1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
|
/* Native-dependent code for FreeBSD.
Copyright (C) 2002-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "gdbsupport/block-signals.h"
#include "gdbsupport/byte-vector.h"
#include "gdbsupport/event-loop.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "regset.h"
#include "gdbarch.h"
#include "gdbcmd.h"
#include "gdbthread.h"
#include "gdbsupport/buildargv.h"
#include "gdbsupport/gdb_wait.h"
#include "inf-loop.h"
#include "inf-ptrace.h"
#include <sys/types.h>
#ifdef HAVE_SYS_PROCCTL_H
#include <sys/procctl.h>
#endif
#include <sys/procfs.h>
#include <sys/ptrace.h>
#include <sys/signal.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <libutil.h>
#include "elf-bfd.h"
#include "fbsd-nat.h"
#include "fbsd-tdep.h"
#ifndef PT_GETREGSET
#define PT_GETREGSET 42 /* Get a target register set */
#define PT_SETREGSET 43 /* Set a target register set */
#endif
/* Information stored about each inferior. */
struct fbsd_inferior : public private_inferior
{
/* Filter for resumed LWPs which can report events from wait. */
ptid_t resumed_lwps = null_ptid;
/* Number of LWPs this process contains. */
unsigned int num_lwps = 0;
/* Number of LWPs currently running. */
unsigned int running_lwps = 0;
/* Have a pending SIGSTOP event that needs to be discarded. */
bool pending_sigstop = false;
};
/* Return the fbsd_inferior attached to INF. */
static inline fbsd_inferior *
get_fbsd_inferior (inferior *inf)
{
return gdb::checked_static_cast<fbsd_inferior *> (inf->priv.get ());
}
/* See fbsd-nat.h. */
void
fbsd_nat_target::add_pending_event (const ptid_t &ptid,
const target_waitstatus &status)
{
gdb_assert (find_inferior_ptid (this, ptid) != nullptr);
m_pending_events.emplace_back (ptid, status);
}
/* See fbsd-nat.h. */
bool
fbsd_nat_target::have_pending_event (ptid_t filter)
{
for (const pending_event &event : m_pending_events)
if (event.ptid.matches (filter))
return true;
return false;
}
/* See fbsd-nat.h. */
std::optional<fbsd_nat_target::pending_event>
fbsd_nat_target::take_pending_event (ptid_t filter)
{
for (auto it = m_pending_events.begin (); it != m_pending_events.end (); it++)
if (it->ptid.matches (filter))
{
inferior *inf = find_inferior_ptid (this, it->ptid);
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
if (it->ptid.matches (fbsd_inf->resumed_lwps))
{
pending_event event = *it;
m_pending_events.erase (it);
return event;
}
}
return {};
}
/* Return the name of a file that can be opened to get the symbols for
the child process identified by PID. */
const char *
fbsd_nat_target::pid_to_exec_file (int pid)
{
static char buf[PATH_MAX];
size_t buflen;
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = pid;
buflen = sizeof buf;
if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
/* The kern.proc.pathname.<pid> sysctl returns a length of zero
for processes without an associated executable such as kernel
processes. */
return buflen == 0 ? NULL : buf;
return NULL;
}
/* Iterate over all the memory regions in the current inferior,
calling FUNC for each memory region. DATA is passed as the last
argument to FUNC. */
int
fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
void *data)
{
pid_t pid = inferior_ptid.pid ();
struct kinfo_vmentry *kve;
uint64_t size;
int i, nitems;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
vmentl (kinfo_getvmmap (pid, &nitems));
if (vmentl == NULL)
perror_with_name (_("Couldn't fetch VM map entries"));
for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
{
/* Skip unreadable segments and those where MAP_NOCORE has been set. */
if (!(kve->kve_protection & KVME_PROT_READ)
|| kve->kve_flags & KVME_FLAG_NOCOREDUMP)
continue;
/* Skip segments with an invalid type. */
if (kve->kve_type != KVME_TYPE_DEFAULT
&& kve->kve_type != KVME_TYPE_VNODE
&& kve->kve_type != KVME_TYPE_SWAP
&& kve->kve_type != KVME_TYPE_PHYS)
continue;
size = kve->kve_end - kve->kve_start;
if (info_verbose)
{
gdb_printf ("Save segment, %ld bytes at %s (%c%c%c)\n",
(long) size,
paddress (current_inferior ()->arch (), kve->kve_start),
kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
}
/* Invoke the callback function to create the corefile segment.
Pass MODIFIED as true, we do not know the real modification state. */
func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
kve->kve_protection & KVME_PROT_WRITE,
kve->kve_protection & KVME_PROT_EXEC, 1, false, data);
}
return 0;
}
/* Fetch the command line for a running process. */
static gdb::unique_xmalloc_ptr<char>
fbsd_fetch_cmdline (pid_t pid)
{
size_t len;
int mib[4];
len = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_ARGS;
mib[3] = pid;
if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
return nullptr;
if (len == 0)
return nullptr;
gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
return nullptr;
/* Join the arguments with spaces to form a single string. */
char *cp = cmdline.get ();
for (size_t i = 0; i < len - 1; i++)
if (cp[i] == '\0')
cp[i] = ' ';
cp[len - 1] = '\0';
return cmdline;
}
/* Fetch the external variant of the kernel's internal process
structure for the process PID into KP. */
static bool
fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
{
size_t len;
int mib[4];
len = sizeof *kp;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
}
/* Implement the "info_proc" target_ops method. */
bool
fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
{
gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
int nfd = 0;
struct kinfo_proc kp;
pid_t pid;
bool do_cmdline = false;
bool do_cwd = false;
bool do_exe = false;
bool do_files = false;
bool do_mappings = false;
bool do_status = false;
switch (what)
{
case IP_MINIMAL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
break;
case IP_MAPPINGS:
do_mappings = true;
break;
case IP_STATUS:
case IP_STAT:
do_status = true;
break;
case IP_CMDLINE:
do_cmdline = true;
break;
case IP_EXE:
do_exe = true;
break;
case IP_CWD:
do_cwd = true;
break;
case IP_FILES:
do_files = true;
break;
case IP_ALL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
do_files = true;
do_mappings = true;
do_status = true;
break;
default:
error (_("Not supported on this target."));
}
gdb_argv built_argv (args);
if (built_argv.count () == 0)
{
pid = inferior_ptid.pid ();
if (pid == 0)
error (_("No current process: you must name one."));
}
else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
pid = strtol (built_argv[0], NULL, 10);
else
error (_("Invalid arguments."));
gdb_printf (_("process %d\n"), pid);
if (do_cwd || do_exe || do_files)
fdtbl.reset (kinfo_getfile (pid, &nfd));
if (do_cmdline)
{
gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
if (cmdline != nullptr)
gdb_printf ("cmdline = '%s'\n", cmdline.get ());
else
warning (_("unable to fetch command line"));
}
if (do_cwd)
{
const char *cwd = NULL;
struct kinfo_file *kf = fdtbl.get ();
for (int i = 0; i < nfd; i++, kf++)
{
if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
{
cwd = kf->kf_path;
break;
}
}
if (cwd != NULL)
gdb_printf ("cwd = '%s'\n", cwd);
else
warning (_("unable to fetch current working directory"));
}
if (do_exe)
{
const char *exe = NULL;
struct kinfo_file *kf = fdtbl.get ();
