aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-exp.y
blob: a768134983b0bc40f1e9d273b8fef5e2dceb903b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

/* YACC parser for Fortran expressions, for GDB.
   Copyright (C) 1986-2022 Free Software Foundation, Inc.

   Contributed by Motorola.  Adapted from the C parser by Farooq Butt
   (fmbutt@engage.sps.mot.com).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* This was blantantly ripped off the C expression parser, please 
   be aware of that as you look at its basic structure -FMB */ 

/* Parse a F77 expression from text in a string,
   and return the result as a  struct expression  pointer.
   That structure contains arithmetic operations in reverse polish,
   with constants represented by operations that are followed by special data.
   See expression.h for the details of the format.
   What is important here is that it can be built up sequentially
   during the process of parsing; the lower levels of the tree always
   come first in the result.

   Note that malloc's and realloc's in this file are transformed to
   xmalloc and xrealloc respectively by the same sed command in the
   makefile that remaps any other malloc/realloc inserted by the parser
   generator.  Doing this with #defines and trying to control the interaction
   with include files (<malloc.h> and <stdlib.h> for example) just became
   too messy, particularly when such includes can be inserted at random
   times by the parser generator.  */
   
%{

#include "defs.h"
#include "expression.h"
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "f-lang.h"
#include "bfd.h" /* Required by objfiles.h.  */
#include "symfile.h" /* Required by objfiles.h.  */
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
#include "block.h"
#include <ctype.h>
#include <algorithm>
#include "type-stack.h"
#include "f-exp.h"

#define parse_type(ps) builtin_type (ps->gdbarch ())
#define parse_f_type(ps) builtin_f_type (ps->gdbarch ())

/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
   etc).  */
#define GDB_YY_REMAP_PREFIX f_
#include "yy-remap.h"

/* The state of the parser, used internally when we are parsing the
   expression.  */

static struct parser_state *pstate = NULL;

/* Depth of parentheses.  */
static int paren_depth;

/* The current type stack.  */
static struct type_stack *type_stack;

int yyparse (void);

static int yylex (void);

static void yyerror (const char *);

static void growbuf_by_size (int);

static int match_string_literal (void);

static void push_kind_type (LONGEST val, struct type *type);

static struct type *convert_to_kind_type (struct type *basetype, int kind);

using namespace expr;
%}

/* Although the yacc "value" of an expression is not used,
   since the result is stored in the structure being created,
   other node types do have values.  */

%union
  {
    LONGEST lval;
    struct {
      LONGEST val;
      struct type *type;
    } typed_val;
    struct {
      gdb_byte val[16];
      struct type *type;
    } typed_val_float;
    struct symbol *sym;
    struct type *tval;
    struct stoken sval;
    struct ttype tsym;
    struct symtoken ssym;
    int voidval;
    enum exp_opcode opcode;
    struct internalvar *ivar;

    struct type **tvec;
    int *ivec;
  }

%{
/* YYSTYPE gets defined by %union */
static int parse_number (struct parser_state *, const char *, int,
			 int, YYSTYPE *);
%}

%type <voidval> exp  type_exp start variable 
%type <tval> type typebase
%type <tvec> nonempty_typelist
/* %type <bval> block */

/* Fancy type parsing.  */
%type <voidval> func_mod direct_abs_decl abs_decl
%type <tval> ptype

%token <typed_val> INT
%token <typed_val_float> FLOAT

/* Both NAME and TYPENAME tokens represent symbols in the input,
   and both convey their data as strings.
   But a TYPENAME is a string that happens to be defined as a typedef
   or builtin type name (such as int or char)
   and a NAME is any other symbol.
   Contexts where this distinction is not important can use the
   nonterminal "name", which matches either NAME or TYPENAME.  */

%token <sval> STRING_LITERAL
%token <lval> BOOLEAN_LITERAL
%token <ssym> NAME 
%token <tsym> TYPENAME
%token <voidval> COMPLETE
%type <sval> name
%type <ssym> name_not_typename

/* A NAME_OR_INT is a symbol which is not known in the symbol table,
   but which would parse as a valid number in the current input radix.
   E.g. "c" when input_radix==16.  Depending on the parse, it will be
   turned into a name or into a number.  */

%token <ssym> NAME_OR_INT 

%token SIZEOF KIND
%token ERROR

/* Special type cases, put in to allow the parser to distinguish different
   legal basetypes.  */
%token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD 
%token LOGICAL_S8_KEYWORD
%token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD 
%token COMPLEX_KEYWORD
%token COMPLEX_S4_KEYWORD COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD
%token BOOL_AND BOOL_OR BOOL_NOT   
%token SINGLE DOUBLE PRECISION
%token <lval> CHARACTER 

%token <sval> DOLLAR_VARIABLE

%token <opcode> ASSIGN_MODIFY
%token <opcode> UNOP_INTRINSIC BINOP_INTRINSIC
%token <opcode> UNOP_OR_BINOP_INTRINSIC

%left ','
%left ABOVE_COMMA
%right '=' ASSIGN_MODIFY
%right '?'
%left BOOL_OR
%right BOOL_NOT
%left BOOL_AND
%left '|'
%left '^'
%left '&'
%left EQUAL NOTEQUAL
%left LESSTHAN GREATERTHAN LEQ GEQ
%left LSH RSH
%left '@'
%left '+' '-'
%left '*' '/'
%right STARSTAR
%right '%'
%right UNARY 
%right '('


%%

start   :	exp
	|	type_exp
	;

type_exp:	type
			{ pstate->push_new<type_operation> ($1); }
	;

exp     :       '(' exp ')'
			{ }
	;

