aboutsummaryrefslogtreecommitdiff
path: root/gdb/dwarf2loc.c
blob: 23901f0e7c15ca2f6ce03d2ef50337722f07533e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
/* DWARF 2 location expression support for GDB.

   Copyright (C) 2003-2017 Free Software Foundation, Inc.

   Contributed by Daniel Jacobowitz, MontaVista Software, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "ui-out.h"
#include "value.h"
#include "frame.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "ax.h"
#include "ax-gdb.h"
#include "regcache.h"
#include "objfiles.h"
#include "block.h"
#include "gdbcmd.h"
#include "complaints.h"
#include "dwarf2.h"
#include "dwarf2expr.h"
#include "dwarf2loc.h"
#include "dwarf2-frame.h"
#include "compile/compile.h"
#include "selftest.h"
#include <algorithm>
#include <vector>
#include <unordered_set>
#include "common/underlying.h"

extern int dwarf_always_disassemble;

static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
						    struct frame_info *frame,
						    const gdb_byte *data,
						    size_t size,
						    struct dwarf2_per_cu_data *per_cu,
						    struct type *subobj_type,
						    LONGEST subobj_byte_offset);

static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
    (struct frame_info *frame,
     enum call_site_parameter_kind kind,
     union call_site_parameter_u kind_u,
     struct dwarf2_per_cu_data **per_cu_return);

/* Until these have formal names, we define these here.
   ref: http://gcc.gnu.org/wiki/DebugFission
   Each entry in .debug_loc.dwo begins with a byte that describes the entry,
   and is then followed by data specific to that entry.  */

enum debug_loc_kind
{
  /* Indicates the end of the list of entries.  */
  DEBUG_LOC_END_OF_LIST = 0,

  /* This is followed by an unsigned LEB128 number that is an index into
     .debug_addr and specifies the base address for all following entries.  */
  DEBUG_LOC_BASE_ADDRESS = 1,

  /* This is followed by two unsigned LEB128 numbers that are indices into
     .debug_addr and specify the beginning and ending addresses, and then
     a normal location expression as in .debug_loc.  */
  DEBUG_LOC_START_END = 2,

  /* This is followed by an unsigned LEB128 number that is an index into
     .debug_addr and specifies the beginning address, and a 4 byte unsigned
     number that specifies the length, and then a normal location expression
     as in .debug_loc.  */
  DEBUG_LOC_START_LENGTH = 3,

  /* An internal value indicating there is insufficient data.  */
  DEBUG_LOC_BUFFER_OVERFLOW = -1,

  /* An internal value indicating an invalid kind of entry was found.  */
  DEBUG_LOC_INVALID_ENTRY = -2
};

/* Helper function which throws an error if a synthetic pointer is
   invalid.  */

static void
invalid_synthetic_pointer (void)
{
  error (_("access outside bounds of object "
	   "referenced via synthetic pointer"));
}

/* Decode the addresses in a non-dwo .debug_loc entry.
   A pointer to the next byte to examine is returned in *NEW_PTR.
   The encoded low,high addresses are return in *LOW,*HIGH.
   The result indicates the kind of entry found.  */

static enum debug_loc_kind
decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
			    const gdb_byte **new_ptr,
			    CORE_ADDR *low, CORE_ADDR *high,
			    enum bfd_endian byte_order,
			    unsigned int addr_size,
			    int signed_addr_p)
{
  CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));

  if (buf_end - loc_ptr < 2 * addr_size)
    return DEBUG_LOC_BUFFER_OVERFLOW;

  if (signed_addr_p)
    *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
  else
    *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
  loc_ptr += addr_size;

  if (signed_addr_p)
    *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
  else
    *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
  loc_ptr += addr_size;

  *new_ptr = loc_ptr;

  /* A base-address-selection entry.  */
  if ((*low & base_mask) == base_mask)
    return DEBUG_LOC_BASE_ADDRESS;

  /* An end-of-list entry.  */
  if (*low == 0 && *high == 0)
    return DEBUG_LOC_END_OF_LIST;

  return DEBUG_LOC_START_END;
}

/* Decode the addresses in .debug_loclists entry.
   A pointer to the next byte to examine is returned in *NEW_PTR.
   The encoded low,high addresses are return in *LOW,*HIGH.
   The result indicates the kind of entry found.  */

static enum debug_loc_kind
decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
				 const gdb_byte *loc_ptr,
				 const gdb_byte *buf_end,
				 const gdb_byte **new_ptr,
				 CORE_ADDR *low, CORE_ADDR *high,
				 enum bfd_endian byte_order,
				 unsigned int addr_size,
				 int signed_addr_p)
{
  uint64_t u64;

  if (loc_ptr == buf_end)
    return DEBUG_LOC_BUFFER_OVERFLOW;

  switch (*loc_ptr++)
    {
    case DW_LLE_end_of_list:
      *new_ptr = loc_ptr;
      return DEBUG_LOC_END_OF_LIST;
    case DW_LLE_base_address:
      if (loc_ptr + addr_size > buf_end)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      if (signed_addr_p)
	*high = extract_signed_integer (loc_ptr, addr_size, byte_order);
      else
	*high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
      loc_ptr += addr_size;
      *new_ptr = loc_ptr;
      return DEBUG_LOC_BASE_ADDRESS;
    case DW_LLE_offset_pair:
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *low = u64;
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *high = u64;
      *new_ptr = loc_ptr;
      return DEBUG_LOC_START_END;
    default:
      return DEBUG_LOC_INVALID_ENTRY;
    }
}

/* Decode the addresses in .debug_loc.dwo entry.
   A pointer to the next byte to examine is returned in *NEW_PTR.
   The encoded low,high addresses are return in *LOW,*HIGH.
   The result indicates the kind of entry found.  */

static enum debug_loc_kind
decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
				const gdb_byte *loc_ptr,
				const gdb_byte *buf_end,
				const gdb_byte **new_ptr,
				CORE_ADDR *low, CORE_ADDR *high,
				enum bfd_endian byte_order)
{
  uint64_t low_index, high_index;

  if (loc_ptr == buf_end)
    return DEBUG_LOC_BUFFER_OVERFLOW;

  switch (*loc_ptr++)
    {
    case DW_LLE_GNU_end_of_list_entry:
      *new_ptr = loc_ptr;
      return DEBUG_LOC_END_OF_LIST;
    case DW_LLE_GNU_base_address_selection_entry:
      *low = 0;
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *high = dwarf2_read_addr_index (per_cu, high_index);
      *new_ptr = loc_ptr;
      return DEBUG_LOC_BASE_ADDRESS;
    case DW_LLE_GNU_start_end_entry:
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *low = dwarf2_read_addr_index (per_cu, low_index);
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *high = dwarf2_read_addr_index (per_cu, high_index);
      *new_ptr = loc_ptr;
      return DEBUG_LOC_START_END;
    case DW_LLE_GNU_start_length_entry:
      loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
      if (loc_ptr == NULL)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *low = dwarf2_read_addr_index (per_cu, low_index);
      if (loc_ptr + 4 > buf_end)
	return DEBUG_LOC_BUFFER_OVERFLOW;
      *high = *low;
      *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
      *new_ptr = loc_ptr + 4;
      return DEBUG_LOC_START_LENGTH;
    default:
      return DEBUG_LOC_INVALID_ENTRY;
    }
}

/* A function for dealing with location lists.  Given a
   symbol baton (BATON) and a pc value (PC), find the appropriate
   location expression, set *LOCEXPR_LENGTH, and return a pointer
   to the beginning of the expression.  Returns NULL on failure.

   For now, only return the first matching location expression; there
   can be more than one in the list.  */

const gdb_byte *
dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
				 size_t *locexpr_length, CORE_ADDR pc)
{
  struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
  int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
  /* Adjust base_address for relocatable objects.  */
  CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
  CORE_ADDR base_address = baton->base_address + base_offset;
  const gdb_byte *loc_ptr, *buf_end;

  loc_ptr = baton->data;
  buf_end = baton->data + baton->size;

  while (1)
    {
      CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
      int length;
      enum debug_loc_kind kind;
      const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */

      if (baton->from_dwo)
	kind = decode_debug_loc_dwo_addresses (baton->per_cu,
					       loc_ptr, buf_end, &new_ptr,
					       &low, &high, byte_order);
      else if (dwarf2_version (baton->per_cu) < 5)
	kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
					   &low, &high,
					   byte_order, addr_size,
					   signed_addr_p);
      else
	kind = decode_debug_loclists_addresses (baton->per_cu,
						loc_ptr, buf_end, &new_ptr,
						&low, &high, byte_order,
						addr_size, signed_addr_p);

      loc_ptr = new_ptr;
      switch (kind)
	{
	case DEBUG_LOC_END_OF_LIST:
	  *locexpr_length = 0;
	  return NULL;
	case DEBUG_LOC_BASE_ADDRESS:
	  base_address = high + base_offset;
	  continue;
	case DEBUG_LOC_START_END:
	case DEBUG_LOC_START_LENGTH:
	  break;
	case DEBUG_LOC_BUFFER_OVERFLOW:
	case DEBUG_LOC_INVALID_ENTRY:
	  error (_("dwarf2_find_location_expression: "
		   "Corrupted DWARF expression."));
	default:
	  gdb_assert_not_reached ("bad debug_loc_kind");
	}

      /* Otherwise, a location expression entry.
	 If the entry is from a DWO, don't add base address: the entry is from
	 .debug_addr which already has the DWARF "base address".  We still add
	 base_offset in case we're debugging a PIE executable.  */
      if (baton->from_dwo)
	{
	  low += base_offset;
	  high += base_offset;
	}
      else
	{
	  low += base_address;
	  high += base_address;
	}

      if (dwarf2_version (baton->per_cu) < 5)
	{
	  length = extract_unsigned_integer (loc_ptr, 2, byte_order);
	  loc_ptr += 2;
	}
      else
	{
	  unsigned int bytes_read;

	  length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
	  loc_ptr += bytes_read;
	}

      if (low == high && pc == low)
	{
	  /* This is entry PC record present only at entry point
	     of a function.  Verify it is really the function entry point.  */

	  const struct block *pc_block = block_for_pc (pc);
	  struct symbol *pc_func = NULL;

	  if (pc_block)
	    pc_func = block_linkage_function (pc_block);

	  if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
	    {
	      *locexpr_length = length;
	      return loc_ptr;
	    }
	}

      if (pc >= low && pc < high)
	{
	  *locexpr_length = length;
	  return loc_ptr;
	}

      loc_ptr += length;
    }
}

/* This is the baton used when performing dwarf2 expression
   evaluation.  */
struct dwarf_expr_baton
{
  struct frame_info *frame;
  struct dwarf2_per_cu_data *per_cu;
  CORE_ADDR obj_address;
};

/* Implement find_frame_base_location method for LOC_BLOCK functions using
   DWARF expression for its DW_AT_frame_base.  */

static void
locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
				  const gdb_byte **start, size_t *length)
{
  struct dwarf2_locexpr_baton *symbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);

  *length = symbaton->size;
  *start = symbaton->data;
}

/* Implement the struct symbol_block_ops::get_frame_base method for
   LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base.  */

static CORE_ADDR
locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
{
  struct gdbarch *gdbarch;
  struct type *type;
  struct dwarf2_locexpr_baton *dlbaton;
  const gdb_byte *start;
  size_t length;
  struct value *result;

  /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
     Thus, it's supposed to provide the find_frame_base_location method as
     well.  */
  gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);

  gdbarch = get_frame_arch (frame);
  type = builtin_type (gdbarch)->builtin_data_ptr;
  dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);

  SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
    (framefunc, get_frame_pc (frame), &start, &length);
  result = dwarf2_evaluate_loc_desc (type, frame, start, length,
				     dlbaton->per_cu);

  /* The DW_AT_frame_base attribute contains a location description which
     computes the base address itself.  However, the call to
     dwarf2_evaluate_loc_desc returns a value representing a variable at
     that address.  The frame base address is thus this variable's
     address.  */
  return value_address (result);
}

/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
   function uses DWARF expression for its DW_AT_frame_base.  */

const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
{
  locexpr_find_frame_base_location,
  locexpr_get_frame_base
};

/* Implement find_frame_base_location method for LOC_BLOCK functions using
   DWARF location list for its DW_AT_frame_base.  */

static void
loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
				  const gdb_byte **start, size_t *length)
{
  struct dwarf2_loclist_baton *symbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);

  *start = dwarf2_find_location_expression (symbaton, length, pc);
}

/* Implement the struct symbol_block_ops::get_frame_base method for
   LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base.  */

static CORE_ADDR
loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
{
  struct gdbarch *gdbarch;
  struct type *type;
  struct dwarf2_loclist_baton *dlbaton;
  const gdb_byte *start;
  size_t length;
  struct value *result;

  /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
     Thus, it's supposed to provide the find_frame_base_location method as
     well.  */
  gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);

  gdbarch = get_frame_arch (frame);
  type = builtin_type (gdbarch)->builtin_data_ptr;
  dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);

  SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
    (framefunc, get_frame_pc (frame), &start, &length);
  result = dwarf2_evaluate_loc_desc (type, frame, start, length,
				     dlbaton->per_cu);