for (int i = 0; i < nfd; i++, kf++)
{
if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
{
exe = kf->kf_path;
break;
}
}
if (exe == NULL)
exe = pid_to_exec_file (pid);
if (exe != NULL)
gdb_printf ("exe = '%s'\n", exe);
else
warning (_("unable to fetch executable path name"));
}
if (do_files)
{
struct kinfo_file *kf = fdtbl.get ();
if (nfd > 0)
{
fbsd_info_proc_files_header ();
for (int i = 0; i < nfd; i++, kf++)
fbsd_info_proc_files_entry (kf->kf_type, kf->kf_fd, kf->kf_flags,
kf->kf_offset, kf->kf_vnode_type,
kf->kf_sock_domain, kf->kf_sock_type,
kf->kf_sock_protocol, &kf->kf_sa_local,
&kf->kf_sa_peer, kf->kf_path);
}
else
warning (_("unable to fetch list of open files"));
}
if (do_mappings)
{
int nvment;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
vmentl (kinfo_getvmmap (pid, &nvment));
if (vmentl != nullptr)
{
int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
fbsd_info_proc_mappings_header (addr_bit);
struct kinfo_vmentry *kve = vmentl.get ();
for (int i = 0; i < nvment; i++, kve++)
fbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
kve->kve_end, kve->kve_offset,
kve->kve_flags, kve->kve_protection,
kve->kve_path);
}
else
warning (_("unable to fetch virtual memory map"));
}
if (do_status)
{
if (!fbsd_fetch_kinfo_proc (pid, &kp))
warning (_("Failed to fetch process information"));
else
{
const char *state;
int pgtok;
gdb_printf ("Name: %s\n", kp.ki_comm);
switch (kp.ki_stat)
{
case SIDL:
state = "I (idle)";
break;
case SRUN:
state = "R (running)";
break;
case SSTOP:
state = "T (stopped)";
break;
case SZOMB:
state = "Z (zombie)";
break;
case SSLEEP:
state = "S (sleeping)";
break;
case SWAIT:
state = "W (interrupt wait)";
break;
case SLOCK:
state = "L (blocked on lock)";
break;
default:
state = "? (unknown)";
break;
}
gdb_printf ("State: %s\n", state);
gdb_printf ("Parent process: %d\n", kp.ki_ppid);
gdb_printf ("Process group: %d\n", kp.ki_pgid);
gdb_printf ("Session id: %d\n", kp.ki_sid);
gdb_printf ("TTY: %s\n", pulongest (kp.ki_tdev));
gdb_printf ("TTY owner process group: %d\n", kp.ki_tpgid);
gdb_printf ("User IDs (real, effective, saved): %d %d %d\n",
kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
gdb_printf ("Group IDs (real, effective, saved): %d %d %d\n",
kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
gdb_printf ("Groups: ");
for (int i = 0; i < kp.ki_ngroups; i++)
gdb_printf ("%d ", kp.ki_groups[i]);
gdb_printf ("\n");
gdb_printf ("Minor faults (no memory page): %ld\n",
kp.ki_rusage.ru_minflt);
gdb_printf ("Minor faults, children: %ld\n",
kp.ki_rusage_ch.ru_minflt);
gdb_printf ("Major faults (memory page faults): %ld\n",
kp.ki_rusage.ru_majflt);
gdb_printf ("Major faults, children: %ld\n",
kp.ki_rusage_ch.ru_majflt);
gdb_printf ("utime: %s.%06ld\n",
plongest (kp.ki_rusage.ru_utime.tv_sec),
kp.ki_rusage.ru_utime.tv_usec);
gdb_printf ("stime: %s.%06ld\n",
plongest (kp.ki_rusage.ru_stime.tv_sec),
kp.ki_rusage.ru_stime.tv_usec);
gdb_printf ("utime, children: %s.%06ld\n",
plongest (kp.ki_rusage_ch.ru_utime.tv_sec),
kp.ki_rusage_ch.ru_utime.tv_usec);
gdb_printf ("stime, children: %s.%06ld\n",
plongest (kp.ki_rusage_ch.ru_stime.tv_sec),
kp.ki_rusage_ch.ru_stime.tv_usec);
gdb_printf ("'nice' value: %d\n", kp.ki_nice);
gdb_printf ("Start time: %s.%06ld\n",
plongest (kp.ki_start.tv_sec),
kp.ki_start.tv_usec);
pgtok = getpagesize () / 1024;
gdb_printf ("Virtual memory size: %s kB\n",
pulongest (kp.ki_size / 1024));
gdb_printf ("Data size: %s kB\n",
pulongest (kp.ki_dsize * pgtok));
gdb_printf ("Stack size: %s kB\n",
pulongest (kp.ki_ssize * pgtok));
gdb_printf ("Text size: %s kB\n",
pulongest (kp.ki_tsize * pgtok));
gdb_printf ("Resident set size: %s kB\n",
pulongest (kp.ki_rssize * pgtok));
gdb_printf ("Maximum RSS: %s kB\n",
pulongest (kp.ki_rusage.ru_maxrss));
gdb_printf ("Pending Signals: ");
for (int i = 0; i < _SIG_WORDS; i++)
gdb_printf ("%08x ", kp.ki_siglist.__bits[i]);
gdb_printf ("\n");
gdb_printf ("Ignored Signals: ");
for (int i = 0; i < _SIG_WORDS; i++)
gdb_printf ("%08x ", kp.ki_sigignore.__bits[i]);
gdb_printf ("\n");
gdb_printf ("Caught Signals: ");
for (int i = 0; i < _SIG_WORDS; i++)
gdb_printf ("%08x ", kp.ki_sigcatch.__bits[i]);
gdb_printf ("\n");
}
}
return true;
}
/* Return the size of siginfo for the current inferior. */
#ifdef __LP64__
union sigval32 {
int sival_int;
uint32_t sival_ptr;
};
/* This structure matches the naming and layout of `siginfo_t' in
<sys/signal.h>. In particular, the `si_foo' macros defined in that
header can be used with both types to copy fields in the `_reason'
union. */
struct siginfo32
{
int si_signo;
int si_errno;
int si_code;
__pid_t si_pid;
__uid_t si_uid;
int si_status;
uint32_t si_addr;
union sigval32 si_value;
union
{
struct
{
int _trapno;
} _fault;
struct
{
int _timerid;
int _overrun;
} _timer;
struct
{
int _mqd;
} _mesgq;
struct
{
int32_t _band;
} _poll;
struct
{
int32_t __spare1__;
int __spare2__[7];
} __spare__;
} _reason;
};
#endif
static size_t
fbsd_siginfo_size ()
{
#ifdef __LP64__
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
/* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
if (gdbarch_long_bit (gdbarch) == 32)
return sizeof (struct siginfo32);
#endif
return sizeof (siginfo_t);
}
/* Convert a native 64-bit siginfo object to a 32-bit object. Note
that FreeBSD doesn't support writing to $_siginfo, so this only
needs to convert one way. */
static void
fbsd_convert_siginfo (siginfo_t *si)
{
#ifdef __LP64__
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
/* Is the inferior 32-bit? If not, nothing to do. */
if (gdbarch_long_bit (gdbarch) != 32)
return;
struct siginfo32 si32;
si32.si_signo = si->si_signo;
si32.si_errno = si->si_errno;
si32.si_code = si->si_code;
si32.si_pid = si->si_pid;
si32.si_uid = si->si_uid;
si32.si_status = si->si_status;
si32.si_addr = (uintptr_t) si->si_addr;
/* If sival_ptr is being used instead of sival_int on a big-endian
platform, then sival_int will be zero since it holds the upper
32-bits of the pointer value. */
#if _BYTE_ORDER == _BIG_ENDIAN
if (si->si_value.sival_int == 0)
si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
else
si32.si_value.sival_int = si->si_value.sival_int;
#else
si32.si_value.sival_int = si->si_value.sival_int;
#endif
/* Always copy the spare fields and then possibly overwrite them for
signal-specific or code-specific fields. */
si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
for (int i = 0; i < 7; i++)
si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
switch (si->si_signo) {
case SIGILL:
case SIGFPE:
case SIGSEGV:
case SIGBUS:
si32.si_trapno = si->si_trapno;
break;
}
switch (si->si_code) {
case SI_TIMER:
si32.si_timerid = si->si_timerid;
si32.si_overrun = si->si_overrun;
break;
case SI_MESGQ:
si32.si_mqd = si->si_mqd;
break;
}
memcpy(si, &si32, sizeof (si32));
#endif
}
/* Implement the "xfer_partial" target_ops method. */
enum target_xfer_status
fbsd_nat_target::xfer_partial (enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len)
{
pid_t pid = inferior_ptid.pid ();
switch (object)
{
case TARGET_OBJECT_SIGNAL_INFO:
{
struct ptrace_lwpinfo pl;
size_t siginfo_size;
/* FreeBSD doesn't support writing to $_siginfo. */
if (writebuf != NULL)
