aboutsummaryrefslogtreecommitdiff
path: root/gdb/dwarfread.c
blob: 09b7f10ee4f2142d74940611b616e23d09963fcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
/* DWARF debugging format support for GDB.
   Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
   Free Software Foundation, Inc.
   Written by Fred Fish at Cygnus Support.  Portions based on dbxread.c,
   mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/*

FIXME: Do we need to generate dependencies in partial symtabs?
(Perhaps we don't need to).

FIXME: Resolve minor differences between what information we put in the
partial symbol table and what dbxread puts in.  For example, we don't yet
put enum constants there.  And dbxread seems to invent a lot of typedefs
we never see.  Use the new printpsym command to see the partial symbol table
contents.

FIXME: Figure out a better way to tell gdb about the name of the function
contain the user's entry point (I.E. main())

FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
other things to work on, if you get bored. :-)

*/

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "symfile.h"
#include "objfiles.h"
#include "elf/dwarf.h"
#include "buildsym.h"
#include "demangle.h"
#include "expression.h"	/* Needed for enum exp_opcode in language.h, sigh... */
#include "language.h"
#include "complaints.h"

#include <fcntl.h>
#include "gdb_string.h"

/* Some macros to provide DIE info for complaints. */

#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""

/* Complaints that can be issued during DWARF debug info reading. */

struct complaint no_bfd_get_N =
{
  "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
};

struct complaint malformed_die =
{
  "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
};

struct complaint bad_die_ref =
{
  "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
};

struct complaint unknown_attribute_form =
{
  "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
};

struct complaint unknown_attribute_length =
{
  "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
};

struct complaint unexpected_fund_type =
{
  "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
};

struct complaint unknown_type_modifier =
{
  "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
};

struct complaint volatile_ignored =
{
  "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
};

struct complaint const_ignored =
{
  "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
};

struct complaint botched_modified_type =
{
  "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
};

struct complaint op_deref2 =
{
  "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
};

struct complaint op_deref4 =
{
  "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
};

struct complaint basereg_not_handled =
{
  "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
};

struct complaint dup_user_type_allocation =
{
  "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
};

struct complaint dup_user_type_definition =
{
  "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
};

struct complaint missing_tag =
{
  "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
};

struct complaint bad_array_element_type =
{
  "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
};

struct complaint subscript_data_items =
{
  "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
};

struct complaint unhandled_array_subscript_format =
{
  "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
};

struct complaint unknown_array_subscript_format =
{
  "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
};

struct complaint not_row_major =
{
  "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
};

struct complaint missing_at_name =
{
  "DIE @ 0x%x, AT_name tag missing", 0, 0
};

typedef unsigned int DIE_REF;	/* Reference to a DIE */

#ifndef GCC_PRODUCER
#define GCC_PRODUCER "GNU C "
#endif

#ifndef GPLUS_PRODUCER
#define GPLUS_PRODUCER "GNU C++ "
#endif

#ifndef LCC_PRODUCER
#define LCC_PRODUCER "NCR C/C++"
#endif

#ifndef CHILL_PRODUCER
#define CHILL_PRODUCER "GNU Chill "
#endif

/* Provide a default mapping from a DWARF register number to a gdb REGNUM.  */
#ifndef DWARF_REG_TO_REGNUM
#define DWARF_REG_TO_REGNUM(num) (num)
#endif

/* Flags to target_to_host() that tell whether or not the data object is
   expected to be signed.  Used, for example, when fetching a signed
   integer in the target environment which is used as a signed integer
   in the host environment, and the two environments have different sized
   ints.  In this case, *somebody* has to sign extend the smaller sized
   int. */

#define GET_UNSIGNED	0	/* No sign extension required */
#define GET_SIGNED	1	/* Sign extension required */

/* Defines for things which are specified in the document "DWARF Debugging
   Information Format" published by UNIX International, Programming Languages
   SIG.  These defines are based on revision 1.0.0, Jan 20, 1992. */

#define SIZEOF_DIE_LENGTH	4
#define SIZEOF_DIE_TAG		2
#define SIZEOF_ATTRIBUTE	2
#define SIZEOF_FORMAT_SPECIFIER	1
#define SIZEOF_FMT_FT		2
#define SIZEOF_LINETBL_LENGTH	4
#define SIZEOF_LINETBL_LINENO	4
#define SIZEOF_LINETBL_STMT	2
#define SIZEOF_LINETBL_DELTA	4
#define SIZEOF_LOC_ATOM_CODE	1

#define FORM_FROM_ATTR(attr)	((attr) & 0xF)	/* Implicitly specified */

/* Macros that return the sizes of various types of data in the target
   environment.

   FIXME:  Currently these are just compile time constants (as they are in
   other parts of gdb as well).  They need to be able to get the right size
   either from the bfd or possibly from the DWARF info.  It would be nice if
   the DWARF producer inserted DIES that describe the fundamental types in
   the target environment into the DWARF info, similar to the way dbx stabs
   producers produce information about their fundamental types. */

#define TARGET_FT_POINTER_SIZE(objfile)	(TARGET_PTR_BIT / TARGET_CHAR_BIT)
#define TARGET_FT_LONG_SIZE(objfile)	(TARGET_LONG_BIT / TARGET_CHAR_BIT)

/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
   FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
   However, the Issue 2 DWARF specification from AT&T defines it as
   a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
   For backwards compatibility with the AT&T compiler produced executables
   we define AT_short_element_list for this variant. */

#define	AT_short_element_list	 (0x00f0|FORM_BLOCK2)

/* External variables referenced. */

extern int info_verbose;		/* From main.c; nonzero => verbose */
extern char *warning_pre_print;		/* From utils.c */

/* The DWARF debugging information consists of two major pieces,
   one is a block of DWARF Information Entries (DIE's) and the other
   is a line number table.  The "struct dieinfo" structure contains
   the information for a single DIE, the one currently being processed.

   In order to make it easier to randomly access the attribute fields
   of the current DIE, which are specifically unordered within the DIE,
   each DIE is scanned and an instance of the "struct dieinfo"
   structure is initialized.

   Initialization is done in two levels.  The first, done by basicdieinfo(),
   just initializes those fields that are vital to deciding whether or not
   to use this DIE, how to skip past it, etc.  The second, done by the
   function completedieinfo(), fills in the rest of the information.

   Attributes which have block forms are not interpreted at the time
   the DIE is scanned, instead we just save pointers to the start
   of their value fields.

   Some fields have a flag <name>_p that is set when the value of the
   field is valid (I.E. we found a matching attribute in the DIE).  Since
   we may want to test for the presence of some attributes in the DIE,
   such as AT_low_pc, without restricting the values of the field,
   we need someway to note that we found such an attribute.
   
 */
   
typedef char BLOCK;

struct dieinfo {
  char *		die;		/* Pointer to the raw DIE data */
  unsigned long 	die_length;	/* Length of the raw DIE data */
  DIE_REF		die_ref;	/* Offset of this DIE */
  unsigned short	die_tag;	/* Tag for this DIE */
  unsigned long		at_padding;
  unsigned long		at_sibling;
  BLOCK *		at_location;
  char *		at_name;
  unsigned short	at_fund_type;
  BLOCK *		at_mod_fund_type;
  unsigned long		at_user_def_type;
  BLOCK *		at_mod_u_d_type;
  unsigned short	at_ordering;
  BLOCK *		at_subscr_data;
  unsigned long		at_byte_size;
  unsigned short	at_bit_offset;
  unsigned long		at_bit_size;
  BLOCK *		at_element_list;
  unsigned long		at_stmt_list;
  CORE_ADDR		at_low_pc;
  CORE_ADDR		at_high_pc;
  unsigned long		at_language;
  unsigned long		at_member;
  unsigned long		at_discr;
  BLOCK *		at_discr_value;
  BLOCK *		at_string_length;
  char *		at_comp_dir;
  char *		at_producer;
  unsigned long		at_start_scope;
  unsigned long		at_stride_size;
  unsigned long		at_src_info;
  char *		at_prototyped;
  unsigned int		has_at_low_pc:1;
  unsigned int		has_at_stmt_list:1;
  unsigned int		has_at_byte_size:1;
  unsigned int		short_element_list:1;

  /* Kludge to identify register variables */

  unsigned int		isreg;

  /* Kludge to identify optimized out variables */

  unsigned int		optimized_out;

  /* Kludge to identify basereg references.
     Nonzero if we have an offset relative to a basereg.  */

  unsigned int		offreg;

  /* Kludge to identify which base register is it relative to.  */

  unsigned int		basereg;
};

static int diecount;	/* Approximate count of dies for compilation unit */
static struct dieinfo *curdie;	/* For warnings and such */

static char *dbbase;	/* Base pointer to dwarf info */
static int dbsize;	/* Size of dwarf info in bytes */
static int dbroff;	/* Relative offset from start of .debug section */
static char *lnbase;	/* Base pointer to line section */

/* This value is added to each symbol value.  FIXME:  Generalize to 
   the section_offsets structure used by dbxread (once this is done,
   pass the appropriate section number to end_symtab).  */
static CORE_ADDR baseaddr;	/* Add to each symbol value */

/* The section offsets used in the current psymtab or symtab.  FIXME,
   only used to pass one value (baseaddr) at the moment.  */
static struct section_offsets *base_section_offsets;

/* We put a pointer to this structure in the read_symtab_private field
   of the psymtab.  */

struct dwfinfo {
  /* Always the absolute file offset to the start of the ".debug"
     section for the file containing the DIE's being accessed.  */
  file_ptr dbfoff;
  /* Relative offset from the start of the ".debug" section to the
     first DIE to be accessed.  When building the partial symbol
     table, this value will be zero since we are accessing the
     entire ".debug" section.  When expanding a partial symbol
     table entry, this value will be the offset to the first
     DIE for the compilation unit containing the symbol that
     triggers the expansion.  */
  int dbroff;
  /* The size of the chunk of DIE's being examined, in bytes.  */
  int dblength;
  /* The absolute file offset to the line table fragment.  Ignored
     when building partial symbol tables, but used when expanding
     them, and contains the absolute file offset to the fragment
     of the ".line" section containing the line numbers for the
     current compilation unit.  */
  file_ptr lnfoff;
};

#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)

/* The generic symbol table building routines have separate lists for
   file scope symbols and all all other scopes (local scopes).  So
   we need to select the right one to pass to add_symbol_to_list().
   We do it by keeping a pointer to the correct list in list_in_scope.

   FIXME:  The original dwarf code just treated the file scope as the first
   local scope, and all other local scopes as nested local scopes, and worked
   fine.  Check to see if we really need to distinguish these in buildsym.c */

struct pending **list_in_scope = &file_symbols;

/* DIES which have user defined types or modified user defined types refer to
   other DIES for the type information.  Thus we need to associate the offset
   of a DIE for a user defined type with a pointer to the type information.

   Originally this was done using a simple but expensive algorithm, with an
   array of unsorted structures, each containing an offset/type-pointer pair.
   This array was scanned linearly each time a lookup was done.  The result
   was that gdb was spending over half it's startup time munging through this
   array of pointers looking for a structure that had the right offset member.

   The second attempt used the same array of structures, but the array was
   sorted using qsort each time a new offset/type was recorded, and a binary
   search was used to find the type pointer for a given DIE offset.  This was
   even slower, due to the overhead of sorting the array each time a new
   offset/type pair was entered.

