_block)
	      && BLOCK_FUNCTION (var_block)->print_name ())
	    error (_("No frame is currently executing in block %s."),
		   BLOCK_FUNCTION (var_block)->print_name ());
	  else
	    error (_("No frame is currently executing in specified"
		     " block"));
	}
    }

  return frame;
}

/* See language.h.  */

struct value *
language_defn::read_var_value (struct symbol *var,
			       const struct block *var_block,
			       struct frame_info *frame) const
{
  struct value *v;
  struct type *type = var->type ();
  CORE_ADDR addr;
  enum symbol_needs_kind sym_need;

  /* Call check_typedef on our type to make sure that, if TYPE is
     a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
     instead of zero.  However, we do not replace the typedef type by the
     target type, because we want to keep the typedef in order to be able to
     set the returned value type description correctly.  */
  check_typedef (type);

  sym_need = symbol_read_needs (var);
  if (sym_need == SYMBOL_NEEDS_FRAME)
    gdb_assert (frame != NULL);
  else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
    error (_("Cannot read `%s' without registers"), var->print_name ());

  if (frame != NULL)
    frame = get_hosting_frame (var, var_block, frame);

  if (SYMBOL_COMPUTED_OPS (var) != NULL)
    return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);

  switch (var->aclass ())
    {
    case LOC_CONST:
      if (is_dynamic_type (type))
	{
	  /* Value is a constant byte-sequence and needs no memory access.  */
	  type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0);
	}
      /* Put the constant back in target format. */
      v = allocate_value (type);
      store_signed_integer (value_contents_raw (v).data (), TYPE_LENGTH (type),
			    type_byte_order (type),
			    (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      /* Put the constant back in target format.  */
      v = allocate_value (type);
      if (overlay_debugging)
	{
	  struct objfile *var_objfile = symbol_objfile (var);
	  addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					   var->obj_section (var_objfile));
	  store_typed_address (value_contents_raw (v).data (), type, addr);
	}
      else
	store_typed_address (value_contents_raw (v).data (), type,
			      SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      if (is_dynamic_type (type))
	{
	  /* Value is a constant byte-sequence and needs no memory access.  */
	  type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0);
	}
      v = allocate_value (type);
      memcpy (value_contents_raw (v).data (), SYMBOL_VALUE_BYTES (var),
	      TYPE_LENGTH (type));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_STATIC:
      if (overlay_debugging)
	addr
	  = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
				      var->obj_section (symbol_objfile (var)));
      else
	addr = SYMBOL_VALUE_ADDRESS (var);
      break;

    case LOC_ARG:
      addr = get_frame_args_address (frame);
      if (!addr)
	error (_("Unknown argument list address for `%s'."),
	       var->print_name ());
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_REF_ARG:
      {
	struct value *ref;
	CORE_ADDR argref;

	argref = get_frame_args_address (frame);
	if (!argref)
	  error (_("Unknown argument list address for `%s'."),
		 var->print_name ());
	argref += SYMBOL_VALUE (var);
	ref = value_at (lookup_pointer_type (type), argref);
	addr = value_as_address (ref);
	break;
      }

    case LOC_LOCAL:
      addr = get_frame_locals_address (frame);
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_TYPEDEF:
      error (_("Cannot look up value of a typedef `%s'."),
	     var->print_name ());
      break;

    case LOC_BLOCK:
      if (overlay_debugging)
	addr = symbol_overlayed_address
	  (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
	   var->obj_section (symbol_objfile (var)));
      else
	addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
      break;

    case LOC_REGISTER:
    case LOC_REGPARM_ADDR:
      {
	int regno = SYMBOL_REGISTER_OPS (var)
		      ->register_number (var, get_frame_arch (frame));
	struct value *regval;

	if (var->aclass () == LOC_REGPARM_ADDR)
	  {
	    regval = value_from_register (lookup_pointer_type (type),
					  regno,
					  frame);

	    if (regval == NULL)
	      error (_("Value of register variable not available for `%s'."),
		     var->print_name ());

	    addr = value_as_address (regval);
	  }
	else
	  {
	    regval = value_from_register (type, regno, frame);

	    if (regval == NULL)
	      error (_("Value of register variable not available for `%s'."),
		     var->print_name ());
	    return regval;
	  }
      }
      break;

    case LOC_COMPUTED:
      gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");

    case LOC_UNRESOLVED:
      {
	struct minsym_lookup_data lookup_data;
	struct minimal_symbol *msym;
	struct obj_section *obj_section;

	memset (&lookup_data, 0, sizeof (lookup_data));
	lookup_data.name = var->linkage_name ();

	gdbarch_iterate_over_objfiles_in_search_order
	  (symbol_arch (var),
	   minsym_lookup_iterator_cb, &lookup_data,
	   symbol_objfile (var));
	msym = lookup_data.result.minsym;