return TARGET_XFER_E_IO;
if (inferior_ptid.lwp_p ())
pid = inferior_ptid.lwp ();
siginfo_size = fbsd_siginfo_size ();
if (offset > siginfo_size)
return TARGET_XFER_E_IO;
if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
return TARGET_XFER_E_IO;
if (!(pl.pl_flags & PL_FLAG_SI))
return TARGET_XFER_E_IO;
fbsd_convert_siginfo (&pl.pl_siginfo);
if (offset + len > siginfo_size)
len = siginfo_size - offset;
memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
*xfered_len = len;
return TARGET_XFER_OK;
}
#ifdef KERN_PROC_AUXV
case TARGET_OBJECT_AUXV:
{
gdb::byte_vector buf_storage;
gdb_byte *buf;
size_t buflen;
int mib[4];
if (writebuf != NULL)
return TARGET_XFER_E_IO;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_AUXV;
mib[3] = pid;
if (offset == 0)
{
buf = readbuf;
buflen = len;
}
else
{
buflen = offset + len;
buf_storage.resize (buflen);
buf = buf_storage.data ();
}
if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
{
if (offset != 0)
{
if (buflen > offset)
{
buflen -= offset;
memcpy (readbuf, buf + offset, buflen);
}
else
buflen = 0;
}
*xfered_len = buflen;
return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
}
return TARGET_XFER_E_IO;
}
#endif
#if defined(KERN_PROC_VMMAP) && defined(KERN_PROC_PS_STRINGS)
case TARGET_OBJECT_FREEBSD_VMMAP:
case TARGET_OBJECT_FREEBSD_PS_STRINGS:
{
gdb::byte_vector buf_storage;
gdb_byte *buf;
size_t buflen;
int mib[4];
int proc_target;
uint32_t struct_size;
switch (object)
{
case TARGET_OBJECT_FREEBSD_VMMAP:
proc_target = KERN_PROC_VMMAP;
struct_size = sizeof (struct kinfo_vmentry);
break;
case TARGET_OBJECT_FREEBSD_PS_STRINGS:
proc_target = KERN_PROC_PS_STRINGS;
struct_size = sizeof (void *);
break;
}
if (writebuf != NULL)
return TARGET_XFER_E_IO;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = proc_target;
mib[3] = pid;
if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
return TARGET_XFER_E_IO;
buflen += sizeof (struct_size);
if (offset >= buflen)
{
*xfered_len = 0;
return TARGET_XFER_EOF;
}
buf_storage.resize (buflen);
buf = buf_storage.data ();
memcpy (buf, &struct_size, sizeof (struct_size));
buflen -= sizeof (struct_size);
if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
return TARGET_XFER_E_IO;
buflen += sizeof (struct_size);
if (buflen - offset < len)
len = buflen - offset;
memcpy (readbuf, buf + offset, len);
*xfered_len = len;
return TARGET_XFER_OK;
}
#endif
default:
return inf_ptrace_target::xfer_partial (object, annex,
readbuf, writebuf, offset,
len, xfered_len);
}
}
static bool debug_fbsd_lwp;
static bool debug_fbsd_nat;
static void
show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
}
static void
show_fbsd_nat_debug (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
gdb_printf (file, _("Debugging of FreeBSD native target is %s.\n"),
value);
}
#define fbsd_lwp_debug_printf(fmt, ...) \
debug_prefixed_printf_cond (debug_fbsd_lwp, "fbsd-lwp", fmt, ##__VA_ARGS__)
#define fbsd_nat_debug_printf(fmt, ...) \
debug_prefixed_printf_cond (debug_fbsd_nat, "fbsd-nat", fmt, ##__VA_ARGS__)
#define fbsd_nat_debug_start_end(fmt, ...) \
scoped_debug_start_end (debug_fbsd_nat, "fbsd-nat", fmt, ##__VA_ARGS__)
/*
FreeBSD's first thread support was via a "reentrant" version of libc
(libc_r) that first shipped in 2.2.7. This library multiplexed all
of the threads in a process onto a single kernel thread. This
library was supported via the bsd-uthread target.
FreeBSD 5.1 introduced two new threading libraries that made use of
multiple kernel threads. The first (libkse) scheduled M user
threads onto N (<= M) kernel threads (LWPs). The second (libthr)
bound each user thread to a dedicated kernel thread. libkse shipped
as the default threading library (libpthread).
FreeBSD 5.3 added a libthread_db to abstract the interface across
the various thread libraries (libc_r, libkse, and libthr).
FreeBSD 7.0 switched the default threading library from from libkse
to libpthread and removed libc_r.
FreeBSD 8.0 removed libkse and the in-kernel support for it. The
only threading library supported by 8.0 and later is libthr which
ties each user thread directly to an LWP. To simplify the
implementation, this target only supports LWP-backed threads using
ptrace directly rather than libthread_db.
FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
*/
/* Return true if PTID is still active in the inferior. */
bool
fbsd_nat_target::thread_alive (ptid_t ptid)
{
if (ptid.lwp_p ())
{
struct ptrace_lwpinfo pl;
if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
== -1)
{
/* EBUSY means the associated process is running which means
the LWP does exist and belongs to a running process. */
if (errno == EBUSY)
return true;
return false;
}
#ifdef PL_FLAG_EXITED
if (pl.pl_flags & PL_FLAG_EXITED)
return false;
#endif
}
return true;
}
/* Convert PTID to a string. */
std::string
fbsd_nat_target::pid_to_str (ptid_t ptid)
{
lwpid_t lwp;
lwp = ptid.lwp ();
if (lwp != 0)
{
int pid = ptid.pid ();
return string_printf ("LWP %d of process %d", lwp, pid);
}
return normal_pid_to_str (ptid);
}
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
/* Return the name assigned to a thread by an application. Returns
the string in a static buffer. */
const char *
fbsd_nat_target::thread_name (struct thread_info *thr)
{
struct ptrace_lwpinfo pl;
struct kinfo_proc kp;
int pid = thr->ptid.pid ();
long lwp = thr->ptid.lwp ();
static char buf[sizeof pl.pl_tdname + 1];
/* Note that ptrace_lwpinfo returns the process command in pl_tdname
if a name has not been set explicitly. Return a NULL name in
that case. */
if (!fbsd_fetch_kinfo_proc (pid, &kp))
return nullptr;
if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
return nullptr;
if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
return NULL;
xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
return buf;
}
#endif
/* Enable additional event reporting on new processes.
To catch fork events, PTRACE_FORK is set on every traced process
to enable stops on returns from fork or vfork. Note that both the
parent and child will always stop, even if system call stops are
not enabled.
To catch LWP events, PTRACE_EVENTS is set on every traced process.
This enables stops on the birth for new LWPs (excluding the "main" LWP)
and the death of LWPs (excluding the last LWP in a process). Note
that unlike fork events, the LWP that creates a new LWP does not
report an event. */
static void
fbsd_enable_proc_events (pid_t pid)
{
#ifdef PT_GET_EVENT_MASK
int events;
if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3) &events,
sizeof (events)) == -1)
perror_with_name (("ptrace (PT_GET_EVENT_MASK)"));
events |= PTRACE_FORK | PTRACE_LWP;
#ifdef PTRACE_VFORK
events |= PTRACE_VFORK;
#endif
if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3) &events,
sizeof (events)) == -1)
perror_with_name (("ptrace (PT_SET_EVENT_MASK)"));
#else
#ifdef TDP_RFPPWAIT
if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3) 0, 1) == -1)
perror_with_name (("ptrace (PT_FOLLOW_FORK)"));
#endif
#ifdef PT_LWP_EVENTS
if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3) 0, 1) == -1)
perror_with_name (("ptrace (PT_LWP_EVENTS)"));
#endif
#endif
}
/* Add threads for any new LWPs in a process.