   The third attempt uses a fixed size array of type pointers, indexed by a
   value derived from the DIE offset.  Since the minimum DIE size is 4 bytes,
   we can divide any DIE offset by 4 to obtain a unique index into this fixed
   size array.  Since each element is a 4 byte pointer, it takes exactly as
   much memory to hold this array as to hold the DWARF info for a given
   compilation unit.  But it gets freed as soon as we are done with it.
   This has worked well in practice, as a reasonable tradeoff between memory
   consumption and speed, without having to resort to much more complicated
   algorithms. */

static struct type **utypes;	/* Pointer to array of user type pointers */
static int numutypes;		/* Max number of user type pointers */

/* Maintain an array of referenced fundamental types for the current
   compilation unit being read.  For DWARF version 1, we have to construct
   the fundamental types on the fly, since no information about the
   fundamental types is supplied.  Each such fundamental type is created by
   calling a language dependent routine to create the type, and then a
   pointer to that type is then placed in the array at the index specified
   by it's FT_<TYPENAME> value.  The array has a fixed size set by the
   FT_NUM_MEMBERS compile time constant, which is the number of predefined
   fundamental types gdb knows how to construct. */

static struct type *ftypes[FT_NUM_MEMBERS];  /* Fundamental types */

/* Record the language for the compilation unit which is currently being
   processed.  We know it once we have seen the TAG_compile_unit DIE,
   and we need it while processing the DIE's for that compilation unit.
   It is eventually saved in the symtab structure, but we don't finalize
   the symtab struct until we have processed all the DIE's for the
   compilation unit.  We also need to get and save a pointer to the 
   language struct for this language, so we can call the language
   dependent routines for doing things such as creating fundamental
   types. */

static enum language cu_language;
static const struct language_defn *cu_language_defn;

/* Forward declarations of static functions so we don't have to worry
   about ordering within this file.  */

static void
free_utypes PARAMS ((PTR));

static int
attribute_size PARAMS ((unsigned int));

static CORE_ADDR
target_to_host PARAMS ((char *, int, int, struct objfile *));

static void
add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));

static void
handle_producer PARAMS ((char *));

static void
read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));

static void
read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));

static void
read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
				  struct objfile *));

static void
scan_partial_symbols PARAMS ((char *, char *, struct objfile *));

static void
scan_compilation_units PARAMS ((char *, char *, file_ptr,
				file_ptr, struct objfile *));

static void
add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));

static void
basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));

static void
completedieinfo PARAMS ((struct dieinfo *, struct objfile *));

static void
dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));

static void
psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));

static void
read_ofile_symtab PARAMS ((struct partial_symtab *));

static void
process_dies PARAMS ((char *, char *, struct objfile *));

static void
read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
			      struct objfile *));

static struct type *
decode_array_element_type PARAMS ((char *));

static struct type *
decode_subscript_data_item PARAMS ((char *, char *));

static void
dwarf_read_array_type PARAMS ((struct dieinfo *));

static void
read_tag_pointer_type PARAMS ((struct dieinfo *dip));

static void
read_tag_string_type PARAMS ((struct dieinfo *dip));

static void
read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));

static void
read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));

static struct type *
struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));

static struct type *
enum_type PARAMS ((struct dieinfo *, struct objfile *));

static void
decode_line_numbers PARAMS ((char *));

static struct type *
decode_die_type PARAMS ((struct dieinfo *));

static struct type *
decode_mod_fund_type PARAMS ((char *));

static struct type *
decode_mod_u_d_type PARAMS ((char *));

static struct type *
decode_modified_type PARAMS ((char *, unsigned int, int));

static struct type *
decode_fund_type PARAMS ((unsigned int));

static char *
create_name PARAMS ((char *, struct obstack *));

static struct type *
lookup_utype PARAMS ((DIE_REF));

static struct type *
alloc_utype PARAMS ((DIE_REF, struct type *));

static struct symbol *
new_symbol PARAMS ((struct dieinfo *, struct objfile *));

static void
synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
			    struct type *));

static int
locval PARAMS ((struct dieinfo *));

static void
set_cu_language PARAMS ((struct dieinfo *));

static struct type *
dwarf_fundamental_type PARAMS ((struct objfile *, int));


/*

LOCAL FUNCTION

	dwarf_fundamental_type -- lookup or create a fundamental type

SYNOPSIS

	struct type *
	dwarf_fundamental_type (struct objfile *objfile, int typeid)

DESCRIPTION

	DWARF version 1 doesn't supply any fundamental type information,
	so gdb has to construct such types.  It has a fixed number of
	fundamental types that it knows how to construct, which is the
	union of all types that it knows how to construct for all languages
	that it knows about.  These are enumerated in gdbtypes.h.

	As an example, assume we find a DIE that references a DWARF
	fundamental type of FT_integer.  We first look in the ftypes
	array to see if we already have such a type, indexed by the
	gdb internal value of FT_INTEGER.  If so, we simply return a
	pointer to that type.  If not, then we ask an appropriate
	language dependent routine to create a type FT_INTEGER, using
	defaults reasonable for the current target machine, and install
	that type in ftypes for future reference.

RETURNS

	Pointer to a fundamental type.

*/

static struct type *
dwarf_fundamental_type (objfile, typeid)
     struct objfile *objfile;
     int typeid;
{
  if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
    {
      error ("internal error - invalid fundamental type id %d", typeid);
    }

  /* Look for this particular type in the fundamental type vector.  If one is
     not found, create and install one appropriate for the current language
     and the current target machine. */

  if (ftypes[typeid] == NULL)
    {
      ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
    }

  return (ftypes[typeid]);
}

/*

LOCAL FUNCTION

	set_cu_language -- set local copy of language for compilation unit

SYNOPSIS

	void
	set_cu_language (struct dieinfo *dip)

DESCRIPTION

	Decode the language attribute for a compilation unit DIE and
	remember what the language was.  We use this at various times
	when processing DIE's for a given compilation unit.

RETURNS

	No return value.

 */

static void
set_cu_language (dip)
     struct dieinfo *dip;
{
  switch (dip -> at_language)
    {
      case LANG_C89:
      case LANG_C:
        cu_language = language_c;
	break;
      case LANG_C_PLUS_PLUS:
	cu_language = language_cplus;
	break;
      case LANG_CHILL:
	cu_language = language_chill;
	break;
      case LANG_MODULA2:
	cu_language = language_m2;
	break;
      case LANG_ADA83:
      case LANG_COBOL74:
      case LANG_COBOL85:
      case LANG_FORTRAN77:
      case LANG_FORTRAN90:
      case LANG_PASCAL83:
	/* We don't know anything special about these yet. */
	cu_language = language_unknown;
	break;
      default:
	/* If no at_language, try to deduce one from the filename */
	cu_language = deduce_language_from_filename (dip -> at_name);
	break;
    }
  cu_language_defn = language_def (cu_language);
}

/*

GLOBAL FUNCTION

	dwarf_build_psymtabs -- build partial symtabs from DWARF debug info

SYNOPSIS

	void dwarf_build_psymtabs (struct objfile *objfile,
	     struct section_offsets *section_offsets,
	     int mainline, file_ptr dbfoff, unsigned int dbfsize,
	     file_ptr lnoffset, unsigned int lnsize)

DESCRIPTION

	This function is called upon to build partial symtabs from files
	containing DIE's (Dwarf Information Entries) and DWARF line numbers.

	It is passed a bfd* containing the DIES
	and line number information, the corresponding filename for that
	file, a base address for relocating the symbols, a flag indicating
	whether or not this debugging information is from a "main symbol
	table" rather than a shared library or dynamically linked file,
	and file offset/size pairs for the DIE information and line number
	information.

RETURNS

	No return value.

 */

void
dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
		      lnoffset, lnsize)
     struct objfile *objfile;
     struct section_offsets *section_offsets;
     int mainline;
     file_ptr dbfoff;
     unsigned int dbfsize;
     file_ptr lnoffset;
     unsigned int lnsize;
{
  bfd *abfd = objfile->obfd;
  struct cleanup *back_to;
  
  current_objfile = objfile;
  dbsize = dbfsize;
  dbbase = xmalloc (dbsize);
  dbroff = 0;
  if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
      (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
    {
      free (dbbase);
      error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
    }
  back_to = make_cleanup (free, dbbase);
  
  /* If we are reinitializing, or if we have never loaded syms yet, init.
     Since we have no idea how many DIES we are looking at, we just guess
     some arbitrary value. */
  
  if (mainline || objfile -> global_psymbols.size == 0 ||
      objfile -> static_psymbols.size == 0)
    {
      init_psymbol_list (objfile, 1024);
    }
  
  /* Save the relocation factor where everybody can see it.  */

  base_section_offsets = section_offsets;
  baseaddr = ANOFFSET (section_offsets, 0);

  /* Follow the compilation unit sibling chain, building a partial symbol
     table entry for each one.  Save enough information about each compilation
     unit to locate the full DWARF information later. */
  
  scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
  
  do_cleanups (back_to);
  current_objfile = NULL;
}

/*

LOCAL FUNCTION

	read_lexical_block_scope -- process all dies in a lexical block

SYNOPSIS

	static void read_lexical_block_scope (struct dieinfo *dip,
		char *thisdie, char *enddie)

DESCRIPTION

	Process all the DIES contained within a lexical block scope.
	Start a new scope, process the dies, and then close the scope.

 */

static void
read_lexical_block_scope (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  register struct context_stack *new;

  push_context (0, dip -> at_low_pc);
  process_dies (thisdie + dip -> die_length, enddie, objfile);
  new = pop_context ();
  if (local_symbols != NULL)
    {
      finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
		    dip -> at_high_pc, objfile);
    }
  local_symbols = new -> locals;
}

/*

LOCAL FUNCTION

	lookup_utype -- look up a user defined type from die reference

SYNOPSIS

	static type *lookup_utype (DIE_REF die_ref)

DESCRIPTION

	Given a DIE reference, lookup the user defined type associated with
	that DIE, if it has been registered already.  If not registered, then
	return NULL.  Alloc_utype() can be called to register an empty
	type for this reference, which will be filled in later when the
	actual referenced DIE is processed.
 */

static struct type *
lookup_utype (die_ref)
     DIE_REF die_ref;
{
  struct type *type = NULL;
  int utypeidx;
  
  utypeidx = (die_ref - dbroff) / 4;
  if ((utypeidx < 0) || (utypeidx >= numutypes))
    {
      complain (&bad_die_ref, DIE_ID, DIE_NAME);
    }
  else
    {
      type = *(utypes + utypeidx);
    }
  return (type);
}


/*

LOCAL FUNCTION

	alloc_utype  -- add a user defined type for die reference

SYNOPSIS

	static type *alloc_utype (DIE_REF die_ref, struct type *utypep)

DESCRIPTION

	Given a die reference DIE_REF, and a possible pointer to a user
	defined type UTYPEP, register that this reference has a user
	defined type and either use the specified type in UTYPEP or
	make a new empty type that will be filled in later.

	We should only be called after calling lookup_utype() to verify that
	there is not currently a type registered for DIE_REF.
 */

static struct type *
alloc_utype (die_ref, utypep)
     DIE_REF die_ref;
     struct type *utypep;
{
  struct type **typep;
  int utypeidx;
  
  utypeidx = (die_ref - dbroff) / 4;
  typep = utypes + utypeidx;
  if ((utypeidx < 0) || (utypeidx >= numutypes))
    {
      utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
      complain (&bad_die_ref, DIE_ID, DIE_NAME);
    }
  else if (*typep != NULL)
    {
      utypep = *typep;
      complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
    }
  else
    {
      if (utypep == NULL)
	{
	  utypep = alloc_type (current_objfile);
	}
      *typep = utypep;
    }
  return (utypep);
}

/*

LOCAL FUNCTION

	free_utypes -- free the utypes array and reset pointer & count

SYNOPSIS

	static void free_utypes (PTR dummy)

DESCRIPTION

	Called via do_cleanups to free the utypes array, reset the pointer to NULL,
	and set numutypes back to zero.  This ensures that the utypes does not get
	referenced after being freed.
 */

static void
free_utypes (dummy)
     PTR dummy;
{
  free (utypes);
  utypes = NULL;
  numutypes = 0;
}


/*

LOCAL FUNCTION

	decode_die_type -- return a type for a specified die

SYNOPSIS

	static struct type *decode_die_type (struct dieinfo *dip)

DESCRIPTION

	Given a pointer to a die information structure DIP, decode the
	type of the die and return a pointer to the decoded type.  All
	dies without specific types default to type int.
 */

static struct type *
decode_die_type (dip)
     struct dieinfo *dip;
{
  struct type *type = NULL;
  
  if (dip -> at_fund_type != 0)
    {
      type = decode_fund_type (dip -> at_fund_type);
    }
  else if (dip -> at_mod_fund_type != NULL)
    {
      type = decode_mod_fund_type (dip -> at_mod_fund_type);
    }
  else if (dip -> at_user_def_type)
    {
      if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
	{
	  type = alloc_utype (dip -> at_user_def_type, NULL);
	}
    }
  else if (dip -> at_mod_u_d_type)
    {
      type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
    }
  else
    {
      type = dwarf_fundamental_type (current_objfile, FT_VOID);
    }
  return (type);
}

