aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-valprint.c
blob: 0e0cdbc9e07aaa57d7c186af385232a11f2cc9b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/* Support for printing Fortran values for GDB, the GNU debugger.
   Copyright 1993, 1994 Free Software Foundation, Inc.
   Contributed by Motorola.  Adapted from the C definitions by Farooq Butt
   (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "value.h"
#include "demangle.h"
#include "valprint.h"
#include "language.h"
#include "f-lang.h" 
#include "frame.h"

extern struct obstack dont_print_obstack;

extern unsigned int print_max; /* No of array elements to print */ 

int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];

/* Array which holds offsets to be applied to get a row's elements
   for a given array. Array also holds the size of each subarray.  */

/* The following macro gives us the size of the nth dimension, Where 
   n is 1 based. */ 

#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])

/* The following gives us the offset for row n where n is 1-based. */ 

#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])

int 
f77_get_dynamic_lowerbound (type, lower_bound)
     struct type *type;
     int *lower_bound; 
{
  CORE_ADDR current_frame_addr;   
  CORE_ADDR ptr_to_lower_bound; 
  
  switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
    {
    case BOUND_BY_VALUE_ON_STACK:
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0) 
	{
	  *lower_bound = 
	    read_memory_integer (current_frame_addr + 
				 TYPE_ARRAY_LOWER_BOUND_VALUE (type),4);
	}
      else
	{
	  *lower_bound = DEFAULT_LOWER_BOUND; 
	  return BOUND_FETCH_ERROR; 
	}
      break; 
      
    case BOUND_SIMPLE:
      *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
      break; 
      
    case BOUND_CANNOT_BE_DETERMINED: 
      error("Lower bound may not be '*' in F77"); 
      break; 
      
    case BOUND_BY_REF_ON_STACK:
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0) 
	{
	  ptr_to_lower_bound = 
	    read_memory_integer (current_frame_addr + 
				 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
				 4);
	  *lower_bound = read_memory_integer(ptr_to_lower_bound); 
	}
      else
	{
	  *lower_bound = DEFAULT_LOWER_BOUND; 
	  return BOUND_FETCH_ERROR; 
	}
      break; 
      
    case BOUND_BY_REF_IN_REG: 
    case BOUND_BY_VALUE_IN_REG: 
    default: 
      error ("??? unhandled dynamic array bound type ???");
      break; 
    }
  return BOUND_FETCH_OK;
}

int 
f77_get_dynamic_upperbound (type, upper_bound)
     struct type *type;
     int *upper_bound;
{
  CORE_ADDR current_frame_addr = 0;
  CORE_ADDR ptr_to_upper_bound; 
  
  switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
    {
    case BOUND_BY_VALUE_ON_STACK:
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0) 
	{
	  *upper_bound = 
	    read_memory_integer (current_frame_addr + 
				 TYPE_ARRAY_UPPER_BOUND_VALUE (type),4);
	}
      else
	{
	  *upper_bound = DEFAULT_UPPER_BOUND; 
	  return BOUND_FETCH_ERROR; 
	}
      break; 
      
    case BOUND_SIMPLE:
      *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
      break; 
      
    case BOUND_CANNOT_BE_DETERMINED: 
      /* we have an assumed size array on our hands. Assume that 
	 upper_bound == lower_bound so that we show at least 
	 1 element.If the user wants to see more elements, let 
	 him manually ask for 'em and we'll subscript the 
	 array and show him */
      f77_get_dynamic_lowerbound (type, &upper_bound);
      break; 
      
    case BOUND_BY_REF_ON_STACK:
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0) 
	{
	  ptr_to_upper_bound = 
	    read_memory_integer (current_frame_addr + 
				 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
				 4);
	  *upper_bound = read_memory_integer(ptr_to_upper_bound); 
	}
      else
	{
	  *upper_bound = DEFAULT_UPPER_BOUND; 
	  return BOUND_FETCH_ERROR;
	}
      break; 
      
    case BOUND_BY_REF_IN_REG: 
    case BOUND_BY_VALUE_IN_REG: 
    default: 
      error ("??? unhandled dynamic array bound type ???");
      break; 
    }
  return BOUND_FETCH_OK;
}

/* Obtain F77 adjustable array dimensions */ 

void
f77_get_dynamic_length_of_aggregate (type)
     struct type *type;
{
  int upper_bound = -1;
  int lower_bound = 1; 
  unsigned int current_total = 1;
  int retcode; 
  
  /* Recursively go all the way down into a possibly 
     multi-dimensional F77 array 
     and get the bounds.  For simple arrays, this is pretty easy 
     but when the bounds are dynamic, we must be very careful 
     to add up all the lengths correctly.  Not doing this right 
     will lead to horrendous-looking arrays in parameter lists.
     