  /* The DW_AT_frame_base attribute contains a location description which
     computes the base address itself.  However, the call to
     dwarf2_evaluate_loc_desc returns a value representing a variable at
     that address.  The frame base address is thus this variable's
     address.  */
  return value_address (result);
}

/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
   function uses DWARF location list for its DW_AT_frame_base.  */

const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
{
  loclist_find_frame_base_location,
  loclist_get_frame_base
};

/* See dwarf2loc.h.  */

void
func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
				 const gdb_byte **start, size_t *length)
{
  if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
    {
      const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);

      ops_block->find_frame_base_location (framefunc, pc, start, length);
    }
  else
    *length = 0;

  if (*length == 0)
    error (_("Could not find the frame base for \"%s\"."),
	   SYMBOL_NATURAL_NAME (framefunc));
}

static CORE_ADDR
get_frame_pc_for_per_cu_dwarf_call (void *baton)
{
  dwarf_expr_context *ctx = (dwarf_expr_context *) baton;

  return ctx->get_frame_pc ();
}

static void
per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
		   struct dwarf2_per_cu_data *per_cu)
{
  struct dwarf2_locexpr_baton block;

  block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
				       get_frame_pc_for_per_cu_dwarf_call,
				       ctx);

  /* DW_OP_call_ref is currently not supported.  */
  gdb_assert (block.per_cu == per_cu);

  ctx->eval (block.data, block.size);
}

class dwarf_evaluate_loc_desc : public dwarf_expr_context
{
 public:

  struct frame_info *frame;
  struct dwarf2_per_cu_data *per_cu;
  CORE_ADDR obj_address;

  /* Helper function for dwarf2_evaluate_loc_desc.  Computes the CFA for
     the frame in BATON.  */

  CORE_ADDR get_frame_cfa () OVERRIDE
  {
    return dwarf2_frame_cfa (frame);
  }

  /* Helper function for dwarf2_evaluate_loc_desc.  Computes the PC for
     the frame in BATON.  */

  CORE_ADDR get_frame_pc () OVERRIDE
  {
    return get_frame_address_in_block (frame);
  }

  /* Using the objfile specified in BATON, find the address for the
     current thread's thread-local storage with offset OFFSET.  */
  CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
  {
    struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);

    return target_translate_tls_address (objfile, offset);
  }

  /* Helper interface of per_cu_dwarf_call for
     dwarf2_evaluate_loc_desc.  */

  void dwarf_call (cu_offset die_offset) OVERRIDE
  {
    per_cu_dwarf_call (this, die_offset, per_cu);
  }

  struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
  {
    struct type *result = dwarf2_get_die_type (die_offset, per_cu);
    if (result == NULL)
      error (_("Could not find type for DW_OP_const_type"));
    if (size != 0 && TYPE_LENGTH (result) != size)
      error (_("DW_OP_const_type has different sizes for type and data"));
    return result;
  }

  /* Callback function for dwarf2_evaluate_loc_desc.
     Fetch the address indexed by DW_OP_GNU_addr_index.  */

  CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
  {
    return dwarf2_read_addr_index (per_cu, index);
  }

  /* Callback function for get_object_address. Return the address of the VLA
     object.  */

  CORE_ADDR get_object_address () OVERRIDE
  {
    if (obj_address == 0)
      error (_("Location address is not set."));
    return obj_address;
  }

  /* Execute DWARF block of call_site_parameter which matches KIND and
     KIND_U.  Choose DEREF_SIZE value of that parameter.  Search
     caller of this objects's frame.

     The caller can be from a different CU - per_cu_dwarf_call
     implementation can be more simple as it does not support cross-CU
     DWARF executions.  */

  void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
				   union call_site_parameter_u kind_u,
				   int deref_size) OVERRIDE
  {
    struct frame_info *caller_frame;
    struct dwarf2_per_cu_data *caller_per_cu;
    struct call_site_parameter *parameter;
    const gdb_byte *data_src;
    size_t size;

    caller_frame = get_prev_frame (frame);

    parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
						   &caller_per_cu);
    data_src = deref_size == -1 ? parameter->value : parameter->data_value;
    size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;

    /* DEREF_SIZE size is not verified here.  */
    if (data_src == NULL)
      throw_error (NO_ENTRY_VALUE_ERROR,
		   _("Cannot resolve DW_AT_call_data_value"));

    scoped_restore save_frame = make_scoped_restore (&this->frame,
						     caller_frame);
    scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
						      caller_per_cu);
    scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
							(CORE_ADDR) 0);

    scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
    this->gdbarch
      = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
    scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
    this->addr_size = dwarf2_per_cu_addr_size (per_cu);
    scoped_restore save_offset = make_scoped_restore (&this->offset);
    this->offset = dwarf2_per_cu_text_offset (per_cu);

    this->eval (data_src, size);
  }

  /* Using the frame specified in BATON, find the location expression
     describing the frame base.  Return a pointer to it in START and
     its length in LENGTH.  */
  void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
  {
    /* FIXME: cagney/2003-03-26: This code should be using
       get_frame_base_address(), and then implement a dwarf2 specific
       this_base method.  */
    struct symbol *framefunc;
    const struct block *bl = get_frame_block (frame, NULL);

    if (bl == NULL)
      error (_("frame address is not available."));

    /* Use block_linkage_function, which returns a real (not inlined)
       function, instead of get_frame_function, which may return an
       inlined function.  */
    framefunc = block_linkage_function (bl);

    /* If we found a frame-relative symbol then it was certainly within
       some function associated with a frame. If we can't find the frame,
       something has gone wrong.  */
    gdb_assert (framefunc != NULL);

    func_get_frame_base_dwarf_block (framefunc,
				     get_frame_address_in_block (frame),
				     start, length);
  }

  /* Read memory at ADDR (length LEN) into BUF.  */

  void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
  {
    read_memory (addr, buf, len);
  }

  /* Using the frame specified in BATON, return the value of register
     REGNUM, treated as a pointer.  */
  CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
  {
    struct gdbarch *gdbarch = get_frame_arch (frame);
    int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);

    return address_from_register (regnum, frame);
  }

  /* Implement "get_reg_value" callback.  */

  struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
  {
    struct gdbarch *gdbarch = get_frame_arch (frame);
    int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);

    return value_from_register (type, regnum, frame);
  }
};

/* See dwarf2loc.h.  */

unsigned int entry_values_debug = 0;

/* Helper to set entry_values_debug.  */

static void
show_entry_values_debug (struct ui_file *file, int from_tty,
			 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file,
		    _("Entry values and tail call frames debugging is %s.\n"),
		    value);
}

/* Find DW_TAG_call_site's DW_AT_call_target address.
   CALLER_FRAME (for registers) can be NULL if it is not known.  This function
   always returns valid address or it throws NO_ENTRY_VALUE_ERROR.  */

static CORE_ADDR
call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
			  struct call_site *call_site,
			  struct frame_info *caller_frame)
{
  switch (FIELD_LOC_KIND (call_site->target))
    {
    case FIELD_LOC_KIND_DWARF_BLOCK:
      {
	struct dwarf2_locexpr_baton *dwarf_block;
	struct value *val;
	struct type *caller_core_addr_type;
	struct gdbarch *caller_arch;

	dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
	if (dwarf_block == NULL)
	  {
	    struct bound_minimal_symbol msym;
	    
	    msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
	    throw_error (NO_ENTRY_VALUE_ERROR,
			 _("DW_AT_call_target is not specified at %s in %s"),
			 paddress (call_site_gdbarch, call_site->pc),
			 (msym.minsym == NULL ? "???"
			  : MSYMBOL_PRINT_NAME (msym.minsym)));
			
	  }
	if (caller_frame == NULL)
	  {
	    struct bound_minimal_symbol msym;
	    
	    msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
	    throw_error (NO_ENTRY_VALUE_ERROR,
			 _("DW_AT_call_target DWARF block resolving "
			   "requires known frame which is currently not "
			   "available at %s in %s"),
			 paddress (call_site_gdbarch, call_site->pc),
			 (msym.minsym == NULL ? "???"
			  : MSYMBOL_PRINT_NAME (msym.minsym)));
			
	  }
	caller_arch = get_frame_arch (caller_frame);
	caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
	val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
					dwarf_block->data, dwarf_block->size,
					dwarf_block->per_cu);
	/* DW_AT_call_target is a DWARF expression, not a DWARF location.  */
	if (VALUE_LVAL (val) == lval_memory)
	  return value_address (val);
	else
	  return value_as_address (val);
      }

    case FIELD_LOC_KIND_PHYSNAME:
      {
	const char *physname;
	struct bound_minimal_symbol msym;

	physname = FIELD_STATIC_PHYSNAME (call_site->target);

	/* Handle both the mangled and demangled PHYSNAME.  */
	msym = lookup_minimal_symbol (physname, NULL, NULL);
	if (msym.minsym == NULL)
	  {
	    msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
	    throw_error (NO_ENTRY_VALUE_ERROR,
			 _("Cannot find function \"%s\" for a call site target "
			   "at %s in %s"),
			 physname, paddress (call_site_gdbarch, call_site->pc),
			 (msym.minsym == NULL ? "???"
			  : MSYMBOL_PRINT_NAME (msym.minsym)));
			
	  }
	return BMSYMBOL_VALUE_ADDRESS (msym);
      }

    case FIELD_LOC_KIND_PHYSADDR:
      return FIELD_STATIC_PHYSADDR (call_site->target);

    default:
      internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
    }
}

/* Convert function entry point exact address ADDR to the function which is
   compliant with TAIL_CALL_LIST_COMPLETE condition.  Throw
   NO_ENTRY_VALUE_ERROR otherwise.  */

static struct symbol *
func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  struct symbol *sym = find_pc_function (addr);
  struct type *type;

  if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
    throw_error (NO_ENTRY_VALUE_ERROR,
		 _("DW_TAG_call_site resolving failed to find function "
		   "name for address %s"),
		 paddress (gdbarch, addr));

  type = SYMBOL_TYPE (sym);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
  gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);

  return sym;
}

/* Verify function with entry point exact address ADDR can never call itself
   via its tail calls (incl. transitively).  Throw NO_ENTRY_VALUE_ERROR if it
   can call itself via tail calls.

   If a funtion can tail call itself its entry value based parameters are
   unreliable.  There is no verification whether the value of some/all
   parameters is unchanged through the self tail call, we expect if there is
   a self tail call all the parameters can be modified.  */

static void
func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
{
  CORE_ADDR addr;

  /* The verification is completely unordered.  Track here function addresses
     which still need to be iterated.  */
  std::vector<CORE_ADDR> todo;

  /* Track here CORE_ADDRs which were already visited.  */
  std::unordered_set<CORE_ADDR> addr_hash;

  todo.push_back (verify_addr);
  while (!todo.empty ())
    {
      struct symbol *func_sym;
      struct call_site *call_site;

      addr = todo.back ();
      todo.pop_back ();

      func_sym = func_addr_to_tail_call_list (gdbarch, addr);

      for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
	   call_site; call_site = call_site->tail_call_next)
	{
	  CORE_ADDR target_addr;

	  /* CALLER_FRAME with registers is not available for tail-call jumped
	     frames.  */
	  target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);

	  if (target_addr == verify_addr)
	    {
	      struct bound_minimal_symbol msym;
	      
	      msym = lookup_minimal_symbol_by_pc (verify_addr);
	      throw_error (NO_ENTRY_VALUE_ERROR,
			   _("DW_OP_entry_value resolving has found "
			     "function \"%s\" at %s can call itself via tail "
			     "calls"),
			   (msym.minsym == NULL ? "???"
			    : MSYMBOL_PRINT_NAME (msym.minsym)),
			   paddress (gdbarch, verify_addr));
	    }

	  if (addr_hash.insert (target_addr).second)
	    todo.push_back (target_addr);
	}
    }
}

/* Print user readable form of CALL_SITE->PC to gdb_stdlog.  Used only for
   ENTRY_VALUES_DEBUG.  */

static void
tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
{
  CORE_ADDR addr = call_site->pc;
  struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);

  fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
		      (msym.minsym == NULL ? "???"
		       : MSYMBOL_PRINT_NAME (msym.minsym)));

}

/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
   only top callers and bottom callees which are present in both.  GDBARCH is
   used only for ENTRY_VALUES_DEBUG.  RESULTP is NULL after return if there are
   no remaining possibilities to provide unambiguous non-trivial result.
   RESULTP should point to NULL on the first (initialization) call.  Caller is
   responsible for xfree of any RESULTP data.  */

static void
chain_candidate (struct gdbarch *gdbarch,
		 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
		 std::vector<struct call_site *> *chain)
{
  long length = chain->size ();
  int callers, callees, idx;

  if (*resultp == NULL)
    {
      /* Create the initial chain containing all the passed PCs.  */

      struct call_site_chain *result
	= ((struct call_site_chain *)
	   xmalloc (sizeof (*result)
		    + sizeof (*result->call_site) * (length - 1)));
      result->length = length;
      result->callers = result->callees = length;
      if (!chain->empty ())
	memcpy (result->call_site, chain->data (),
		sizeof (*result->call_site) * length);
      resultp->reset (result);

      if (entry_values_debug)
	{
	  fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
	  for (idx = 0; idx < length; idx++)
	    tailcall_dump (gdbarch, result->call_site[idx]);
	  fputc_unfiltered ('\n', gdb_stdlog);
	}

      return;
    }

  if (entry_values_debug)
    {
      fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
      for (idx = 0; idx < length; idx++)
	tailcall_dump (gdbarch, chain->at (idx));
      fputc_unfiltered ('\n', gdb_stdlog);
    }