/*

LOCAL FUNCTION

	struct_type -- compute and return the type for a struct or union

SYNOPSIS

	static struct type *struct_type (struct dieinfo *dip, char *thisdie,
	    char *enddie, struct objfile *objfile)

DESCRIPTION

	Given pointer to a die information structure for a die which
	defines a union or structure (and MUST define one or the other),
	and pointers to the raw die data that define the range of dies which
	define the members, compute and return the user defined type for the
	structure or union.
 */

static struct type *
struct_type (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  struct type *type;
  struct nextfield {
    struct nextfield *next;
    struct field field;
  };
  struct nextfield *list = NULL;
  struct nextfield *new;
  int nfields = 0;
  int n;
  struct dieinfo mbr;
  char *nextdie;
  int anonymous_size;
  
  if ((type = lookup_utype (dip -> die_ref)) == NULL)
    {
      /* No forward references created an empty type, so install one now */
      type = alloc_utype (dip -> die_ref, NULL);
    }
  INIT_CPLUS_SPECIFIC(type);
  switch (dip -> die_tag)
    {
      case TAG_class_type:
        TYPE_CODE (type) = TYPE_CODE_CLASS;
	break;
      case TAG_structure_type:
        TYPE_CODE (type) = TYPE_CODE_STRUCT;
	break;
      case TAG_union_type:
	TYPE_CODE (type) = TYPE_CODE_UNION;
	break;
      default:
	/* Should never happen */
	TYPE_CODE (type) = TYPE_CODE_UNDEF;
	complain (&missing_tag, DIE_ID, DIE_NAME);
	break;
    }
  /* Some compilers try to be helpful by inventing "fake" names for
     anonymous enums, structures, and unions, like "~0fake" or ".0fake".
     Thanks, but no thanks... */
  if (dip -> at_name != NULL
      && *dip -> at_name != '~'
      && *dip -> at_name != '.')
    {
      TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
				       "", "", dip -> at_name);
    }
  /* Use whatever size is known.  Zero is a valid size.  We might however
     wish to check has_at_byte_size to make sure that some byte size was
     given explicitly, but DWARF doesn't specify that explicit sizes of
     zero have to present, so complaining about missing sizes should 
     probably not be the default. */
  TYPE_LENGTH (type) = dip -> at_byte_size;
  thisdie += dip -> die_length;
  while (thisdie < enddie)
    {
      basicdieinfo (&mbr, thisdie, objfile);
      completedieinfo (&mbr, objfile);
      if (mbr.die_length <= SIZEOF_DIE_LENGTH)
	{
	  break;
	}
      else if (mbr.at_sibling != 0)
	{
	  nextdie = dbbase + mbr.at_sibling - dbroff;
	}
      else
	{
	  nextdie = thisdie + mbr.die_length;
	}
      switch (mbr.die_tag)
	{
	case TAG_member:
	  /* Get space to record the next field's data.  */
	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
	  new -> next = list;
	  list = new;
	  /* Save the data.  */
	  list -> field.name =
	      obsavestring (mbr.at_name, strlen (mbr.at_name),
			    &objfile -> type_obstack);
	  list -> field.type = decode_die_type (&mbr);
	  list -> field.bitpos = 8 * locval (&mbr);
	  /* Handle bit fields. */
	  list -> field.bitsize = mbr.at_bit_size;
	  if (BITS_BIG_ENDIAN)
	    {
	      /* For big endian bits, the at_bit_offset gives the
		 additional bit offset from the MSB of the containing
		 anonymous object to the MSB of the field.  We don't
		 have to do anything special since we don't need to
		 know the size of the anonymous object. */
	      list -> field.bitpos += mbr.at_bit_offset;
	    }
	  else
	    {
	      /* For little endian bits, we need to have a non-zero
		 at_bit_size, so that we know we are in fact dealing
		 with a bitfield.  Compute the bit offset to the MSB
		 of the anonymous object, subtract off the number of
		 bits from the MSB of the field to the MSB of the
		 object, and then subtract off the number of bits of
		 the field itself.  The result is the bit offset of
		 the LSB of the field. */
	      if (mbr.at_bit_size > 0)
		{
		  if (mbr.has_at_byte_size)
		    {
		      /* The size of the anonymous object containing
			 the bit field is explicit, so use the
			 indicated size (in bytes). */
		      anonymous_size = mbr.at_byte_size;
		    }
		  else
		    {
		      /* The size of the anonymous object containing
			 the bit field matches the size of an object
			 of the bit field's type.  DWARF allows
			 at_byte_size to be left out in such cases, as
			 a debug information size optimization. */
		      anonymous_size = TYPE_LENGTH (list -> field.type);
		    }
		  list -> field.bitpos +=
		    anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
		}
	    }
	  nfields++;
	  break;
	default:
	  process_dies (thisdie, nextdie, objfile);
	  break;
	}
      thisdie = nextdie;
    }
  /* Now create the vector of fields, and record how big it is.  We may
     not even have any fields, if this DIE was generated due to a reference
     to an anonymous structure or union.  In this case, TYPE_FLAG_STUB is
     set, which clues gdb in to the fact that it needs to search elsewhere
     for the full structure definition. */
  if (nfields == 0)
    {
      TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
    }
  else
    {
      TYPE_NFIELDS (type) = nfields;
      TYPE_FIELDS (type) = (struct field *)
	TYPE_ALLOC (type, sizeof (struct field) * nfields);
      /* Copy the saved-up fields into the field vector.  */
      for (n = nfields; list; list = list -> next)
	{
	  TYPE_FIELD (type, --n) = list -> field;
	}	
    }
  return (type);
}

/*

LOCAL FUNCTION

	read_structure_scope -- process all dies within struct or union

SYNOPSIS

	static void read_structure_scope (struct dieinfo *dip,
		char *thisdie, char *enddie, struct objfile *objfile)

DESCRIPTION

	Called when we find the DIE that starts a structure or union
	scope (definition) to process all dies that define the members
	of the structure or union.  DIP is a pointer to the die info
	struct for the DIE that names the structure or union.

NOTES

	Note that we need to call struct_type regardless of whether or not
	the DIE has an at_name attribute, since it might be an anonymous
	structure or union.  This gets the type entered into our set of
	user defined types.

	However, if the structure is incomplete (an opaque struct/union)
	then suppress creating a symbol table entry for it since gdb only
	wants to find the one with the complete definition.  Note that if
	it is complete, we just call new_symbol, which does it's own
	checking about whether the struct/union is anonymous or not (and
	suppresses creating a symbol table entry itself).
	
 */

static void
read_structure_scope (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  struct type *type;
  struct symbol *sym;
  
  type = struct_type (dip, thisdie, enddie, objfile);
  if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
    {
      sym = new_symbol (dip, objfile);
      if (sym != NULL)
	{
	  SYMBOL_TYPE (sym) = type;
	  if (cu_language == language_cplus)
	    {
	      synthesize_typedef (dip, objfile, type);
	    }
	}
    }
}

/*

LOCAL FUNCTION

	decode_array_element_type -- decode type of the array elements

SYNOPSIS

	static struct type *decode_array_element_type (char *scan, char *end)

DESCRIPTION

	As the last step in decoding the array subscript information for an
	array DIE, we need to decode the type of the array elements.  We are
	passed a pointer to this last part of the subscript information and
	must return the appropriate type.  If the type attribute is not
	recognized, just warn about the problem and return type int.
 */

static struct type *
decode_array_element_type (scan)
     char *scan;
{
  struct type *typep;
  DIE_REF die_ref;
  unsigned short attribute;
  unsigned short fundtype;
  int nbytes;
  
  attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
			      current_objfile);
  scan += SIZEOF_ATTRIBUTE;
  if ((nbytes = attribute_size (attribute)) == -1)
    {
      complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
    }
  else
    {
      switch (attribute)
	{
	  case AT_fund_type:
	    fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
				       current_objfile);
	    typep = decode_fund_type (fundtype);
	    break;
	  case AT_mod_fund_type:
	    typep = decode_mod_fund_type (scan);
	    break;
	  case AT_user_def_type:
	    die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
				      current_objfile);
	    if ((typep = lookup_utype (die_ref)) == NULL)
	      {
		typep = alloc_utype (die_ref, NULL);
	      }
	    break;
	  case AT_mod_u_d_type:
	    typep = decode_mod_u_d_type (scan);
	    break;
	  default:
	    complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
	    typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
	    break;
	  }
    }
  return (typep);
}

/*

LOCAL FUNCTION

	decode_subscript_data_item -- decode array subscript item

SYNOPSIS

	static struct type *
	decode_subscript_data_item (char *scan, char *end)

DESCRIPTION

	The array subscripts and the data type of the elements of an
	array are described by a list of data items, stored as a block
	of contiguous bytes.  There is a data item describing each array
	dimension, and a final data item describing the element type.
	The data items are ordered the same as their appearance in the
	source (I.E. leftmost dimension first, next to leftmost second,
	etc).

	The data items describing each array dimension consist of four
	parts: (1) a format specifier, (2) type type of the subscript
	index, (3) a description of the low bound of the array dimension,
	and (4) a description of the high bound of the array dimension.

	The last data item is the description of the type of each of
	the array elements.

	We are passed a pointer to the start of the block of bytes
	containing the remaining data items, and a pointer to the first
	byte past the data.  This function recursively decodes the
	remaining data items and returns a type.

	If we somehow fail to decode some data, we complain about it
	and return a type "array of int".

BUGS
	FIXME:  This code only implements the forms currently used
	by the AT&T and GNU C compilers.

	The end pointer is supplied for error checking, maybe we should
	use it for that...
 */

static struct type *
decode_subscript_data_item (scan, end)
     char *scan;
     char *end;
{
  struct type *typep = NULL;	/* Array type we are building */
  struct type *nexttype;	/* Type of each element (may be array) */
  struct type *indextype;	/* Type of this index */
  struct type *rangetype;
  unsigned int format;
  unsigned short fundtype;
  unsigned long lowbound;
  unsigned long highbound;
  int nbytes;
  
  format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
			   current_objfile);
  scan += SIZEOF_FORMAT_SPECIFIER;
  switch (format)
    {
    case FMT_ET:
      typep = decode_array_element_type (scan);
      break;
    case FMT_FT_C_C:
      fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
				 current_objfile);
      indextype = decode_fund_type (fundtype);
      scan += SIZEOF_FMT_FT;
      nbytes = TARGET_FT_LONG_SIZE (current_objfile);
      lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
      scan += nbytes;
      highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
      scan += nbytes;
      nexttype = decode_subscript_data_item (scan, end);
      if (nexttype == NULL)
	{
	  /* Munged subscript data or other problem, fake it. */
	  complain (&subscript_data_items, DIE_ID, DIE_NAME);
	  nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
	}
      rangetype = create_range_type ((struct type *) NULL, indextype,
				      lowbound, highbound);
      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
      break;
    case FMT_FT_C_X:
    case FMT_FT_X_C:
    case FMT_FT_X_X:
    case FMT_UT_C_C:
    case FMT_UT_C_X:
    case FMT_UT_X_C:
    case FMT_UT_X_X:
      complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
      nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
      rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
      break;
    default:
      complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
      nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
      rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
      typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
      break;
    }
  return (typep);
}

/*

LOCAL FUNCTION

	dwarf_read_array_type -- read TAG_array_type DIE

SYNOPSIS

	static void dwarf_read_array_type (struct dieinfo *dip)

DESCRIPTION

	Extract all information from a TAG_array_type DIE and add to
	the user defined type vector.
 */

static void
dwarf_read_array_type (dip)
     struct dieinfo *dip;
{
  struct type *type;
  struct type *utype;
  char *sub;
  char *subend;
  unsigned short blocksz;
  int nbytes;
  
  if (dip -> at_ordering != ORD_row_major)
    {
      /* FIXME:  Can gdb even handle column major arrays? */
      complain (&not_row_major, DIE_ID, DIE_NAME);
    }
  if ((sub = dip -> at_subscr_data) != NULL)
    {
      nbytes = attribute_size (AT_subscr_data);
      blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
      subend = sub + nbytes + blocksz;
      sub += nbytes;
      type = decode_subscript_data_item (sub, subend);
      if ((utype = lookup_utype (dip -> die_ref)) == NULL)
	{
	  /* Install user defined type that has not been referenced yet. */
	  alloc_utype (dip -> die_ref, type);
	}
      else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
	{
	  /* Ick!  A forward ref has already generated a blank type in our
	     slot, and this type probably already has things pointing to it
	     (which is what caused it to be created in the first place).
	     If it's just a place holder we can plop our fully defined type
	     on top of it.  We can't recover the space allocated for our
	     new type since it might be on an obstack, but we could reuse
	     it if we kept a list of them, but it might not be worth it
	     (FIXME). */
	  *utype = *type;
	}
      else
	{
	  /* Double ick!  Not only is a type already in our slot, but
	     someone has decorated it.  Complain and leave it alone. */
	  complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
	}
    }
}