/* Expressions, not including the comma operator.  */
exp	:	'*' exp    %prec UNARY
			{ pstate->wrap<unop_ind_operation> (); }
	;

exp	:	'&' exp    %prec UNARY
			{ pstate->wrap<unop_addr_operation> (); }
	;

exp	:	'-' exp    %prec UNARY
			{ pstate->wrap<unary_neg_operation> (); }
	;

exp	:	BOOL_NOT exp    %prec UNARY
			{ pstate->wrap<unary_logical_not_operation> (); }
	;

exp	:	'~' exp    %prec UNARY
			{ pstate->wrap<unary_complement_operation> (); }
	;

exp	:	SIZEOF exp       %prec UNARY
			{ pstate->wrap<unop_sizeof_operation> (); }
	;

exp	:	KIND '(' exp ')'       %prec UNARY
			{ pstate->wrap<fortran_kind_operation> (); }
	;

exp	:	UNOP_OR_BINOP_INTRINSIC '('
			{ pstate->start_arglist (); }
		one_or_two_args ')'
			{
			  int n = pstate->end_arglist ();
			  gdb_assert (n == 1 || n == 2);
			  if ($1 == FORTRAN_ASSOCIATED)
			    {
			      if (n == 1)
				pstate->wrap<fortran_associated_1arg> ();
			      else
				pstate->wrap2<fortran_associated_2arg> ();
			    }
			  else if ($1 == FORTRAN_ARRAY_SIZE)
			    {
			      if (n == 1)
				pstate->wrap<fortran_array_size_1arg> ();
			      else
				pstate->wrap2<fortran_array_size_2arg> ();
			    }
			  else
			    {
			      std::vector<operation_up> args
				= pstate->pop_vector (n);
			      gdb_assert ($1 == FORTRAN_LBOUND
					  || $1 == FORTRAN_UBOUND);
			      operation_up op;
			      if (n == 1)
				op.reset
				  (new fortran_bound_1arg ($1,
							   std::move (args[0])));
			      else
				op.reset
				  (new fortran_bound_2arg ($1,
							   std::move (args[0]),
							   std::move (args[1])));
			      pstate->push (std::move (op));
			    }
			}
	;

one_or_two_args
	:	exp
			{ pstate->arglist_len = 1; }
	|	exp ',' exp
			{ pstate->arglist_len = 2; }
	;

/* No more explicit array operators, we treat everything in F77 as 
   a function call.  The disambiguation as to whether we are 
   doing a subscript operation or a function call is done 
   later in eval.c.  */

exp	:	exp '(' 
			{ pstate->start_arglist (); }
		arglist ')'	
			{
			  std::vector<operation_up> args
			    = pstate->pop_vector (pstate->end_arglist ());
			  pstate->push_new<fortran_undetermined>
			    (pstate->pop (), std::move (args));
			}
	;

exp	:	UNOP_INTRINSIC '(' exp ')'
			{
			  switch ($1)
			    {
			    case UNOP_ABS:
			      pstate->wrap<fortran_abs_operation> ();
			      break;
			    case UNOP_FORTRAN_FLOOR:
			      pstate->wrap<fortran_floor_operation> ();
			      break;
			    case UNOP_FORTRAN_CEILING:
			      pstate->wrap<fortran_ceil_operation> ();
			      break;
			    case UNOP_FORTRAN_ALLOCATED:
			      pstate->wrap<fortran_allocated_operation> ();
			      break;
			    case UNOP_FORTRAN_RANK:
			      pstate->wrap<fortran_rank_operation> ();
			      break;
			    case UNOP_FORTRAN_SHAPE:
			      pstate->wrap<fortran_array_shape_operation> ();
			      break;
			    case UNOP_FORTRAN_LOC:
			      pstate->wrap<fortran_loc_operation> ();
			      break;
			    default:
			      gdb_assert_not_reached ("unhandled intrinsic");
			    }
			}
	;

exp	:	BINOP_INTRINSIC '(' exp ',' exp ')'
			{
			  switch ($1)
			    {
			    case BINOP_MOD:
			      pstate->wrap2<fortran_mod_operation> ();
			      break;
			    case BINOP_FORTRAN_MODULO:
			      pstate->wrap2<fortran_modulo_operation> ();
			      break;
			    case BINOP_FORTRAN_CMPLX:
			      pstate->wrap2<fortran_cmplx_operation> ();
			      break;
			    default:
			      gdb_assert_not_reached ("unhandled intrinsic");
			    }
			}
	;

arglist	:
	;

arglist	:	exp
			{ pstate->arglist_len = 1; }
	;

arglist :	subrange
			{ pstate->arglist_len = 1; }
	;
   
arglist	:	arglist ',' exp   %prec ABOVE_COMMA
			{ pstate->arglist_len++; }
	;

arglist	:	arglist ',' subrange   %prec ABOVE_COMMA
			{ pstate->arglist_len++; }
	;

/* There are four sorts of subrange types in F90.  */

subrange:	exp ':' exp	%prec ABOVE_COMMA
			{
			  operation_up high = pstate->pop ();
			  operation_up low = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_STANDARD, std::move (low),
			     std::move (high), operation_up ());
			}
	;

subrange:	exp ':'	%prec ABOVE_COMMA
			{
			  operation_up low = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_HIGH_BOUND_DEFAULT, std::move (low),
			     operation_up (), operation_up ());
			}
	;

subrange:	':' exp	%prec ABOVE_COMMA
			{
			  operation_up high = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_LOW_BOUND_DEFAULT, operation_up (),
			     std::move (high), operation_up ());
			}
	;

subrange:	':'	%prec ABOVE_COMMA
			{
			  pstate->push_new<fortran_range_operation>
			    (RANGE_LOW_BOUND_DEFAULT
			     | RANGE_HIGH_BOUND_DEFAULT,
			     operation_up (), operation_up (),
			     operation_up ());
			}
	;