  /* Intersect callers.  */

  callers = std::min ((long) (*resultp)->callers, length);
  for (idx = 0; idx < callers; idx++)
    if ((*resultp)->call_site[idx] != chain->at (idx))
      {
	(*resultp)->callers = idx;
	break;
      }

  /* Intersect callees.  */

  callees = std::min ((long) (*resultp)->callees, length);
  for (idx = 0; idx < callees; idx++)
    if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
	!= chain->at (length - 1 - idx))
      {
	(*resultp)->callees = idx;
	break;
      }

  if (entry_values_debug)
    {
      fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
      for (idx = 0; idx < (*resultp)->callers; idx++)
	tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
      fputs_unfiltered (" |", gdb_stdlog);
      for (idx = 0; idx < (*resultp)->callees; idx++)
	tailcall_dump (gdbarch,
		       (*resultp)->call_site[(*resultp)->length
					     - (*resultp)->callees + idx]);
      fputc_unfiltered ('\n', gdb_stdlog);
    }

  if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
    {
      /* There are no common callers or callees.  It could be also a direct
	 call (which has length 0) with ambiguous possibility of an indirect
	 call - CALLERS == CALLEES == 0 is valid during the first allocation
	 but any subsequence processing of such entry means ambiguity.  */
      resultp->reset (NULL);
      return;
    }

  /* See call_site_find_chain_1 why there is no way to reach the bottom callee
     PC again.  In such case there must be two different code paths to reach
     it.  CALLERS + CALLEES equal to LENGTH in the case of self tail-call.  */
  gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
}

/* Create and return call_site_chain for CALLER_PC and CALLEE_PC.  All the
   assumed frames between them use GDBARCH.  Use depth first search so we can
   keep single CHAIN of call_site's back to CALLER_PC.  Function recursion
   would have needless GDB stack overhead.  Caller is responsible for xfree of
   the returned result.  Any unreliability results in thrown
   NO_ENTRY_VALUE_ERROR.  */

static struct call_site_chain *
call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
			CORE_ADDR callee_pc)
{
  CORE_ADDR save_callee_pc = callee_pc;
  gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
  struct call_site *call_site;

  /* CHAIN contains only the intermediate CALL_SITEs.  Neither CALLER_PC's
     call_site nor any possible call_site at CALLEE_PC's function is there.
     Any CALL_SITE in CHAIN will be iterated to its siblings - via
     TAIL_CALL_NEXT.  This is inappropriate for CALLER_PC's call_site.  */
  std::vector<struct call_site *> chain;

  /* We are not interested in the specific PC inside the callee function.  */
  callee_pc = get_pc_function_start (callee_pc);
  if (callee_pc == 0)
    throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
		 paddress (gdbarch, save_callee_pc));

  /* Mark CALL_SITEs so we do not visit the same ones twice.  */
  std::unordered_set<CORE_ADDR> addr_hash;

  /* Do not push CALL_SITE to CHAIN.  Push there only the first tail call site
     at the target's function.  All the possible tail call sites in the
     target's function will get iterated as already pushed into CHAIN via their
     TAIL_CALL_NEXT.  */
  call_site = call_site_for_pc (gdbarch, caller_pc);

  while (call_site)
    {
      CORE_ADDR target_func_addr;
      struct call_site *target_call_site;

      /* CALLER_FRAME with registers is not available for tail-call jumped
	 frames.  */
      target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);

      if (target_func_addr == callee_pc)
	{
	  chain_candidate (gdbarch, &retval, &chain);
	  if (retval == NULL)
	    break;

	  /* There is no way to reach CALLEE_PC again as we would prevent
	     entering it twice as being already marked in ADDR_HASH.  */
	  target_call_site = NULL;
	}
      else
	{
	  struct symbol *target_func;

	  target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
	  target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
	}

      do
	{
	  /* Attempt to visit TARGET_CALL_SITE.  */

	  if (target_call_site)
	    {
	      if (addr_hash.insert (target_call_site->pc).second)
		{
		  /* Successfully entered TARGET_CALL_SITE.  */

		  chain.push_back (target_call_site);
		  break;
		}
	    }

	  /* Backtrack (without revisiting the originating call_site).  Try the
	     callers's sibling; if there isn't any try the callers's callers's
	     sibling etc.  */

	  target_call_site = NULL;
	  while (!chain.empty ())
	    {
	      call_site = chain.back ();
	      chain.pop_back ();

	      size_t removed = addr_hash.erase (call_site->pc);
	      gdb_assert (removed == 1);

	      target_call_site = call_site->tail_call_next;
	      if (target_call_site)
		break;
	    }
	}
      while (target_call_site);

      if (chain.empty ())
	call_site = NULL;
      else
	call_site = chain.back ();
    }

  if (retval == NULL)
    {
      struct bound_minimal_symbol msym_caller, msym_callee;
      
      msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
      msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
      throw_error (NO_ENTRY_VALUE_ERROR,
		   _("There are no unambiguously determinable intermediate "
		     "callers or callees between caller function \"%s\" at %s "
		     "and callee function \"%s\" at %s"),
		   (msym_caller.minsym == NULL
		    ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
		   paddress (gdbarch, caller_pc),
		   (msym_callee.minsym == NULL
		    ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
		   paddress (gdbarch, callee_pc));
    }

  return retval.release ();
}

/* Create and return call_site_chain for CALLER_PC and CALLEE_PC.  All the
   assumed frames between them use GDBARCH.  If valid call_site_chain cannot be
   constructed return NULL.  Caller is responsible for xfree of the returned
   result.  */

struct call_site_chain *
call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
		      CORE_ADDR callee_pc)
{
  struct call_site_chain *retval = NULL;

  TRY
    {
      retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
    }
  CATCH (e, RETURN_MASK_ERROR)
    {
      if (e.error == NO_ENTRY_VALUE_ERROR)
	{
	  if (entry_values_debug)
	    exception_print (gdb_stdout, e);

	  return NULL;
	}
      else
	throw_exception (e);
    }
  END_CATCH

  return retval;
}

/* Return 1 if KIND and KIND_U match PARAMETER.  Return 0 otherwise.  */

static int
call_site_parameter_matches (struct call_site_parameter *parameter,
			     enum call_site_parameter_kind kind,
			     union call_site_parameter_u kind_u)
{
  if (kind == parameter->kind)
    switch (kind)
      {
      case CALL_SITE_PARAMETER_DWARF_REG:
	return kind_u.dwarf_reg == parameter->u.dwarf_reg;
      case CALL_SITE_PARAMETER_FB_OFFSET:
	return kind_u.fb_offset == parameter->u.fb_offset;
      case CALL_SITE_PARAMETER_PARAM_OFFSET:
	return kind_u.param_cu_off == parameter->u.param_cu_off;
      }
  return 0;
}

/* Fetch call_site_parameter from caller matching KIND and KIND_U.
   FRAME is for callee.

   Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
   otherwise.  */

static struct call_site_parameter *
dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
				   enum call_site_parameter_kind kind,
				   union call_site_parameter_u kind_u,
				   struct dwarf2_per_cu_data **per_cu_return)
{
  CORE_ADDR func_addr, caller_pc;
  struct gdbarch *gdbarch;
  struct frame_info *caller_frame;
  struct call_site *call_site;
  int iparams;
  /* Initialize it just to avoid a GCC false warning.  */
  struct call_site_parameter *parameter = NULL;
  CORE_ADDR target_addr;

  while (get_frame_type (frame) == INLINE_FRAME)
    {
      frame = get_prev_frame (frame);
      gdb_assert (frame != NULL);
    }

  func_addr = get_frame_func (frame);
  gdbarch = get_frame_arch (frame);
  caller_frame = get_prev_frame (frame);
  if (gdbarch != frame_unwind_arch (frame))
    {
      struct bound_minimal_symbol msym
	= lookup_minimal_symbol_by_pc (func_addr);
      struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);

      throw_error (NO_ENTRY_VALUE_ERROR,
		   _("DW_OP_entry_value resolving callee gdbarch %s "
		     "(of %s (%s)) does not match caller gdbarch %s"),
		   gdbarch_bfd_arch_info (gdbarch)->printable_name,
		   paddress (gdbarch, func_addr),
		   (msym.minsym == NULL ? "???"
		    : MSYMBOL_PRINT_NAME (msym.minsym)),
		   gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
    }

  if (caller_frame == NULL)
    {
      struct bound_minimal_symbol msym
	= lookup_minimal_symbol_by_pc (func_addr);

      throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
					   "requires caller of %s (%s)"),
		   paddress (gdbarch, func_addr),
		   (msym.minsym == NULL ? "???"
		    : MSYMBOL_PRINT_NAME (msym.minsym)));
    }
  caller_pc = get_frame_pc (caller_frame);
  call_site = call_site_for_pc (gdbarch, caller_pc);

  target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
  if (target_addr != func_addr)
    {
      struct minimal_symbol *target_msym, *func_msym;

      target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
      func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
      throw_error (NO_ENTRY_VALUE_ERROR,
		   _("DW_OP_entry_value resolving expects callee %s at %s "
		     "but the called frame is for %s at %s"),
		   (target_msym == NULL ? "???"
					: MSYMBOL_PRINT_NAME (target_msym)),
		   paddress (gdbarch, target_addr),
		   func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
		   paddress (gdbarch, func_addr));
    }

  /* No entry value based parameters would be reliable if this function can
     call itself via tail calls.  */
  func_verify_no_selftailcall (gdbarch, func_addr);

  for (iparams = 0; iparams < call_site->parameter_count; iparams++)
    {
      parameter = &call_site->parameter[iparams];
      if (call_site_parameter_matches (parameter, kind, kind_u))
	break;
    }
  if (iparams == call_site->parameter_count)
    {
      struct minimal_symbol *msym
	= lookup_minimal_symbol_by_pc (caller_pc).minsym;

      /* DW_TAG_call_site_parameter will be missing just if GCC could not
	 determine its value.  */
      throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
					   "at DW_TAG_call_site %s at %s"),
		   paddress (gdbarch, caller_pc),
		   msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym)); 
    }

  *per_cu_return = call_site->per_cu;
  return parameter;
}

/* Return value for PARAMETER matching DEREF_SIZE.  If DEREF_SIZE is -1, return
   the normal DW_AT_call_value block.  Otherwise return the
   DW_AT_call_data_value (dereferenced) block.

   TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
   struct value.

   Function always returns non-NULL, non-optimized out value.  It throws
   NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason.  */

static struct value *
dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
				CORE_ADDR deref_size, struct type *type,
				struct frame_info *caller_frame,
				struct dwarf2_per_cu_data *per_cu)
{
  const gdb_byte *data_src;
  gdb_byte *data;
  size_t size;

  data_src = deref_size == -1 ? parameter->value : parameter->data_value;
  size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;

  /* DEREF_SIZE size is not verified here.  */
  if (data_src == NULL)
    throw_error (NO_ENTRY_VALUE_ERROR,
		 _("Cannot resolve DW_AT_call_data_value"));

  /* DW_AT_call_value is a DWARF expression, not a DWARF
     location.  Postprocessing of DWARF_VALUE_MEMORY would lose the type from
     DWARF block.  */
  data = (gdb_byte *) alloca (size + 1);
  memcpy (data, data_src, size);
  data[size] = DW_OP_stack_value;

  return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
}

/* VALUE must be of type lval_computed with entry_data_value_funcs.  Perform
   the indirect method on it, that is use its stored target value, the sole
   purpose of entry_data_value_funcs..  */

static struct value *
entry_data_value_coerce_ref (const struct value *value)
{
  struct type *checked_type = check_typedef (value_type (value));
  struct value *target_val;

  if (!TYPE_IS_REFERENCE (checked_type))
    return NULL;

  target_val = (struct value *) value_computed_closure (value);
  value_incref (target_val);
  return target_val;
}

/* Implement copy_closure.  */

static void *
entry_data_value_copy_closure (const struct value *v)
{
  struct value *target_val = (struct value *) value_computed_closure (v);

  value_incref (target_val);
  return target_val;
}

/* Implement free_closure.  */

static void
entry_data_value_free_closure (struct value *v)
{
  struct value *target_val = (struct value *) value_computed_closure (v);

  value_free (target_val);
}

/* Vector for methods for an entry value reference where the referenced value
   is stored in the caller.  On the first dereference use
   DW_AT_call_data_value in the caller.  */

static const struct lval_funcs entry_data_value_funcs =
{
  NULL,	/* read */
  NULL,	/* write */
  NULL,	/* indirect */
  entry_data_value_coerce_ref,
  NULL,	/* check_synthetic_pointer */
  entry_data_value_copy_closure,
  entry_data_value_free_closure
};

/* Read parameter of TYPE at (callee) FRAME's function entry.  KIND and KIND_U
   are used to match DW_AT_location at the caller's
   DW_TAG_call_site_parameter.