     This function also works for strings which behave very 
     similarly to arrays.  */ 
  
  if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
      || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
    f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
  
  /* Recursion ends here, start setting up lengths.  */ 
  retcode = f77_get_dynamic_lowerbound (type, &lower_bound); 
  if (retcode == BOUND_FETCH_ERROR)
    error ("Cannot obtain valid array lower bound"); 
  
  retcode = f77_get_dynamic_upperbound (type, &upper_bound); 
  if (retcode == BOUND_FETCH_ERROR)
    error ("Cannot obtain valid array upper bound"); 
  
  /* Patch in a valid length value. */ 
  
  TYPE_LENGTH (type) =
    (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
}       

/* Print a FORTRAN COMPLEX value of type TYPE, pointed to in GDB by VALADDR,
   on STREAM.  which_complex indicates precision, which may be regular,
   *16, or *32 */

void
f77_print_cmplx (valaddr, type, stream, which_complex)
     char *valaddr;
     struct type *type;
     FILE *stream;
     int which_complex;
{
  float *f1,*f2;
  double *d1, *d2;
  int i; 
  
  switch (which_complex)
    {
    case TARGET_COMPLEX_BIT:
      f1 = (float *) valaddr;
      f2 = (float *) (valaddr + sizeof(float));
      fprintf_filtered (stream, "(%.7e,%.7e)", *f1, *f2);
      break;
      
    case TARGET_DOUBLE_COMPLEX_BIT:
      d1 = (double *) valaddr;
      d2 = (double *) (valaddr + sizeof(double));
      fprintf_filtered (stream, "(%.16e,%.16e)", *d1, *d2);
      break;
#if 0
    case TARGET_EXT_COMPLEX_BIT:
      fprintf_filtered (stream, "<complex*32 format unavailable, "
		       "printing raw data>\n");
      
      fprintf_filtered (stream, "( [ "); 
      
      for (i = 0;i<4;i++)
	fprintf_filtered (stream, "0x%x ",
			 * ( (unsigned int *) valaddr+i));
      
      fprintf_filtered (stream, "],\n  [ "); 
      
      for (i=4;i<8;i++)
	fprintf_filtered (stream, "0x%x ",
			 * ((unsigned int *) valaddr+i));
      
      fprintf_filtered (stream, "] )");
      
      break;
#endif
    default:
      fprintf_filtered (stream, "<cannot handle complex of this type>");
      break;
    }
}

/* Function that sets up the array offset,size table for the array 
   type "type". */ 

void 
f77_create_arrayprint_offset_tbl (type, stream)
     struct type *type;
     FILE *stream;
{
  struct type *tmp_type;
  int eltlen; 
  int ndimen = 1;
  int upper, lower, retcode; 
  
  tmp_type = type; 
  
  while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) 
    {
      if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
	fprintf_filtered (stream, "<assumed size array> "); 
      
      retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
      if (retcode == BOUND_FETCH_ERROR)
	error ("Cannot obtain dynamic upper bound"); 
      
      retcode = f77_get_dynamic_lowerbound(tmp_type,&lower); 
      if (retcode == BOUND_FETCH_ERROR)
	error("Cannot obtain dynamic lower bound"); 
      
      F77_DIM_SIZE (ndimen) = upper - lower + 1;
      
      if (ndimen == 1)
	F77_DIM_OFFSET (ndimen) = 1;
      else
	F77_DIM_OFFSET (ndimen) = 
	  F77_DIM_OFFSET (ndimen - 1) * F77_DIM_SIZE(ndimen - 1);
      
      tmp_type = TYPE_TARGET_TYPE (tmp_type);
      ndimen++; 
    }
  
  eltlen = TYPE_LENGTH (tmp_type); 