When LWP events are used, this function is only used to detect existing
threads when attaching to a process. On older systems, this function is
called to discover new threads each time the thread list is updated. */
static void
fbsd_add_threads (fbsd_nat_target *target, pid_t pid)
{
int i, nlwps;
gdb_assert (!in_thread_list (target, ptid_t (pid)));
nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
if (nlwps == -1)
perror_with_name (("ptrace (PT_GETNUMLWPS)"));
gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
if (nlwps == -1)
perror_with_name (("ptrace (PT_GETLWPLIST)"));
inferior *inf = find_inferior_ptid (target, ptid_t (pid));
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
gdb_assert (fbsd_inf != nullptr);
for (i = 0; i < nlwps; i++)
{
ptid_t ptid = ptid_t (pid, lwps[i]);
if (!in_thread_list (target, ptid))
{
#ifdef PT_LWP_EVENTS
struct ptrace_lwpinfo pl;
/* Don't add exited threads. Note that this is only called
when attaching to a multi-threaded process. */
if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
perror_with_name (("ptrace (PT_LWPINFO)"));
if (pl.pl_flags & PL_FLAG_EXITED)
continue;
#endif
fbsd_lwp_debug_printf ("adding thread for LWP %u", lwps[i]);
add_thread (target, ptid);
#ifdef PT_LWP_EVENTS
fbsd_inf->num_lwps++;
#endif
}
}
#ifndef PT_LWP_EVENTS
fbsd_inf->num_lwps = nlwps;
#endif
}
/* Implement the "update_thread_list" target_ops method. */
void
fbsd_nat_target::update_thread_list ()
{
#ifdef PT_LWP_EVENTS
/* With support for thread events, threads are added/deleted from the
list as events are reported, so just try deleting exited threads. */
delete_exited_threads ();
#else
prune_threads ();
fbsd_add_threads (this, inferior_ptid.pid ());
#endif
}
/* Async mode support. */
/* Implement the "can_async_p" target method. */
bool
fbsd_nat_target::can_async_p ()
{
/* This flag should be checked in the common target.c code. */
gdb_assert (target_async_permitted);
/* Otherwise, this targets is always able to support async mode. */
return true;
}
/* SIGCHLD handler notifies the event-loop in async mode. */
static void
sigchld_handler (int signo)
{
int old_errno = errno;
fbsd_nat_target::async_file_mark_if_open ();
errno = old_errno;
}
/* Callback registered with the target events file descriptor. */
static void
handle_target_event (int error, gdb_client_data client_data)
{
inferior_event_handler (INF_REG_EVENT);
}
/* Implement the "async" target method. */
void
fbsd_nat_target::async (bool enable)
{
if (enable == is_async_p ())
return;
/* Block SIGCHILD while we create/destroy the pipe, as the handler
writes to it. */
gdb::block_signals blocker;
if (enable)
{
if (!async_file_open ())
internal_error ("failed to create event pipe.");
add_file_handler (async_wait_fd (), handle_target_event, NULL, "fbsd-nat");
/* Trigger a poll in case there are pending events to
handle. */
async_file_mark ();
}
else
{
delete_file_handler (async_wait_fd ());
async_file_close ();
}
}
#ifdef TDP_RFPPWAIT
/*
To catch fork events, PT_FOLLOW_FORK is set on every traced process
to enable stops on returns from fork or vfork. Note that both the
parent and child will always stop, even if system call stops are not
enabled.
After a fork, both the child and parent process will stop and report
an event. However, there is no guarantee of order. If the parent
reports its stop first, then fbsd_wait explicitly waits for the new
child before returning. If the child reports its stop first, then
the event is saved on a list and ignored until the parent's stop is
reported. fbsd_wait could have been changed to fetch the parent PID
of the new child and used that to wait for the parent explicitly.
However, if two threads in the parent fork at the same time, then
the wait on the parent might return the "wrong" fork event.
The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
the new child process. This flag could be inferred by treating any
events for an unknown pid as a new child.
In addition, the initial version of PT_FOLLOW_FORK did not report a
stop event for the parent process of a vfork until after the child
process executed a new program or exited. The kernel was changed to
defer the wait for exit or exec of the child until after posting the
stop event shortly after the change to introduce PL_FLAG_CHILD.
This could be worked around by reporting a vfork event when the
child event posted and ignoring the subsequent event from the
parent.
This implementation requires both of these fixes for simplicity's
sake. FreeBSD versions newer than 9.1 contain both fixes.
*/
static std::list<ptid_t> fbsd_pending_children;
/* Record a new child process event that is reported before the
corresponding fork event in the parent. */
static void
fbsd_remember_child (ptid_t pid)
{
fbsd_pending_children.push_front (pid);
}
/* Check for a previously-recorded new child process event for PID.
If one is found, remove it from the list and return the PTID. */
static ptid_t
fbsd_is_child_pending (pid_t pid)
{
for (auto it = fbsd_pending_children.begin ();
it != fbsd_pending_children.end (); it++)
if (it->pid () == pid)
{
ptid_t ptid = *it;
fbsd_pending_children.erase (it);
return ptid;
}
return null_ptid;
}
/* Wait for a child of a fork to report its stop. Returns the PTID of
the new child process. */
static ptid_t
fbsd_wait_for_fork_child (pid_t pid)
{
ptid_t ptid = fbsd_is_child_pending (pid);
if (ptid != null_ptid)
return ptid;
int status;
pid_t wpid = waitpid (pid, &status, 0);
if (wpid == -1)
perror_with_name (("waitpid"));
gdb_assert (wpid == pid);
struct ptrace_lwpinfo pl;
if (ptrace (PT_LWPINFO, wpid, (caddr_t) &pl, sizeof pl) == -1)
perror_with_name (("ptrace (PT_LWPINFO)"));
gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
return ptid_t (wpid, pl.pl_lwpid);
}
#ifndef PTRACE_VFORK
/* Record a pending vfork done event. */
static void
fbsd_add_vfork_done (ptid_t pid)
{
add_pending_event (ptid, target_waitstatus ().set_vfork_done ());
/* If we're in async mode, need to tell the event loop there's
something here to process. */
if (target_is_async_p ())
async_file_mark ();
}
#endif
#endif
/* Resume a single process. */
void
fbsd_nat_target::resume_one_process (ptid_t ptid, int step,
enum gdb_signal signo)
{
fbsd_nat_debug_printf ("[%s], step %d, signo %d (%s)",
target_pid_to_str (ptid).c_str (), step, signo,
gdb_signal_to_name (signo));
inferior *inf = find_inferior_ptid (this, ptid);
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
fbsd_inf->resumed_lwps = ptid;
gdb_assert (fbsd_inf->running_lwps == 0);
/* Don't PT_CONTINUE a thread or process which has a pending event. */
if (have_pending_event (ptid))
{
fbsd_nat_debug_printf ("found pending event");
return;
}
for (thread_info *tp : inf->non_exited_threads ())
{
/* If ptid is a specific LWP, suspend all other LWPs in the
process, otherwise resume all LWPs in the process.. */
if (!ptid.lwp_p() || tp->ptid.lwp () == ptid.lwp ())
{
if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
perror_with_name (("ptrace (PT_RESUME)"));
low_prepare_to_resume (tp);
fbsd_inf->running_lwps++;
}
else
{
if (ptrace (PT_SUSPEND, tp->ptid.lwp (), NULL, 0) == -1)
perror_with_name (("ptrace (PT_SUSPEND)"));
}
}
if (ptid.pid () != inferior_ptid.pid ())
{
step = 0;
signo = GDB_SIGNAL_0;
gdb_assert (!ptid.lwp_p ());
}
else
{
ptid = inferior_ptid;
#if __FreeBSD_version < 1200052
/* When multiple threads within a process wish to report STOPPED
events from wait(), the kernel picks one thread event as the
thread event to report. The chosen thread event is retrieved
via PT_LWPINFO by passing the process ID as the request pid.
If multiple events are pending, then the subsequent wait()
after resuming a process will report another STOPPED event
after resuming the process to handle the next thread event
and so on.
A single thread event is cleared as a side effect of resuming
the process with PT_CONTINUE, PT_STEP, etc. In older
kernels, however, the request pid was used to select which
thread's event was cleared rather than always clearing the
event that was just reported. To avoid clearing the event of
the wrong LWP, always pass the process ID instead of an LWP
ID to PT_CONTINUE or PT_SYSCALL.
In the case of stepping, the process ID cannot be used with
PT_STEP since it would step the thread that reported an event
which may not be the thread indicated by PTID. For stepping,
use PT_SETSTEP to enable stepping on the desired thread
before resuming the process via PT_CONTINUE instead of using
PT_STEP. */
if (step)
{
if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
perror_with_name (("ptrace (PT_SETSTEP)"));
step = 0;
}
ptid = ptid_t (ptid.pid ());
#endif
}
inf_ptrace_target::resume (ptid, step, signo);
}
/* Implement the "resume" target_ops method. */
void
fbsd_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo)
{
fbsd_nat_debug_start_end ("[%s], step %d, signo %d (%s)",
target_pid_to_str (scope_ptid).c_str (), step, signo,
gdb_signal_to_name (signo));
gdb_assert (inferior_ptid.matches (scope_ptid));
gdb_assert (!scope_ptid.tid_p ());
if (scope_ptid == minus_one_ptid)
{
for (inferior *inf : all_non_exited_inferiors (this))
resume_one_process (ptid_t (inf->pid), step, signo);
}
else
{
resume_one_process (scope_ptid, step, signo);
}
}
#ifdef USE_SIGTRAP_SIGINFO
/* Handle breakpoint and trace traps reported via SIGTRAP. If the
trap was a breakpoint or trace trap that should be reported to the
core, return true. */
static bool
fbsd_handle_debug_trap (fbsd_nat_target *target, ptid_t ptid,
const struct ptrace_lwpinfo &pl)
{
/* Ignore traps without valid siginfo or for signals other than
SIGTRAP.