   Function always returns non-NULL value.  It throws NO_ENTRY_VALUE_ERROR if it
   cannot resolve the parameter for any reason.  */

static struct value *
value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
			  enum call_site_parameter_kind kind,
			  union call_site_parameter_u kind_u)
{
  struct type *checked_type = check_typedef (type);
  struct type *target_type = TYPE_TARGET_TYPE (checked_type);
  struct frame_info *caller_frame = get_prev_frame (frame);
  struct value *outer_val, *target_val, *val;
  struct call_site_parameter *parameter;
  struct dwarf2_per_cu_data *caller_per_cu;

  parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
						 &caller_per_cu);

  outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
					      type, caller_frame,
					      caller_per_cu);

  /* Check if DW_AT_call_data_value cannot be used.  If it should be
     used and it is not available do not fall back to OUTER_VAL - dereferencing
     TYPE_CODE_REF with non-entry data value would give current value - not the
     entry value.  */

  if (!TYPE_IS_REFERENCE (checked_type)
      || TYPE_TARGET_TYPE (checked_type) == NULL)
    return outer_val;

  target_val = dwarf_entry_parameter_to_value (parameter,
					       TYPE_LENGTH (target_type),
					       target_type, caller_frame,
					       caller_per_cu);

  release_value (target_val);
  val = allocate_computed_value (type, &entry_data_value_funcs,
				 target_val /* closure */);

  /* Copy the referencing pointer to the new computed value.  */
  memcpy (value_contents_raw (val), value_contents_raw (outer_val),
	  TYPE_LENGTH (checked_type));
  set_value_lazy (val, 0);

  return val;
}

/* Read parameter of TYPE at (callee) FRAME's function entry.  DATA and
   SIZE are DWARF block used to match DW_AT_location at the caller's
   DW_TAG_call_site_parameter.

   Function always returns non-NULL value.  It throws NO_ENTRY_VALUE_ERROR if it
   cannot resolve the parameter for any reason.  */

static struct value *
value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
			    const gdb_byte *block, size_t block_len)
{
  union call_site_parameter_u kind_u;

  kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
  if (kind_u.dwarf_reg != -1)
    return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
				     kind_u);

  if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
    return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
                                     kind_u);

  /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
     suppressed during normal operation.  The expression can be arbitrary if
     there is no caller-callee entry value binding expected.  */
  throw_error (NO_ENTRY_VALUE_ERROR,
	       _("DWARF-2 expression error: DW_OP_entry_value is supported "
		 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
}

struct piece_closure
{
  /* Reference count.  */
  int refc;

  /* The CU from which this closure's expression came.  */
  struct dwarf2_per_cu_data *per_cu;

  /* The number of pieces used to describe this variable.  */
  int n_pieces;

  /* The pieces themselves.  */
  struct dwarf_expr_piece *pieces;

  /* Frame ID of frame to which a register value is relative, used
     only by DWARF_VALUE_REGISTER.  */
  struct frame_id frame_id;
};

/* Allocate a closure for a value formed from separately-described
   PIECES.  */

static struct piece_closure *
allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
			int n_pieces, struct dwarf_expr_piece *pieces,
			struct frame_info *frame)
{
  struct piece_closure *c = XCNEW (struct piece_closure);
  int i;

  c->refc = 1;
  c->per_cu = per_cu;
  c->n_pieces = n_pieces;
  c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
  if (frame == NULL)
    c->frame_id = null_frame_id;
  else
    c->frame_id = get_frame_id (frame);

  memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
  for (i = 0; i < n_pieces; ++i)
    if (c->pieces[i].location == DWARF_VALUE_STACK)
      value_incref (c->pieces[i].v.value);

  return c;
}

/* Copy NBITS bits from SOURCE to DEST starting at the given bit
   offsets.  Use the bit order as specified by BITS_BIG_ENDIAN.
   Source and destination buffers must not overlap.  */

static void
copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
	      const gdb_byte *source, ULONGEST source_offset,
	      ULONGEST nbits, int bits_big_endian)
{
  unsigned int buf, avail;

  if (nbits == 0)
    return;

  if (bits_big_endian)
    {
      /* Start from the end, then work backwards.  */
      dest_offset += nbits - 1;
      dest += dest_offset / 8;
      dest_offset = 7 - dest_offset % 8;
      source_offset += nbits - 1;
      source += source_offset / 8;
      source_offset = 7 - source_offset % 8;
    }
  else
    {
      dest += dest_offset / 8;
      dest_offset %= 8;
      source += source_offset / 8;
      source_offset %= 8;
    }

  /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
     SOURCE_OFFSET bits from the source.  */
  buf = *(bits_big_endian ? source-- : source++) >> source_offset;
  buf <<= dest_offset;
  buf |= *dest & ((1 << dest_offset) - 1);

  /* NBITS: bits yet to be written; AVAIL: BUF's fill level.  */
  nbits += dest_offset;
  avail = dest_offset + 8 - source_offset;

  /* Flush 8 bits from BUF, if appropriate.  */
  if (nbits >= 8 && avail >= 8)
    {
      *(bits_big_endian ? dest-- : dest++) = buf;
      buf >>= 8;
      avail -= 8;
      nbits -= 8;
    }

  /* Copy the middle part.  */
  if (nbits >= 8)
    {
      size_t len = nbits / 8;

      /* Use a faster method for byte-aligned copies.  */
      if (avail == 0)
	{
	  if (bits_big_endian)
	    {
	      dest -= len;
	      source -= len;
	      memcpy (dest + 1, source + 1, len);
	    }
	  else
	    {
	      memcpy (dest, source, len);
	      dest += len;
	      source += len;
	    }
	}
      else
	{
	  while (len--)
	    {
	      buf |= *(bits_big_endian ? source-- : source++) << avail;
	      *(bits_big_endian ? dest-- : dest++) = buf;
	      buf >>= 8;
	    }
	}
      nbits %= 8;
    }

  /* Write the last byte.  */
  if (nbits)
    {
      if (avail < nbits)
	buf |= *source << avail;

      buf &= (1 << nbits) - 1;
      *dest = (*dest & (~0 << nbits)) | buf;
    }
}

#if GDB_SELF_TEST

namespace selftests {

/* Helper function for the unit test of copy_bitwise.  Convert NBITS bits
   out of BITS, starting at OFFS, to the respective '0'/'1'-string.  MSB0
   specifies whether to assume big endian bit numbering.  Store the
   resulting (not null-terminated) string at STR.  */

static void
bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
	     ULONGEST nbits, int msb0)
{
  unsigned int j;
  size_t i;

  for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
    {
      unsigned int ch = bits[i];
      for (; j < 8 && nbits; j++, nbits--)
	*str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
    }
}

/* Check one invocation of copy_bitwise with the given parameters.  */

static void
check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
		    const gdb_byte *source, unsigned int source_offset,
		    unsigned int nbits, int msb0)
{
  size_t len = align_up (dest_offset + nbits, 8);
  char *expected = (char *) alloca (len + 1);
  char *actual = (char *) alloca (len + 1);
  gdb_byte *buf = (gdb_byte *) alloca (len / 8);

  /* Compose a '0'/'1'-string that represents the expected result of
     copy_bitwise below:
      Bits from [0, DEST_OFFSET) are filled from DEST.
      Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
      Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.

     E.g., with:
      dest_offset: 4
      nbits:       2
      len:         8
      dest:        00000000
      source:      11111111

     We should end up with:
      buf:         00001100
                   DDDDSSDD (D=dest, S=source)
  */
  bits_to_str (expected, dest, 0, len, msb0);
  bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);

  /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
     result to a '0'/'1'-string.  */
  memcpy (buf, dest, len / 8);
  copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
  bits_to_str (actual, buf, 0, len, msb0);

  /* Compare the resulting strings.  */
  expected[len] = actual[len] = '\0';
  if (strcmp (expected, actual) != 0)
    error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
	   expected, actual, source_offset, nbits, dest_offset);
}

/* Unit test for copy_bitwise.  */

static void
copy_bitwise_tests (void)
{
  /* Data to be used as both source and destination buffers.  The two
     arrays below represent the lsb0- and msb0- encoded versions of the
     following bit string, respectively:
       00000000 00011111 11111111 01001000 10100101 11110010
     This pattern is chosen such that it contains:
     - constant 0- and 1- chunks of more than a full byte;
     - 0/1- and 1/0 transitions on all bit positions within a byte;
     - several sufficiently asymmetric bytes.
  */
  static const gdb_byte data_lsb0[] = {
    0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
  };
  static const gdb_byte data_msb0[] = {
    0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
  };

  constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
  constexpr unsigned max_nbits = 24;

  /* Try all combinations of:
      lsb0/msb0 bit order (using the respective data array)
       X [0, MAX_NBITS] copy bit width
       X feasible source offsets for the given copy bit width
       X feasible destination offsets
  */
  for (int msb0 = 0; msb0 < 2; msb0++)
    {
      const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;

      for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
	{
	  const unsigned int max_offset = data_nbits - nbits;

	  for (unsigned source_offset = 0;
	       source_offset <= max_offset;
	       source_offset++)
	    {
	      for (unsigned dest_offset = 0;
		   dest_offset <= max_offset;
		   dest_offset++)
		{
		  check_copy_bitwise (data + dest_offset / 8,
				      dest_offset % 8,
				      data + source_offset / 8,
				      source_offset % 8,
				      nbits, msb0);
		}
	    }
	}

      /* Special cases: copy all, copy nothing.  */
      check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
      check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
      check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
    }
}

} /* namespace selftests */

#endif /* GDB_SELF_TEST */

/* Return the number of bytes overlapping a contiguous chunk of N_BITS
   bits whose first bit is located at bit offset START.  */

static size_t
bits_to_bytes (ULONGEST start, ULONGEST n_bits)
{
  return (start % 8 + n_bits + 7) / 8;
}

static void
read_pieced_value (struct value *v)
{
  int i;
  LONGEST offset = 0, max_offset;
  ULONGEST bits_to_skip;
  gdb_byte *contents;
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (v);
  std::vector<gdb_byte> buffer;
  int bits_big_endian
    = gdbarch_bits_big_endian (get_type_arch (value_type (v)));

  if (value_type (v) != value_enclosing_type (v))
    internal_error (__FILE__, __LINE__,
		    _("Should not be able to create a lazy value with "
		      "an enclosing type"));

  contents = value_contents_raw (v);
  bits_to_skip = 8 * value_offset (v);
  if (value_bitsize (v))
    {
      bits_to_skip += (8 * value_offset (value_parent (v))
		       + value_bitpos (v));
      max_offset = value_bitsize (v);
    }
  else
    max_offset = 8 * TYPE_LENGTH (value_type (v));

  for (i = 0; i < c->n_pieces && offset < max_offset; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size, this_size_bits;
      long dest_offset_bits, source_offset_bits;

      /* Compute size, source, and destination offsets for copying, in
	 bits.  */
      this_size_bits = p->size;
      if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
	{
	  bits_to_skip -= this_size_bits;
	  continue;
	}
      source_offset_bits = bits_to_skip;
      this_size_bits -= bits_to_skip;
      bits_to_skip = 0;
      dest_offset_bits = offset;

      if (this_size_bits > max_offset - offset)
	this_size_bits = max_offset - offset;

      /* Copy from the source to DEST_BUFFER.  */
      switch (p->location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct frame_info *frame = frame_find_by_id (c->frame_id);
	    struct gdbarch *arch = get_frame_arch (frame);
	    int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
	    ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
	    int optim, unavail;

	    if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
		&& p->offset + p->size < reg_bits)
	      {
		/* Big-endian, and we want less than full size.  */
		source_offset_bits += reg_bits - (p->offset + p->size);
	      }
	    else
	      source_offset_bits += p->offset;

	    this_size = bits_to_bytes (source_offset_bits, this_size_bits);
	    buffer.reserve (this_size);

	    if (!get_frame_register_bytes (frame, gdb_regnum,
					   source_offset_bits / 8,
					   this_size, buffer.data (),
					   &optim, &unavail))
	      {
		if (optim)
		  mark_value_bits_optimized_out (v, offset, this_size_bits);
		if (unavail)
		  mark_value_bits_unavailable (v, offset, this_size_bits);
		break;
	      }

	    copy_bitwise (contents, dest_offset_bits,
			  buffer.data (), source_offset_bits % 8,
			  this_size_bits, bits_big_endian);
	  }
	  break;

	case DWARF_VALUE_MEMORY:
	  source_offset_bits += p->offset;
	  this_size = bits_to_bytes (source_offset_bits, this_size_bits);
	  buffer.reserve (this_size);

	  read_value_memory (v, offset,
			     p->v.mem.in_stack_memory,
			     p->v.mem.addr + source_offset_bits / 8,
			     buffer.data (), this_size);
	  copy_bitwise (contents, dest_offset_bits,
			buffer.data (), source_offset_bits % 8,
			this_size_bits, bits_big_endian);
	  break;

	case DWARF_VALUE_STACK:
	  {
	    struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
	    struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
	    ULONGEST stack_value_size_bits
	      = 8 * TYPE_LENGTH (value_type (p->v.value));