  /* Now we multiply eltlen by all the offsets, so that later we 
     can print out array elements correctly.  Up till now we 
     know an offset to apply to get the item but we also 
     have to know how much to add to get to the next item */
  
  tmp_type = type; 
  ndimen = 1; 
  
  while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) 
    {
      F77_DIM_OFFSET (ndimen) *= eltlen; 
      ndimen++;
      tmp_type = TYPE_TARGET_TYPE (tmp_type);
    }
}

/* Actual function which prints out F77 arrays, Valaddr == address in 
   the superior.  Address == the address in the inferior.  */

void 
f77_print_array_1 (nss, ndimensions, type, valaddr, address, 
		   stream, format, deref_ref, recurse, pretty)
     int nss;
     int ndimensions; 
     char *valaddr;
     struct type *type;
     CORE_ADDR address;
     FILE *stream;
     int format;
     int deref_ref;
     int recurse;
     enum val_prettyprint pretty;
{
  int i;
  
  if (nss != ndimensions)
    {
      for (i = 0; i< F77_DIM_SIZE(nss); i++)
	{
	  fprintf_filtered (stream, "( ");
	  f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
			    valaddr + i * F77_DIM_OFFSET (nss),
			    address + i * F77_DIM_OFFSET (nss), 
			    stream, format, deref_ref, recurse, pretty, i);
	  fprintf_filtered (stream, ") ");
	}
    }
  else
    {
      for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
	{
	  val_print (TYPE_TARGET_TYPE (type),
		     valaddr + i * F77_DIM_OFFSET (ndimensions),
		     address + i * F77_DIM_OFFSET (ndimensions),
		     stream, format, deref_ref, recurse, pretty); 

	  if (i != (F77_DIM_SIZE (nss) - 1))
	    fprintf_filtered (stream, ", "); 
	  
	  if (i == print_max - 1)
	    fprintf_filtered (stream, "...");
	}
    }
}

/* This function gets called to print an F77 array, we set up some 
   stuff and then immediately call f77_print_array_1() */

void 
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse, 
		 pretty)
     struct type *type;
     char *valaddr;
     CORE_ADDR address;
     FILE *stream;
     int format;
     int deref_ref;
     int recurse;
     enum val_prettyprint pretty;
{
  int array_size_array[MAX_FORTRAN_DIMS+1]; 
  int ndimensions; 
  
  ndimensions = calc_f77_array_dims (type); 
  
  if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
    error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
	   ndimensions, MAX_FORTRAN_DIMS);
  
  /* Since F77 arrays are stored column-major, we set up an 
     offset table to get at the various row's elements. The 
     offset table contains entries for both offset and subarray size. */ 
  
  f77_create_arrayprint_offset_tbl (type, stream); 
  
  f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format, 
                     deref_ref, recurse, pretty);
}


/* Print data of type TYPE located at VALADDR (within GDB), which came from
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   FORMAT (a letter or 0 for natural format).  The data at VALADDR is in
   target byte order.
   
   If the data are a string pointer, returns the number of string characters
   printed.
   
   If DEREF_REF is nonzero, then dereference references, otherwise just print
   them like pointers.
   
   The PRETTY parameter controls prettyprinting.  */

int
f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
	     pretty)
     struct type *type;
     char *valaddr;
     CORE_ADDR address;
     FILE *stream;
     int format;
     int deref_ref;
     int recurse;
     enum val_prettyprint pretty;
{
  register unsigned int i = 0;		/* Number of characters printed */
  unsigned len;
  struct type *elttype;
  unsigned eltlen;
  LONGEST val;
  struct internalvar *ivar; 
  char *localstr; 
  unsigned char c;
  CORE_ADDR addr;
  
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_LITERAL_STRING: 
      /* It is trivial to print out F77 strings allocated in the 
	 superior process. The address field is actually a 
	 pointer to the bytes of the literal. For an internalvar,
	 valaddr points to a ptr. which points to 
	 VALUE_LITERAL_DATA(value->internalvar->value)
	 and for straight literals (i.e. of the form 'hello world'), 
	 valaddr points a ptr to VALUE_LITERAL_DATA(value). */
      
