1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
|
/* Top level stuff for GDB, the GNU debugger.
Copyright (C) 1999-2016 Free Software Foundation, Inc.
Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "top.h"
#include "inferior.h"
#include "infrun.h"
#include "target.h"
#include "terminal.h" /* for job_control */
#include "event-loop.h"
#include "event-top.h"
#include "interps.h"
#include <signal.h>
#include "cli/cli-script.h" /* for reset_command_nest_depth */
#include "main.h"
#include "gdbthread.h"
#include "observer.h"
#include "continuations.h"
#include "gdbcmd.h" /* for dont_repeat() */
#include "annotate.h"
#include "maint.h"
#include "buffer.h"
/* readline include files. */
#include "readline/readline.h"
#include "readline/history.h"
/* readline defines this. */
#undef savestring
static void rl_callback_read_char_wrapper (gdb_client_data client_data);
static void command_line_handler (char *rl);
static void change_line_handler (void);
static char *top_level_prompt (void);
/* Signal handlers. */
#ifdef SIGQUIT
static void handle_sigquit (int sig);
#endif
#ifdef SIGHUP
static void handle_sighup (int sig);
#endif
static void handle_sigfpe (int sig);
/* Functions to be invoked by the event loop in response to
signals. */
#if defined (SIGQUIT) || defined (SIGHUP)
static void async_do_nothing (gdb_client_data);
#endif
#ifdef SIGHUP
static void async_disconnect (gdb_client_data);
#endif
static void async_float_handler (gdb_client_data);
#ifdef STOP_SIGNAL
static void async_stop_sig (gdb_client_data);
#endif
static void async_sigterm_handler (gdb_client_data arg);
/* Readline offers an alternate interface, via callback
functions. These are all included in the file callback.c in the
readline distribution. This file provides (mainly) a function, which
the event loop uses as callback (i.e. event handler) whenever an event
is detected on the standard input file descriptor.
readline_callback_read_char is called (by the GDB event loop) whenever
there is a new character ready on the input stream. This function
incrementally builds a buffer internal to readline where it
accumulates the line read up to the point of invocation. In the
special case in which the character read is newline, the function
invokes a GDB supplied callback routine, which does the processing of
a full command line. This latter routine is the asynchronous analog
of the old command_line_input in gdb. Instead of invoking (and waiting
for) readline to read the command line and pass it back to
command_loop for processing, the new command_line_handler function has
the command line already available as its parameter. INPUT_HANDLER is
to be set to the function that readline will invoke when a complete
line of input is ready. CALL_READLINE is to be set to the function
that readline offers as callback to the event_loop. */
void (*input_handler) (char *);
void (*call_readline) (gdb_client_data);
/* Important variables for the event loop. */
/* This is used to determine if GDB is using the readline library or
its own simplified form of readline. It is used by the asynchronous
form of the set editing command.
ezannoni: as of 1999-04-29 I expect that this
variable will not be used after gdb is changed to use the event
loop as default engine, and event-top.c is merged into top.c. */
int async_command_editing_p;
/* This is used to display the notification of the completion of an
asynchronous execution command. */
int exec_done_display_p = 0;
/* This is the file descriptor for the input stream that GDB uses to
read commands from. */
int input_fd;
/* Used by the stdin event handler to compensate for missed stdin events.