/*

LOCAL FUNCTION

	read_tag_pointer_type -- read TAG_pointer_type DIE

SYNOPSIS

	static void read_tag_pointer_type (struct dieinfo *dip)

DESCRIPTION

	Extract all information from a TAG_pointer_type DIE and add to
	the user defined type vector.
 */

static void
read_tag_pointer_type (dip)
     struct dieinfo *dip;
{
  struct type *type;
  struct type *utype;
  
  type = decode_die_type (dip);
  if ((utype = lookup_utype (dip -> die_ref)) == NULL)
    {
      utype = lookup_pointer_type (type);
      alloc_utype (dip -> die_ref, utype);
    }
  else
    {
      TYPE_TARGET_TYPE (utype) = type;
      TYPE_POINTER_TYPE (type) = utype;

      /* We assume the machine has only one representation for pointers!  */
      /* FIXME:  This confuses host<->target data representations, and is a
	 poor assumption besides. */
      
      TYPE_LENGTH (utype) = sizeof (char *);
      TYPE_CODE (utype) = TYPE_CODE_PTR;
    }
}

/*

LOCAL FUNCTION

	read_tag_string_type -- read TAG_string_type DIE

SYNOPSIS

	static void read_tag_string_type (struct dieinfo *dip)

DESCRIPTION

	Extract all information from a TAG_string_type DIE and add to
	the user defined type vector.  It isn't really a user defined
	type, but it behaves like one, with other DIE's using an
	AT_user_def_type attribute to reference it.
 */

static void
read_tag_string_type (dip)
     struct dieinfo *dip;
{
  struct type *utype;
  struct type *indextype;
  struct type *rangetype;
  unsigned long lowbound = 0;
  unsigned long highbound;

  if (dip -> has_at_byte_size)
    {
      /* A fixed bounds string */
      highbound = dip -> at_byte_size - 1;
    }
  else
    {
      /* A varying length string.  Stub for now.  (FIXME) */
      highbound = 1;
    }
  indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
  rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
				 highbound);
      
  utype = lookup_utype (dip -> die_ref);
  if (utype == NULL)
    {
      /* No type defined, go ahead and create a blank one to use. */
      utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
    }
  else
    {
      /* Already a type in our slot due to a forward reference. Make sure it
	 is a blank one.  If not, complain and leave it alone. */
      if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
	{
	  complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
	  return;
	}
    }

  /* Create the string type using the blank type we either found or created. */
  utype = create_string_type (utype, rangetype);
}

/*

LOCAL FUNCTION

	read_subroutine_type -- process TAG_subroutine_type dies

SYNOPSIS

	static void read_subroutine_type (struct dieinfo *dip, char thisdie,
		char *enddie)

DESCRIPTION

	Handle DIES due to C code like:

	struct foo {
	    int (*funcp)(int a, long l);  (Generates TAG_subroutine_type DIE)
	    int b;
	};

NOTES

	The parameter DIES are currently ignored.  See if gdb has a way to
	include this info in it's type system, and decode them if so.  Is
	this what the type structure's "arg_types" field is for?  (FIXME)
 */

static void
read_subroutine_type (dip, thisdie, enddie)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
{
  struct type *type;		/* Type that this function returns */
  struct type *ftype;		/* Function that returns above type */
  
  /* Decode the type that this subroutine returns */

  type = decode_die_type (dip);

  /* Check to see if we already have a partially constructed user
     defined type for this DIE, from a forward reference. */

  if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
    {
      /* This is the first reference to one of these types.  Make
	 a new one and place it in the user defined types. */
      ftype = lookup_function_type (type);
      alloc_utype (dip -> die_ref, ftype);
    }
  else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
    {
      /* We have an existing partially constructed type, so bash it
	 into the correct type. */
      TYPE_TARGET_TYPE (ftype) = type;
      TYPE_LENGTH (ftype) = 1;
      TYPE_CODE (ftype) = TYPE_CODE_FUNC;
    }
  else
    {
      complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
    }
}

/*

LOCAL FUNCTION

	read_enumeration -- process dies which define an enumeration

SYNOPSIS

	static void read_enumeration (struct dieinfo *dip, char *thisdie,
		char *enddie, struct objfile *objfile)

DESCRIPTION

	Given a pointer to a die which begins an enumeration, process all
	the dies that define the members of the enumeration.

NOTES

	Note that we need to call enum_type regardless of whether or not we
	have a symbol, since we might have an enum without a tag name (thus
	no symbol for the tagname).
 */

static void
read_enumeration (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  struct type *type;
  struct symbol *sym;
  
  type = enum_type (dip, objfile);
  sym = new_symbol (dip, objfile);
  if (sym != NULL)
    {
      SYMBOL_TYPE (sym) = type;
      if (cu_language == language_cplus)
	{
	  synthesize_typedef (dip, objfile, type);
	}
    }
}

/*

LOCAL FUNCTION

	enum_type -- decode and return a type for an enumeration

SYNOPSIS

	static type *enum_type (struct dieinfo *dip, struct objfile *objfile)

DESCRIPTION

	Given a pointer to a die information structure for the die which
	starts an enumeration, process all the dies that define the members
	of the enumeration and return a type pointer for the enumeration.

	At the same time, for each member of the enumeration, create a
	symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
	and give it the type of the enumeration itself.

NOTES

	Note that the DWARF specification explicitly mandates that enum
	constants occur in reverse order from the source program order,
	for "consistency" and because this ordering is easier for many
	compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
	Entries).  Because gdb wants to see the enum members in program
	source order, we have to ensure that the order gets reversed while
	we are processing them.
 */

static struct type *
enum_type (dip, objfile)
     struct dieinfo *dip;
     struct objfile *objfile;
{
  struct type *type;
  struct nextfield {
    struct nextfield *next;
    struct field field;
  };
  struct nextfield *list = NULL;
  struct nextfield *new;
  int nfields = 0;
  int n;
  char *scan;
  char *listend;
  unsigned short blocksz;
  struct symbol *sym;
  int nbytes;
  int unsigned_enum = 1;
  
  if ((type = lookup_utype (dip -> die_ref)) == NULL)
    {
      /* No forward references created an empty type, so install one now */
      type = alloc_utype (dip -> die_ref, NULL);
    }
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  /* Some compilers try to be helpful by inventing "fake" names for
     anonymous enums, structures, and unions, like "~0fake" or ".0fake".
     Thanks, but no thanks... */
  if (dip -> at_name != NULL
      && *dip -> at_name != '~'
      && *dip -> at_name != '.')
    {
      TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
				       "", "", dip -> at_name);
    }
  if (dip -> at_byte_size != 0)
    {
      TYPE_LENGTH (type) = dip -> at_byte_size;
    }
  if ((scan = dip -> at_element_list) != NULL)
    {
      if (dip -> short_element_list)
	{
	  nbytes = attribute_size (AT_short_element_list);
	}
      else
	{
	  nbytes = attribute_size (AT_element_list);
	}
      blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
      listend = scan + nbytes + blocksz;
      scan += nbytes;
      while (scan < listend)
	{
	  new = (struct nextfield *) alloca (sizeof (struct nextfield));
	  new -> next = list;
	  list = new;
	  list -> field.type = NULL;
	  list -> field.bitsize = 0;
	  list -> field.bitpos =
	    target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
			    objfile);
	  scan += TARGET_FT_LONG_SIZE (objfile);
	  list -> field.name = obsavestring (scan, strlen (scan),
					     &objfile -> type_obstack);
	  scan += strlen (scan) + 1;
	  nfields++;
	  /* Handcraft a new symbol for this enum member. */
	  sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
						 sizeof (struct symbol));
	  memset (sym, 0, sizeof (struct symbol));
	  SYMBOL_NAME (sym) = create_name (list -> field.name,
					   &objfile->symbol_obstack);
	  SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
	  SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
	  SYMBOL_CLASS (sym) = LOC_CONST;
	  SYMBOL_TYPE (sym) = type;
	  SYMBOL_VALUE (sym) = list -> field.bitpos;
	  if (SYMBOL_VALUE (sym) < 0)
	    unsigned_enum = 0;
	  add_symbol_to_list (sym, list_in_scope);
	}
      /* Now create the vector of fields, and record how big it is. This is
	 where we reverse the order, by pulling the members off the list in
	 reverse order from how they were inserted.  If we have no fields
	 (this is apparently possible in C++) then skip building a field
	 vector. */
      if (nfields > 0)
	{
	  if (unsigned_enum)
	    TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
	  TYPE_NFIELDS (type) = nfields;
	  TYPE_FIELDS (type) = (struct field *)
	    obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
	  /* Copy the saved-up fields into the field vector.  */
	  for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
	    {
	      TYPE_FIELD (type, n++) = list -> field;
	    }	
	}
    }
  return (type);
}

/*

LOCAL FUNCTION

	read_func_scope -- process all dies within a function scope

DESCRIPTION

	Process all dies within a given function scope.  We are passed
	a die information structure pointer DIP for the die which
	starts the function scope, and pointers into the raw die data
	that define the dies within the function scope.

	For now, we ignore lexical block scopes within the function.
	The problem is that AT&T cc does not define a DWARF lexical
	block scope for the function itself, while gcc defines a
	lexical block scope for the function.  We need to think about
	how to handle this difference, or if it is even a problem.
	(FIXME)
 */

static void
read_func_scope (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  register struct context_stack *new;
  
  /* AT_name is absent if the function is described with an
     AT_abstract_origin tag.
     Ignore the function description for now to avoid GDB core dumps.
     FIXME: Add code to handle AT_abstract_origin tags properly.  */
  if (dip -> at_name == NULL)
    {
      complain (&missing_at_name, DIE_ID);
      return;
    }

  if (objfile -> ei.entry_point >= dip -> at_low_pc &&
      objfile -> ei.entry_point <  dip -> at_high_pc)
    {
      objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
      objfile -> ei.entry_func_highpc = dip -> at_high_pc;
    }
  if (STREQ (dip -> at_name, "main"))	/* FIXME: hardwired name */
    {
      objfile -> ei.main_func_lowpc = dip -> at_low_pc;
      objfile -> ei.main_func_highpc = dip -> at_high_pc;
    }
  new = push_context (0, dip -> at_low_pc);
  new -> name = new_symbol (dip, objfile);
  list_in_scope = &local_symbols;
  process_dies (thisdie + dip -> die_length, enddie, objfile);
  new = pop_context ();
  /* Make a block for the local symbols within.  */
  finish_block (new -> name, &local_symbols, new -> old_blocks,
		new -> start_addr, dip -> at_high_pc, objfile);
  list_in_scope = &file_symbols;
}


/*

LOCAL FUNCTION

	handle_producer -- process the AT_producer attribute

DESCRIPTION

	Perform any operations that depend on finding a particular
	AT_producer attribute.

 */

static void
handle_producer (producer)
     char *producer;
{

  /* If this compilation unit was compiled with g++ or gcc, then set the
     processing_gcc_compilation flag. */

  processing_gcc_compilation =
    STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
      || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
      || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));

  /* Select a demangling style if we can identify the producer and if
     the current style is auto.  We leave the current style alone if it
     is not auto.  We also leave the demangling style alone if we find a
     gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */

  if (AUTO_DEMANGLING)
    {
      if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
	{
	  set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
	}
      else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
	{
	  set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
	}
    }
}


/*

LOCAL FUNCTION

	read_file_scope -- process all dies within a file scope

DESCRIPTION

	Process all dies within a given file scope.  We are passed a
	pointer to the die information structure for the die which
	starts the file scope, and pointers into the raw die data which
	mark the range of dies within the file scope.