      /* First deref. valaddr  */ 
      
      addr = * (CORE_ADDR *) valaddr; 
      
      if (addr)
	{
	  len = TYPE_LENGTH (type); 
	  localstr = alloca (len + 1);
	  strncpy (localstr, addr, len);
	  localstr[len] = '\0'; 
	  fprintf_filtered (stream, "'%s'", localstr);
	}
      else
	fprintf_filtered (stream, "Unable to print literal F77 string");
      break; 
      
      /* Strings are a little bit funny. They can be viewed as 
	 monolithic arrays that are dealt with as atomic data 
	 items. As such they are the only atomic data items whose 
	 contents are not located in the superior process. Instead 
	 instead of having the actual data, they contain pointers 
	 to addresses in the inferior where data is located.  Thus 
	 instead of using valaddr, we use address. */ 
      
    case TYPE_CODE_STRING: 
      f77_get_dynamic_length_of_aggregate (type);
      val_print_string (address, TYPE_LENGTH (type), stream);
      break;
      
    case TYPE_CODE_ARRAY:
      fprintf_filtered (stream, "("); 
      f77_print_array (type, valaddr, address, stream, format, 
		       deref_ref, recurse, pretty); 
      fprintf_filtered (stream, ")");
      break;
#if 0
      /* Array of unspecified length: treat like pointer to first elt.  */
      valaddr = (char *) &address;
      /* FALL THROUGH */
#endif 
    case TYPE_CODE_PTR:
      if (format && format != 's')
	{
	  print_scalar_formatted (valaddr, type, format, 0, stream);
	  break;
	}
      else
	{
	  addr = unpack_pointer (type, valaddr);
	  elttype = TYPE_TARGET_TYPE (type);
	  
	  if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
	    {
	      /* Try to print what function it points to.  */
	      print_address_demangle (addr, stream, demangle);
	      /* Return value is irrelevant except for string pointers.  */
	      return 0;
	    }
	  
	  if (addressprint && format != 's')
	    fprintf_filtered (stream, "0x%x", addr);
	  
	  /* For a pointer to char or unsigned char, also print the string
	     pointed to, unless pointer is null.  */
	  if (TYPE_LENGTH (elttype) == 1
	      && TYPE_CODE (elttype) == TYPE_CODE_INT
	      && (format == 0 || format == 's')
	      && addr != 0)
	    i = val_print_string (addr, 0, stream);
	  
	  /* Return number of characters printed, plus one for the
	     terminating null if we have "reached the end".  */
	  return (i + (print_max && i != print_max));
	}
      break;
      
    case TYPE_CODE_FUNC:
      if (format)
	{
	  print_scalar_formatted (valaddr, type, format, 0, stream);
	  break;
	}
      /* FIXME, we should consider, at least for ANSI C language, eliminating
	 the distinction made between FUNCs and POINTERs to FUNCs.  */
      fprintf_filtered (stream, "{");
      type_print (type, "", stream, -1);
      fprintf_filtered (stream, "} ");
      /* Try to print what function it points to, and its address.  */
      print_address_demangle (address, stream, demangle);
      break;
      
    case TYPE_CODE_INT:
      format = format ? format : output_format;
      if (format)
	print_scalar_formatted (valaddr, type, format, 0, stream);
      else
	{
	  val_print_type_code_int (type, valaddr, stream);
	  /* C and C++ has no single byte int type, char is used instead.
	     Since we don't know whether the value is really intended to
	     be used as an integer or a character, print the character
	     equivalent as well. */
	  if (TYPE_LENGTH (type) == 1)
	    {
	      fputs_filtered (" ", stream);
	      LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
			     stream);
	    }
	}
      break;
      
    case TYPE_CODE_FLT:
      if (format)
	print_scalar_formatted (valaddr, type, format, 0, stream);
      else
	print_floating (valaddr, type, stream);
      break;
      
    case TYPE_CODE_VOID:
      fprintf_filtered (stream, "VOID");
      break;
      
    case TYPE_CODE_ERROR:
      fprintf_filtered (stream, "<error type>");
      break;
      
    case TYPE_CODE_RANGE:
      /* FIXME, we should not ever have to print one of these yet.  */
      fprintf_filtered (stream, "<range type>");
      break;
      
    case TYPE_CODE_BOOL:
      format = format ? format : output_format;
      if (format)
	print_scalar_formatted (valaddr, type, format, 0, stream);
      else
	{
          val = 0; 
          switch (TYPE_LENGTH(type))
	    {
	    case 1:
	      val = unpack_long (builtin_type_f_logical_s1, valaddr);
	      break ; 
	      
	    case 2: 
	      val = unpack_long (builtin_type_f_logical_s2, valaddr);
	      break ; 
	      
	    case 4: 
	      val = unpack_long (builtin_type_f_logical, valaddr);
	      break ; 
	      
	    default:
	      error ("Logicals of length %d bytes not supported",
		     TYPE_LENGTH (type));
	      