Setting this to a non-zero value inside an stdin callback makes the callback
run again. */
int call_stdin_event_handler_again_p;
/* Signal handling variables. */
/* Each of these is a pointer to a function that the event loop will
invoke if the corresponding signal has received. The real signal
handlers mark these functions as ready to be executed and the event
loop, in a later iteration, calls them. See the function
invoke_async_signal_handler. */
static struct async_signal_handler *sigint_token;
#ifdef SIGHUP
static struct async_signal_handler *sighup_token;
#endif
#ifdef SIGQUIT
static struct async_signal_handler *sigquit_token;
#endif
static struct async_signal_handler *sigfpe_token;
#ifdef STOP_SIGNAL
static struct async_signal_handler *sigtstp_token;
#endif
static struct async_signal_handler *async_sigterm_token;
/* This hook is called by rl_callback_read_char_wrapper after each
character is processed. */
void (*after_char_processing_hook) (void);
/* Wrapper function for calling into the readline library. The event
loop expects the callback function to have a paramter, while
readline expects none. */
static void
rl_callback_read_char_wrapper (gdb_client_data client_data)
{
rl_callback_read_char ();
if (after_char_processing_hook)
(*after_char_processing_hook) ();
}
/* Initialize all the necessary variables, start the event loop,
register readline, and stdin, start the loop. The DATA is the
interpreter data cookie, ignored for now. */
void
cli_command_loop (void *data)
{
display_gdb_prompt (0);
/* Now it's time to start the event loop. */
start_event_loop ();
}
/* Change the function to be invoked every time there is a character
ready on stdin. This is used when the user sets the editing off,
therefore bypassing readline, and letting gdb handle the input
itself, via gdb_readline_no_editing_callback. Also it is used in
the opposite case in which the user sets editing on again, by
restoring readline handling of the input. */
static void
change_line_handler (void)
{
/* NOTE: this operates on input_fd, not instream. If we are reading
commands from a file, instream will point to the file. However in
async mode, we always read commands from a file with editing
off. This means that the 'set editing on/off' will have effect
only on the interactive session. */
if (async_command_editing_p)
{
/* Turn on editing by using readline. */
call_readline = rl_callback_read_char_wrapper;
input_handler = command_line_handler;
}
else
{
/* Turn off editing by using gdb_readline_no_editing_callback. */
gdb_rl_callback_handler_remove ();
call_readline = gdb_readline_no_editing_callback;
/* Set up the command handler as well, in case we are called as
first thing from .gdbinit. */
input_handler = command_line_handler;
}
}
/* The functions below are wrappers for rl_callback_handler_remove and
rl_callback_handler_install that keep track of whether the callback
handler is installed in readline. This is necessary because after
handling a target event of a background execution command, we may
need to reinstall the callback handler if it was removed due to a
secondary prompt. See gdb_readline_wrapper_line. We don't
unconditionally install the handler for every target event because
that also clears the line buffer, thus installing it while the user
is typing would lose input. */
/* Whether we've registered a callback handler with readline. */
static int callback_handler_installed;
/* See event-top.h, and above. */
void
gdb_rl_callback_handler_remove (void)
{
rl_callback_handler_remove ();
callback_handler_installed = 0;
}
/* See event-top.h, and above. Note this wrapper doesn't have an
actual callback parameter because we always install
INPUT_HANDLER. */
void
gdb_rl_callback_handler_install (const char *prompt)
{
/* Calling rl_callback_handler_install resets readline's input
buffer. Calling this when we were already processing input
therefore loses input. */
gdb_assert (!callback_handler_installed);
rl_callback_handler_install (prompt, input_handler);
callback_handler_installed = 1;
}
/* See event-top.h, and above. */
void
gdb_rl_callback_handler_reinstall (void)
{
if (!callback_handler_installed)
{
/* Passing NULL as prompt argument tells readline to not display
a prompt. */
gdb_rl_callback_handler_install (NULL);
}
}
/* Displays the prompt. If the argument NEW_PROMPT is NULL, the
prompt that is displayed is the current top level prompt.
Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
prompt.
This is used after each gdb command has completed, and in the
following cases:
1. When the user enters a command line which is ended by '\'
indicating that the command will continue on the next line. In
that case the prompt that is displayed is the empty string.
2. When the user is entering 'commands' for a breakpoint, or
actions for a tracepoint. In this case the prompt will be '>'
3. On prompting for pagination. */
void
display_gdb_prompt (const char *new_prompt)
{
char *actual_gdb_prompt = NULL;
struct cleanup *old_chain;
annotate_display_prompt ();
/* Reset the nesting depth used when trace-commands is set. */
reset_command_nest_depth ();
old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
/* Do not call the python hook on an explicit prompt change as
passed to this function, as this forms a secondary/local prompt,
IE, displayed but not set. */
if (! new_prompt)
{
if (sync_execution)
{
/* This is to trick readline into not trying to display the
prompt. Even though we display the prompt using this
function, readline still tries to do its own display if
we don't call rl_callback_handler_install and
rl_callback_handler_remove (which readline detects
because a global variable is not set). If readline did
that, it could mess up gdb signal handlers for SIGINT.