/* And each of the four subrange types can also have a stride.  */
subrange:	exp ':' exp ':' exp	%prec ABOVE_COMMA
			{
			  operation_up stride = pstate->pop ();
			  operation_up high = pstate->pop ();
			  operation_up low = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_STANDARD | RANGE_HAS_STRIDE,
			     std::move (low), std::move (high),
			     std::move (stride));
			}
	;

subrange:	exp ':' ':' exp	%prec ABOVE_COMMA
			{
			  operation_up stride = pstate->pop ();
			  operation_up low = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_HIGH_BOUND_DEFAULT
			     | RANGE_HAS_STRIDE,
			     std::move (low), operation_up (),
			     std::move (stride));
			}
	;

subrange:	':' exp ':' exp	%prec ABOVE_COMMA
			{
			  operation_up stride = pstate->pop ();
			  operation_up high = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_LOW_BOUND_DEFAULT
			     | RANGE_HAS_STRIDE,
			     operation_up (), std::move (high),
			     std::move (stride));
			}
	;

subrange:	':' ':' exp	%prec ABOVE_COMMA
			{
			  operation_up stride = pstate->pop ();
			  pstate->push_new<fortran_range_operation>
			    (RANGE_LOW_BOUND_DEFAULT
			     | RANGE_HIGH_BOUND_DEFAULT
			     | RANGE_HAS_STRIDE,
			     operation_up (), operation_up (),
			     std::move (stride));
			}
	;

complexnum:     exp ',' exp 
			{ }                          
	;

exp	:	'(' complexnum ')'
			{
			  operation_up rhs = pstate->pop ();
			  operation_up lhs = pstate->pop ();
			  pstate->push_new<complex_operation>
			    (std::move (lhs), std::move (rhs),
			     parse_f_type (pstate)->builtin_complex_s16);
			}
	;

exp	:	'(' type ')' exp  %prec UNARY
			{
			  pstate->push_new<unop_cast_operation>
			    (pstate->pop (), $2);
			}
	;

exp     :       exp '%' name
			{
			  pstate->push_new<fortran_structop_operation>
			    (pstate->pop (), copy_name ($3));
			}
	;

exp     :       exp '%' name COMPLETE
			{
			  structop_base_operation *op
			    = new fortran_structop_operation (pstate->pop (),
							      copy_name ($3));
			  pstate->mark_struct_expression (op);
			  pstate->push (operation_up (op));
			}
	;

exp     :       exp '%' COMPLETE
			{
			  structop_base_operation *op
			    = new fortran_structop_operation (pstate->pop (),
							      "");
			  pstate->mark_struct_expression (op);
			  pstate->push (operation_up (op));
			}
	;

/* Binary operators in order of decreasing precedence.  */

exp	:	exp '@' exp
			{ pstate->wrap2<repeat_operation> (); }
	;

exp	:	exp STARSTAR exp
			{ pstate->wrap2<exp_operation> (); }
	;

exp	:	exp '*' exp
			{ pstate->wrap2<mul_operation> (); }
	;

exp	:	exp '/' exp
			{ pstate->wrap2<div_operation> (); }
	;

exp	:	exp '+' exp
			{ pstate->wrap2<add_operation> (); }
	;

exp	:	exp '-' exp
			{ pstate->wrap2<sub_operation> (); }
	;

exp	:	exp LSH exp
			{ pstate->wrap2<lsh_operation> (); }
	;

exp	:	exp RSH exp
			{ pstate->wrap2<rsh_operation> (); }
	;

exp	:	exp EQUAL exp
			{ pstate->wrap2<equal_operation> (); }
	;

exp	:	exp NOTEQUAL exp
			{ pstate->wrap2<notequal_operation> (); }
	;

exp	:	exp LEQ exp
			{ pstate->wrap2<leq_operation> (); }
	;

exp	:	exp GEQ exp
			{ pstate->wrap2<geq_operation> (); }
	;

exp	:	exp LESSTHAN exp
			{ pstate->wrap2<less_operation> (); }
	;

exp	:	exp GREATERTHAN exp
			{ pstate->wrap2<gtr_operation> (); }
	;

exp	:	exp '&' exp
			{ pstate->wrap2<bitwise_and_operation> (); }
	;

exp	:	exp '^' exp
			{ pstate->wrap2<bitwise_xor_operation> (); }
	;

exp	:	exp '|' exp
			{ pstate->wrap2<bitwise_ior_operation> (); }
	;

exp     :       exp BOOL_AND exp
			{ pstate->wrap2<logical_and_operation> (); }
	;


exp	:	exp BOOL_OR exp
			{ pstate->wrap2<logical_or_operation> (); }
	;

exp	:	exp '=' exp
			{ pstate->wrap2<assign_operation> (); }
	;

exp	:	exp ASSIGN_MODIFY exp
			{
			  operation_up rhs = pstate->pop ();
			  operation_up lhs = pstate->pop ();
			  pstate->push_new<assign_modify_operation>
			    ($2, std::move (lhs), std::move (rhs));
			}
	;

exp	:	INT
			{
			  pstate->push_new<long_const_operation>
			    ($1.type, $1.val);
			}
	;

exp	:	NAME_OR_INT
			{ YYSTYPE val;
			  parse_number (pstate, $1.stoken.ptr,
					$1.stoken.length, 0, &val);
			  pstate->push_new<long_const_operation>
			    (val.typed_val.type,
			     val.typed_val.val);
			}
	;

exp	:	FLOAT
			{
			  float_data data;
			  std::copy (std::begin ($1.val), std::end ($1.val),
				     std::begin (data));
			  pstate->push_new<float_const_operation> ($1.type, data);
			}
	;