	/* If we can't find the minsym there's a problem in the symbol info.
	   The symbol exists in the debug info, but it's missing in the minsym
	   table.  */
	if (msym == NULL)
	  {
	    const char *flavour_name
	      = objfile_flavour_name (symbol_objfile (var));

	    /* We can't get here unless we've opened the file, so flavour_name
	       can't be NULL.  */
	    gdb_assert (flavour_name != NULL);
	    error (_("Missing %s symbol \"%s\"."),
		   flavour_name, var->linkage_name ());
	  }
	obj_section = msym->obj_section (lookup_data.result.objfile);
	/* Relocate address, unless there is no section or the variable is
	   a TLS variable. */
	if (obj_section == NULL
	    || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
	   addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
	else
	   addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
	if (overlay_debugging)
	  addr = symbol_overlayed_address (addr, obj_section);
	/* Determine address of TLS variable. */
	if (obj_section
	    && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
	  addr = target_translate_tls_address (obj_section->objfile, addr);
      }
      break;

    case LOC_OPTIMIZED_OUT:
      if (is_dynamic_type (type))
	type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0);
      return allocate_optimized_out_value (type);

    default:
      error (_("Cannot look up value of a botched symbol `%s'."),
	     var->print_name ());
      break;
    }

  v = value_at_lazy (type, addr);
  return v;
}

/* Calls VAR's language read_var_value hook with the given arguments.  */

struct value *
read_var_value (struct symbol *var, const struct block *var_block,
		struct frame_info *frame)
{
  const struct language_defn *lang = language_def (var->language ());

  gdb_assert (lang != NULL);

  return lang->read_var_value (var, var_block, frame);
}

/* Install default attributes for register values.  */

struct value *
default_value_from_register (struct gdbarch *gdbarch, struct type *type,
			     int regnum, struct frame_id frame_id)
{
  int len = TYPE_LENGTH (type);
  struct value *value = allocate_value (type);
  struct frame_info *frame;

  VALUE_LVAL (value) = lval_register;
  frame = frame_find_by_id (frame_id);

  if (frame == NULL)
    frame_id = null_frame_id;
  else
    frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));

  VALUE_NEXT_FRAME_ID (value) = frame_id;
  VALUE_REGNUM (value) = regnum;

  /* Any structure stored in more than one register will always be
     an integral number of registers.  Otherwise, you need to do
     some fiddling with the last register copied here for little
     endian machines.  */
  if (type_byte_order (type) == BFD_ENDIAN_BIG
      && len < register_size (gdbarch, regnum))
    /* Big-endian, and we want less than full size.  */
    set_value_offset (value, register_size (gdbarch, regnum) - len);
  else
    set_value_offset (value, 0);

  return value;
}

/* VALUE must be an lval_register value.  If regnum is the value's
   associated register number, and len the length of the values type,
   read one or more registers in FRAME, starting with register REGNUM,
   until we've read LEN bytes.

   If any of the registers we try to read are optimized out, then mark the
   complete resulting value as optimized out.  */

void
read_frame_register_value (struct value *value, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  LONGEST offset = 0;
  LONGEST reg_offset = value_offset (value);
  int regnum = VALUE_REGNUM (value);
  int len = type_length_units (check_typedef (value_type (value)));

  gdb_assert (VALUE_LVAL (value) == lval_register);

  /* Skip registers wholly inside of REG_OFFSET.  */
  while (reg_offset >= register_size (gdbarch, regnum))
    {
      reg_offset -= register_size (gdbarch, regnum);
      regnum++;
    }

  /* Copy the data.  */
  while (len > 0)
    {
      struct value *regval = get_frame_register_value (frame, regnum);
      int reg_len = type_length_units (value_type (regval)) - reg_offset;

      /* If the register length is larger than the number of bytes
	 remaining to copy, then only copy the appropriate bytes.  */
      if (reg_len > len)
	reg_len = len;

      value_contents_copy (value, offset, regval, reg_offset, reg_len);

      offset += reg_len;
      len -= reg_len;
      reg_offset = 0;
      regnum++;
    }
}

/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME.  */

struct value *
value_from_register (struct type *type, int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct type *type1 = check_typedef (type);
  struct value *v;

  if (gdbarch_convert_register_p (gdbarch, regnum, type1))
    {
      int optim, unavail, ok;