Readline assumes that between calls to rl_set_signals and
rl_clear_signals gdb doesn't do anything with the signal
handlers. Well, that's not the case, because when the
target executes we change the SIGINT signal handler. If
we allowed readline to display the prompt, the signal
handler change would happen exactly between the calls to
the above two functions. Calling
rl_callback_handler_remove(), does the job. */
gdb_rl_callback_handler_remove ();
do_cleanups (old_chain);
return;
}
else
{
/* Display the top level prompt. */
actual_gdb_prompt = top_level_prompt ();
}
}
else
actual_gdb_prompt = xstrdup (new_prompt);
if (async_command_editing_p)
{
gdb_rl_callback_handler_remove ();
gdb_rl_callback_handler_install (actual_gdb_prompt);
}
/* new_prompt at this point can be the top of the stack or the one
passed in. It can't be NULL. */
else
{
/* Don't use a _filtered function here. It causes the assumed
character position to be off, since the newline we read from
the user is not accounted for. */
fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
gdb_flush (gdb_stdout);
}
do_cleanups (old_chain);
}
/* Return the top level prompt, as specified by "set prompt", possibly
overriden by the python gdb.prompt_hook hook, and then composed
with the prompt prefix and suffix (annotations). The caller is
responsible for freeing the returned string. */
static char *
top_level_prompt (void)
{
char *prompt;
/* Give observers a chance of changing the prompt. E.g., the python
`gdb.prompt_hook' is installed as an observer. */
observer_notify_before_prompt (get_prompt ());
prompt = get_prompt ();
if (annotation_level >= 2)
{
/* Prefix needs to have new line at end. */
const char prefix[] = "\n\032\032pre-prompt\n";
/* Suffix needs to have a new line at end and \032 \032 at
beginning. */
const char suffix[] = "\n\032\032prompt\n";
return concat (prefix, prompt, suffix, NULL);
}
return xstrdup (prompt);
}
/* Get a pointer to the command line buffer. This is used to
construct a whole line of input from partial input. */
static struct buffer *
get_command_line_buffer (void)
{
static struct buffer line_buffer;
static int line_buffer_initialized;
if (!line_buffer_initialized)
{
buffer_init (&line_buffer);
line_buffer_initialized = 1;
}
return &line_buffer;
}
/* When there is an event ready on the stdin file descriptor, instead
of calling readline directly throught the callback function, or
instead of calling gdb_readline_no_editing_callback, give gdb a
chance to detect errors and do something. */
void
stdin_event_handler (int error, gdb_client_data client_data)
{
if (error)
{
printf_unfiltered (_("error detected on stdin\n"));
delete_file_handler (input_fd);
/* If stdin died, we may as well kill gdb. */
quit_command ((char *) 0, stdin == instream);
}
else
{
do
{
call_stdin_event_handler_again_p = 0;
(*call_readline) (client_data);
} while (call_stdin_event_handler_again_p != 0);
}
}
/* Re-enable stdin after the end of an execution command in
synchronous mode, or after an error from the target, and we aborted
the exec operation. */
void
async_enable_stdin (void)
{
if (sync_execution)
{
/* See NOTE in async_disable_stdin(). */
/* FIXME: cagney/1999-09-27: Call this before clearing
sync_execution. Current target_terminal_ours() implementations
check for sync_execution before switching the terminal. */
target_terminal_ours ();
sync_execution = 0;
}
}
/* Disable reads from stdin (the console) marking the command as
synchronous. */
void
async_disable_stdin (void)
{
sync_execution = 1;
}
/* Handle a gdb command line. This function is called when
handle_line_of_input has concatenated one or more input lines into
a whole command. */
void
command_handler (char *command)
{
struct cleanup *stat_chain;
char *c;
clear_quit_flag ();
if (instream == stdin)
reinitialize_more_filter ();
stat_chain = make_command_stats_cleanup (1);
/* Do not execute commented lines. */
for (c = command; *c == ' ' || *c == '\t'; c++)
;
if (c[0] != '#')
{
execute_command (command, instream == stdin);
/* Do any commands attached to breakpoint we stopped at. */
bpstat_do_actions ();