exp	:	variable
	;

exp	:	DOLLAR_VARIABLE
			{ pstate->push_dollar ($1); }
	;

exp	:	SIZEOF '(' type ')'	%prec UNARY
			{
			  $3 = check_typedef ($3);
			  pstate->push_new<long_const_operation>
			    (parse_f_type (pstate)->builtin_integer,
			     TYPE_LENGTH ($3));
			}
	;

exp     :       BOOLEAN_LITERAL
			{ pstate->push_new<bool_operation> ($1); }
	;

exp	:	STRING_LITERAL
			{
			  pstate->push_new<string_operation>
			    (copy_name ($1));
			}
	;

variable:	name_not_typename
			{ struct block_symbol sym = $1.sym;
			  std::string name = copy_name ($1.stoken);
			  pstate->push_symbol (name.c_str (), sym);
			}
	;


type    :       ptype
	;

ptype	:	typebase
	|	typebase abs_decl
		{
		  /* This is where the interesting stuff happens.  */
		  int done = 0;
		  int array_size;
		  struct type *follow_type = $1;
		  struct type *range_type;
		  
		  while (!done)
		    switch (type_stack->pop ())
		      {
		      case tp_end:
			done = 1;
			break;
		      case tp_pointer:
			follow_type = lookup_pointer_type (follow_type);
			break;
		      case tp_reference:
			follow_type = lookup_lvalue_reference_type (follow_type);
			break;
		      case tp_array:
			array_size = type_stack->pop_int ();
			if (array_size != -1)
			  {
			    range_type =
			      create_static_range_type ((struct type *) NULL,
							parse_f_type (pstate)
							->builtin_integer,
							0, array_size - 1);
			    follow_type =
			      create_array_type ((struct type *) NULL,
						 follow_type, range_type);
			  }
			else
			  follow_type = lookup_pointer_type (follow_type);
			break;
		      case tp_function:
			follow_type = lookup_function_type (follow_type);
			break;
		      case tp_kind:
			{
			  int kind_val = type_stack->pop_int ();
			  follow_type
			    = convert_to_kind_type (follow_type, kind_val);
			}
			break;
		      }
		  $$ = follow_type;
		}
	;

abs_decl:	'*'
			{ type_stack->push (tp_pointer); $$ = 0; }
	|	'*' abs_decl
			{ type_stack->push (tp_pointer); $$ = $2; }
	|	'&'
			{ type_stack->push (tp_reference); $$ = 0; }
	|	'&' abs_decl
			{ type_stack->push (tp_reference); $$ = $2; }
	|	direct_abs_decl
	;

direct_abs_decl: '(' abs_decl ')'
			{ $$ = $2; }
	| 	'(' KIND '=' INT ')'
			{ push_kind_type ($4.val, $4.type); }
	|	'*' INT
			{ push_kind_type ($2.val, $2.type); }
	| 	direct_abs_decl func_mod
			{ type_stack->push (tp_function); }
	|	func_mod
			{ type_stack->push (tp_function); }
	;

func_mod:	'(' ')'
			{ $$ = 0; }
	|	'(' nonempty_typelist ')'
			{ free ($2); $$ = 0; }
	;

typebase  /* Implements (approximately): (type-qualifier)* type-specifier */
	:	TYPENAME
			{ $$ = $1.type; }
	|	INT_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_integer; }
	|	INT_S2_KEYWORD 
			{ $$ = parse_f_type (pstate)->builtin_integer_s2; }
	|	CHARACTER 
			{ $$ = parse_f_type (pstate)->builtin_character; }
	|	LOGICAL_S8_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_logical_s8; }
	|	LOGICAL_KEYWORD 
			{ $$ = parse_f_type (pstate)->builtin_logical; }
	|	LOGICAL_S2_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_logical_s2; }
	|	LOGICAL_S1_KEYWORD 
			{ $$ = parse_f_type (pstate)->builtin_logical_s1; }
	|	REAL_KEYWORD 
			{ $$ = parse_f_type (pstate)->builtin_real; }
	|       REAL_S8_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_real_s8; }
	|	REAL_S16_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_real_s16; }
	|	COMPLEX_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_complex; }
	|	COMPLEX_S4_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_complex; }
	|	COMPLEX_S8_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_complex_s8; }
	|	COMPLEX_S16_KEYWORD 
			{ $$ = parse_f_type (pstate)->builtin_complex_s16; }
	|	SINGLE PRECISION
			{ $$ = parse_f_type (pstate)->builtin_real;}
	|	DOUBLE PRECISION
			{ $$ = parse_f_type (pstate)->builtin_real_s8;}
	|	SINGLE COMPLEX_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_complex;}
	|	DOUBLE COMPLEX_KEYWORD
			{ $$ = parse_f_type (pstate)->builtin_complex_s8;}
	;

nonempty_typelist
	:	type
		{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
		  $<ivec>$[0] = 1;	/* Number of types in vector */
		  $$[1] = $1;
		}
	|	nonempty_typelist ',' type
		{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
		  $$ = (struct type **) realloc ((char *) $1, len);
		  $$[$<ivec>$[0]] = $3;
		}
	;

name
	:	NAME
		{ $$ = $1.stoken; }
	|	TYPENAME
		{ $$ = $1.stoken; }
	;

name_not_typename :	NAME
/* These would be useful if name_not_typename was useful, but it is just
   a fake for "variable", so these cause reduce/reduce conflicts because
   the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
   =exp) or just an exp.  If name_not_typename was ever used in an lvalue
   context where only a name could occur, this might be useful.
  	|	NAME_OR_INT
   */
	;