	    /* Use zeroes if piece reaches beyond stack value.  */
	    if (p->offset + p->size > stack_value_size_bits)
	      break;

	    /* Piece is anchored at least significant bit end.  */
	    if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
	      source_offset_bits += (stack_value_size_bits
				     - p->offset - p->size);
	    else
	      source_offset_bits += p->offset;

	    copy_bitwise (contents, dest_offset_bits,
			  value_contents_all (p->v.value),
			  source_offset_bits,
			  this_size_bits, bits_big_endian);
	  }
	  break;

	case DWARF_VALUE_LITERAL:
	  {
	    ULONGEST literal_size_bits = 8 * p->v.literal.length;
	    size_t n = this_size_bits;

	    /* Cut off at the end of the implicit value.  */
	    source_offset_bits += p->offset;
	    if (source_offset_bits >= literal_size_bits)
	      break;
	    if (n > literal_size_bits - source_offset_bits)
	      n = literal_size_bits - source_offset_bits;

	    copy_bitwise (contents, dest_offset_bits,
			  p->v.literal.data, source_offset_bits,
			  n, bits_big_endian);
	  }
	  break;

	  /* These bits show up as zeros -- but do not cause the value
	     to be considered optimized-out.  */
	case DWARF_VALUE_IMPLICIT_POINTER:
	  break;

	case DWARF_VALUE_OPTIMIZED_OUT:
	  mark_value_bits_optimized_out (v, offset, this_size_bits);
	  break;

	default:
	  internal_error (__FILE__, __LINE__, _("invalid location type"));
	}

      offset += this_size_bits;
    }
}

static void
write_pieced_value (struct value *to, struct value *from)
{
  int i;
  ULONGEST bits_to_skip;
  LONGEST offset = 0, max_offset;
  const gdb_byte *contents;
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (to);
  std::vector<gdb_byte> buffer;
  int bits_big_endian
    = gdbarch_bits_big_endian (get_type_arch (value_type (to)));

  contents = value_contents (from);
  bits_to_skip = 8 * value_offset (to);
  if (value_bitsize (to))
    {
      bits_to_skip += (8 * value_offset (value_parent (to))
		       + value_bitpos (to));
      /* Use the least significant bits of FROM.  */
      if (gdbarch_byte_order (get_type_arch (value_type (from)))
	  == BFD_ENDIAN_BIG)
	{
	  max_offset = 8 * TYPE_LENGTH (value_type (from));
	  offset = max_offset - value_bitsize (to);
	}
      else
	max_offset = value_bitsize (to);
   }
  else
    max_offset = 8 * TYPE_LENGTH (value_type (to));

  for (i = 0; i < c->n_pieces && offset < max_offset; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size_bits, this_size;
      long dest_offset_bits, source_offset_bits;

      this_size_bits = p->size;
      if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
	{
	  bits_to_skip -= this_size_bits;
	  continue;
	}
      dest_offset_bits = bits_to_skip;
      this_size_bits -= bits_to_skip;
      bits_to_skip = 0;
      source_offset_bits = offset;

      if (this_size_bits > max_offset - offset)
	this_size_bits = max_offset - offset;

      switch (p->location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct frame_info *frame = frame_find_by_id (c->frame_id);
	    struct gdbarch *arch = get_frame_arch (frame);
	    int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
	    ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);

	    if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
		&& p->offset + p->size < reg_bits)
	      {
		/* Big-endian, and we want less than full size.  */
		dest_offset_bits += reg_bits - (p->offset + p->size);
	      }
	    else
	      dest_offset_bits += p->offset;

	    this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
	    buffer.reserve (this_size);

	    if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
	      {
		/* Data is copied non-byte-aligned into the register.
		   Need some bits from original register value.  */
		int optim, unavail;

		if (!get_frame_register_bytes (frame, gdb_regnum,
					       dest_offset_bits / 8,
					       this_size, buffer.data (),
					       &optim, &unavail))
		  {
		    if (optim)
		      throw_error (OPTIMIZED_OUT_ERROR,
				   _("Can't do read-modify-write to "
				     "update bitfield; containing word "
				     "has been optimized out"));
		    if (unavail)
		      throw_error (NOT_AVAILABLE_ERROR,
				   _("Can't do read-modify-write to update "
				     "bitfield; containing word "
				     "is unavailable"));
		  }
	      }

	    copy_bitwise (buffer.data (), dest_offset_bits % 8,
			  contents, source_offset_bits,
			  this_size_bits, bits_big_endian);
	    put_frame_register_bytes (frame, gdb_regnum,
				      dest_offset_bits / 8,
				      this_size, buffer.data ());
	  }
	  break;
	case DWARF_VALUE_MEMORY:
	  {
	    dest_offset_bits += p->offset;

	    CORE_ADDR start_addr = p->v.mem.addr + dest_offset_bits / 8;

	    if (dest_offset_bits % 8 == 0 && this_size_bits % 8 == 0
		&& source_offset_bits % 8 == 0)
	      {
		/* Everything is byte-aligned; no buffer needed.  */
		write_memory (start_addr,
			      contents + source_offset_bits / 8,
			      this_size_bits / 8);
		break;
	      }

	    this_size = bits_to_bytes (dest_offset_bits, this_size_bits);
	    buffer.reserve (this_size);

	    if (dest_offset_bits % 8 != 0 || this_size_bits % 8 != 0)
	      {
		if (this_size <= 8)
		  {
		    /* Perform a single read for small sizes.  */
		    read_memory (start_addr, buffer.data (), this_size);
		  }
		else
		  {
		    /* Only the first and last bytes can possibly have any
		       bits reused.  */
		    read_memory (start_addr, buffer.data (), 1);
		    read_memory (start_addr + this_size - 1,
				 &buffer[this_size - 1], 1);
		  }
	      }

	    copy_bitwise (buffer.data (), dest_offset_bits % 8,
			  contents, source_offset_bits,
			  this_size_bits, bits_big_endian);
	    write_memory (start_addr, buffer.data (), this_size);
	  }
	  break;
	default:
	  mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
	  break;
	}
      offset += this_size_bits;
    }
}

/* An implementation of an lval_funcs method to see whether a value is
   a synthetic pointer.  */

static int
check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
				int bit_length)
{
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (value);
  int i;

  bit_offset += 8 * value_offset (value);
  if (value_bitsize (value))
    bit_offset += value_bitpos (value);

  for (i = 0; i < c->n_pieces && bit_length > 0; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size_bits = p->size;

      if (bit_offset > 0)
	{
	  if (bit_offset >= this_size_bits)
	    {
	      bit_offset -= this_size_bits;
	      continue;
	    }

	  bit_length -= this_size_bits - bit_offset;
	  bit_offset = 0;
	}
      else
	bit_length -= this_size_bits;

      if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
	return 0;
    }

  return 1;
}

/* A wrapper function for get_frame_address_in_block.  */

static CORE_ADDR
get_frame_address_in_block_wrapper (void *baton)
{
  return get_frame_address_in_block ((struct frame_info *) baton);
}

/* Fetch a DW_AT_const_value through a synthetic pointer.  */

static struct value *
fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
					  struct dwarf2_per_cu_data *per_cu,
					  struct type *type)
{
  struct value *result = NULL;
  struct obstack temp_obstack;
  struct cleanup *cleanup;
  const gdb_byte *bytes;
  LONGEST len;

  obstack_init (&temp_obstack);
  cleanup = make_cleanup_obstack_free (&temp_obstack);
  bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);

  if (bytes != NULL)
    {
      if (byte_offset >= 0
	  && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
	{
	  bytes += byte_offset;
	  result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
	}
      else
	invalid_synthetic_pointer ();
    }
  else
    result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));

  do_cleanups (cleanup);

  return result;
}

/* Fetch the value pointed to by a synthetic pointer.  */

static struct value *
indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
			    struct dwarf2_per_cu_data *per_cu,
			    struct frame_info *frame, struct type *type)
{
  /* Fetch the location expression of the DIE we're pointing to.  */
  struct dwarf2_locexpr_baton baton
    = dwarf2_fetch_die_loc_sect_off (die, per_cu,
				     get_frame_address_in_block_wrapper, frame);

  /* Get type of pointed-to DIE.  */
  struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
  if (orig_type == NULL)
    invalid_synthetic_pointer ();

  /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
     resulting value.  Otherwise, it may have a DW_AT_const_value instead,
     or it may've been optimized out.  */
  if (baton.data != NULL)
    return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
					  baton.size, baton.per_cu,
					  TYPE_TARGET_TYPE (type),
					  byte_offset);
  else
    return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
						     type);
}

/* An implementation of an lval_funcs method to indirect through a
   pointer.  This handles the synthetic pointer case when needed.  */

static struct value *
indirect_pieced_value (struct value *value)
{
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (value);
  struct type *type;
  struct frame_info *frame;
  struct dwarf2_locexpr_baton baton;
  int i, bit_length;
  LONGEST bit_offset;
  struct dwarf_expr_piece *piece = NULL;
  LONGEST byte_offset;
  enum bfd_endian byte_order;

  type = check_typedef (value_type (value));
  if (TYPE_CODE (type) != TYPE_CODE_PTR)
    return NULL;

  bit_length = 8 * TYPE_LENGTH (type);
  bit_offset = 8 * value_offset (value);
  if (value_bitsize (value))
    bit_offset += value_bitpos (value);

  for (i = 0; i < c->n_pieces && bit_length > 0; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size_bits = p->size;

      if (bit_offset > 0)
	{
	  if (bit_offset >= this_size_bits)
	    {
	      bit_offset -= this_size_bits;
	      continue;
	    }

	  bit_length -= this_size_bits - bit_offset;
	  bit_offset = 0;
	}
      else
	bit_length -= this_size_bits;

      if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
	return NULL;

      if (bit_length != 0)
	error (_("Invalid use of DW_OP_implicit_pointer"));

      piece = p;
      break;
    }

  gdb_assert (piece != NULL);
  frame = get_selected_frame (_("No frame selected."));

  /* This is an offset requested by GDB, such as value subscripts.
     However, due to how synthetic pointers are implemented, this is
     always presented to us as a pointer type.  This means we have to
     sign-extend it manually as appropriate.  Use raw
     extract_signed_integer directly rather than value_as_address and
     sign extend afterwards on architectures that would need it
     (mostly everywhere except MIPS, which has signed addresses) as
     the later would go through gdbarch_pointer_to_address and thus
     return a CORE_ADDR with high bits set on architectures that
     encode address spaces and other things in CORE_ADDR.  */
  byte_order = gdbarch_byte_order (get_frame_arch (frame));
  byte_offset = extract_signed_integer (value_contents (value),
					TYPE_LENGTH (type), byte_order);
  byte_offset += piece->v.ptr.offset;

  return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
				     byte_offset, c->per_cu,
				     frame, type);
}

/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
   references.  */

static struct value *
coerce_pieced_ref (const struct value *value)
{
  struct type *type = check_typedef (value_type (value));

  if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
				    TARGET_CHAR_BIT * TYPE_LENGTH (type)))
    {
      const struct piece_closure *closure
	= (struct piece_closure *) value_computed_closure (value);
      struct frame_info *frame
	= get_selected_frame (_("No frame selected."));

      /* gdb represents synthetic pointers as pieced values with a single
	 piece.  */
      gdb_assert (closure != NULL);
      gdb_assert (closure->n_pieces == 1);

      return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
					 closure->pieces->v.ptr.offset,
					 closure->per_cu, frame, type);
    }
  else
    {
      /* Else: not a synthetic reference; do nothing.  */
      return NULL;
    }
}

static void *
copy_pieced_value_closure (const struct value *v)
{
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (v);
  
  ++c->refc;
  return c;
}

static void
free_pieced_value_closure (struct value *v)
{
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (v);

  --c->refc;
  if (c->refc == 0)
    {
      int i;

      for (i = 0; i < c->n_pieces; ++i)
	if (c->pieces[i].location == DWARF_VALUE_STACK)
	  value_free (c->pieces[i].v.value);

      xfree (c->pieces);
      xfree (c);
    }
}

/* Functions for accessing a variable described by DW_OP_piece.  */
static const struct lval_funcs pieced_value_funcs = {
  read_pieced_value,
  write_pieced_value,
  indirect_pieced_value,
  coerce_pieced_ref,
  check_pieced_synthetic_pointer,
  copy_pieced_value_closure,
  free_pieced_value_closure
};