}
do_cleanups (stat_chain);
}
/* Append RL, an input line returned by readline or one of its
emulations, to CMD_LINE_BUFFER. Returns the command line if we
have a whole command line ready to be processed by the command
interpreter or NULL if the command line isn't complete yet (input
line ends in a backslash). Takes ownership of RL. */
static char *
command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
{
char *cmd;
size_t len;
len = strlen (rl);
if (len > 0 && rl[len - 1] == '\\')
{
/* Don't copy the backslash and wait for more. */
buffer_grow (cmd_line_buffer, rl, len - 1);
cmd = NULL;
}
else
{
/* Copy whole line including terminating null, and we're
done. */
buffer_grow (cmd_line_buffer, rl, len + 1);
cmd = cmd_line_buffer->buffer;
}
/* Allocated in readline. */
xfree (rl);
return cmd;
}
/* Handle a line of input coming from readline.
If the read line ends with a continuation character (backslash),
save the partial input in CMD_LINE_BUFFER (except the backslash),
and return NULL. Otherwise, save the partial input and return a
pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
whole command line is ready to be executed.
Returns EOF on end of file.
If REPEAT, handle command repetitions:
- If the input command line is NOT empty, the command returned is
copied into the global 'saved_command_line' var so that it can
be repeated later.
- OTOH, if the input command line IS empty, return the previously
saved command instead of the empty input line.
*/
char *
handle_line_of_input (struct buffer *cmd_line_buffer,
char *rl, int repeat, char *annotation_suffix)
{
char *p1;
char *cmd;
if (rl == NULL)
return (char *) EOF;
cmd = command_line_append_input_line (cmd_line_buffer, rl);
if (cmd == NULL)
return NULL;
/* We have a complete command line now. Prepare for the next
command, but leave ownership of memory to the buffer . */
cmd_line_buffer->used_size = 0;
if (annotation_level > 1 && instream == stdin)
{
printf_unfiltered (("\n\032\032post-"));
puts_unfiltered (annotation_suffix);
printf_unfiltered (("\n"));
}
#define SERVER_COMMAND_PREFIX "server "
if (startswith (cmd, SERVER_COMMAND_PREFIX))
{
/* Note that we don't set `saved_command_line'. Between this
and the check in dont_repeat, this insures that repeating
will still do the right thing. */
return cmd + strlen (SERVER_COMMAND_PREFIX);
}
/* Do history expansion if that is wished. */
if (history_expansion_p && instream == stdin
&& ISATTY (instream))
{
char *history_value;
int expanded;
expanded = history_expand (cmd, &history_value);
if (expanded)
{
size_t len;
/* Print the changes. */
printf_unfiltered ("%s\n", history_value);
/* If there was an error, call this function again. */
if (expanded < 0)
{
xfree (history_value);
return cmd;
}
/* history_expand returns an allocated string. Just replace
our buffer with it. */
len = strlen (history_value);
xfree (buffer_finish (cmd_line_buffer));
cmd_line_buffer->buffer = history_value;
cmd_line_buffer->buffer_size = len + 1;
cmd = history_value;
}
}
/* If we just got an empty line, and that is supposed to repeat the
previous command, return the previously saved command. */
for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
;
if (repeat && *p1 == '\0')
return saved_command_line;
/* Add command to history if appropriate. Note: lines consisting
solely of comments are also added to the command history. This
is useful when you type a command, and then realize you don't
want to execute it quite yet. You can comment out the command
and then later fetch it from the value history and remove the
'#'. The kill ring is probably better, but some people are in
the habit of commenting things out. */
if (*cmd != '\0' && input_from_terminal_p ())
gdb_add_history (cmd);
/* Save into global buffer if appropriate. */
if (repeat)
{
xfree (saved_command_line);
saved_command_line = xstrdup (cmd);
return saved_command_line;
}
else
return cmd;
}
/* Handle a complete line of input. This is called by the callback
mechanism within the readline library. Deal with incomplete
commands as well, by saving the partial input in a global
buffer.