      /* The ISA/ABI need to something weird when obtaining the
	 specified value from this register.  It might need to
	 re-order non-adjacent, starting with REGNUM (see MIPS and
	 i386).  It might need to convert the [float] register into
	 the corresponding [integer] type (see Alpha).  The assumption
	 is that gdbarch_register_to_value populates the entire value
	 including the location.  */
      v = allocate_value (type);
      VALUE_LVAL (v) = lval_register;
      VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
      VALUE_REGNUM (v) = regnum;
      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
				      value_contents_raw (v).data (), &optim,
				      &unavail);

      if (!ok)
	{
	  if (optim)
	    mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
	  if (unavail)
	    mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
	}
    }
  else
    {
      /* Construct the value.  */
      v = gdbarch_value_from_register (gdbarch, type,
				       regnum, get_frame_id (frame));

      /* Get the data.  */
      read_frame_register_value (v, frame);
    }

  return v;
}

/* Return contents of register REGNUM in frame FRAME as address.
   Will abort if register value is not available.  */

CORE_ADDR
address_from_register (int regnum, struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
  struct value *value;
  CORE_ADDR result;
  int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);

  if (regnum < 0 || regnum >= regnum_max_excl)
    error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
	   regnum_max_excl);

  /* This routine may be called during early unwinding, at a time
     where the ID of FRAME is not yet known.  Calling value_from_register
     would therefore abort in get_frame_id.  However, since we only need
     a temporary value that is never used as lvalue, we actually do not
     really need to set its VALUE_NEXT_FRAME_ID.  Therefore, we re-implement
     the core of value_from_register, but use the null_frame_id.  */

  /* Some targets require a special conversion routine even for plain
     pointer types.  Avoid constructing a value object in those cases.  */
  if (gdbarch_convert_register_p (gdbarch, regnum, type))
    {
      gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
      int optim, unavail, ok;

      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
				      buf, &optim, &unavail);
      if (!ok)
	{
	  /* This function is used while computing a location expression.
	     Complain about the value being optimized out, rather than
	     letting value_as_address complain about some random register
	     the expression depends on not being saved.  */
	  error_value_optimized_out ();
	}

      return unpack_long (type, buf);
    }

  value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
  read_frame_register_value (value, frame);

  if (value_optimized_out (value))
    {
      /* This function is used while computing a location expression.
	 Complain about the value being optimized out, rather than
	 letting value_as_address complain about some random register
	 the expression depends on not being saved.  */
      error_value_optimized_out ();
    }

  result = value_as_address (value);
  release_value (value);

  return result;
}

#if GDB_SELF_TEST
namespace selftests {
namespace findvar_tests {

/* Function to test copy_integer_to_size.  Store SOURCE_VAL with size
   SOURCE_SIZE to a buffer, making sure no sign extending happens at this
   stage.  Copy buffer to a new buffer using copy_integer_to_size.  Extract
   copied value and compare to DEST_VALU.  Copy again with a signed
   copy_integer_to_size and compare to DEST_VALS.  Do everything for both
   LITTLE and BIG target endians.  Use unsigned values throughout to make
   sure there are no implicit sign extensions.  */

static void
do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
	      ULONGEST src_val, int src_size)
{
  for (int i = 0; i < 2 ; i++)
    {
      gdb_byte srcbuf[sizeof (ULONGEST)] = {};
      gdb_byte destbuf[sizeof (ULONGEST)] = {};
      enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;

      /* Fill the src buffer (and later the dest buffer) with non-zero junk,
	 to ensure zero extensions aren't hidden.  */
      memset (srcbuf, 0xaa, sizeof (srcbuf));

      /* Store (and later extract) using unsigned to ensure there are no sign
	 extensions.  */
      store_unsigned_integer (srcbuf, src_size, byte_order, src_val);

      /* Test unsigned.  */
      memset (destbuf, 0xaa, sizeof (destbuf));
      copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
			    byte_order);
      SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
							 byte_order));

      /* Test signed.  */
      memset (destbuf, 0xaa, sizeof (destbuf));
      copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
			    byte_order);
      SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
							 byte_order));
    }
}

static void
copy_integer_to_size_test ()
{
  /* Destination is bigger than the source, which has the signed bit unset.  */
  do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
  do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);

  /* Destination is bigger than the source, which has the signed bit set.  */
  do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
  do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);

  /* Destination is smaller than the source.  */
  do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
  do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);

  /* Destination and source are the same size.  */
  do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
		8);
  do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
  do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
		8);
  do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);

  /* Destination is bigger than the source.  Source is bigger than 32bits.  */
  do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
  do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
  do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
  do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
}

} // namespace findvar_test
} // namespace selftests

#endif

void _initialize_findvar ();
void
_initialize_findvar ()
{
#if GDB_SELF_TEST
  selftests::register_test
    ("copy_integer_to_size",
     selftests::findvar_tests::copy_integer_to_size_test);
#endif
}