/* Evaluate a location description, starting at DATA and with length
   SIZE, to find the current location of variable of TYPE in the
   context of FRAME.  If SUBOBJ_TYPE is non-NULL, return instead the
   location of the subobject of type SUBOBJ_TYPE at byte offset
   SUBOBJ_BYTE_OFFSET within the variable of type TYPE.  */

static struct value *
dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
			       const gdb_byte *data, size_t size,
			       struct dwarf2_per_cu_data *per_cu,
			       struct type *subobj_type,
			       LONGEST subobj_byte_offset)
{
  struct value *retval;
  struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);

  if (subobj_type == NULL)
    {
      subobj_type = type;
      subobj_byte_offset = 0;
    }
  else if (subobj_byte_offset < 0)
    invalid_synthetic_pointer ();

  if (size == 0)
    return allocate_optimized_out_value (subobj_type);

  dwarf_evaluate_loc_desc ctx;
  ctx.frame = frame;
  ctx.per_cu = per_cu;
  ctx.obj_address = 0;

  scoped_value_mark free_values;

  ctx.gdbarch = get_objfile_arch (objfile);
  ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
  ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
  ctx.offset = dwarf2_per_cu_text_offset (per_cu);

  TRY
    {
      ctx.eval (data, size);
    }
  CATCH (ex, RETURN_MASK_ERROR)
    {
      if (ex.error == NOT_AVAILABLE_ERROR)
	{
	  free_values.free_to_mark ();
	  retval = allocate_value (subobj_type);
	  mark_value_bytes_unavailable (retval, 0,
					TYPE_LENGTH (subobj_type));
	  return retval;
	}
      else if (ex.error == NO_ENTRY_VALUE_ERROR)
	{
	  if (entry_values_debug)
	    exception_print (gdb_stdout, ex);
	  free_values.free_to_mark ();
	  return allocate_optimized_out_value (subobj_type);
	}
      else
	throw_exception (ex);
    }
  END_CATCH

  if (ctx.num_pieces > 0)
    {
      struct piece_closure *c;
      ULONGEST bit_size = 0;
      int i;

      for (i = 0; i < ctx.num_pieces; ++i)
	bit_size += ctx.pieces[i].size;
      if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
	invalid_synthetic_pointer ();

      c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
				  frame);
      /* We must clean up the value chain after creating the piece
	 closure but before allocating the result.  */
      free_values.free_to_mark ();
      retval = allocate_computed_value (subobj_type,
					&pieced_value_funcs, c);
      set_value_offset (retval, subobj_byte_offset);
    }
  else
    {
      switch (ctx.location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct gdbarch *arch = get_frame_arch (frame);
	    int dwarf_regnum
	      = longest_to_int (value_as_long (ctx.fetch (0)));
	    int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);

	    if (subobj_byte_offset != 0)
	      error (_("cannot use offset on synthetic pointer to register"));
	    free_values.free_to_mark ();
	    retval = value_from_register (subobj_type, gdb_regnum, frame);
	    if (value_optimized_out (retval))
	      {
		struct value *tmp;

		/* This means the register has undefined value / was
		   not saved.  As we're computing the location of some
		   variable etc. in the program, not a value for
		   inspecting a register ($pc, $sp, etc.), return a
		   generic optimized out value instead, so that we show
		   <optimized out> instead of <not saved>.  */
		tmp = allocate_value (subobj_type);
		value_contents_copy (tmp, 0, retval, 0,
				     TYPE_LENGTH (subobj_type));
		retval = tmp;
	      }
	  }
	  break;

	case DWARF_VALUE_MEMORY:
	  {
	    struct type *ptr_type;
	    CORE_ADDR address = ctx.fetch_address (0);
	    int in_stack_memory = ctx.fetch_in_stack_memory (0);

	    /* DW_OP_deref_size (and possibly other operations too) may
	       create a pointer instead of an address.  Ideally, the
	       pointer to address conversion would be performed as part
	       of those operations, but the type of the object to
	       which the address refers is not known at the time of
	       the operation.  Therefore, we do the conversion here
	       since the type is readily available.  */

	    switch (TYPE_CODE (subobj_type))
	      {
		case TYPE_CODE_FUNC:
		case TYPE_CODE_METHOD:
		  ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
		  break;
		default:
		  ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
		  break;
	      }
	    address = value_as_address (value_from_pointer (ptr_type, address));

	    free_values.free_to_mark ();
	    retval = value_at_lazy (subobj_type,
				    address + subobj_byte_offset);
	    if (in_stack_memory)
	      set_value_stack (retval, 1);
	  }
	  break;

	case DWARF_VALUE_STACK:
	  {
	    struct value *value = ctx.fetch (0);
	    size_t n = TYPE_LENGTH (value_type (value));
	    size_t len = TYPE_LENGTH (subobj_type);
	    size_t max = TYPE_LENGTH (type);
	    struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
	    struct cleanup *cleanup;

	    if (subobj_byte_offset + len > max)
	      invalid_synthetic_pointer ();

	    /* Preserve VALUE because we are going to free values back
	       to the mark, but we still need the value contents
	       below.  */
	    value_incref (value);
	    free_values.free_to_mark ();
	    cleanup = make_cleanup_value_free (value);

	    retval = allocate_value (subobj_type);

	    /* The given offset is relative to the actual object.  */
	    if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
	      subobj_byte_offset += n - max;

	    memcpy (value_contents_raw (retval),
		    value_contents_all (value) + subobj_byte_offset, len);

	    do_cleanups (cleanup);
	  }
	  break;

	case DWARF_VALUE_LITERAL:
	  {
	    bfd_byte *contents;
	    size_t n = TYPE_LENGTH (subobj_type);

	    if (subobj_byte_offset + n > ctx.len)
	      invalid_synthetic_pointer ();

	    free_values.free_to_mark ();
	    retval = allocate_value (subobj_type);
	    contents = value_contents_raw (retval);
	    memcpy (contents, ctx.data + subobj_byte_offset, n);
	  }
	  break;

	case DWARF_VALUE_OPTIMIZED_OUT:
	  free_values.free_to_mark ();
	  retval = allocate_optimized_out_value (subobj_type);
	  break;

	  /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
	     operation by execute_stack_op.  */
	case DWARF_VALUE_IMPLICIT_POINTER:
	  /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
	     it can only be encountered when making a piece.  */
	default:
	  internal_error (__FILE__, __LINE__, _("invalid location type"));
	}
    }

  set_value_initialized (retval, ctx.initialized);

  return retval;
}

/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
   passes 0 as the byte_offset.  */

struct value *
dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
			  const gdb_byte *data, size_t size,
			  struct dwarf2_per_cu_data *per_cu)
{
  return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
					NULL, 0);
}

/* Evaluates a dwarf expression and stores the result in VAL, expecting
   that the dwarf expression only produces a single CORE_ADDR.  FRAME is the
   frame in which the expression is evaluated.  ADDR is a context (location of
   a variable) and might be needed to evaluate the location expression.
   Returns 1 on success, 0 otherwise.   */

static int
dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
			   struct frame_info *frame,
			   CORE_ADDR addr,
			   CORE_ADDR *valp)
{
  struct objfile *objfile;

  if (dlbaton == NULL || dlbaton->size == 0)
    return 0;

  dwarf_evaluate_loc_desc ctx;

  ctx.frame = frame;
  ctx.per_cu = dlbaton->per_cu;
  ctx.obj_address = addr;

  objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);

  ctx.gdbarch = get_objfile_arch (objfile);
  ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
  ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);

  ctx.eval (dlbaton->data, dlbaton->size);

  switch (ctx.location)
    {
    case DWARF_VALUE_REGISTER:
    case DWARF_VALUE_MEMORY:
    case DWARF_VALUE_STACK:
      *valp = ctx.fetch_address (0);
      if (ctx.location == DWARF_VALUE_REGISTER)
	*valp = ctx.read_addr_from_reg (*valp);
      return 1;
    case DWARF_VALUE_LITERAL:
      *valp = extract_signed_integer (ctx.data, ctx.len,
				      gdbarch_byte_order (ctx.gdbarch));
      return 1;
      /* Unsupported dwarf values.  */
    case DWARF_VALUE_OPTIMIZED_OUT:
    case DWARF_VALUE_IMPLICIT_POINTER:
      break;
    }

  return 0;
}

/* See dwarf2loc.h.  */

int
dwarf2_evaluate_property (const struct dynamic_prop *prop,
			  struct frame_info *frame,
			  struct property_addr_info *addr_stack,
			  CORE_ADDR *value)
{
  if (prop == NULL)
    return 0;

  if (frame == NULL && has_stack_frames ())
    frame = get_selected_frame (NULL);

  switch (prop->kind)
    {
    case PROP_LOCEXPR:
      {
	const struct dwarf2_property_baton *baton
	  = (const struct dwarf2_property_baton *) prop->data.baton;

	if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
				       addr_stack ? addr_stack->addr : 0,
				       value))
	  {
	    if (baton->referenced_type)
	      {
		struct value *val = value_at (baton->referenced_type, *value);

		*value = value_as_address (val);
	      }
	    return 1;
	  }
      }
      break;

    case PROP_LOCLIST:
      {
	struct dwarf2_property_baton *baton
	  = (struct dwarf2_property_baton *) prop->data.baton;
	CORE_ADDR pc = get_frame_address_in_block (frame);
	const gdb_byte *data;
	struct value *val;
	size_t size;

	data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
	if (data != NULL)
	  {
	    val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
					    size, baton->loclist.per_cu);
	    if (!value_optimized_out (val))
	      {
		*value = value_as_address (val);
		return 1;
	      }
	  }
      }
      break;

    case PROP_CONST:
      *value = prop->data.const_val;
      return 1;

    case PROP_ADDR_OFFSET:
      {
	struct dwarf2_property_baton *baton
	  = (struct dwarf2_property_baton *) prop->data.baton;
	struct property_addr_info *pinfo;
	struct value *val;

	for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
	  if (pinfo->type == baton->referenced_type)
	    break;
	if (pinfo == NULL)
	  error (_("cannot find reference address for offset property"));
	if (pinfo->valaddr != NULL)
	  val = value_from_contents
		  (baton->offset_info.type,
		   pinfo->valaddr + baton->offset_info.offset);
	else
	  val = value_at (baton->offset_info.type,
			  pinfo->addr + baton->offset_info.offset);
	*value = value_as_address (val);
	return 1;
      }
    }

  return 0;
}

/* See dwarf2loc.h.  */

void
dwarf2_compile_property_to_c (string_file &stream,
			      const char *result_name,
			      struct gdbarch *gdbarch,
			      unsigned char *registers_used,
			      const struct dynamic_prop *prop,
			      CORE_ADDR pc,
			      struct symbol *sym)
{
  struct dwarf2_property_baton *baton
    = (struct dwarf2_property_baton *) prop->data.baton;
  const gdb_byte *data;
  size_t size;
  struct dwarf2_per_cu_data *per_cu;

  if (prop->kind == PROP_LOCEXPR)
    {
      data = baton->locexpr.data;
      size = baton->locexpr.size;
      per_cu = baton->locexpr.per_cu;
    }
  else
    {
      gdb_assert (prop->kind == PROP_LOCLIST);

      data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
      per_cu = baton->loclist.per_cu;
    }

  compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
			     gdbarch, registers_used,
			     dwarf2_per_cu_addr_size (per_cu),
			     data, data + size, per_cu);
}


/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs.  */

class symbol_needs_eval_context : public dwarf_expr_context
{
 public:

  enum symbol_needs_kind needs;
  struct dwarf2_per_cu_data *per_cu;

  /* Reads from registers do require a frame.  */
  CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
  {
    needs = SYMBOL_NEEDS_FRAME;
    return 1;
  }

  /* "get_reg_value" callback: Reads from registers do require a
     frame.  */

  struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
  {
    needs = SYMBOL_NEEDS_FRAME;
    return value_zero (type, not_lval);
  }

  /* Reads from memory do not require a frame.  */
  void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
  {
    memset (buf, 0, len);
  }

  /* Frame-relative accesses do require a frame.  */
  void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
  {
    static gdb_byte lit0 = DW_OP_lit0;

    *start = &lit0;
    *length = 1;

    needs = SYMBOL_NEEDS_FRAME;
  }

  /* CFA accesses require a frame.  */
  CORE_ADDR get_frame_cfa () OVERRIDE
  {
    needs = SYMBOL_NEEDS_FRAME;
    return 1;
  }

  CORE_ADDR get_frame_pc () OVERRIDE
  {
    needs = SYMBOL_NEEDS_FRAME;
    return 1;
  }

  /* Thread-local accesses require registers, but not a frame.  */
  CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
  {
    if (needs <= SYMBOL_NEEDS_REGISTERS)
      needs = SYMBOL_NEEDS_REGISTERS;
    return 1;
  }

  /* Helper interface of per_cu_dwarf_call for
     dwarf2_loc_desc_get_symbol_read_needs.  */

  void dwarf_call (cu_offset die_offset) OVERRIDE
  {
    per_cu_dwarf_call (this, die_offset, per_cu);
  }

  /* DW_OP_entry_value accesses require a caller, therefore a
     frame.  */

  void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
				   union call_site_parameter_u kind_u,
				   int deref_size) OVERRIDE
  {
    needs = SYMBOL_NEEDS_FRAME;

    /* The expression may require some stub values on DWARF stack.  */
    push_address (0, 0);
  }

  /* DW_OP_GNU_addr_index doesn't require a frame.  */

   CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
   {
     /* Nothing to do.  */
     return 1;
   }

   /* DW_OP_push_object_address has a frame already passed through.  */

   CORE_ADDR get_object_address () OVERRIDE
   {
     /* Nothing to do.  */
     return 1;
   }
};

/* Compute the correct symbol_needs_kind value for the location
   expression at DATA (length SIZE).  */

static enum symbol_needs_kind
dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
				       struct dwarf2_per_cu_data *per_cu)
{
  int in_reg;
  struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);

  scoped_value_mark free_values;

  symbol_needs_eval_context ctx;

  ctx.needs = SYMBOL_NEEDS_NONE;
  ctx.per_cu = per_cu;
  ctx.gdbarch = get_objfile_arch (objfile);
  ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
  ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
  ctx.offset = dwarf2_per_cu_text_offset (per_cu);

  ctx.eval (data, size);

  in_reg = ctx.location == DWARF_VALUE_REGISTER;

  if (ctx.num_pieces > 0)
    {
      int i;

      /* If the location has several pieces, and any of them are in
         registers, then we will need a frame to fetch them from.  */
      for (i = 0; i < ctx.num_pieces; i++)
        if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
          in_reg = 1;
    }

  if (in_reg)
    ctx.needs = SYMBOL_NEEDS_FRAME;
  return ctx.needs;
}

/* A helper function that throws an unimplemented error mentioning a
   given DWARF operator.  */

static void
unimplemented (unsigned int op)
{
  const char *name = get_DW_OP_name (op);

  if (name)
    error (_("DWARF operator %s cannot be translated to an agent expression"),
	   name);
  else
    error (_("Unknown DWARF operator 0x%02x cannot be translated "
	     "to an agent expression"),
	   op);
}

/* See dwarf2loc.h.