NOTE: This is the asynchronous version of the command_line_input
function. */
void
command_line_handler (char *rl)
{
struct buffer *line_buffer = get_command_line_buffer ();
char *cmd;
cmd = handle_line_of_input (line_buffer, rl, instream == stdin, "prompt");
if (cmd == (char *) EOF)
{
/* stdin closed. The connection with the terminal is gone.
This happens at the end of a testsuite run, after Expect has
hung up but GDB is still alive. In such a case, we just quit
gdb killing the inferior program too. */
printf_unfiltered ("quit\n");
execute_command ("quit", stdin == instream);
}
else if (cmd == NULL)
{
/* We don't have a full line yet. Print an empty prompt. */
display_gdb_prompt ("");
}
else
{
command_handler (cmd);
display_gdb_prompt (0);
}
}
/* Does reading of input from terminal w/o the editing features
provided by the readline library. Calls the line input handler
once we have a whole input line. */
void
gdb_readline_no_editing_callback (gdb_client_data client_data)
{
int c;
char *result;
struct buffer line_buffer;
static int done_once = 0;
buffer_init (&line_buffer);
/* Unbuffer the input stream, so that, later on, the calls to fgetc
fetch only one char at the time from the stream. The fgetc's will
get up to the first newline, but there may be more chars in the
stream after '\n'. If we buffer the input and fgetc drains the
stream, getting stuff beyond the newline as well, a select, done
afterwards will not trigger. */
if (!done_once && !ISATTY (instream))
{
setbuf (instream, NULL);
done_once = 1;
}
/* We still need the while loop here, even though it would seem
obvious to invoke gdb_readline_no_editing_callback at every
character entered. If not using the readline library, the
terminal is in cooked mode, which sends the characters all at
once. Poll will notice that the input fd has changed state only
after enter is pressed. At this point we still need to fetch all
the chars entered. */
while (1)
{
/* Read from stdin if we are executing a user defined command.
This is the right thing for prompt_for_continue, at least. */
c = fgetc (instream ? instream : stdin);
if (c == EOF)
{
if (line_buffer.used_size > 0)
{
/* The last line does not end with a newline. Return it, and
if we are called again fgetc will still return EOF and
we'll return NULL then. */
break;
}
xfree (buffer_finish (&line_buffer));
(*input_handler) (0);
return;
}
if (c == '\n')
{
if (line_buffer.used_size > 0
&& line_buffer.buffer[line_buffer.used_size - 1] == '\r')
line_buffer.used_size--;
break;
}
buffer_grow_char (&line_buffer, c);
}
buffer_grow_char (&line_buffer, '\0');
result = buffer_finish (&line_buffer);
(*input_handler) (result);
}
/* Initialization of signal handlers and tokens. There is a function
handle_sig* for each of the signals GDB cares about. Specifically:
SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
functions are the actual signal handlers associated to the signals
via calls to signal(). The only job for these functions is to
enqueue the appropriate event/procedure with the event loop. Such
procedures are the old signal handlers. The event loop will take
care of invoking the queued procedures to perform the usual tasks
associated with the reception of the signal. */
/* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
init_signals will become obsolete as we move to have to event loop
as the default for gdb. */
void
async_init_signals (void)
{
signal (SIGINT, handle_sigint);
sigint_token =
create_async_signal_handler (async_request_quit, NULL);
signal (SIGTERM, handle_sigterm);
async_sigterm_token
= create_async_signal_handler (async_sigterm_handler, NULL);
/* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
to the inferior and breakpoints will be ignored. */
#ifdef SIGTRAP
signal (SIGTRAP, SIG_DFL);
#endif
#ifdef SIGQUIT
/* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
passed to the inferior, which we don't want. It would be
possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
on BSD4.3 systems using vfork, that can affect the
GDB process as well as the inferior (the signal handling tables
might be in memory, shared between the two). Since we establish
a handler for SIGQUIT, when we call exec it will set the signal
to SIG_DFL for us. */
signal (SIGQUIT, handle_sigquit);
sigquit_token =
create_async_signal_handler (async_do_nothing, NULL);
#endif
#ifdef SIGHUP
if (signal (SIGHUP, handle_sighup) != SIG_IGN)
sighup_token =
create_async_signal_handler (async_disconnect, NULL);
else
sighup_token =
create_async_signal_handler (async_do_nothing, NULL);
#endif
signal (SIGFPE, handle_sigfpe);
sigfpe_token =
create_async_signal_handler (async_float_handler, NULL);
#ifdef STOP_SIGNAL
sigtstp_token =
create_async_signal_handler (async_stop_sig, NULL);
#endif
}
/* Tell the event loop what to do if SIGINT is received.