	    }
	  
          if (val == 0) 
	    fprintf_filtered (stream, ".FALSE.");
          else 
	    if (val == 1) 
	      fprintf_filtered (stream, ".TRUE.");
	    else
	      /* Not a legitimate logical type, print as an integer.  */
	      {
		/* Bash the type code temporarily.  */
		TYPE_CODE (type) = TYPE_CODE_INT;
		f_val_print (type, valaddr, address, stream, format, 
			     deref_ref, recurse, pretty); 
		/* Restore the type code so later uses work as intended. */
		TYPE_CODE (type) = TYPE_CODE_BOOL; 
	      }
	}
      break;
      
    case TYPE_CODE_LITERAL_COMPLEX:
      /* We know that the literal complex is stored in the superior 
	 process not the inferior and that it is 16 bytes long. 
	 Just like the case above with a literal array, the
	 bytes for the the literal complex number are stored   
	 at the address pointed to by valaddr */ 
      
      if (TYPE_LENGTH(type) == 32)
	error("Cannot currently print out complex*32 literals");
      
      /* First deref. valaddr  */ 
      
      addr = * (CORE_ADDR *) valaddr; 
      
      if (addr)
	{
	  fprintf_filtered (stream, "("); 
	  
	  if (TYPE_LENGTH(type) == 16) 
	    { 
	      fprintf_filtered (stream, "%.16f", * (double *) addr); 
	      fprintf_filtered (stream, ", %.16f", * (double *) 
				(addr + sizeof(double)));
	    }
	  else
	    {
	      fprintf_filtered (stream, "%.8f", * (float *) addr); 
	      fprintf_filtered (stream, ", %.8f", * (float *) 
				(addr + sizeof(float)));
	    }
	  fprintf_filtered (stream, ") ");             
	}
      else
	fprintf_filtered (stream, "Unable to print literal F77 array");
      break; 
      
    case TYPE_CODE_COMPLEX:
      switch (TYPE_LENGTH (type))
	{
	case 8:
	  f77_print_cmplx (valaddr, type, stream, TARGET_COMPLEX_BIT);
	  break;
	  
	case 16: 
	  f77_print_cmplx(valaddr, type, stream, TARGET_DOUBLE_COMPLEX_BIT);
	  break; 
#if 0
	case 32:
	  f77_print_cmplx(valaddr, type, stream, TARGET_EXT_COMPLEX_BIT);
	  break; 
#endif
	default:
	  error ("Cannot print out complex*%d variables", TYPE_LENGTH(type)); 
	}
      break;
      
    case TYPE_CODE_UNDEF:
      /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
	 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
	 and no complete type for struct foo in that file.  */
      fprintf_filtered (stream, "<incomplete type>");
      break;
      
    default:
      error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
    }
  fflush (stream);
  return 0;
}

void
list_all_visible_commons (funname)
     char *funname;
{
  SAVED_F77_COMMON_PTR  tmp;
  
  tmp = head_common_list;
  
  printf_filtered ("All COMMON blocks visible at this level:\n\n");
  
  while (tmp != NULL)
    {
      if (STREQ(tmp->owning_function,funname))
	printf_filtered ("%s\n", tmp->name); 
      
      tmp = tmp->next;
    }
}

/* This function is used to print out the values in a given COMMON 
   block. It will always use the most local common block of the 
   given name */ 

static void 
info_common_command (comname, from_tty)
     char *comname;
     int from_tty;
{
  SAVED_F77_COMMON_PTR  the_common; 
  COMMON_ENTRY_PTR entry; 
  struct frame_info *fi;
  register char *funname = 0;
  struct symbol *func;
  char *cmd; 
  
  /* We have been told to display the contents of F77 COMMON 
     block supposedly visible in this function.  Let us 
     first make sure that it is visible and if so, let 
     us display its contents */ 
  
  fi = selected_frame; 
  
  if (fi == NULL)
    error ("No frame selected"); 
  
  /* The following is generally ripped off from stack.c's routine 
     print_frame_info() */ 
  
  func = find_pc_function (fi->pc);
  if (func)
    {
      /* In certain pathological cases, the symtabs give the wrong
	 function (when we are in the first function in a file which
	 is compiled without debugging symbols, the previous function
	 is compiled with debugging symbols, and the "foo.o" symbol
	 that is supposed to tell us where the file with debugging symbols
	 ends has been truncated by ar because it is longer than 15
	 characters).
	 