%%

/* Take care of parsing a number (anything that starts with a digit).
   Set yylval and return the token type; update lexptr.
   LEN is the number of characters in it.  */

/*** Needs some error checking for the float case ***/

static int
parse_number (struct parser_state *par_state,
	      const char *p, int len, int parsed_float, YYSTYPE *putithere)
{
  ULONGEST n = 0;
  ULONGEST prevn = 0;
  int c;
  int base = input_radix;
  int unsigned_p = 0;
  int long_p = 0;
  ULONGEST high_bit;
  struct type *signed_type;
  struct type *unsigned_type;

  if (parsed_float)
    {
      /* It's a float since it contains a point or an exponent.  */
      /* [dD] is not understood as an exponent by parse_float,
	 change it to 'e'.  */
      char *tmp, *tmp2;

      tmp = xstrdup (p);
      for (tmp2 = tmp; *tmp2; ++tmp2)
	if (*tmp2 == 'd' || *tmp2 == 'D')
	  *tmp2 = 'e';

      /* FIXME: Should this use different types?  */
      putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8;
      bool parsed = parse_float (tmp, len,
				 putithere->typed_val_float.type,
				 putithere->typed_val_float.val);
      free (tmp);
      return parsed? FLOAT : ERROR;
    }

  /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
  if (p[0] == '0' && len > 1)
    switch (p[1])
      {
      case 'x':
      case 'X':
	if (len >= 3)
	  {
	    p += 2;
	    base = 16;
	    len -= 2;
	  }
	break;
	
      case 't':
      case 'T':
      case 'd':
      case 'D':
	if (len >= 3)
	  {
	    p += 2;
	    base = 10;
	    len -= 2;
	  }
	break;
	
      default:
	base = 8;
	break;
      }
  
  while (len-- > 0)
    {
      c = *p++;
      if (isupper (c))
	c = tolower (c);
      if (len == 0 && c == 'l')
	long_p = 1;
      else if (len == 0 && c == 'u')
	unsigned_p = 1;
      else
	{
	  int i;
	  if (c >= '0' && c <= '9')
	    i = c - '0';
	  else if (c >= 'a' && c <= 'f')
	    i = c - 'a' + 10;
	  else
	    return ERROR;	/* Char not a digit */
	  if (i >= base)
	    return ERROR;		/* Invalid digit in this base */
	  n *= base;
	  n += i;
	}
      /* Portably test for overflow (only works for nonzero values, so make
	 a second check for zero).  */
      if ((prevn >= n) && n != 0)
	unsigned_p=1;		/* Try something unsigned */
      /* If range checking enabled, portably test for unsigned overflow.  */
      if (RANGE_CHECK && n != 0)
	{
	  if ((unsigned_p && prevn >= n))
	    range_error (_("Overflow on numeric constant."));
	}
      prevn = n;
    }
  
  /* If the number is too big to be an int, or it's got an l suffix
     then it's a long.  Work out if this has to be a long by
     shifting right and seeing if anything remains, and the
     target int size is different to the target long size.
     
     In the expression below, we could have tested
     (n >> gdbarch_int_bit (parse_gdbarch))
     to see if it was zero,
     but too many compilers warn about that, when ints and longs
     are the same size.  So we shift it twice, with fewer bits
     each time, for the same result.  */
  
  if ((gdbarch_int_bit (par_state->gdbarch ())
       != gdbarch_long_bit (par_state->gdbarch ())
       && ((n >> 2)
	   >> (gdbarch_int_bit (par_state->gdbarch ())-2))) /* Avoid
							    shift warning */
      || long_p)
    {
      high_bit = ((ULONGEST)1)
      << (gdbarch_long_bit (par_state->gdbarch ())-1);
      unsigned_type = parse_type (par_state)->builtin_unsigned_long;
      signed_type = parse_type (par_state)->builtin_long;
    }
  else 
    {
      high_bit =
	((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
      unsigned_type = parse_type (par_state)->builtin_unsigned_int;
      signed_type = parse_type (par_state)->builtin_int;
    }    
  
  putithere->typed_val.val = n;
  
  /* If the high bit of the worked out type is set then this number
     has to be unsigned.  */
  
  if (unsigned_p || (n & high_bit)) 
    putithere->typed_val.type = unsigned_type;
  else 
    putithere->typed_val.type = signed_type;
  
  return INT;
}

/* Called to setup the type stack when we encounter a '(kind=N)' type
   modifier, performs some bounds checking on 'N' and then pushes this to
   the type stack followed by the 'tp_kind' marker.  */
static void
push_kind_type (LONGEST val, struct type *type)
{
  int ival;

  if (type->is_unsigned ())
    {
      ULONGEST uval = static_cast <ULONGEST> (val);
      if (uval > INT_MAX)
	error (_("kind value out of range"));
      ival = static_cast <int> (uval);
    }
  else
    {
      if (val > INT_MAX || val < 0)
	error (_("kind value out of range"));
      ival = static_cast <int> (val);
    }