See event-signal.c. */
void
handle_sigint (int sig)
{
signal (sig, handle_sigint);
/* We could be running in a loop reading in symfiles or something so
it may be quite a while before we get back to the event loop. So
set quit_flag to 1 here. Then if QUIT is called before we get to
the event loop, we will unwind as expected. */
set_quit_flag ();
/* If immediate_quit is set, we go ahead and process the SIGINT right
away, even if we usually would defer this to the event loop. The
assumption here is that it is safe to process ^C immediately if
immediate_quit is set. If we didn't, SIGINT would be really
processed only the next time through the event loop. To get to
that point, though, the command that we want to interrupt needs to
finish first, which is unacceptable. If immediate quit is not set,
we process SIGINT the next time through the loop, which is fine. */
gdb_call_async_signal_handler (sigint_token, immediate_quit);
}
/* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
static void
async_sigterm_handler (gdb_client_data arg)
{
quit_force (NULL, stdin == instream);
}
/* See defs.h. */
volatile int sync_quit_force_run;
/* Quit GDB if SIGTERM is received.
GDB would quit anyway, but this way it will clean up properly. */
void
handle_sigterm (int sig)
{
signal (sig, handle_sigterm);
sync_quit_force_run = 1;
set_quit_flag ();
mark_async_signal_handler (async_sigterm_token);
}
/* Do the quit. All the checks have been done by the caller. */
void
async_request_quit (gdb_client_data arg)
{
/* If the quit_flag has gotten reset back to 0 by the time we get
back here, that means that an exception was thrown to unwind the
current command before we got back to the event loop. So there
is no reason to call quit again here. */
if (check_quit_flag ())
quit ();
}
#ifdef SIGQUIT
/* Tell the event loop what to do if SIGQUIT is received.
See event-signal.c. */
static void
handle_sigquit (int sig)
{
mark_async_signal_handler (sigquit_token);
signal (sig, handle_sigquit);
}
#endif
#if defined (SIGQUIT) || defined (SIGHUP)
/* Called by the event loop in response to a SIGQUIT or an
ignored SIGHUP. */
static void
async_do_nothing (gdb_client_data arg)
{
/* Empty function body. */
}
#endif
#ifdef SIGHUP
/* Tell the event loop what to do if SIGHUP is received.