FreeBSD kernels prior to r341800 can return stale siginfo for at
least some events, but those events can be identified by
additional flags set in pl_flags. True breakpoint and
single-step traps should not have other flags set in
pl_flags. */
if (pl.pl_flags != PL_FLAG_SI || pl.pl_siginfo.si_signo != SIGTRAP)
return false;
/* Trace traps are either a single step or a hardware watchpoint or
breakpoint. */
if (pl.pl_siginfo.si_code == TRAP_TRACE)
{
fbsd_nat_debug_printf ("trace trap for LWP %ld", ptid.lwp ());
return true;
}
if (pl.pl_siginfo.si_code == TRAP_BRKPT)
{
/* Fixup PC for the software breakpoint. */
struct regcache *regcache = get_thread_regcache (target, ptid);
struct gdbarch *gdbarch = regcache->arch ();
int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
fbsd_nat_debug_printf ("sw breakpoint trap for LWP %ld", ptid.lwp ());
if (decr_pc != 0)
{
CORE_ADDR pc;
pc = regcache_read_pc (regcache);
regcache_write_pc (regcache, pc - decr_pc);
}
return true;
}
return false;
}
#endif
/* Wait for the child specified by PTID to do something. Return the
process ID of the child, or MINUS_ONE_PTID in case of error; store
the status in *OURSTATUS. */
ptid_t
fbsd_nat_target::wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
target_wait_flags target_options)
{
ptid_t wptid;
while (1)
{
wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
if (ourstatus->kind () == TARGET_WAITKIND_STOPPED)
{
struct ptrace_lwpinfo pl;
pid_t pid = wptid.pid ();
if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
perror_with_name (("ptrace (PT_LWPINFO)"));
wptid = ptid_t (pid, pl.pl_lwpid);
if (debug_fbsd_nat)
{
fbsd_nat_debug_printf ("stop for LWP %u event %d flags %#x",
pl.pl_lwpid, pl.pl_event, pl.pl_flags);
if (pl.pl_flags & PL_FLAG_SI)
fbsd_nat_debug_printf ("si_signo %u si_code %u",
pl.pl_siginfo.si_signo,
pl.pl_siginfo.si_code);
}
/* There may not be an inferior for this pid if this is a
PL_FLAG_CHILD event. */
inferior *inf = find_inferior_ptid (this, wptid);
fbsd_inferior *fbsd_inf = inf == nullptr ? nullptr
: get_fbsd_inferior (inf);
gdb_assert (fbsd_inf != nullptr || pl.pl_flags & PL_FLAG_CHILD);
#ifdef PT_LWP_EVENTS
if (pl.pl_flags & PL_FLAG_EXITED)
{
/* If GDB attaches to a multi-threaded process, exiting
threads might be skipped during post_attach that
have not yet reported their PL_FLAG_EXITED event.
Ignore EXITED events for an unknown LWP. */
thread_info *thr = this->find_thread (wptid);
if (thr != nullptr)
{
fbsd_lwp_debug_printf ("deleting thread for LWP %u",
pl.pl_lwpid);
low_delete_thread (thr);
delete_thread (thr);
fbsd_inf->num_lwps--;
/* If this LWP was the only resumed LWP from the
process, report an event to the core. */
if (wptid == fbsd_inf->resumed_lwps)
{
ourstatus->set_spurious ();
return wptid;
}
/* During process exit LWPs that were not resumed
will report exit events. */
if (wptid.matches (fbsd_inf->resumed_lwps))
fbsd_inf->running_lwps--;
}
if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
perror_with_name (("ptrace (PT_CONTINUE)"));
continue;
}
#endif
/* Switch to an LWP PTID on the first stop in a new process.
This is done after handling PL_FLAG_EXITED to avoid
switching to an exited LWP. It is done before checking
PL_FLAG_BORN in case the first stop reported after
attaching to an existing process is a PL_FLAG_BORN
event. */
if (in_thread_list (this, ptid_t (pid)))
{
fbsd_lwp_debug_printf ("using LWP %u for first thread",
pl.pl_lwpid);
thread_change_ptid (this, ptid_t (pid), wptid);
}
#ifdef PT_LWP_EVENTS
if (pl.pl_flags & PL_FLAG_BORN)
{
/* If GDB attaches to a multi-threaded process, newborn
threads might be added by fbsd_add_threads that have
not yet reported their PL_FLAG_BORN event. Ignore
BORN events for an already-known LWP. */
if (!in_thread_list (this, wptid))
{
fbsd_lwp_debug_printf ("adding thread for LWP %u",
pl.pl_lwpid);
add_thread (this, wptid);
fbsd_inf->num_lwps++;
if (wptid.matches(fbsd_inf->resumed_lwps))
fbsd_inf->running_lwps++;
}
ourstatus->set_spurious ();
return wptid;
}
#endif
#ifdef TDP_RFPPWAIT
if (pl.pl_flags & PL_FLAG_FORKED)
{
#ifndef PTRACE_VFORK
struct kinfo_proc kp;
#endif
bool is_vfork = false;
ptid_t child_ptid;
pid_t child;
child = pl.pl_child_pid;
#ifdef PTRACE_VFORK
if (pl.pl_flags & PL_FLAG_VFORKED)
is_vfork = true;
#endif
/* Make sure the other end of the fork is stopped too. */
child_ptid = fbsd_wait_for_fork_child (child);
/* Enable additional events on the child process. */
fbsd_enable_proc_events (child_ptid.pid ());
#ifndef PTRACE_VFORK
/* For vfork, the child process will have the P_PPWAIT
flag set. */
if (fbsd_fetch_kinfo_proc (child, &kp))
{
if (kp.ki_flag & P_PPWAIT)
is_vfork = true;
}
else
warning (_("Failed to fetch process information"));
#endif
low_new_fork (wptid, child);
if (is_vfork)
ourstatus->set_vforked (child_ptid);
else
ourstatus->set_forked (child_ptid);
return wptid;
}
if (pl.pl_flags & PL_FLAG_CHILD)
{
/* Remember that this child forked, but do not report it
until the parent reports its corresponding fork
event. */
fbsd_remember_child (wptid);
continue;
}
#ifdef PTRACE_VFORK
if (pl.pl_flags & PL_FLAG_VFORK_DONE)
{
ourstatus->set_vfork_done ();
return wptid;
}
#endif
#endif
if (pl.pl_flags & PL_FLAG_EXEC)
{
ourstatus->set_execd
(make_unique_xstrdup (pid_to_exec_file (pid)));
return wptid;
}
#ifdef USE_SIGTRAP_SIGINFO
if (fbsd_handle_debug_trap (this, wptid, pl))
return wptid;
#endif
/* Note that PL_FLAG_SCE is set for any event reported while
a thread is executing a system call in the kernel. In
particular, signals that interrupt a sleep in a system
call will report this flag as part of their event. Stops
explicitly for system call entry and exit always use
SIGTRAP, so only treat SIGTRAP events as system call
entry/exit events. */
if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
&& ourstatus->sig () == GDB_SIGNAL_TRAP)
{
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
if (catch_syscall_enabled ())
{
if (catching_syscall_number (pl.pl_syscall_code))
{
if (pl.pl_flags & PL_FLAG_SCE)
ourstatus->set_syscall_entry (pl.pl_syscall_code);
else
ourstatus->set_syscall_return (pl.pl_syscall_code);
return wptid;
}
}
#endif
/* If the core isn't interested in this event, just
continue the process explicitly and wait for another
event. Note that PT_SYSCALL is "sticky" on FreeBSD
and once system call stops are enabled on a process
it stops for all system call entries and exits. */
if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
perror_with_name (("ptrace (PT_CONTINUE)"));
continue;
}
/* If this is a pending SIGSTOP event from an earlier call
to stop_process, discard the event and wait for another
event. */
if (ourstatus->sig () == GDB_SIGNAL_STOP && fbsd_inf->pending_sigstop)
{
fbsd_nat_debug_printf ("ignoring SIGSTOP for pid %u", pid);
fbsd_inf->pending_sigstop = false;
if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
perror_with_name (("ptrace (PT_CONTINUE)"));
continue;
}
}
else
fbsd_nat_debug_printf ("event [%s], [%s]",
target_pid_to_str (wptid).c_str (),
ourstatus->to_string ().c_str ());
return wptid;
}
}