	When the partial symbol table is built, the file offset for the line
	number table for each compilation unit is saved in the partial symbol
	table entry for that compilation unit.  As the symbols for each
	compilation unit are read, the line number table is read into memory
	and the variable lnbase is set to point to it.  Thus all we have to
	do is use lnbase to access the line number table for the current
	compilation unit.
 */

static void
read_file_scope (dip, thisdie, enddie, objfile)
     struct dieinfo *dip;
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  struct cleanup *back_to;
  struct symtab *symtab;
  
  if (objfile -> ei.entry_point >= dip -> at_low_pc &&
      objfile -> ei.entry_point <  dip -> at_high_pc)
    {
      objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
      objfile -> ei.entry_file_highpc = dip -> at_high_pc;
    }
  set_cu_language (dip);
  if (dip -> at_producer != NULL)
    {
      handle_producer (dip -> at_producer);
    }
  numutypes = (enddie - thisdie) / 4;
  utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
  back_to = make_cleanup (free_utypes, NULL);
  memset (utypes, 0, numutypes * sizeof (struct type *));
  memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
  start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
  decode_line_numbers (lnbase);
  process_dies (thisdie + dip -> die_length, enddie, objfile);

  symtab = end_symtab (dip -> at_high_pc, objfile, 0);
  if (symtab != NULL)
    {
      symtab -> language = cu_language;
    }      
  do_cleanups (back_to);
}

/*

LOCAL FUNCTION

	process_dies -- process a range of DWARF Information Entries

SYNOPSIS

	static void process_dies (char *thisdie, char *enddie,
				  struct objfile *objfile)

DESCRIPTION

	Process all DIE's in a specified range.  May be (and almost
	certainly will be) called recursively.
 */

static void
process_dies (thisdie, enddie, objfile)
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  char *nextdie;
  struct dieinfo di;
  
  while (thisdie < enddie)
    {
      basicdieinfo (&di, thisdie, objfile);
      if (di.die_length < SIZEOF_DIE_LENGTH)
	{
	  break;
	}
      else if (di.die_tag == TAG_padding)
	{
	  nextdie = thisdie + di.die_length;
	}
      else
	{
	  completedieinfo (&di, objfile);
	  if (di.at_sibling != 0)
	    {
	      nextdie = dbbase + di.at_sibling - dbroff;
	    }
	  else
	    {
	      nextdie = thisdie + di.die_length;
	    }
#ifdef SMASH_TEXT_ADDRESS
	  /* I think that these are always text, not data, addresses.  */
	  SMASH_TEXT_ADDRESS (di.at_low_pc);
	  SMASH_TEXT_ADDRESS (di.at_high_pc);
#endif
	  switch (di.die_tag)
	    {
	    case TAG_compile_unit:
	      /* Skip Tag_compile_unit if we are already inside a compilation
		 unit, we are unable to handle nested compilation units
		 properly (FIXME).  */
	      if (current_subfile == NULL)
		read_file_scope (&di, thisdie, nextdie, objfile);
	      else
		nextdie = thisdie + di.die_length;
	      break;
	    case TAG_global_subroutine:
	    case TAG_subroutine:
	      if (di.has_at_low_pc)
		{
		  read_func_scope (&di, thisdie, nextdie, objfile);
		}
	      break;
	    case TAG_lexical_block:
	      read_lexical_block_scope (&di, thisdie, nextdie, objfile);
	      break;
	    case TAG_class_type:
	    case TAG_structure_type:
	    case TAG_union_type:
	      read_structure_scope (&di, thisdie, nextdie, objfile);
	      break;
	    case TAG_enumeration_type:
	      read_enumeration (&di, thisdie, nextdie, objfile);
	      break;
	    case TAG_subroutine_type:
	      read_subroutine_type (&di, thisdie, nextdie);
	      break;
	    case TAG_array_type:
	      dwarf_read_array_type (&di);
	      break;
	    case TAG_pointer_type:
	      read_tag_pointer_type (&di);
	      break;
	    case TAG_string_type:
	      read_tag_string_type (&di);
	      break;
	    default:
	      new_symbol (&di, objfile);
	      break;
	    }
	}
      thisdie = nextdie;
    }
}

/*

LOCAL FUNCTION

	decode_line_numbers -- decode a line number table fragment

SYNOPSIS

	static void decode_line_numbers (char *tblscan, char *tblend,
		long length, long base, long line, long pc)

DESCRIPTION

	Translate the DWARF line number information to gdb form.

	The ".line" section contains one or more line number tables, one for
	each ".line" section from the objects that were linked.

	The AT_stmt_list attribute for each TAG_source_file entry in the
	".debug" section contains the offset into the ".line" section for the
	start of the table for that file.

	The table itself has the following structure:

	<table length><base address><source statement entry>
	4 bytes       4 bytes       10 bytes

	The table length is the total size of the table, including the 4 bytes
	for the length information.

	The base address is the address of the first instruction generated
	for the source file.

	Each source statement entry has the following structure:

	<line number><statement position><address delta>
	4 bytes      2 bytes             4 bytes

	The line number is relative to the start of the file, starting with
	line 1.

	The statement position either -1 (0xFFFF) or the number of characters
	from the beginning of the line to the beginning of the statement.

	The address delta is the difference between the base address and
	the address of the first instruction for the statement.

	Note that we must copy the bytes from the packed table to our local
	variables before attempting to use them, to avoid alignment problems
	on some machines, particularly RISC processors.

BUGS

	Does gdb expect the line numbers to be sorted?  They are now by
	chance/luck, but are not required to be.  (FIXME)

	The line with number 0 is unused, gdb apparently can discover the
	span of the last line some other way. How?  (FIXME)
 */

static void
decode_line_numbers (linetable)
     char *linetable;
{
  char *tblscan;
  char *tblend;
  unsigned long length;
  unsigned long base;
  unsigned long line;
  unsigned long pc;
  
  if (linetable != NULL)
    {
      tblscan = tblend = linetable;
      length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
			       current_objfile);
      tblscan += SIZEOF_LINETBL_LENGTH;
      tblend += length;
      base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
			     GET_UNSIGNED, current_objfile);
      tblscan += TARGET_FT_POINTER_SIZE (objfile);
      base += baseaddr;
      while (tblscan < tblend)
	{
	  line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
				 current_objfile);
	  tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
	  pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
			       current_objfile);
	  tblscan += SIZEOF_LINETBL_DELTA;
	  pc += base;
	  if (line != 0)
	    {
	      record_line (current_subfile, line, pc);
	    }
	}
    }
}

/*

LOCAL FUNCTION

	locval -- compute the value of a location attribute

SYNOPSIS

	static int locval (struct dieinfo *dip)

DESCRIPTION

	Given pointer to a string of bytes that define a location, compute
	the location and return the value.
	A location description containing no atoms indicates that the
	object is optimized out. The optimized_out flag is set for those,
	the return value is meaningless.

	When computing values involving the current value of the frame pointer,
	the value zero is used, which results in a value relative to the frame
	pointer, rather than the absolute value.  This is what GDB wants
	anyway.
    
	When the result is a register number, the isreg flag is set, otherwise
	it is cleared.  This is a kludge until we figure out a better
	way to handle the problem.  Gdb's design does not mesh well with the
	DWARF notion of a location computing interpreter, which is a shame
	because the flexibility goes unused.

NOTES

	Note that stack[0] is unused except as a default error return.
	Note that stack overflow is not yet handled.
 */

static int
locval (dip)
     struct dieinfo *dip;
{
  unsigned short nbytes;
  unsigned short locsize;
  auto long stack[64];
  int stacki;
  char *loc;
  char *end;
  int loc_atom_code;
  int loc_value_size;
  
  loc = dip -> at_location;
  nbytes = attribute_size (AT_location);
  locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
  loc += nbytes;
  end = loc + locsize;
  stacki = 0;
  stack[stacki] = 0;
  dip -> isreg = 0;
  dip -> offreg = 0;
  dip -> optimized_out = 1;
  loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
  while (loc < end)
    {
      dip -> optimized_out = 0;
      loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
				      current_objfile);
      loc += SIZEOF_LOC_ATOM_CODE;
      switch (loc_atom_code)
	{
	  case 0:
	    /* error */
	    loc = end;
	    break;
	  case OP_REG:
	    /* push register (number) */
	    stack[++stacki]
	      = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
						     GET_UNSIGNED,
						     current_objfile));
	    loc += loc_value_size;
	    dip -> isreg = 1;
	    break;
	  case OP_BASEREG:
	    /* push value of register (number) */
	    /* Actually, we compute the value as if register has 0, so the
	       value ends up being the offset from that register.  */
	    dip -> offreg = 1;
	    dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
					     current_objfile);
	    loc += loc_value_size;
	    stack[++stacki] = 0;
	    break;
	  case OP_ADDR:
	    /* push address (relocated address) */
	    stack[++stacki] = target_to_host (loc, loc_value_size,
					      GET_UNSIGNED, current_objfile);
	    loc += loc_value_size;
	    break;
	  case OP_CONST:
	    /* push constant (number)   FIXME: signed or unsigned! */
	    stack[++stacki] = target_to_host (loc, loc_value_size,
					      GET_SIGNED, current_objfile);
	    loc += loc_value_size;
	    break;
	  case OP_DEREF2:
	    /* pop, deref and push 2 bytes (as a long) */
	    complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
	    break;
	  case OP_DEREF4:	/* pop, deref and push 4 bytes (as a long) */
	    complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
	    break;
	  case OP_ADD:	/* pop top 2 items, add, push result */
	    stack[stacki - 1] += stack[stacki];
	    stacki--;
	    break;
	}
    }
  return (stack[stacki]);
}

/*

LOCAL FUNCTION

	read_ofile_symtab -- build a full symtab entry from chunk of DIE's

SYNOPSIS

	static void read_ofile_symtab (struct partial_symtab *pst)

DESCRIPTION

	When expanding a partial symbol table entry to a full symbol table
	entry, this is the function that gets called to read in the symbols
	for the compilation unit.  A pointer to the newly constructed symtab,
	which is now the new first one on the objfile's symtab list, is
	stashed in the partial symbol table entry.
 */

static void
read_ofile_symtab (pst)
     struct partial_symtab *pst;
{
  struct cleanup *back_to;
  unsigned long lnsize;
  file_ptr foffset;
  bfd *abfd;
  char lnsizedata[SIZEOF_LINETBL_LENGTH];

  abfd = pst -> objfile -> obfd;
  current_objfile = pst -> objfile;

  /* Allocate a buffer for the entire chunk of DIE's for this compilation
     unit, seek to the location in the file, and read in all the DIE's. */

  diecount = 0;
  dbsize = DBLENGTH (pst);
  dbbase = xmalloc (dbsize);
  dbroff = DBROFF(pst);
  foffset = DBFOFF(pst) + dbroff;
  base_section_offsets = pst->section_offsets;
  baseaddr = ANOFFSET (pst->section_offsets, 0);
  if (bfd_seek (abfd, foffset, SEEK_SET) ||
      (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
    {
      free (dbbase);
      error ("can't read DWARF data");
    }
  back_to = make_cleanup (free, dbbase);

  /* If there is a line number table associated with this compilation unit
     then read the size of this fragment in bytes, from the fragment itself.
     Allocate a buffer for the fragment and read it in for future 
     processing. */

  lnbase = NULL;
  if (LNFOFF (pst))
    {
      if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
	  (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
	   sizeof (lnsizedata)))
	{
	  error ("can't read DWARF line number table size");
	}
      lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
			       GET_UNSIGNED, pst -> objfile);
      lnbase = xmalloc (lnsize);
      if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
	  (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
	{
	  free (lnbase);
	  error ("can't read DWARF line numbers");
	}
      make_cleanup (free, lnbase);
    }

  process_dies (dbbase, dbbase + dbsize, pst -> objfile);
  do_cleanups (back_to);
  current_objfile = NULL;
  pst -> symtab = pst -> objfile -> symtabs;
}

/*

LOCAL FUNCTION

	psymtab_to_symtab_1 -- do grunt work for building a full symtab entry

SYNOPSIS

	static void psymtab_to_symtab_1 (struct partial_symtab *pst)

DESCRIPTION

	Called once for each partial symbol table entry that needs to be
	expanded into a full symbol table entry.