	 So look in the minimal symbol tables as well, and if it comes
	 up with a larger address for the function use that instead.
	 I don't think this can ever cause any problems; there shouldn't
	 be any minimal symbols in the middle of a function.
	 FIXME:  (Not necessarily true.  What about text labels) */
      
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
      
      if (msymbol != NULL
	  && (SYMBOL_VALUE_ADDRESS (msymbol) 
	      > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
	funname = SYMBOL_NAME (msymbol);
      else
	funname = SYMBOL_NAME (func);
    }
  else
    {
      register struct minimal_symbol *msymbol =
	lookup_minimal_symbol_by_pc (fi->pc);
      
      if (msymbol != NULL)
	funname = SYMBOL_NAME (msymbol);
    }
  
  /* If comnname is NULL, we assume the user wishes to see the 
     which COMMON blocks are visible here and then return */ 
  
  if (strlen (comname) == 0) 
    {
      list_all_visible_commons (funname);
      return; 
    }
  
  the_common = find_common_for_function (comname,funname); 
  
  if (the_common)
    {
      if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
	printf_filtered ("Contents of blank COMMON block:\n");
      else 
	printf_filtered ("Contents of F77 COMMON block '%s':\n",comname); 
      
      printf_filtered ("\n"); 
      entry = the_common->entries; 
      
      while (entry != NULL)
	{
	  printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol)); 
	  print_variable_value (entry->symbol,fi,stdout); 
	  printf_filtered ("\n"); 
	  entry = entry->next; 
	}
    }
  else 
    printf_filtered ("Cannot locate the common block %s in function '%s'\n",
		    comname, funname);
}

/* This function is used to determine whether there is a
   F77 common block visible at the current scope called 'comname'. */ 

int
there_is_a_visible_common_named (comname)
     char *comname;
{
  SAVED_F77_COMMON_PTR  the_common; 
  COMMON_ENTRY_PTR entry; 
  struct frame_info *fi;
  register char *funname = 0;
  struct symbol *func;
  
  if (comname == NULL)
    error ("Cannot deal with NULL common name!"); 
  
  fi = selected_frame; 
  
  if (fi == NULL)
    error ("No frame selected"); 
  
  /* The following is generally ripped off from stack.c's routine 
     print_frame_info() */ 
  
  func = find_pc_function (fi->pc);
  if (func)
    {
      /* In certain pathological cases, the symtabs give the wrong
	 function (when we are in the first function in a file which
	 is compiled without debugging symbols, the previous function
	 is compiled with debugging symbols, and the "foo.o" symbol
	 that is supposed to tell us where the file with debugging symbols
	 ends has been truncated by ar because it is longer than 15
	 characters).
	 
	 So look in the minimal symbol tables as well, and if it comes
	 up with a larger address for the function use that instead.
	 I don't think this can ever cause any problems; there shouldn't
	 be any minimal symbols in the middle of a function.
	 FIXME:  (Not necessarily true.  What about text labels) */
      
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
      
      if (msymbol != NULL
	  && (SYMBOL_VALUE_ADDRESS (msymbol) 
	      > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
	funname = SYMBOL_NAME (msymbol);
      else
	funname = SYMBOL_NAME (func);
    }
  else
    {
      register struct minimal_symbol *msymbol = 
	lookup_minimal_symbol_by_pc (fi->pc);
      
      if (msymbol != NULL)
	funname = SYMBOL_NAME (msymbol);
    }
  
  the_common = find_common_for_function (comname, funname); 
  
  return (the_common ? 1 : 0);
}

void
_initialize_f_valprint ()
{
  add_info ("common", info_common_command,
	    "Print out the values contained in a Fortran COMMON block.");
}