See event-signal.c. */
static void
handle_sighup (int sig)
{
mark_async_signal_handler (sighup_token);
signal (sig, handle_sighup);
}
/* Called by the event loop to process a SIGHUP. */
static void
async_disconnect (gdb_client_data arg)
{
TRY
{
quit_cover ();
}
CATCH (exception, RETURN_MASK_ALL)
{
fputs_filtered ("Could not kill the program being debugged",
gdb_stderr);
exception_print (gdb_stderr, exception);
}
END_CATCH
TRY
{
pop_all_targets ();
}
CATCH (exception, RETURN_MASK_ALL)
{
}
END_CATCH
signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
raise (SIGHUP);
}
#endif
#ifdef STOP_SIGNAL
void
handle_stop_sig (int sig)
{
mark_async_signal_handler (sigtstp_token);
signal (sig, handle_stop_sig);
}
static void
async_stop_sig (gdb_client_data arg)
{
char *prompt = get_prompt ();
#if STOP_SIGNAL == SIGTSTP
signal (SIGTSTP, SIG_DFL);
#if HAVE_SIGPROCMASK
{
sigset_t zero;
sigemptyset (&zero);
sigprocmask (SIG_SETMASK, &zero, 0);
}
#elif HAVE_SIGSETMASK
sigsetmask (0);
#endif
raise (SIGTSTP);
signal (SIGTSTP, handle_stop_sig);
#else
signal (STOP_SIGNAL, handle_stop_sig);
#endif
printf_unfiltered ("%s", prompt);
gdb_flush (gdb_stdout);
/* Forget about any previous command -- null line now will do
nothing. */
dont_repeat ();
}
#endif /* STOP_SIGNAL */
/* Tell the event loop what to do if SIGFPE is received.
See event-signal.c. */
static void
handle_sigfpe (int sig)
{
mark_async_signal_handler (sigfpe_token);
signal (sig, handle_sigfpe);
}
/* Event loop will call this functin to process a SIGFPE. */
static void
async_float_handler (gdb_client_data arg)
{
/* This message is based on ANSI C, section 4.7. Note that integer
divide by zero causes this, so "float" is a misnomer. */
error (_("Erroneous arithmetic operation."));
}
/* Called by do_setshow_command. */
void
set_async_editing_command (char *args, int from_tty,
struct cmd_list_element *c)
{
change_line_handler ();
}
/* Set things up for readline to be invoked via the alternate
interface, i.e. via a callback function (rl_callback_read_char),
and hook up instream to the event loop. */
void
gdb_setup_readline (void)
{
/* This function is a noop for the sync case. The assumption is
that the sync setup is ALL done in gdb_init, and we would only
mess it up here. The sync stuff should really go away over
time. */
if (!batch_silent)
gdb_stdout = stdio_fileopen (stdout);
gdb_stderr = stderr_fileopen ();
gdb_stdlog = gdb_stderr; /* for moment */
gdb_stdtarg = gdb_stderr; /* for moment */
gdb_stdtargerr = gdb_stderr; /* for moment */
/* If the input stream is connected to a terminal, turn on
editing. */
if (ISATTY (instream))
{
/* Tell gdb that we will be using the readline library. This
could be overwritten by a command in .gdbinit like 'set
editing on' or 'off'. */
async_command_editing_p = 1;
/* When a character is detected on instream by select or poll,
readline will be invoked via this callback function. */
call_readline = rl_callback_read_char_wrapper;
}
else
{
async_command_editing_p = 0;
call_readline = gdb_readline_no_editing_callback;
}
/* When readline has read an end-of-line character, it passes the
complete line to gdb for processing; command_line_handler is the
function that does this. */
input_handler = command_line_handler;
/* Tell readline to use the same input stream that gdb uses. */
rl_instream = instream;
/* Get a file descriptor for the input stream, so that we can
register it with the event loop. */
input_fd = fileno (instream);
/* Now we need to create the event sources for the input file
descriptor. */
/* At this point in time, this is the only event source that we
register with the even loop. Another source is going to be the
target program (inferior), but that must be registered only when
it actually exists (I.e. after we say 'run' or after we connect
to a remote target. */
add_file_handler (input_fd, stdin_event_handler, 0);
}
/* Disable command input through the standard CLI channels. Used in
the suspend proc for interpreters that use the standard gdb readline
interface, like the cli & the mi. */
void
gdb_disable_readline (void)
{
/* FIXME - It is too heavyweight to delete and remake these every
time you run an interpreter that needs readline. It is probably
better to have the interpreters cache these, which in turn means
that this needs to be moved into interpreter specific code. */
#if 0
ui_file_delete (gdb_stdout);
ui_file_delete (gdb_stderr);
gdb_stdlog = NULL;
gdb_stdtarg = NULL;
gdb_stdtargerr = NULL;
#endif
gdb_rl_callback_handler_remove ();
delete_file_handler (input_fd);
}
|