*/

static void
psymtab_to_symtab_1 (pst)
     struct partial_symtab *pst;
{
  int i;
  struct cleanup *old_chain;
  
  if (pst != NULL)
    {
      if (pst->readin)
	{
	  warning ("psymtab for %s already read in.  Shouldn't happen.",
		   pst -> filename);
	}
      else
	{
	  /* Read in all partial symtabs on which this one is dependent */
	  for (i = 0; i < pst -> number_of_dependencies; i++)
	    {
	      if (!pst -> dependencies[i] -> readin)
		{
		  /* Inform about additional files that need to be read in. */
		  if (info_verbose)
		    {
		      fputs_filtered (" ", gdb_stdout);
		      wrap_here ("");
		      fputs_filtered ("and ", gdb_stdout);
		      wrap_here ("");
		      printf_filtered ("%s...",
				       pst -> dependencies[i] -> filename);
		      wrap_here ("");
		      gdb_flush (gdb_stdout);		/* Flush output */
		    }
		  psymtab_to_symtab_1 (pst -> dependencies[i]);
		}
	    }	  
	  if (DBLENGTH (pst))		/* Otherwise it's a dummy */
	    {
	      buildsym_init ();
	      old_chain = make_cleanup (really_free_pendings, 0);
	      read_ofile_symtab (pst);
	      if (info_verbose)
		{
		  printf_filtered ("%d DIE's, sorting...", diecount);
		  wrap_here ("");
		  gdb_flush (gdb_stdout);
		}
	      sort_symtab_syms (pst -> symtab);
	      do_cleanups (old_chain);
	    }
	  pst -> readin = 1;
	}
    }
}

/*

LOCAL FUNCTION

	dwarf_psymtab_to_symtab -- build a full symtab entry from partial one

SYNOPSIS

	static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)

DESCRIPTION

	This is the DWARF support entry point for building a full symbol
	table entry from a partial symbol table entry.  We are passed a
	pointer to the partial symbol table entry that needs to be expanded.

*/

static void
dwarf_psymtab_to_symtab (pst)
     struct partial_symtab *pst;
{

  if (pst != NULL)
    {
      if (pst -> readin)
	{
	  warning ("psymtab for %s already read in.  Shouldn't happen.",
		   pst -> filename);
	}
      else
	{
	  if (DBLENGTH (pst) || pst -> number_of_dependencies)
	    {
	      /* Print the message now, before starting serious work, to avoid
		 disconcerting pauses.  */
	      if (info_verbose)
		{
		  printf_filtered ("Reading in symbols for %s...",
				   pst -> filename);
		  gdb_flush (gdb_stdout);
		}
	      
	      psymtab_to_symtab_1 (pst);
	      
#if 0	      /* FIXME:  Check to see what dbxread is doing here and see if
		 we need to do an equivalent or is this something peculiar to
		 stabs/a.out format.
		 Match with global symbols.  This only needs to be done once,
		 after all of the symtabs and dependencies have been read in.
		 */
	      scan_file_globals (pst -> objfile);
#endif
	      
	      /* Finish up the verbose info message.  */
	      if (info_verbose)
		{
		  printf_filtered ("done.\n");
		  gdb_flush (gdb_stdout);
		}
	    }
	}
    }
}

/*

LOCAL FUNCTION

	add_enum_psymbol -- add enumeration members to partial symbol table

DESCRIPTION

	Given pointer to a DIE that is known to be for an enumeration,
	extract the symbolic names of the enumeration members and add
	partial symbols for them.
*/

static void
add_enum_psymbol (dip, objfile)
     struct dieinfo *dip;
     struct objfile *objfile;
{
  char *scan;
  char *listend;
  unsigned short blocksz;
  int nbytes;
  
  if ((scan = dip -> at_element_list) != NULL)
    {
      if (dip -> short_element_list)
	{
	  nbytes = attribute_size (AT_short_element_list);
	}
      else
	{
	  nbytes = attribute_size (AT_element_list);
	}
      blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
      scan += nbytes;
      listend = scan + blocksz;
      while (scan < listend)
	{
	  scan += TARGET_FT_LONG_SIZE (objfile);
	  add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
			       &objfile -> static_psymbols, 0, 0, cu_language,
			       objfile);
	  scan += strlen (scan) + 1;
	}
    }
}

/*

LOCAL FUNCTION

	add_partial_symbol -- add symbol to partial symbol table

DESCRIPTION

	Given a DIE, if it is one of the types that we want to
	add to a partial symbol table, finish filling in the die info
	and then add a partial symbol table entry for it.

NOTES

	The caller must ensure that the DIE has a valid name attribute.
*/

static void
add_partial_symbol (dip, objfile)
     struct dieinfo *dip;
     struct objfile *objfile;
{
  switch (dip -> die_tag)
    {
    case TAG_global_subroutine:
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
				VAR_NAMESPACE, LOC_BLOCK,
				&objfile -> global_psymbols,
				0, dip -> at_low_pc, cu_language, objfile);
      break;
    case TAG_global_variable:
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
			   VAR_NAMESPACE, LOC_STATIC,
			   &objfile -> global_psymbols,
			   0, 0, cu_language, objfile);
      break;
    case TAG_subroutine:
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
				VAR_NAMESPACE, LOC_BLOCK,
				&objfile -> static_psymbols,
				0, dip -> at_low_pc, cu_language, objfile);
      break;
    case TAG_local_variable:
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
			   VAR_NAMESPACE, LOC_STATIC,
			   &objfile -> static_psymbols,
			   0, 0, cu_language, objfile);
      break;
    case TAG_typedef:
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
			   VAR_NAMESPACE, LOC_TYPEDEF,
			   &objfile -> static_psymbols,
			   0, 0, cu_language, objfile);
      break;
    case TAG_class_type:
    case TAG_structure_type:
    case TAG_union_type:
    case TAG_enumeration_type:
      /* Do not add opaque aggregate definitions to the psymtab.  */
      if (!dip -> has_at_byte_size)
	break;
      add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
			   STRUCT_NAMESPACE, LOC_TYPEDEF,
			   &objfile -> static_psymbols,
			   0, 0, cu_language, objfile);
      if (cu_language == language_cplus)
	{
	  /* For C++, these implicitly act as typedefs as well. */
	  add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
			       VAR_NAMESPACE, LOC_TYPEDEF,
			       &objfile -> static_psymbols,
			       0, 0, cu_language, objfile);
	}
      break;
    }
}

/*

LOCAL FUNCTION

	scan_partial_symbols -- scan DIE's within a single compilation unit

DESCRIPTION

	Process the DIE's within a single compilation unit, looking for
	interesting DIE's that contribute to the partial symbol table entry
	for this compilation unit.

NOTES

	There are some DIE's that may appear both at file scope and within
	the scope of a function.  We are only interested in the ones at file
	scope, and the only way to tell them apart is to keep track of the
	scope.  For example, consider the test case:

		static int i;
		main () { int j; }

	for which the relevant DWARF segment has the structure:
	
		0x51:
		0x23   global subrtn   sibling     0x9b
		                       name        main
		                       fund_type   FT_integer
		                       low_pc      0x800004cc
		                       high_pc     0x800004d4
		                            
		0x74:
		0x23   local var       sibling     0x97
		                       name        j
		                       fund_type   FT_integer
		                       location    OP_BASEREG 0xe
		                                   OP_CONST 0xfffffffc
		                                   OP_ADD
		0x97:
		0x4         
		
		0x9b:
		0x1d   local var       sibling     0xb8
		                       name        i
		                       fund_type   FT_integer
		                       location    OP_ADDR 0x800025dc
		                            
		0xb8:
		0x4         

	We want to include the symbol 'i' in the partial symbol table, but
	not the symbol 'j'.  In essence, we want to skip all the dies within
	the scope of a TAG_global_subroutine DIE.

	Don't attempt to add anonymous structures or unions since they have
	no name.  Anonymous enumerations however are processed, because we
	want to extract their member names (the check for a tag name is
	done later).

	Also, for variables and subroutines, check that this is the place
	where the actual definition occurs, rather than just a reference
	to an external.
 */

static void
scan_partial_symbols (thisdie, enddie, objfile)
     char *thisdie;
     char *enddie;
     struct objfile *objfile;
{
  char *nextdie;
  char *temp;
  struct dieinfo di;
  
  while (thisdie < enddie)
    {
      basicdieinfo (&di, thisdie, objfile);
      if (di.die_length < SIZEOF_DIE_LENGTH)
	{
	  break;
	}
      else
	{
	  nextdie = thisdie + di.die_length;
	  /* To avoid getting complete die information for every die, we
	     only do it (below) for the cases we are interested in. */
	  switch (di.die_tag)
	    {
	    case TAG_global_subroutine:
	    case TAG_subroutine:
	      completedieinfo (&di, objfile);
	      if (di.at_name && (di.has_at_low_pc || di.at_location))
		{
		  add_partial_symbol (&di, objfile);
		  /* If there is a sibling attribute, adjust the nextdie
		     pointer to skip the entire scope of the subroutine.
		     Apply some sanity checking to make sure we don't 
		     overrun or underrun the range of remaining DIE's */
		  if (di.at_sibling != 0)
		    {
		      temp = dbbase + di.at_sibling - dbroff;
		      if ((temp < thisdie) || (temp >= enddie))
			{
			  complain (&bad_die_ref, DIE_ID, DIE_NAME,
				    di.at_sibling);
			}
		      else
			{
			  nextdie = temp;
			}
		    }
		}
	      break;
	    case TAG_global_variable:
	    case TAG_local_variable:
	      completedieinfo (&di, objfile);
	      if (di.at_name && (di.has_at_low_pc || di.at_location))
		{
		  add_partial_symbol (&di, objfile);
		}
	      break;
	    case TAG_typedef:
	    case TAG_class_type:
	    case TAG_structure_type:
	    case TAG_union_type:
	      completedieinfo (&di, objfile);
	      if (di.at_name)
		{
		  add_partial_symbol (&di, objfile);
		}
	      break;
	    case TAG_enumeration_type:
	      completedieinfo (&di, objfile);
	      if (di.at_name)
		{
		  add_partial_symbol (&di, objfile);
		}
	      add_enum_psymbol (&di, objfile);
	      break;
	    }
	}
      thisdie = nextdie;
    }
}

/*

LOCAL FUNCTION

	scan_compilation_units -- build a psymtab entry for each compilation

DESCRIPTION

	This is the top level dwarf parsing routine for building partial
	symbol tables.

	It scans from the beginning of the DWARF table looking for the first
	TAG_compile_unit DIE, and then follows the sibling chain to locate
	each additional TAG_compile_unit DIE.
   
	For each TAG_compile_unit DIE it creates a partial symtab structure,
	calls a subordinate routine to collect all the compilation unit's
	global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
	new partial symtab structure into the partial symbol table.  It also
	records the appropriate information in the partial symbol table entry
	to allow the chunk of DIE's and line number table for this compilation
	unit to be located and re-read later, to generate a complete symbol
	table entry for the compilation unit.

	Thus it effectively partitions up a chunk of DIE's for multiple
	compilation units into smaller DIE chunks and line number tables,
	and associates them with a partial symbol table entry.

NOTES

	If any compilation unit has no line number table associated with
	it for some reason (a missing at_stmt_list attribute, rather than
	just one with a value of zero, which is valid) then we ensure that
	the recorded file offset is zero so that the routine which later
	reads line number table fragments knows that there is no fragment
	to read.

RETURNS

	Returns no value.