/* Stop a given process. If the process is already stopped, record
its pending event instead. */
void
fbsd_nat_target::stop_process (inferior *inf)
{
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
gdb_assert (fbsd_inf != nullptr);
fbsd_inf->resumed_lwps = null_ptid;
if (fbsd_inf->running_lwps == 0)
return;
ptid_t ptid (inf->pid);
target_waitstatus status;
ptid_t wptid = wait_1 (ptid, &status, TARGET_WNOHANG);
if (wptid != minus_one_ptid)
{
/* Save the current event as a pending event. */
add_pending_event (wptid, status);
fbsd_inf->running_lwps = 0;
return;
}
/* If a SIGSTOP is already pending, don't send a new one, but tell
wait_1 to report a SIGSTOP. */
if (fbsd_inf->pending_sigstop)
{
fbsd_nat_debug_printf ("waiting for existing pending SIGSTOP for %u",
inf->pid);
fbsd_inf->pending_sigstop = false;
}
else
{
/* Ignore errors from kill as process exit might race with kill. */
fbsd_nat_debug_printf ("killing %u with SIGSTOP", inf->pid);
::kill (inf->pid, SIGSTOP);
}
/* Wait for SIGSTOP (or some other event) to be reported. */
wptid = wait_1 (ptid, &status, 0);
switch (status.kind ())
{
case TARGET_WAITKIND_EXITED:
case TARGET_WAITKIND_SIGNALLED:
/* If the process has exited, we aren't going to get an
event for the SIGSTOP. Save the current event and
return. */
add_pending_event (wptid, status);
break;
case TARGET_WAITKIND_IGNORE:
/* wait() failed with ECHILD meaning the process no longer
exists. This means a bug happened elsewhere, but at least
the process is no longer running. */
break;
case TARGET_WAITKIND_STOPPED:
/* If this is the SIGSTOP event, discard it and return
leaving the process stopped. */
if (status.sig () == GDB_SIGNAL_STOP)
break;
[[fallthrough]];
default:
/* Some other event has occurred. Save the current
event. */
add_pending_event (wptid, status);
/* Ignore the next SIGSTOP for this process. */
fbsd_nat_debug_printf ("ignoring next SIGSTOP for %u", inf->pid);
fbsd_inf->pending_sigstop = true;
break;
}
fbsd_inf->running_lwps = 0;
}
ptid_t
fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
target_wait_flags target_options)
{
fbsd_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
target_options_to_string (target_options).c_str ());
/* If there is a valid pending event, return it. */
std::optional<pending_event> event = take_pending_event (ptid);
if (event.has_value ())
{
/* Stop any other inferiors currently running. */
for (inferior *inf : all_non_exited_inferiors (this))
stop_process (inf);
fbsd_nat_debug_printf ("returning pending event [%s], [%s]",
target_pid_to_str (event->ptid).c_str (),
event->status.to_string ().c_str ());
gdb_assert (event->ptid.matches (ptid));
*ourstatus = event->status;
return event->ptid;
}
/* Ensure any subsequent events trigger a new event in the loop. */
if (is_async_p ())
async_file_flush ();
ptid_t wptid;
while (1)
{
wptid = wait_1 (ptid, ourstatus, target_options);
/* If no event was found, just return. */
if (ourstatus->kind () == TARGET_WAITKIND_IGNORE
|| ourstatus->kind () == TARGET_WAITKIND_NO_RESUMED)
break;
inferior *winf = find_inferior_ptid (this, wptid);
gdb_assert (winf != nullptr);
fbsd_inferior *fbsd_inf = get_fbsd_inferior (winf);
gdb_assert (fbsd_inf != nullptr);
gdb_assert (fbsd_inf->resumed_lwps != null_ptid);
gdb_assert (fbsd_inf->running_lwps > 0);
/* If an event is reported for a thread or process while
stepping some other thread, suspend the thread reporting the
event and defer the event until it can be reported to the
core. */
if (!wptid.matches (fbsd_inf->resumed_lwps))
{
add_pending_event (wptid, *ourstatus);
fbsd_nat_debug_printf ("deferring event [%s], [%s]",
target_pid_to_str (wptid).c_str (),
ourstatus->to_string ().c_str ());
if (ptrace (PT_SUSPEND, wptid.lwp (), NULL, 0) == -1)
perror_with_name (("ptrace (PT_SUSPEND)"));
if (ptrace (PT_CONTINUE, wptid.pid (), (caddr_t) 1, 0) == -1)
perror_with_name (("ptrace (PT_CONTINUE)"));
continue;
}
/* This process is no longer running. */
fbsd_inf->resumed_lwps = null_ptid;
fbsd_inf->running_lwps = 0;
/* Stop any other inferiors currently running. */
for (inferior *inf : all_non_exited_inferiors (this))
stop_process (inf);
break;
}
/* If we are in async mode and found an event, there may still be
another event pending. Trigger the event pipe so that that the
event loop keeps polling until no event is returned. */
if (is_async_p ()
&& ((ourstatus->kind () != TARGET_WAITKIND_IGNORE
&& ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED)
|| ptid != minus_one_ptid))
async_file_mark ();
fbsd_nat_debug_printf ("returning [%s], [%s]",
target_pid_to_str (wptid).c_str (),
ourstatus->to_string ().c_str ());
return wptid;
}
#ifdef USE_SIGTRAP_SIGINFO
/* Implement the "stopped_by_sw_breakpoint" target_ops method. */
bool
fbsd_nat_target::stopped_by_sw_breakpoint ()
{
struct ptrace_lwpinfo pl;
if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
sizeof pl) == -1)
return false;
return (pl.pl_flags == PL_FLAG_SI
&& pl.pl_siginfo.si_signo == SIGTRAP
&& pl.pl_siginfo.si_code == TRAP_BRKPT);
}
/* Implement the "supports_stopped_by_sw_breakpoint" target_ops
method. */
bool
fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
{
return true;
}
#endif
#ifdef PROC_ASLR_CTL
class maybe_disable_address_space_randomization
{
public:
explicit maybe_disable_address_space_randomization (bool disable_randomization)
{
if (disable_randomization)
{
if (procctl (P_PID, getpid (), PROC_ASLR_STATUS, &m_aslr_ctl) == -1)
{
warning (_("Failed to fetch current address space randomization "
"status: %s"), safe_strerror (errno));
return;
}
m_aslr_ctl &= ~PROC_ASLR_ACTIVE;
if (m_aslr_ctl == PROC_ASLR_FORCE_DISABLE)
return;
int ctl = PROC_ASLR_FORCE_DISABLE;
if (procctl (P_PID, getpid (), PROC_ASLR_CTL, &ctl) == -1)
{
warning (_("Error disabling address space randomization: %s"),
safe_strerror (errno));
return;
}
m_aslr_ctl_set = true;
}
}
~maybe_disable_address_space_randomization ()
{
if (m_aslr_ctl_set)
{
if (procctl (P_PID, getpid (), PROC_ASLR_CTL, &m_aslr_ctl) == -1)
warning (_("Error restoring address space randomization: %s"),
safe_strerror (errno));
}
}
DISABLE_COPY_AND_ASSIGN (maybe_disable_address_space_randomization);
private:
bool m_aslr_ctl_set = false;
int m_aslr_ctl = 0;
};
#endif
void
fbsd_nat_target::create_inferior (const char *exec_file,
const std::string &allargs,
char **env, int from_tty)
{
#ifdef PROC_ASLR_CTL
maybe_disable_address_space_randomization restore_aslr_ctl
(disable_randomization);
#endif
fbsd_inferior *fbsd_inf = new fbsd_inferior;
current_inferior ()->priv.reset (fbsd_inf);
fbsd_inf->resumed_lwps = minus_one_ptid;
fbsd_inf->num_lwps = 1;
fbsd_inf->running_lwps = 1;
inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
}
void
fbsd_nat_target::attach (const char *args, int from_tty)
{
fbsd_inferior *fbsd_inf = new fbsd_inferior;
current_inferior ()->priv.reset (fbsd_inf);
fbsd_inf->resumed_lwps = minus_one_ptid;
fbsd_inf->num_lwps = 1;
fbsd_inf->running_lwps = 1;
inf_ptrace_target::attach (args, from_tty);
}
/* If this thread has a pending fork event, there is a child process
GDB is attached to that the core of GDB doesn't know about.