   This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
   can issue a complaint, which is better than having every target's
   implementation of dwarf2_reg_to_regnum do it.  */

int
dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
{
  int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);

  if (reg == -1)
    {
      complaint (&symfile_complaints,
		 _("bad DWARF register number %d"), dwarf_reg);
    }
  return reg;
}

/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
   Throw an error because DWARF_REG is bad.  */

static void
throw_bad_regnum_error (ULONGEST dwarf_reg)
{
  /* Still want to print -1 as "-1".
     We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
     but that's overkill for now.  */
  if ((int) dwarf_reg == dwarf_reg)
    error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
  error (_("Unable to access DWARF register number %s"),
	 pulongest (dwarf_reg));
}

/* See dwarf2loc.h.  */

int
dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
{
  int reg;

  if (dwarf_reg > INT_MAX)
    throw_bad_regnum_error (dwarf_reg);
  /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
     bad, but that's ok.  */
  reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
  if (reg == -1)
    throw_bad_regnum_error (dwarf_reg);
  return reg;
}

/* A helper function that emits an access to memory.  ARCH is the
   target architecture.  EXPR is the expression which we are building.
   NBITS is the number of bits we want to read.  This emits the
   opcodes needed to read the memory and then extract the desired
   bits.  */

static void
access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
{
  ULONGEST nbytes = (nbits + 7) / 8;

  gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));

  if (expr->tracing)
    ax_trace_quick (expr, nbytes);

  if (nbits <= 8)
    ax_simple (expr, aop_ref8);
  else if (nbits <= 16)
    ax_simple (expr, aop_ref16);
  else if (nbits <= 32)
    ax_simple (expr, aop_ref32);
  else
    ax_simple (expr, aop_ref64);

  /* If we read exactly the number of bytes we wanted, we're done.  */
  if (8 * nbytes == nbits)
    return;

  if (gdbarch_bits_big_endian (arch))
    {
      /* On a bits-big-endian machine, we want the high-order
	 NBITS.  */
      ax_const_l (expr, 8 * nbytes - nbits);
      ax_simple (expr, aop_rsh_unsigned);
    }
  else
    {
      /* On a bits-little-endian box, we want the low-order NBITS.  */
      ax_zero_ext (expr, nbits);
    }
}

/* A helper function to return the frame's PC.  */

static CORE_ADDR
get_ax_pc (void *baton)
{
  struct agent_expr *expr = (struct agent_expr *) baton;

  return expr->scope;
}

/* Compile a DWARF location expression to an agent expression.
   
   EXPR is the agent expression we are building.
   LOC is the agent value we modify.
   ARCH is the architecture.
   ADDR_SIZE is the size of addresses, in bytes.
   OP_PTR is the start of the location expression.
   OP_END is one past the last byte of the location expression.
   
   This will throw an exception for various kinds of errors -- for
   example, if the expression cannot be compiled, or if the expression
   is invalid.  */

void
dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
			   struct gdbarch *arch, unsigned int addr_size,
			   const gdb_byte *op_ptr, const gdb_byte *op_end,
			   struct dwarf2_per_cu_data *per_cu)
{
  int i;
  std::vector<int> dw_labels, patches;
  const gdb_byte * const base = op_ptr;
  const gdb_byte *previous_piece = op_ptr;
  enum bfd_endian byte_order = gdbarch_byte_order (arch);
  ULONGEST bits_collected = 0;
  unsigned int addr_size_bits = 8 * addr_size;
  int bits_big_endian = gdbarch_bits_big_endian (arch);

  std::vector<int> offsets (op_end - op_ptr, -1);

  /* By default we are making an address.  */
  loc->kind = axs_lvalue_memory;

  while (op_ptr < op_end)
    {
      enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
      uint64_t uoffset, reg;
      int64_t offset;
      int i;

      offsets[op_ptr - base] = expr->len;
      ++op_ptr;

      /* Our basic approach to code generation is to map DWARF
	 operations directly to AX operations.  However, there are
	 some differences.

	 First, DWARF works on address-sized units, but AX always uses
	 LONGEST.  For most operations we simply ignore this
	 difference; instead we generate sign extensions as needed
	 before division and comparison operations.  It would be nice
	 to omit the sign extensions, but there is no way to determine
	 the size of the target's LONGEST.  (This code uses the size
	 of the host LONGEST in some cases -- that is a bug but it is
	 difficult to fix.)

	 Second, some DWARF operations cannot be translated to AX.
	 For these we simply fail.  See
	 http://sourceware.org/bugzilla/show_bug.cgi?id=11662.  */
      switch (op)
	{
	case DW_OP_lit0:
	case DW_OP_lit1:
	case DW_OP_lit2:
	case DW_OP_lit3:
	case DW_OP_lit4:
	case DW_OP_lit5:
	case DW_OP_lit6:
	case DW_OP_lit7:
	case DW_OP_lit8:
	case DW_OP_lit9:
	case DW_OP_lit10:
	case DW_OP_lit11:
	case DW_OP_lit12:
	case DW_OP_lit13:
	case DW_OP_lit14:
	case DW_OP_lit15:
	case DW_OP_lit16:
	case DW_OP_lit17:
	case DW_OP_lit18:
	case DW_OP_lit19:
	case DW_OP_lit20:
	case DW_OP_lit21:
	case DW_OP_lit22:
	case DW_OP_lit23:
	case DW_OP_lit24:
	case DW_OP_lit25:
	case DW_OP_lit26:
	case DW_OP_lit27:
	case DW_OP_lit28:
	case DW_OP_lit29:
	case DW_OP_lit30:
	case DW_OP_lit31:
	  ax_const_l (expr, op - DW_OP_lit0);
	  break;

	case DW_OP_addr:
	  uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
	  op_ptr += addr_size;
	  /* Some versions of GCC emit DW_OP_addr before
	     DW_OP_GNU_push_tls_address.  In this case the value is an
	     index, not an address.  We don't support things like
	     branching between the address and the TLS op.  */
	  if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
	    uoffset += dwarf2_per_cu_text_offset (per_cu);
	  ax_const_l (expr, uoffset);
	  break;

	case DW_OP_const1u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
	  op_ptr += 1;
	  break;
	case DW_OP_const1s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
	  op_ptr += 1;
	  break;
	case DW_OP_const2u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
	  op_ptr += 2;
	  break;
	case DW_OP_const2s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
	  op_ptr += 2;
	  break;
	case DW_OP_const4u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
	  op_ptr += 4;
	  break;
	case DW_OP_const4s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
	  op_ptr += 4;
	  break;
	case DW_OP_const8u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
	  op_ptr += 8;
	  break;
	case DW_OP_const8s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
	  op_ptr += 8;
	  break;
	case DW_OP_constu:
	  op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
	  ax_const_l (expr, uoffset);
	  break;
	case DW_OP_consts:
	  op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
	  ax_const_l (expr, offset);
	  break;

	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
	  loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
	  loc->kind = axs_lvalue_register;
	  break;

	case DW_OP_regx:
	  op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
	  loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
	  loc->kind = axs_lvalue_register;
	  break;

	case DW_OP_implicit_value:
	  {
	    uint64_t len;

	    op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
	    if (op_ptr + len > op_end)
	      error (_("DW_OP_implicit_value: too few bytes available."));
	    if (len > sizeof (ULONGEST))
	      error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
		     (int) len);

	    ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
							byte_order));
	    op_ptr += len;
	    dwarf_expr_require_composition (op_ptr, op_end,
					    "DW_OP_implicit_value");

	    loc->kind = axs_rvalue;
	  }
	  break;

	case DW_OP_stack_value:
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
	  loc->kind = axs_rvalue;
	  break;

	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	  op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
	  i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
	  ax_reg (expr, i);
	  if (offset != 0)
	    {
	      ax_const_l (expr, offset);
	      ax_simple (expr, aop_add);
	    }
	  break;
	case DW_OP_bregx:
	  {
	    op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
	    op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
	    i = dwarf_reg_to_regnum_or_error (arch, reg);
	    ax_reg (expr, i);
	    if (offset != 0)
	      {
		ax_const_l (expr, offset);
		ax_simple (expr, aop_add);
	      }
	  }
	  break;
	case DW_OP_fbreg:
	  {
	    const gdb_byte *datastart;
	    size_t datalen;
	    const struct block *b;
	    struct symbol *framefunc;

	    b = block_for_pc (expr->scope);

	    if (!b)
	      error (_("No block found for address"));

	    framefunc = block_linkage_function (b);

	    if (!framefunc)
	      error (_("No function found for block"));

	    func_get_frame_base_dwarf_block (framefunc, expr->scope,
					     &datastart, &datalen);

	    op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
	    dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
				       datastart + datalen, per_cu);
	    if (loc->kind == axs_lvalue_register)
	      require_rvalue (expr, loc);

	    if (offset != 0)
	      {
		ax_const_l (expr, offset);
		ax_simple (expr, aop_add);
	      }

	    loc->kind = axs_lvalue_memory;
	  }
	  break;

	case DW_OP_dup:
	  ax_simple (expr, aop_dup);
	  break;

	case DW_OP_drop:
	  ax_simple (expr, aop_pop);
	  break;

	case DW_OP_pick:
	  offset = *op_ptr++;
	  ax_pick (expr, offset);
	  break;
	  
	case DW_OP_swap:
	  ax_simple (expr, aop_swap);
	  break;

	case DW_OP_over:
	  ax_pick (expr, 1);
	  break;

	case DW_OP_rot:
	  ax_simple (expr, aop_rot);
	  break;

	case DW_OP_deref:
	case DW_OP_deref_size:
	  {
	    int size;

	    if (op == DW_OP_deref_size)
	      size = *op_ptr++;
	    else
	      size = addr_size;

	    if (size != 1 && size != 2 && size != 4 && size != 8)
	      error (_("Unsupported size %d in %s"),
		     size, get_DW_OP_name (op));
	    access_memory (arch, expr, size * TARGET_CHAR_BIT);
	  }
	  break;

	case DW_OP_abs:
	  /* Sign extend the operand.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_dup);
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  i = ax_goto (expr, aop_if_goto);
	  /* We have to emit 0 - X.  */
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_sub);
	  ax_label (expr, i, expr->len);
	  break;

	case DW_OP_neg:
	  /* No need to sign extend here.  */
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_sub);
	  break;

	case DW_OP_not:
	  /* Sign extend the operand.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_bit_not);
	  break;

	case DW_OP_plus_uconst:
	  op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
	  /* It would be really weird to emit `DW_OP_plus_uconst 0',
	     but we micro-optimize anyhow.  */
	  if (reg != 0)
	    {
	      ax_const_l (expr, reg);
	      ax_simple (expr, aop_add);
	    }
	  break;

	case DW_OP_and:
	  ax_simple (expr, aop_bit_and);
	  break;

	case DW_OP_div:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_div_signed);
	  break;

	case DW_OP_minus:
	  ax_simple (expr, aop_sub);
	  break;

	case DW_OP_mod:
	  ax_simple (expr, aop_rem_unsigned);
	  break;

	case DW_OP_mul:
	  ax_simple (expr, aop_mul);
	  break;

	case DW_OP_or:
	  ax_simple (expr, aop_bit_or);
	  break;

	case DW_OP_plus:
	  ax_simple (expr, aop_add);
	  break;

	case DW_OP_shl:
	  ax_simple (expr, aop_lsh);
	  break;

	case DW_OP_shr:
	  ax_simple (expr, aop_rsh_unsigned);
	  break;

	case DW_OP_shra:
	  ax_simple (expr, aop_rsh_signed);
	  break;

	case DW_OP_xor:
	  ax_simple (expr, aop_bit_xor);
	  break;