 */

static void
scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
     char *thisdie;
     char *enddie;
     file_ptr dbfoff;
     file_ptr lnoffset;
     struct objfile *objfile;
{
  char *nextdie;
  struct dieinfo di;
  struct partial_symtab *pst;
  int culength;
  int curoff;
  file_ptr curlnoffset;

  while (thisdie < enddie)
    {
      basicdieinfo (&di, thisdie, objfile);
      if (di.die_length < SIZEOF_DIE_LENGTH)
	{
	  break;
	}
      else if (di.die_tag != TAG_compile_unit)
	{
	  nextdie = thisdie + di.die_length;
	}
      else
	{
	  completedieinfo (&di, objfile);
	  set_cu_language (&di);
	  if (di.at_sibling != 0)
	    {
	      nextdie = dbbase + di.at_sibling - dbroff;
	    }
	  else
	    {
	      nextdie = thisdie + di.die_length;
	    }
	  curoff = thisdie - dbbase;
	  culength = nextdie - thisdie;
	  curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;

	  /* First allocate a new partial symbol table structure */

	  pst = start_psymtab_common (objfile, base_section_offsets,
				      di.at_name, di.at_low_pc,
				      objfile -> global_psymbols.next,
				      objfile -> static_psymbols.next);

	  pst -> texthigh = di.at_high_pc;
	  pst -> read_symtab_private = (char *)
	      obstack_alloc (&objfile -> psymbol_obstack,
			     sizeof (struct dwfinfo));
	  DBFOFF (pst) = dbfoff;
	  DBROFF (pst) = curoff;
	  DBLENGTH (pst) = culength;
	  LNFOFF (pst)  = curlnoffset;
	  pst -> read_symtab = dwarf_psymtab_to_symtab;

	  /* Now look for partial symbols */

	  scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);

	  pst -> n_global_syms = objfile -> global_psymbols.next -
	    (objfile -> global_psymbols.list + pst -> globals_offset);
	  pst -> n_static_syms = objfile -> static_psymbols.next - 
	    (objfile -> static_psymbols.list + pst -> statics_offset);
	  sort_pst_symbols (pst);
	  /* If there is already a psymtab or symtab for a file of this name,
	     remove it. (If there is a symtab, more drastic things also
	     happen.)  This happens in VxWorks.  */
	  free_named_symtabs (pst -> filename);
	}
      thisdie = nextdie;      
    }
}

/*

LOCAL FUNCTION

	new_symbol -- make a symbol table entry for a new symbol

SYNOPSIS

	static struct symbol *new_symbol (struct dieinfo *dip,
					  struct objfile *objfile)

DESCRIPTION

	Given a pointer to a DWARF information entry, figure out if we need
	to make a symbol table entry for it, and if so, create a new entry
	and return a pointer to it.
 */

static struct symbol *
new_symbol (dip, objfile)
     struct dieinfo *dip;
     struct objfile *objfile;
{
  struct symbol *sym = NULL;
  
  if (dip -> at_name != NULL)
    {
      sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
					     sizeof (struct symbol));
      OBJSTAT (objfile, n_syms++);
      memset (sym, 0, sizeof (struct symbol));
      SYMBOL_NAME (sym) = create_name (dip -> at_name,
				       &objfile->symbol_obstack);
      /* default assumptions */
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_TYPE (sym) = decode_die_type (dip);

      /* If this symbol is from a C++ compilation, then attempt to cache the
	 demangled form for future reference.  This is a typical time versus
	 space tradeoff, that was decided in favor of time because it sped up
	 C++ symbol lookups by a factor of about 20. */

      SYMBOL_LANGUAGE (sym) = cu_language;
      SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
      switch (dip -> die_tag)
	{
	case TAG_label:
	  SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
	  SYMBOL_CLASS (sym) = LOC_LABEL;
	  break;
	case TAG_global_subroutine:
	case TAG_subroutine:
	  SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
	  SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
	  if (dip -> at_prototyped)
	    TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
	  SYMBOL_CLASS (sym) = LOC_BLOCK;
	  if (dip -> die_tag == TAG_global_subroutine)
	    {
	      add_symbol_to_list (sym, &global_symbols);
	    }
	  else
	    {
	      add_symbol_to_list (sym, list_in_scope);
	    }
	  break;
	case TAG_global_variable:
	  if (dip -> at_location != NULL)
	    {
	      SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
	      add_symbol_to_list (sym, &global_symbols);
	      SYMBOL_CLASS (sym) = LOC_STATIC;
	      SYMBOL_VALUE (sym) += baseaddr;
	    }
	  break;
	case TAG_local_variable:
	  if (dip -> at_location != NULL)
	    {
	      int loc = locval (dip);
	      if (dip -> optimized_out)
		{
		  SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
		}
	      else if (dip -> isreg)
		{
		  SYMBOL_CLASS (sym) = LOC_REGISTER;
		}
	      else if (dip -> offreg)
		{
		  SYMBOL_CLASS (sym) = LOC_BASEREG;
		  SYMBOL_BASEREG (sym) = dip -> basereg;
		}
	      else
		{
		  SYMBOL_CLASS (sym) = LOC_STATIC;
		  SYMBOL_VALUE (sym) += baseaddr;
		}
	      if (SYMBOL_CLASS (sym) == LOC_STATIC)
		{
		  /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
		     which may store to a bigger location than SYMBOL_VALUE. */
		  SYMBOL_VALUE_ADDRESS (sym) = loc;
		}
	      else
		{
		  SYMBOL_VALUE (sym) = loc;
		}
	      add_symbol_to_list (sym, list_in_scope);
	    }
	  break;
	case TAG_formal_parameter:
	  if (dip -> at_location != NULL)
	    {
	      SYMBOL_VALUE (sym) = locval (dip);
	    }
	  add_symbol_to_list (sym, list_in_scope);
	  if (dip -> isreg)
	    {
	      SYMBOL_CLASS (sym) = LOC_REGPARM;
	    }
	  else if (dip -> offreg)
	    {
	      SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
	      SYMBOL_BASEREG (sym) = dip -> basereg;
	    }
	  else
	    {
	      SYMBOL_CLASS (sym) = LOC_ARG;
	    }
	  break;
	case TAG_unspecified_parameters:
	  /* From varargs functions; gdb doesn't seem to have any interest in
	     this information, so just ignore it for now. (FIXME?) */
	  break;
	case TAG_class_type:
	case TAG_structure_type:
	case TAG_union_type:
	case TAG_enumeration_type:
	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
	  SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
	  add_symbol_to_list (sym, list_in_scope);
	  break;
	case TAG_typedef:
	  SYMBOL_CLASS (sym) = LOC_TYPEDEF;
	  SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
	  add_symbol_to_list (sym, list_in_scope);
	  break;
	default:
	  /* Not a tag we recognize.  Hopefully we aren't processing trash
	     data, but since we must specifically ignore things we don't
	     recognize, there is nothing else we should do at this point. */
	  break;
	}
    }
  return (sym);
}

/*

LOCAL FUNCTION

	synthesize_typedef -- make a symbol table entry for a "fake" typedef

SYNOPSIS

	static void synthesize_typedef (struct dieinfo *dip,
					struct objfile *objfile,
					struct type *type);

DESCRIPTION

	Given a pointer to a DWARF information entry, synthesize a typedef
	for the name in the DIE, using the specified type.

	This is used for C++ class, structs, unions, and enumerations to
	set up the tag name as a type.

 */

static void
synthesize_typedef (dip, objfile, type)
     struct dieinfo *dip;
     struct objfile *objfile;
     struct type *type;
{
  struct symbol *sym = NULL;
  
  if (dip -> at_name != NULL)
    {
      sym = (struct symbol *)
	obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
      OBJSTAT (objfile, n_syms++);
      memset (sym, 0, sizeof (struct symbol));
      SYMBOL_NAME (sym) = create_name (dip -> at_name,
				       &objfile->symbol_obstack);
      SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
      SYMBOL_TYPE (sym) = type;
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, list_in_scope);
    }
}

/*

LOCAL FUNCTION

	decode_mod_fund_type -- decode a modified fundamental type

SYNOPSIS

	static struct type *decode_mod_fund_type (char *typedata)

DESCRIPTION

	Decode a block of data containing a modified fundamental
	type specification.  TYPEDATA is a pointer to the block,
	which starts with a length containing the size of the rest
	of the block.  At the end of the block is a fundmental type
	code value that gives the fundamental type.  Everything
	in between are type modifiers.

	We simply compute the number of modifiers and call the general
	function decode_modified_type to do the actual work.
*/

static struct type *
decode_mod_fund_type (typedata)
     char *typedata;
{
  struct type *typep = NULL;
  unsigned short modcount;
  int nbytes;
  
  /* Get the total size of the block, exclusive of the size itself */

  nbytes = attribute_size (AT_mod_fund_type);
  modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
  typedata += nbytes;

  /* Deduct the size of the fundamental type bytes at the end of the block. */

  modcount -= attribute_size (AT_fund_type);

  /* Now do the actual decoding */

  typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
  return (typep);
}

/*

LOCAL FUNCTION

	decode_mod_u_d_type -- decode a modified user defined type

SYNOPSIS

	static struct type *decode_mod_u_d_type (char *typedata)

DESCRIPTION

	Decode a block of data containing a modified user defined
	type specification.  TYPEDATA is a pointer to the block,
	which consists of a two byte length, containing the size
	of the rest of the block.  At the end of the block is a
	four byte value that gives a reference to a user defined type.
	Everything in between are type modifiers.

	We simply compute the number of modifiers and call the general
	function decode_modified_type to do the actual work.
*/

static struct type *
decode_mod_u_d_type (typedata)
     char *typedata;
{
  struct type *typep = NULL;
  unsigned short modcount;
  int nbytes;
  
  /* Get the total size of the block, exclusive of the size itself */

  nbytes = attribute_size (AT_mod_u_d_type);
  modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
  typedata += nbytes;

  /* Deduct the size of the reference type bytes at the end of the block. */

  modcount -= attribute_size (AT_user_def_type);

  /* Now do the actual decoding */

  typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
  return (typep);
}

/*

LOCAL FUNCTION

	decode_modified_type -- decode modified user or fundamental type

SYNOPSIS

	static struct type *decode_modified_type (char *modifiers,
	    unsigned short modcount, int mtype)

DESCRIPTION

	Decode a modified type, either a modified fundamental type or
	a modified user defined type.  MODIFIERS is a pointer to the
	block of bytes that define MODCOUNT modifiers.  Immediately
	following the last modifier is a short containing the fundamental
	type or a long containing the reference to the user defined
	type.  Which one is determined by MTYPE, which is either
	AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
	type we are generating.

	We call ourself recursively to generate each modified type,`
	until MODCOUNT reaches zero, at which point we have consumed
	all the modifiers and generate either the fundamental type or
	user defined type.  When the recursion unwinds, each modifier
	is applied in turn to generate the full modified type.

NOTES

	If we find a modifier that we don't recognize, and it is not one
	of those reserved for application specific use, then we issue a
	warning and simply ignore the modifier.

BUGS

	We currently ignore MOD_const and MOD_volatile.  (FIXME)

 */

static struct type *
decode_modified_type (modifiers, modcount, mtype)
     char *modifiers;
     unsigned int modcount;
     int mtype;
{
  struct type *typep = NULL;
  unsigned short fundtype;
  DIE_REF die_ref;
  char modifier;
  int nbytes;
  
  if (modcount == 0)
    {
      switch (mtype)
	{
	case AT_mod_fund_type:
	  nbytes = attribute_size (AT_fund_type);
	  fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
				     current_objfile);
	  typep = decode_fund_type (fundtype);
	  break;
	case AT_mod_u_d_type:
	  nbytes = attribute_size (AT_user_def_type);
	  die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
				    current_objfile);
	  if ((typep = lookup_utype (die_ref)) == NULL)
	    {
	      typep = alloc_utype (die_ref, NULL);
	    }
	  break;
	default:
	  complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
	  typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
	  break;
	}
    }
  else
    {
      modifier = *modifiers++;
      typep = decode_modified_type (modifiers, --modcount, mtype);
      switch (modifier)
	{
	  case MOD_pointer_to:
	    typep = lookup_pointer_type (typep);
	    break;
	  case MOD_reference_to:
	    typep = lookup_reference_type (typep);
	    break;
	  case MOD_const:
	    complain (&const_ignored, DIE_ID, DIE_NAME);  /* FIXME */
	    break;
	  case MOD_volatile:
	    complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
	    break;
	  default:
	    if (!(MOD_lo_user <= (unsigned char) modifier
		  && (unsigned char) modifier <= MOD_hi_user))
	      {
		complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
	      }
	    break;
	}
    }
  return (typep);
}

/*

LOCAL FUNCTION

	decode_fund_type -- translate basic DWARF type to gdb base type

DESCRIPTION

	Given an integer that is one of the fundamental DWARF types,
	translate it to one of the basic internal gdb types and return
	a pointer to the appropriate gdb type (a "struct type *").