Detach from it. */
void
fbsd_nat_target::detach_fork_children (thread_info *tp)
{
/* Check in thread_info::pending_waitstatus. */
if (tp->has_pending_waitstatus ())
{
const target_waitstatus &ws = tp->pending_waitstatus ();
if (ws.kind () == TARGET_WAITKIND_VFORKED
|| ws.kind () == TARGET_WAITKIND_FORKED)
{
pid_t pid = ws.child_ptid ().pid ();
fbsd_nat_debug_printf ("detaching from child %d", pid);
(void) ptrace (PT_DETACH, pid, (caddr_t) 1, 0);
}
}
/* Check in thread_info::pending_follow. */
if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
|| tp->pending_follow.kind () == TARGET_WAITKIND_FORKED)
{
pid_t pid = tp->pending_follow.child_ptid ().pid ();
fbsd_nat_debug_printf ("detaching from child %d", pid);
(void) ptrace (PT_DETACH, pid, (caddr_t) 1, 0);
}
}
/* Detach from any child processes associated with pending fork events
for a stopped process. Returns true if the process has terminated
and false if it is still alive. */
bool
fbsd_nat_target::detach_fork_children (inferior *inf)
{
/* Detach any child processes associated with pending fork events in
threads belonging to this process. */
for (thread_info *tp : inf->non_exited_threads ())
detach_fork_children (tp);
/* Unwind state associated with any pending events. Reset
fbsd_inf->resumed_lwps so that take_pending_event will harvest
events. */
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
ptid_t ptid = ptid_t (inf->pid);
fbsd_inf->resumed_lwps = ptid;
while (1)
{
std::optional<pending_event> event = take_pending_event (ptid);
if (!event.has_value ())
break;
switch (event->status.kind ())
{
case TARGET_WAITKIND_EXITED:
case TARGET_WAITKIND_SIGNALLED:
return true;
case TARGET_WAITKIND_FORKED:
case TARGET_WAITKIND_VFORKED:
{
pid_t pid = event->status.child_ptid ().pid ();
fbsd_nat_debug_printf ("detaching from child %d", pid);
(void) ptrace (PT_DETACH, pid, (caddr_t) 1, 0);
}
break;
}
}
return false;
}
/* Scan all of the threads for a stopped process invoking the supplied
callback on the ptrace_lwpinfo object for threads other than the
thread which reported the current stop. The callback can return
true to terminate the iteration early. This function returns true
if the callback returned true, otherwise it returns false. */
typedef bool (ptrace_event_ftype) (const struct ptrace_lwpinfo &pl);
static bool
iterate_other_ptrace_events (pid_t pid,
gdb::function_view<ptrace_event_ftype> callback)
{
/* Fetch the LWP ID of the thread that just reported the last stop
and ignore that LWP in the following loop. */
ptrace_lwpinfo pl;
if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof (pl)) != 0)
perror_with_name (("ptrace (PT_LWPINFO)"));
lwpid_t lwpid = pl.pl_lwpid;
int nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
if (nlwps == -1)
perror_with_name (("ptrace (PT_GETLWPLIST)"));
if (nlwps == 1)
return false;
gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
if (nlwps == -1)
perror_with_name (("ptrace (PT_GETLWPLIST)"));
for (int i = 0; i < nlwps; i++)
{
if (lwps[i] == lwpid)
continue;
if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof (pl)) != 0)
perror_with_name (("ptrace (PT_LWPINFO)"));
if (callback (pl))
return true;
}
return false;
}
/* True if there are any stopped threads with an interesting event. */
static bool
pending_ptrace_events (inferior *inf)
{
auto lambda = [] (const struct ptrace_lwpinfo &pl)
{
#if defined(PT_LWP_EVENTS) && __FreeBSD_kernel_version < 1400090
if (pl.pl_flags == PL_FLAG_BORN)
return true;
#endif
#ifdef TDP_RFPPWAIT
if (pl.pl_flags & PL_FLAG_FORKED)
return true;
#endif
if (pl.pl_event == PL_EVENT_SIGNAL)
{
if ((pl.pl_flags & PL_FLAG_SI) == 0)
{
/* Not sure which signal, assume it matters. */
return true;
}
if (pl.pl_siginfo.si_signo == SIGTRAP)
return true;
}
return false;
};
return iterate_other_ptrace_events (inf->pid,
gdb::make_function_view (lambda));
}
void
fbsd_nat_target::detach (inferior *inf, int from_tty)
{
fbsd_nat_debug_start_end ("pid %d", inf->pid);
stop_process (inf);
remove_breakpoints_inf (inf);
if (detach_fork_children (inf)) {
/* No need to detach now. */
target_announce_detach (from_tty);
detach_success (inf);
return;
}
/* If there are any pending events (SIGSTOP from stop_process or a
breakpoint hit that needs a PC fixup), drain events until the
process can be safely detached. */
fbsd_inferior *fbsd_inf = get_fbsd_inferior (inf);
ptid_t ptid = ptid_t (inf->pid);
if (fbsd_inf->pending_sigstop || pending_ptrace_events (inf))
{
bool pending_sigstop = fbsd_inf->pending_sigstop;
int sig = 0;
if (pending_sigstop)
fbsd_nat_debug_printf ("waiting for SIGSTOP");
/* Force wait_1 to report the SIGSTOP instead of swallowing it. */
fbsd_inf->pending_sigstop = false;
/* Report event for all threads from wait_1. */
fbsd_inf->resumed_lwps = ptid;
do
{
if (ptrace (PT_CONTINUE, inf->pid, (caddr_t) 1, sig) != 0)
perror_with_name (("ptrace(PT_CONTINUE)"));
target_waitstatus ws;
ptid_t wptid = wait_1 (ptid, &ws, 0);
switch (ws.kind ())
{
case TARGET_WAITKIND_EXITED:
case TARGET_WAITKIND_SIGNALLED:
/* No need to detach now. */
target_announce_detach (from_tty);
detach_success (inf);
return;
case TARGET_WAITKIND_FORKED:
case TARGET_WAITKIND_VFORKED:
{
pid_t pid = ws.child_ptid ().pid ();
fbsd_nat_debug_printf ("detaching from child %d", pid);
(void) ptrace (PT_DETACH, pid, (caddr_t) 1, 0);
sig = 0;
}
break;
case TARGET_WAITKIND_STOPPED:
sig = gdb_signal_to_host (ws.sig ());
switch (sig)
{
case SIGSTOP:
if (pending_sigstop)
{
sig = 0;
pending_sigstop = false;
}
break;
case SIGTRAP:
#ifndef USE_SIGTRAP_SIGINFO
{
/* Update PC from software breakpoint hit. */
struct regcache *regcache = get_thread_regcache (this, wptid);
struct gdbarch *gdbarch = regcache->arch ();
int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
if (decr_pc != 0)
{
CORE_ADDR pc;
pc = regcache_read_pc (regcache);
if (breakpoint_inserted_here_p (regcache->aspace (),
pc - decr_pc))
{
fbsd_nat_debug_printf ("adjusted PC for LWP %ld",
wptid.lwp ());
regcache_write_pc (regcache, pc - decr_pc);
}
}
}
#else
/* pacify gcc */
(void) wptid;
#endif
sig = 0;
break;
}
}
}
while (pending_sigstop || pending_ptrace_events (inf));
}
target_announce_detach (from_tty);
if (ptrace (PT_DETACH, inf->pid, (caddr_t) 1, 0) == -1)
perror_with_name (("ptrace (PT_DETACH)"));
detach_success (inf);
}
/* Implement the "kill" target method. */
void
fbsd_nat_target::kill ()
{
pid_t pid = inferior_ptid.pid ();
if (pid == 0)
return;
inferior *inf = current_inferior ();
stop_process (inf);
if (detach_fork_children (inf)) {
/* No need to kill now. */
target_mourn_inferior (inferior_ptid);
return;
}
#ifdef TDP_RFPPWAIT
/* If there are any threads that have forked a new child but not yet
reported it because other threads reported events first, detach
from the children before killing the parent. */
auto lambda = [] (const struct ptrace_lwpinfo &pl)
{
if (pl.pl_flags & PL_FLAG_FORKED)
{
pid_t child = pl.pl_child_pid;
/* If the child hasn't reported its stop yet, wait for it to
stop. */
fbsd_wait_for_fork_child (child);
/* Detach from the child. */
(void) ptrace (PT_DETACH, child, (caddr_t) 1, 0);
}
return false;
};
iterate_other_ptrace_events (pid, gdb::make_function_view (lambda));
#endif
if (ptrace (PT_KILL, pid, NULL, 0) == -1)
perror_with_name (("ptrace (PT_KILL)"));
int status;
waitpid (pid, &status, 0);
target_mourn_inferior (inferior_ptid);
}
void
fbsd_nat_target::mourn_inferior ()
{
gdb_assert (!have_pending_event (ptid_t (current_inferior ()->pid)));
inf_ptrace_target::mourn_inferior ();
}
void
fbsd_nat_target::follow_exec (inferior *follow_inf, ptid_t ptid,
const char *execd_pathname)
{
inferior *orig_inf = current_inferior ();
inf_ptrace_target::follow_exec (follow_inf, ptid, execd_pathname);
if (orig_inf != follow_inf)
{
/* Migrate the fbsd_inferior to the new inferior. */
follow_inf->priv.reset (orig_inf->priv.release ());
}
}
#ifdef TDP_RFPPWAIT
/* Target hook for follow_fork. On entry and at return inferior_ptid is
the ptid of the followed inferior. */
void
fbsd_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
target_waitkind fork_kind, bool follow_child,
bool detach_fork)
{
inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
follow_child, detach_fork);
if (child_inf != nullptr)
{
fbsd_inferior *fbsd_inf = new fbsd_inferior;
child_inf->priv.reset (fbsd_inf);
fbsd_inf->num_lwps = 1;
}
if (!follow_child && detach_fork)
{
pid_t child_pid = child_ptid.pid ();
/* Breakpoints have already been detached from the child by
infrun.c. */
if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3) 1, 0) == -1)
perror_with_name (("ptrace (PT_DETACH)"));
#ifndef PTRACE_VFORK
if (fork_kind () == TARGET_WAITKIND_VFORKED)
{
/* We can't insert breakpoints until the child process has
finished with the shared memory region. The parent
process doesn't wait for the child process to exit or
exec until after it has been resumed from the ptrace stop
to report the fork. Once it has been resumed it doesn't
stop again before returning to userland, so there is no
reliable way to wait on the parent.