  type_stack->push (ival);
  type_stack->push (tp_kind);
}

/* Called when a type has a '(kind=N)' modifier after it, for example
   'character(kind=1)'.  The BASETYPE is the type described by 'character'
   in our example, and KIND is the integer '1'.  This function returns a
   new type that represents the basetype of a specific kind.  */
static struct type *
convert_to_kind_type (struct type *basetype, int kind)
{
  if (basetype == parse_f_type (pstate)->builtin_character)
    {
      /* Character of kind 1 is a special case, this is the same as the
	 base character type.  */
      if (kind == 1)
	return parse_f_type (pstate)->builtin_character;
    }
  else if (basetype == parse_f_type (pstate)->builtin_complex)
    {
      if (kind == 4)
	return parse_f_type (pstate)->builtin_complex;
      else if (kind == 8)
	return parse_f_type (pstate)->builtin_complex_s8;
      else if (kind == 16)
	return parse_f_type (pstate)->builtin_complex_s16;
    }
  else if (basetype == parse_f_type (pstate)->builtin_real)
    {
      if (kind == 4)
	return parse_f_type (pstate)->builtin_real;
      else if (kind == 8)
	return parse_f_type (pstate)->builtin_real_s8;
      else if (kind == 16)
	return parse_f_type (pstate)->builtin_real_s16;
    }
  else if (basetype == parse_f_type (pstate)->builtin_logical)
    {
      if (kind == 1)
	return parse_f_type (pstate)->builtin_logical_s1;
      else if (kind == 2)
	return parse_f_type (pstate)->builtin_logical_s2;
      else if (kind == 4)
	return parse_f_type (pstate)->builtin_logical;
      else if (kind == 8)
	return parse_f_type (pstate)->builtin_logical_s8;
    }
  else if (basetype == parse_f_type (pstate)->builtin_integer)
    {
      if (kind == 1)
	return parse_f_type (pstate)->builtin_integer_s1;
      else if (kind == 2)
	return parse_f_type (pstate)->builtin_integer_s2;
      else if (kind == 4)
	return parse_f_type (pstate)->builtin_integer;
      else if (kind == 8)
	return parse_f_type (pstate)->builtin_integer_s8;
    }

  error (_("unsupported kind %d for type %s"),
	 kind, TYPE_SAFE_NAME (basetype));

  /* Should never get here.  */
  return nullptr;
}

struct token
{
  /* The string to match against.  */
  const char *oper;

  /* The lexer token to return.  */
  int token;

  /* The expression opcode to embed within the token.  */
  enum exp_opcode opcode;

  /* When this is true the string in OPER is matched exactly including
     case, when this is false OPER is matched case insensitively.  */
  bool case_sensitive;
};

/* List of Fortran operators.  */

static const struct token fortran_operators[] =
{
  { ".and.", BOOL_AND, OP_NULL, false },
  { ".or.", BOOL_OR, OP_NULL, false },
  { ".not.", BOOL_NOT, OP_NULL, false },
  { ".eq.", EQUAL, OP_NULL, false },
  { ".eqv.", EQUAL, OP_NULL, false },
  { ".neqv.", NOTEQUAL, OP_NULL, false },
  { ".xor.", NOTEQUAL, OP_NULL, false },
  { "==", EQUAL, OP_NULL, false },
  { ".ne.", NOTEQUAL, OP_NULL, false },
  { "/=", NOTEQUAL, OP_NULL, false },
  { ".le.", LEQ, OP_NULL, false },
  { "<=", LEQ, OP_NULL, false },
  { ".ge.", GEQ, OP_NULL, false },
  { ">=", GEQ, OP_NULL, false },
  { ".gt.", GREATERTHAN, OP_NULL, false },
  { ">", GREATERTHAN, OP_NULL, false },
  { ".lt.", LESSTHAN, OP_NULL, false },
  { "<", LESSTHAN, OP_NULL, false },
  { "**", STARSTAR, BINOP_EXP, false },
};

/* Holds the Fortran representation of a boolean, and the integer value we
   substitute in when one of the matching strings is parsed.  */
struct f77_boolean_val
{
  /* The string representing a Fortran boolean.  */
  const char *name;

  /* The integer value to replace it with.  */
  int value;
};

/* The set of Fortran booleans.  These are matched case insensitively.  */
static const struct f77_boolean_val boolean_values[]  =
{
  { ".true.", 1 },
  { ".false.", 0 }
};

static const struct token f77_keywords[] =
{
  /* Historically these have always been lowercase only in GDB.  */
  { "complex", COMPLEX_KEYWORD, OP_NULL, true },
  { "complex_4", COMPLEX_S4_KEYWORD, OP_NULL, true },
  { "complex_8", COMPLEX_S8_KEYWORD, OP_NULL, true },
  { "complex_16", COMPLEX_S16_KEYWORD, OP_NULL, true },
  { "character", CHARACTER, OP_NULL, true },
  { "integer_2", INT_S2_KEYWORD, OP_NULL, true },
  { "logical_1", LOGICAL_S1_KEYWORD, OP_NULL, true },
  { "logical_2", LOGICAL_S2_KEYWORD, OP_NULL, true },
  { "logical_8", LOGICAL_S8_KEYWORD, OP_NULL, true },
  { "integer", INT_KEYWORD, OP_NULL, true },
  { "logical", LOGICAL_KEYWORD, OP_NULL, true },
  { "real_16", REAL_S16_KEYWORD, OP_NULL, true },
  { "sizeof", SIZEOF, OP_NULL, true },
  { "real_8", REAL_S8_KEYWORD, OP_NULL, true },
  { "real", REAL_KEYWORD, OP_NULL, true },
  { "single", SINGLE, OP_NULL, true },
  { "double", DOUBLE, OP_NULL, true },
  { "precision", PRECISION, OP_NULL, true },
  /* The following correspond to actual functions in Fortran and are case
     insensitive.  */
  { "kind", KIND, OP_NULL, false },
  { "abs", UNOP_INTRINSIC, UNOP_ABS, false },
  { "mod", BINOP_INTRINSIC, BINOP_MOD, false },
  { "floor", UNOP_INTRINSIC, UNOP_FORTRAN_FLOOR, false },
  { "ceiling", UNOP_INTRINSIC, UNOP_FORTRAN_CEILING, false },
  { "modulo", BINOP_INTRINSIC, BINOP_FORTRAN_MODULO, false },
  { "cmplx", BINOP_INTRINSIC, BINOP_FORTRAN_CMPLX, false },
  { "lbound", UNOP_OR_BINOP_INTRINSIC, FORTRAN_LBOUND, false },
  { "ubound", UNOP_OR_BINOP_INTRINSIC, FORTRAN_UBOUND, false },
  { "allocated", UNOP_INTRINSIC, UNOP_FORTRAN_ALLOCATED, false },
  { "associated", UNOP_OR_BINOP_INTRINSIC, FORTRAN_ASSOCIATED, false },
  { "rank", UNOP_INTRINSIC, UNOP_FORTRAN_RANK, false },
  { "size", UNOP_OR_BINOP_INTRINSIC, FORTRAN_ARRAY_SIZE, false },
  { "shape", UNOP_INTRINSIC, UNOP_FORTRAN_SHAPE, false },
  { "loc", UNOP_INTRINSIC, UNOP_FORTRAN_LOC, false },
};