NOTES

	For robustness, if we are asked to translate a fundamental
	type that we are unprepared to deal with, we return int so
	callers can always depend upon a valid type being returned,
	and so gdb may at least do something reasonable by default.
	If the type is not in the range of those types defined as
	application specific types, we also issue a warning.
*/

static struct type *
decode_fund_type (fundtype)
     unsigned int fundtype;
{
  struct type *typep = NULL;
  
  switch (fundtype)
    {

    case FT_void:
      typep = dwarf_fundamental_type (current_objfile, FT_VOID);
      break;
    
    case FT_boolean:		/* Was FT_set in AT&T version */
      typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
      break;

    case FT_pointer:		/* (void *) */
      typep = dwarf_fundamental_type (current_objfile, FT_VOID);
      typep = lookup_pointer_type (typep);
      break;
    
    case FT_char:
      typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
      break;
    
    case FT_signed_char:
      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
      break;

    case FT_unsigned_char:
      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
      break;
    
    case FT_short:
      typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
      break;

    case FT_signed_short:
      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
      break;
    
    case FT_unsigned_short:
      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
      break;
    
    case FT_integer:
      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
      break;

    case FT_signed_integer:
      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
      break;
    
    case FT_unsigned_integer:
      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
      break;
    
    case FT_long:
      typep = dwarf_fundamental_type (current_objfile, FT_LONG);
      break;

    case FT_signed_long:
      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
      break;
    
    case FT_unsigned_long:
      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
      break;
    
    case FT_long_long:
      typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
      break;

    case FT_signed_long_long:
      typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
      break;

    case FT_unsigned_long_long:
      typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
      break;

    case FT_float:
      typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
      break;
    
    case FT_dbl_prec_float:
      typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
      break;
    
    case FT_ext_prec_float:
      typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
      break;
    
    case FT_complex:
      typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
      break;
    
    case FT_dbl_prec_complex:
      typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
      break;
    
    case FT_ext_prec_complex:
      typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
      break;
    
    }

  if (typep == NULL)
    {
      typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
      if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
	{
	  complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
	}
    }
    
  return (typep);
}

/*

LOCAL FUNCTION

	create_name -- allocate a fresh copy of a string on an obstack

DESCRIPTION

	Given a pointer to a string and a pointer to an obstack, allocates
	a fresh copy of the string on the specified obstack.

*/

static char *
create_name (name, obstackp)
     char *name;
     struct obstack *obstackp;
{
  int length;
  char *newname;

  length = strlen (name) + 1;
  newname = (char *) obstack_alloc (obstackp, length);
  strcpy (newname, name);
  return (newname);
}

/*

LOCAL FUNCTION

	basicdieinfo -- extract the minimal die info from raw die data

SYNOPSIS

	void basicdieinfo (char *diep, struct dieinfo *dip,
			   struct objfile *objfile)

DESCRIPTION

	Given a pointer to raw DIE data, and a pointer to an instance of a
	die info structure, this function extracts the basic information
	from the DIE data required to continue processing this DIE, along
	with some bookkeeping information about the DIE.

	The information we absolutely must have includes the DIE tag,
	and the DIE length.  If we need the sibling reference, then we
	will have to call completedieinfo() to process all the remaining
	DIE information.

	Note that since there is no guarantee that the data is properly
	aligned in memory for the type of access required (indirection
	through anything other than a char pointer), and there is no
	guarantee that it is in the same byte order as the gdb host,
	we call a function which deals with both alignment and byte
	swapping issues.  Possibly inefficient, but quite portable.

	We also take care of some other basic things at this point, such
	as ensuring that the instance of the die info structure starts
	out completely zero'd and that curdie is initialized for use
	in error reporting if we have a problem with the current die.

NOTES

	All DIE's must have at least a valid length, thus the minimum
	DIE size is SIZEOF_DIE_LENGTH.  In order to have a valid tag, the
	DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
	are forced to be TAG_padding DIES.

	Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
	that if a padding DIE is used for alignment and the amount needed is
	less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
	enough to align to the next alignment boundry.

	We do some basic sanity checking here, such as verifying that the
	length of the die would not cause it to overrun the recorded end of
	the buffer holding the DIE info.  If we find a DIE that is either
	too small or too large, we force it's length to zero which should
	cause the caller to take appropriate action.
 */

static void
basicdieinfo (dip, diep, objfile)
     struct dieinfo *dip;
     char *diep;
     struct objfile *objfile;
{
  curdie = dip;
  memset (dip, 0, sizeof (struct dieinfo));
  dip -> die = diep;
  dip -> die_ref = dbroff + (diep - dbbase);
  dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
				      objfile);
  if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
      ((diep + dip -> die_length) > (dbbase + dbsize)))
    {
      complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
      dip -> die_length = 0;
    }
  else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
    {
      dip -> die_tag = TAG_padding;
    }
  else
    {
      diep += SIZEOF_DIE_LENGTH;
      dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
				       objfile);
    }
}

/*

LOCAL FUNCTION

	completedieinfo -- finish reading the information for a given DIE

SYNOPSIS

	void completedieinfo (struct dieinfo *dip, struct objfile *objfile)

DESCRIPTION

	Given a pointer to an already partially initialized die info structure,
	scan the raw DIE data and finish filling in the die info structure
	from the various attributes found.
   
	Note that since there is no guarantee that the data is properly
	aligned in memory for the type of access required (indirection
	through anything other than a char pointer), and there is no
	guarantee that it is in the same byte order as the gdb host,
	we call a function which deals with both alignment and byte
	swapping issues.  Possibly inefficient, but quite portable.

NOTES

	Each time we are called, we increment the diecount variable, which
	keeps an approximate count of the number of dies processed for
	each compilation unit.  This information is presented to the user
	if the info_verbose flag is set.

 */

static void
completedieinfo (dip, objfile)
     struct dieinfo *dip;
     struct objfile *objfile;
{
  char *diep;			/* Current pointer into raw DIE data */
  char *end;			/* Terminate DIE scan here */
  unsigned short attr;		/* Current attribute being scanned */
  unsigned short form;		/* Form of the attribute */
  int nbytes;			/* Size of next field to read */
  
  diecount++;
  diep = dip -> die;
  end = diep + dip -> die_length;
  diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
  while (diep < end)
    {
      attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
      diep += SIZEOF_ATTRIBUTE;
      if ((nbytes = attribute_size (attr)) == -1)
	{
	  complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
	  diep = end;
	  continue;
	}
      switch (attr)
	{
	case AT_fund_type:
	  dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
						objfile);
	  break;
	case AT_ordering:
	  dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
					       objfile);
	  break;
	case AT_bit_offset:
	  dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
						 objfile);
	  break;
	case AT_sibling:
	  dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
					      objfile);
	  break;
	case AT_stmt_list:
	  dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
						objfile);
	  dip -> has_at_stmt_list = 1;
	  break;
	case AT_low_pc:
	  dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
					     objfile);
	  dip -> at_low_pc += baseaddr;
	  dip -> has_at_low_pc = 1;
	  break;
	case AT_high_pc:
	  dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
					      objfile);
	  dip -> at_high_pc += baseaddr;
	  break;
	case AT_language:
	  dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
					       objfile);
	  break;
	case AT_user_def_type:
	  dip -> at_user_def_type = target_to_host (diep, nbytes,
						    GET_UNSIGNED, objfile);
	  break;
	case AT_byte_size:
	  dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
						objfile);
	  dip -> has_at_byte_size = 1;
	  break;
	case AT_bit_size:
	  dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
					       objfile);
	  break;
	case AT_member:
	  dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
					     objfile);
	  break;
	case AT_discr:
	  dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
					    objfile);
	  break;
	case AT_location:
	  dip -> at_location = diep;
	  break;
	case AT_mod_fund_type:
	  dip -> at_mod_fund_type = diep;
	  break;
	case AT_subscr_data:
	  dip -> at_subscr_data = diep;
	  break;
	case AT_mod_u_d_type:
	  dip -> at_mod_u_d_type = diep;
	  break;
	case AT_element_list:
	  dip -> at_element_list = diep;
	  dip -> short_element_list = 0;
	  break;
	case AT_short_element_list:
	  dip -> at_element_list = diep;
	  dip -> short_element_list = 1;
	  break;
	case AT_discr_value:
	  dip -> at_discr_value = diep;
	  break;
	case AT_string_length:
	  dip -> at_string_length = diep;
	  break;
	case AT_name:
	  dip -> at_name = diep;
	  break;
	case AT_comp_dir:
	  /* For now, ignore any "hostname:" portion, since gdb doesn't
	     know how to deal with it.  (FIXME). */
	  dip -> at_comp_dir = strrchr (diep, ':');
	  if (dip -> at_comp_dir != NULL)
	    {
	      dip -> at_comp_dir++;
	    }
	  else
	    {
	      dip -> at_comp_dir = diep;
	    }
	  break;
	case AT_producer:
	  dip -> at_producer = diep;
	  break;
	case AT_start_scope:
	  dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
						  objfile);
	  break;
	case AT_stride_size:
	  dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
						  objfile);
	  break;
	case AT_src_info:
	  dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
					       objfile);
	  break;
	case AT_prototyped:
	  dip -> at_prototyped = diep;
	  break;
	default:
	  /* Found an attribute that we are unprepared to handle.  However
	     it is specifically one of the design goals of DWARF that
	     consumers should ignore unknown attributes.  As long as the
	     form is one that we recognize (so we know how to skip it),
	     we can just ignore the unknown attribute. */
	  break;
	}
      form = FORM_FROM_ATTR (attr);
      switch (form)
	{
	case FORM_DATA2:
	  diep += 2;
	  break;
	case FORM_DATA4:
	case FORM_REF:
	  diep += 4;
	  break;
	case FORM_DATA8:
	  diep += 8;
	  break;
	case FORM_ADDR:
	  diep += TARGET_FT_POINTER_SIZE (objfile);
	  break;
	case FORM_BLOCK2:
	  diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
	  break;
	case FORM_BLOCK4:
	  diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
	  break;
	case FORM_STRING:
	  diep += strlen (diep) + 1;
	  break;
	default:
	  complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
	  diep = end;
	  break;
	}
    }
}

/*

LOCAL FUNCTION

	target_to_host -- swap in target data to host

SYNOPSIS

	target_to_host (char *from, int nbytes, int signextend,
			struct objfile *objfile)

DESCRIPTION

	Given pointer to data in target format in FROM, a byte count for
	the size of the data in NBYTES, a flag indicating whether or not
	the data is signed in SIGNEXTEND, and a pointer to the current
	objfile in OBJFILE, convert the data to host format and return
	the converted value.

NOTES

	FIXME:  If we read data that is known to be signed, and expect to
	use it as signed data, then we need to explicitly sign extend the
	result until the bfd library is able to do this for us.

	FIXME: Would a 32 bit target ever need an 8 byte result?

 */

static CORE_ADDR
target_to_host (from, nbytes, signextend, objfile)
     char *from;
     int nbytes;
     int signextend;		/* FIXME:  Unused */
     struct objfile *objfile;
{
  CORE_ADDR rtnval;

  switch (nbytes)
    {
      case 8:
        rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
	break;
      case 4:
	rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
	break;
      case 2:
	rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
	break;
      case 1:
	rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
	break;
      default:
	complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
	rtnval = 0;
	break;
    }
  return (rtnval);
}

/*

LOCAL FUNCTION

	attribute_size -- compute size of data for a DWARF attribute

SYNOPSIS

	static int attribute_size (unsigned int attr)

DESCRIPTION

	Given a DWARF attribute in ATTR, compute the size of the first
	piece of data associated with this attribute and return that
	size.

	Returns -1 for unrecognized attributes.

 */

static int
attribute_size (attr)
     unsigned int attr;
{
  int nbytes;			/* Size of next data for this attribute */
  unsigned short form;		/* Form of the attribute */

  form = FORM_FROM_ATTR (attr);
  switch (form)
    {
      case FORM_STRING:		/* A variable length field is next */
        nbytes = 0;
	break;
      case FORM_DATA2:		/* Next 2 byte field is the data itself */
      case FORM_BLOCK2:		/* Next 2 byte field is a block length */
	nbytes = 2;
	break;
      case FORM_DATA4:		/* Next 4 byte field is the data itself */
      case FORM_BLOCK4:		/* Next 4 byte field is a block length */
      case FORM_REF:		/* Next 4 byte field is a DIE offset */
	nbytes = 4;
	break;
      case FORM_DATA8:		/* Next 8 byte field is the data itself */
	nbytes = 8;
	break;
      case FORM_ADDR:		/* Next field size is target sizeof(void *) */
	nbytes = TARGET_FT_POINTER_SIZE (objfile);
	break;
      default:
	complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
	nbytes = -1;
	break;
      }
  return (nbytes);
}