We can't stay attached to the child to wait for an exec
or exit because it may invoke ptrace(PT_TRACE_ME)
(e.g. if the parent process is a debugger forking a new
child process).
In the end, the best we can do is to make sure it runs
for a little while. Hopefully it will be out of range of
any breakpoints we reinsert. Usually this is only the
single-step breakpoint at vfork's return point. */
usleep (10000);
/* Schedule a fake VFORK_DONE event to report on the next
wait. */
fbsd_add_vfork_done (inferior_ptid);
}
#endif
}
}
int
fbsd_nat_target::insert_fork_catchpoint (int pid)
{
return 0;
}
int
fbsd_nat_target::remove_fork_catchpoint (int pid)
{
return 0;
}
int
fbsd_nat_target::insert_vfork_catchpoint (int pid)
{
return 0;
}
int
fbsd_nat_target::remove_vfork_catchpoint (int pid)
{
return 0;
}
#endif
/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
void
fbsd_nat_target::post_startup_inferior (ptid_t pid)
{
fbsd_enable_proc_events (pid.pid ());
}
/* Implement the "post_attach" target_ops method. */
void
fbsd_nat_target::post_attach (int pid)
{
fbsd_enable_proc_events (pid);
fbsd_add_threads (this, pid);
}
/* Traced processes always stop after exec. */
int
fbsd_nat_target::insert_exec_catchpoint (int pid)
{
return 0;
}
int
fbsd_nat_target::remove_exec_catchpoint (int pid)
{
return 0;
}
#ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
int
fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
int any_count,
gdb::array_view<const int> syscall_counts)
{
/* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
will catch all system call entries and exits. The system calls
are filtered by GDB rather than the kernel. */
return 0;
}
#endif
bool
fbsd_nat_target::supports_multi_process ()
{
return true;
}
bool
fbsd_nat_target::supports_disable_randomization ()
{
#ifdef PROC_ASLR_CTL
return true;
#else
return false;
#endif
}
/* See fbsd-nat.h. */
bool
fbsd_nat_target::fetch_register_set (struct regcache *regcache, int regnum,
int fetch_op, const struct regset *regset,
int regbase, void *regs, size_t size)
{
const struct regcache_map_entry *map
= (const struct regcache_map_entry *) regset->regmap;
pid_t pid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1
|| (regnum >= regbase && regcache_map_supplies (map, regnum - regbase,
regcache->arch (), size)))
{
if (ptrace (fetch_op, pid, (PTRACE_TYPE_ARG3) regs, 0) == -1)
perror_with_name (_("Couldn't get registers"));
regset->supply_regset (regset, regcache, regnum, regs, size);
return true;
}
return false;
}
/* See fbsd-nat.h. */
bool
fbsd_nat_target::store_register_set (struct regcache *regcache, int regnum,
int fetch_op, int store_op,
const struct regset *regset, int regbase,
void *regs, size_t size)
{
const struct regcache_map_entry *map
= (const struct regcache_map_entry *) regset->regmap;
pid_t pid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1
|| (regnum >= regbase && regcache_map_supplies (map, regnum - regbase,
regcache->arch (), size)))
{
if (ptrace (fetch_op, pid, (PTRACE_TYPE_ARG3) regs, 0) == -1)
perror_with_name (_("Couldn't get registers"));
regset->collect_regset (regset, regcache, regnum, regs, size);
if (ptrace (store_op, pid, (PTRACE_TYPE_ARG3) regs, 0) == -1)
perror_with_name (_("Couldn't write registers"));
return true;
}
return false;
}
/* See fbsd-nat.h. */
size_t
fbsd_nat_target::have_regset (ptid_t ptid, int note)
{
pid_t pid = get_ptrace_pid (ptid);
struct iovec iov;
iov.iov_base = nullptr;
iov.iov_len = 0;
if (ptrace (PT_GETREGSET, pid, (PTRACE_TYPE_ARG3) &iov, note) == -1)
return 0;
return iov.iov_len;
}
/* See fbsd-nat.h. */
bool
fbsd_nat_target::fetch_regset (struct regcache *regcache, int regnum, int note,
const struct regset *regset, int regbase,
void *regs, size_t size)
{
const struct regcache_map_entry *map
= (const struct regcache_map_entry *) regset->regmap;
pid_t pid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1
|| (regnum >= regbase && regcache_map_supplies (map, regnum - regbase,
regcache->arch (), size)))
{
struct iovec iov;
iov.iov_base = regs;
iov.iov_len = size;
if (ptrace (PT_GETREGSET, pid, (PTRACE_TYPE_ARG3) &iov, note) == -1)
perror_with_name (_("Couldn't get registers"));
regset->supply_regset (regset, regcache, regnum, regs, size);
return true;
}
return false;
}
bool
fbsd_nat_target::store_regset (struct regcache *regcache, int regnum, int note,
const struct regset *regset, int regbase,
void *regs, size_t size)
{
const struct regcache_map_entry *map
= (const struct regcache_map_entry *) regset->regmap;
pid_t pid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1
|| (regnum >= regbase && regcache_map_supplies (map, regnum - regbase,
regcache->arch (), size)))
{
struct iovec iov;
iov.iov_base = regs;
iov.iov_len = size;
if (ptrace (PT_GETREGSET, pid, (PTRACE_TYPE_ARG3) &iov, note) == -1)
perror_with_name (_("Couldn't get registers"));
regset->collect_regset (regset, regcache, regnum, regs, size);
if (ptrace (PT_SETREGSET, pid, (PTRACE_TYPE_ARG3) &iov, note) == -1)
perror_with_name (_("Couldn't write registers"));
return true;
}
return false;
}
/* See fbsd-nat.h. */
bool
fbsd_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
{
struct ptrace_lwpinfo pl;
pid_t pid = get_ptrace_pid (ptid);
if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
return false;
if (!(pl.pl_flags & PL_FLAG_SI))
return false;;
*siginfo = pl.pl_siginfo;
return (true);
}
void _initialize_fbsd_nat ();
void
_initialize_fbsd_nat ()
{
add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
&debug_fbsd_lwp, _("\
Set debugging of FreeBSD lwp module."), _("\
Show debugging of FreeBSD lwp module."), _("\
Enables printf debugging output."),
NULL,
&show_fbsd_lwp_debug,
&setdebuglist, &showdebuglist);
add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
&debug_fbsd_nat, _("\
Set debugging of FreeBSD native target."), _("\
Show debugging of FreeBSD native target."), _("\
Enables printf debugging output."),
NULL,
&show_fbsd_nat_debug,
&setdebuglist, &showdebuglist);
/* Install a SIGCHLD handler. */
signal (SIGCHLD, sigchld_handler);
}
|