/* Implementation of a dynamically expandable buffer for processing input
   characters acquired through lexptr and building a value to return in
   yylval.  Ripped off from ch-exp.y */ 

static char *tempbuf;		/* Current buffer contents */
static int tempbufsize;		/* Size of allocated buffer */
static int tempbufindex;	/* Current index into buffer */

#define GROWBY_MIN_SIZE 64	/* Minimum amount to grow buffer by */

#define CHECKBUF(size) \
  do { \
    if (tempbufindex + (size) >= tempbufsize) \
      { \
	growbuf_by_size (size); \
      } \
  } while (0);


/* Grow the static temp buffer if necessary, including allocating the
   first one on demand.  */

static void
growbuf_by_size (int count)
{
  int growby;

  growby = std::max (count, GROWBY_MIN_SIZE);
  tempbufsize += growby;
  if (tempbuf == NULL)
    tempbuf = (char *) malloc (tempbufsize);
  else
    tempbuf = (char *) realloc (tempbuf, tempbufsize);
}

/* Blatantly ripped off from ch-exp.y. This routine recognizes F77 
   string-literals.
   
   Recognize a string literal.  A string literal is a nonzero sequence
   of characters enclosed in matching single quotes, except that
   a single character inside single quotes is a character literal, which
   we reject as a string literal.  To embed the terminator character inside
   a string, it is simply doubled (I.E. 'this''is''one''string') */

static int
match_string_literal (void)
{
  const char *tokptr = pstate->lexptr;

  for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
    {
      CHECKBUF (1);
      if (*tokptr == *pstate->lexptr)
	{
	  if (*(tokptr + 1) == *pstate->lexptr)
	    tokptr++;
	  else
	    break;
	}
      tempbuf[tempbufindex++] = *tokptr;
    }
  if (*tokptr == '\0'					/* no terminator */
      || tempbufindex == 0)				/* no string */
    return 0;
  else
    {
      tempbuf[tempbufindex] = '\0';
      yylval.sval.ptr = tempbuf;
      yylval.sval.length = tempbufindex;
      pstate->lexptr = ++tokptr;
      return STRING_LITERAL;
    }
}

/* This is set if a NAME token appeared at the very end of the input
   string, with no whitespace separating the name from the EOF.  This
   is used only when parsing to do field name completion.  */
static bool saw_name_at_eof;

/* This is set if the previously-returned token was a structure
   operator '%'.  */
static bool last_was_structop;

/* Read one token, getting characters through lexptr.  */

static int
yylex (void)
{
  int c;
  int namelen;
  unsigned int token;
  const char *tokstart;
  bool saw_structop = last_was_structop;

  last_was_structop = false;

 retry:
 
  pstate->prev_lexptr = pstate->lexptr;
 
  tokstart = pstate->lexptr;

  /* First of all, let us make sure we are not dealing with the
     special tokens .true. and .false. which evaluate to 1 and 0.  */

  if (*pstate->lexptr == '.')
    {
      for (const auto &candidate : boolean_values)
	{
	  if (strncasecmp (tokstart, candidate.name,
			   strlen (candidate.name)) == 0)
	    {
	      pstate->lexptr += strlen (candidate.name);
	      yylval.lval = candidate.value;
	      return BOOLEAN_LITERAL;
	    }
	}
    }

  /* See if it is a Fortran operator.  */
  for (const auto &candidate : fortran_operators)
    if (strncasecmp (tokstart, candidate.oper,
		     strlen (candidate.oper)) == 0)
      {
	gdb_assert (!candidate.case_sensitive);
	pstate->lexptr += strlen (candidate.oper);
	yylval.opcode = candidate.opcode;
	return candidate.token;
      }

  switch (c = *tokstart)
    {
    case 0:
      if (saw_name_at_eof)
	{
	  saw_name_at_eof = false;
	  return COMPLETE;
	}
      else if (pstate->parse_completion && saw_structop)
	return COMPLETE;
      return 0;
      
    case ' ':
    case '\t':
    case '\n':
      pstate->lexptr++;
      goto retry;
      
    case '\'':
      token = match_string_literal ();
      if (token != 0)
	return (token);
      break;
      
    case '(':
      paren_depth++;
      pstate->lexptr++;
      return c;
      
    case ')':
      if (paren_depth == 0)
	return 0;
      paren_depth--;
      pstate->lexptr++;
      return c;
      
    case ',':
      if (pstate->comma_terminates && paren_depth == 0)
	return 0;
      pstate->lexptr++;
      return c;
      
    case '.':
      /* Might be a floating point number.  */
      if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
	goto symbol;		/* Nope, must be a symbol.  */
      /* FALL THRU.  */
      
    case '0':
    case '1':
    case '2':
    case '3':
    case '4':
    case '5':
    case '6':
    case '7':
    case '8':
    case '9':
      {
	/* It's a number.  */
	int got_dot = 0, got_e = 0, got_d = 0, toktype;
	const char *p = tokstart;
	int hex = input_radix > 10;
	
	if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
	  {
	    p += 2;
	    hex = 1;
	  }
	else if (c == '0' && (p[1]=='t' || p[1]=='T'
			      || p[1]=='d' || p[1]=='D'))
	  {
	    p += 2;
	    hex = 0;
	  }
	
	for (;; ++p)
	  {
	    if (!hex && !got_e && (*p == 'e' || *p == 'E'))
	      got_dot = got_e = 1;
	    else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
	      got_dot = got_d = 1;
	    else if (!hex && !got_dot && *p == '.')
	      got_dot = 1;
	    else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
		     || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
		     && (*p == '-' || *p == '+'))
	      /* This is the sign of the exponent, not the end of the
		 number.  */
	      continue;
	    /* We will take any letters or digits.  parse_number will
	       complain if past the radix, or if L or U are not final.  */
	    else if ((*p < '0' || *p > '9')
		     && ((*p < 'a' || *p > 'z')
			 && (*p < 'A' || *p > 'Z')))
	      break;
	  }
	toktype = parse_number (pstate, tokstart, p - tokstart,
				got_dot|got_e|got_d,
				&yylval);
	if (toktype == ERROR)
	  {
	    char *err_copy = (char *) alloca (p - tokstart + 1);
	    
	    memcpy (err_copy, tokstart, p - tokstart);
	    err_copy[p - tokstart] = 0;
	    error (_("Invalid number \"%s\"."), err_copy);
	  }
	pstate->lexptr = p;
	return toktype;
      }

    case '%':
      last_was_structop = true;
      /* Fall through.  */
    case '+':
    case '-':
    case '*':
    case '/':
    case '|':
    case '&':
    case '^':
    case '~':
    case '!':
    case '@':
    case '<':
    case '>':
    case '[':
    case ']':
    case '?':
    case ':':
    case '=':
    case '{':
    case '}':
    symbol:
      pstate->lexptr++;
      return c;
    }
  
  if (!(c == '_' || c == '$' || c ==':'
	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
    /* We must have come across a bad character (e.g. ';').  */
    error (_("Invalid character '%c' in expression."), c);
  
  namelen = 0;
  for (c = tokstart[namelen];
       (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); 
       c = tokstart[++namelen]);
  
  /* The token "if" terminates the expression and is NOT 
     removed from the input stream.  */
  
  if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
    return 0;
  
  pstate->lexptr += namelen;
  
  /* Catch specific keywords.  */

  for (const auto &keyword : f77_keywords)
    if (strlen (keyword.oper) == namelen
	&& ((!keyword.case_sensitive
	     && strncasecmp (tokstart, keyword.oper, namelen) == 0)
	    || (keyword.case_sensitive
		&& strncmp (tokstart, keyword.oper, namelen) == 0)))
      {
	yylval.opcode = keyword.opcode;
	return keyword.token;
      }

  yylval.sval.ptr = tokstart;
  yylval.sval.length = namelen;
  
  if (*tokstart == '$')
    return DOLLAR_VARIABLE;

  /* Use token-type TYPENAME for symbols that happen to be defined
     currently as names of types; NAME for other symbols.
     The caller is not constrained to care about the distinction.  */
  {
    std::string tmp = copy_name (yylval.sval);
    struct block_symbol result;
    const enum domain_enum_tag lookup_domains[] =
    {
      STRUCT_DOMAIN,
      VAR_DOMAIN,
      MODULE_DOMAIN
    };
    int hextype;

    for (const auto &domain : lookup_domains)
      {
	result = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
				domain, NULL);
	if (result.symbol && result.symbol->aclass () == LOC_TYPEDEF)
	  {
	    yylval.tsym.type = result.symbol->type ();
	    return TYPENAME;
	  }

	if (result.symbol)
	  break;
      }

    yylval.tsym.type
      = language_lookup_primitive_type (pstate->language (),
					pstate->gdbarch (), tmp.c_str ());
    if (yylval.tsym.type != NULL)
      return TYPENAME;
    
    /* Input names that aren't symbols but ARE valid hex numbers,
       when the input radix permits them, can be names or numbers
       depending on the parse.  Note we support radixes > 16 here.  */
    if (!result.symbol
	&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
	    || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
      {
 	YYSTYPE newlval;	/* Its value is ignored.  */
	hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
	if (hextype == INT)
	  {
	    yylval.ssym.sym = result;
	    yylval.ssym.is_a_field_of_this = false;
	    return NAME_OR_INT;
	  }
      }

    if (pstate->parse_completion && *pstate->lexptr == '\0')
      saw_name_at_eof = true;

    /* Any other kind of symbol */
    yylval.ssym.sym = result;
    yylval.ssym.is_a_field_of_this = false;
    return NAME;
  }
}

int
f_language::parser (struct parser_state *par_state) const
{
  /* Setting up the parser state.  */
  scoped_restore pstate_restore = make_scoped_restore (&pstate);
  scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
							parser_debug);
  gdb_assert (par_state != NULL);
  pstate = par_state;
  last_was_structop = false;
  saw_name_at_eof = false;
  paren_depth = 0;

  struct type_stack stack;
  scoped_restore restore_type_stack = make_scoped_restore (&type_stack,
							   &stack);

  int result = yyparse ();
  if (!result)
    pstate->set_operation (pstate->pop ());
  return result;
}

static void
yyerror (const char *msg)
{
  if (pstate->prev_lexptr)
    pstate->lexptr = pstate->prev_lexptr;

  error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
}