	case DW_OP_le:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* Note no swap here: A <= B is !(B < A).  */
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_ge:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  /* A >= B is !(A < B).  */
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_eq:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* No need for a second swap here.  */
	  ax_simple (expr, aop_equal);
	  break;

	case DW_OP_lt:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_less_signed);
	  break;

	case DW_OP_gt:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* Note no swap here: A > B is B < A.  */
	  ax_simple (expr, aop_less_signed);
	  break;

	case DW_OP_ne:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* No need for a swap here.  */
	  ax_simple (expr, aop_equal);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_call_frame_cfa:
	  {
	    int regnum;
	    CORE_ADDR text_offset;
	    LONGEST off;
	    const gdb_byte *cfa_start, *cfa_end;

	    if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
				       &regnum, &off,
				       &text_offset, &cfa_start, &cfa_end))
	      {
		/* Register.  */
		ax_reg (expr, regnum);
		if (off != 0)
		  {
		    ax_const_l (expr, off);
		    ax_simple (expr, aop_add);
		  }
	      }
	    else
	      {
		/* Another expression.  */
		ax_const_l (expr, text_offset);
		dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
					   cfa_start, cfa_end, per_cu);
	      }

	    loc->kind = axs_lvalue_memory;
	  }
	  break;

	case DW_OP_GNU_push_tls_address:
	case DW_OP_form_tls_address:
	  unimplemented (op);
	  break;

	case DW_OP_push_object_address:
	  unimplemented (op);
	  break;

	case DW_OP_skip:
	  offset = extract_signed_integer (op_ptr, 2, byte_order);
	  op_ptr += 2;
	  i = ax_goto (expr, aop_goto);
	  dw_labels.push_back (op_ptr + offset - base);
	  patches.push_back (i);
	  break;

	case DW_OP_bra:
	  offset = extract_signed_integer (op_ptr, 2, byte_order);
	  op_ptr += 2;
	  /* Zero extend the operand.  */
	  ax_zero_ext (expr, addr_size_bits);
	  i = ax_goto (expr, aop_if_goto);
	  dw_labels.push_back (op_ptr + offset - base);
	  patches.push_back (i);
	  break;

	case DW_OP_nop:
	  break;

        case DW_OP_piece:
	case DW_OP_bit_piece:
	  {
	    uint64_t size, offset;

	    if (op_ptr - 1 == previous_piece)
	      error (_("Cannot translate empty pieces to agent expressions"));
	    previous_piece = op_ptr - 1;

            op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
	    if (op == DW_OP_piece)
	      {
		size *= 8;
		offset = 0;
	      }
	    else
	      op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);

	    if (bits_collected + size > 8 * sizeof (LONGEST))
	      error (_("Expression pieces exceed word size"));

	    /* Access the bits.  */
	    switch (loc->kind)
	      {
	      case axs_lvalue_register:
		ax_reg (expr, loc->u.reg);
		break;

	      case axs_lvalue_memory:
		/* Offset the pointer, if needed.  */
		if (offset > 8)
		  {
		    ax_const_l (expr, offset / 8);
		    ax_simple (expr, aop_add);
		    offset %= 8;
		  }
		access_memory (arch, expr, size);
		break;
	      }

	    /* For a bits-big-endian target, shift up what we already
	       have.  For a bits-little-endian target, shift up the
	       new data.  Note that there is a potential bug here if
	       the DWARF expression leaves multiple values on the
	       stack.  */
	    if (bits_collected > 0)
	      {
		if (bits_big_endian)
		  {
		    ax_simple (expr, aop_swap);
		    ax_const_l (expr, size);
		    ax_simple (expr, aop_lsh);
		    /* We don't need a second swap here, because
		       aop_bit_or is symmetric.  */
		  }
		else
		  {
		    ax_const_l (expr, size);
		    ax_simple (expr, aop_lsh);
		  }
		ax_simple (expr, aop_bit_or);
	      }

	    bits_collected += size;
	    loc->kind = axs_rvalue;
	  }
	  break;

	case DW_OP_GNU_uninit:
	  unimplemented (op);

	case DW_OP_call2:
	case DW_OP_call4:
	  {
	    struct dwarf2_locexpr_baton block;
	    int size = (op == DW_OP_call2 ? 2 : 4);

	    uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
	    op_ptr += size;

	    cu_offset offset = (cu_offset) uoffset;
	    block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
						 get_ax_pc, expr);

	    /* DW_OP_call_ref is currently not supported.  */
	    gdb_assert (block.per_cu == per_cu);

	    dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
				       block.data, block.data + block.size,
				       per_cu);
	  }
	  break;

	case DW_OP_call_ref:
	  unimplemented (op);

	default:
	  unimplemented (op);
	}
    }

  /* Patch all the branches we emitted.  */
  for (i = 0; i < patches.size (); ++i)
    {
      int targ = offsets[dw_labels[i]];
      if (targ == -1)
	internal_error (__FILE__, __LINE__, _("invalid label"));
      ax_label (expr, patches[i], targ);
    }
}


/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
   evaluator to calculate the location.  */
static struct value *
locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
  struct value *val;

  val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
				  dlbaton->size, dlbaton->per_cu);

  return val;
}

/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
   entry.  SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
   will be thrown.  */

static struct value *
locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);

  return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
				     dlbaton->size);
}

/* Implementation of get_symbol_read_needs from
   symbol_computed_ops.  */

static enum symbol_needs_kind
locexpr_get_symbol_read_needs (struct symbol *symbol)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);

  return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
						dlbaton->per_cu);
}

/* Return true if DATA points to the end of a piece.  END is one past
   the last byte in the expression.  */

static int
piece_end_p (const gdb_byte *data, const gdb_byte *end)
{
  return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
}

/* Helper for locexpr_describe_location_piece that finds the name of a
   DWARF register.  */

static const char *
locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
{
  int regnum;

  /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
     We'd rather print *something* here than throw an error.  */
  regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
  /* gdbarch_register_name may just return "", return something more
     descriptive for bad register numbers.  */
  if (regnum == -1)
    {
      /* The text is output as "$bad_register_number".
	 That is why we use the underscores.  */
      return _("bad_register_number");
    }
  return gdbarch_register_name (gdbarch, regnum);
}

/* Nicely describe a single piece of a location, returning an updated
   position in the bytecode sequence.  This function cannot recognize
   all locations; if a location is not recognized, it simply returns
   DATA.  If there is an error during reading, e.g. we run off the end
   of the buffer, an error is thrown.  */

static const gdb_byte *
locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
				 CORE_ADDR addr, struct objfile *objfile,
				 struct dwarf2_per_cu_data *per_cu,
				 const gdb_byte *data, const gdb_byte *end,
				 unsigned int addr_size)
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  size_t leb128_size;

  if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
    {
      fprintf_filtered (stream, _("a variable in $%s"),
			locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
      data += 1;
    }
  else if (data[0] == DW_OP_regx)
    {
      uint64_t reg;

      data = safe_read_uleb128 (data + 1, end, &reg);
      fprintf_filtered (stream, _("a variable in $%s"),
			locexpr_regname (gdbarch, reg));
    }
  else if (data[0] == DW_OP_fbreg)
    {
      const struct block *b;
      struct symbol *framefunc;
      int frame_reg = 0;
      int64_t frame_offset;
      const gdb_byte *base_data, *new_data, *save_data = data;
      size_t base_size;
      int64_t base_offset = 0;

      new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
      if (!piece_end_p (new_data, end))
	return data;
      data = new_data;

      b = block_for_pc (addr);

      if (!b)
	error (_("No block found for address for symbol \"%s\"."),
	       SYMBOL_PRINT_NAME (symbol));

      framefunc = block_linkage_function (b);

      if (!framefunc)
	error (_("No function found for block for symbol \"%s\"."),
	       SYMBOL_PRINT_NAME (symbol));

      func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);

      if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
	{
	  const gdb_byte *buf_end;
	  
	  frame_reg = base_data[0] - DW_OP_breg0;
	  buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
				       &base_offset);
	  if (buf_end != base_data + base_size)
	    error (_("Unexpected opcode after "
		     "DW_OP_breg%u for symbol \"%s\"."),
		   frame_reg, SYMBOL_PRINT_NAME (symbol));
	}
      else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
	{
	  /* The frame base is just the register, with no offset.  */
	  frame_reg = base_data[0] - DW_OP_reg0;
	  base_offset = 0;
	}
      else
	{
	  /* We don't know what to do with the frame base expression,
	     so we can't trace this variable; give up.  */
	  return save_data;
	}

      fprintf_filtered (stream,
			_("a variable at frame base reg $%s offset %s+%s"),
			locexpr_regname (gdbarch, frame_reg),
			plongest (base_offset), plongest (frame_offset));
    }
  else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
	   && piece_end_p (data, end))
    {
      int64_t offset;

      data = safe_read_sleb128 (data + 1, end, &offset);

      fprintf_filtered (stream,
			_("a variable at offset %s from base reg $%s"),
			plongest (offset),
			locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
    }

  /* The location expression for a TLS variable looks like this (on a
     64-bit LE machine):

     DW_AT_location    : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
                        (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)

     0x3 is the encoding for DW_OP_addr, which has an operand as long
     as the size of an address on the target machine (here is 8
     bytes).  Note that more recent version of GCC emit DW_OP_const4u
     or DW_OP_const8u, depending on address size, rather than
     DW_OP_addr.  0xe0 is the encoding for DW_OP_GNU_push_tls_address.
     The operand represents the offset at which the variable is within
     the thread local storage.  */

  else if (data + 1 + addr_size < end
	   && (data[0] == DW_OP_addr
	       || (addr_size == 4 && data[0] == DW_OP_const4u)
	       || (addr_size == 8 && data[0] == DW_OP_const8u))
	   && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
	       || data[1 + addr_size] == DW_OP_form_tls_address)
	   && piece_end_p (data + 2 + addr_size, end))
    {
      ULONGEST offset;
      offset = extract_unsigned_integer (data + 1, addr_size,
					 gdbarch_byte_order (gdbarch));

      fprintf_filtered (stream, 
			_("a thread-local variable at offset 0x%s "
			  "in the thread-local storage for `%s'"),
			phex_nz (offset, addr_size), objfile_name (objfile));

      data += 1 + addr_size + 1;
    }

  /* With -gsplit-dwarf a TLS variable can also look like this:
     DW_AT_location    : 3 byte block: fc 4 e0
                        (DW_OP_GNU_const_index: 4;
			 DW_OP_GNU_push_tls_address)  */
  else if (data + 3 <= end
	   && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
	   && data[0] == DW_OP_GNU_const_index
	   && leb128_size > 0
	   && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
	       || data[1 + leb128_size] == DW_OP_form_tls_address)
	   && piece_end_p (data + 2 + leb128_size, end))
    {
      uint64_t offset;

      data = safe_read_uleb128 (data + 1, end, &offset);
      offset = dwarf2_read_addr_index (per_cu, offset);
      fprintf_filtered (stream, 
			_("a thread-local variable at offset 0x%s "
			  "in the thread-local storage for `%s'"),
			phex_nz (offset, addr_size), objfile_name (objfile));
      ++data;
    }

  else if (data[0] >= DW_OP_lit0
	   && data[0] <= DW_OP_lit31
	   && data + 1 < end
	   && data[1] == DW_OP_stack_value)
    {
      fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
      data += 2;
    }

  return data;
}

/* Disassemble an expression, stopping at the end of a piece or at the
   end of the expression.  Returns a pointer to the next unread byte
   in the input expression.  If ALL is nonzero, then this function
   will keep going until it reaches the end of the expression.
   If there is an error during reading, e.g. we run off the end
   of the buffer, an error is thrown.  */

static const gdb_byte *
disassemble_dwarf_expression (struct ui_file *stream,
			      struct gdbarch *arch, unsigned int addr_size,
			      int offset_size, const gdb_byte *start,
			      const gdb_byte *data, const gdb_byte *end,
			      int indent, int all,
			      struct dwarf2_per_cu_data *per_cu)
{
  while (data < end
	 && (all
	     || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
    {
      enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
      uint64_t ul;
      int64_t l;
      const char *name;

      name = get_DW_OP_name (op);

      if (!name)
	error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
	       op, (long) (data - 1 - start));
      fprintf_filtered (stream, "  %*ld: %s", indent + 4,
			(long) (data - 1 - start), name);

      switch (op)
	{
	case DW_OP_addr:
	  ul = extract_unsigned_integer (data, addr_size,
					 gdbarch_byte_order (arch));
	  data += addr_size;
	  fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
	  break;

	case DW_OP_const1u:
	  ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
	  data += 1;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const1s:
	  l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
	  data += 1;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const2u:
	  ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const2s:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const4u:
	  ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const4s:
	  l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const8u:
	  ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
	  data += 8;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const8s:
	  l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
	  data += 8;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_constu:
	  data = safe_read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_consts:
	  data = safe_read_sleb128 (data, end, &l);
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;

	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	  fprintf_filtered (stream, " [$%s]",
			    locexpr_regname (arch, op - DW_OP_reg0));
	  break;

	case DW_OP_regx:
	  data = safe_read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
			    locexpr_regname (arch, (int) ul));
	  break;

	case DW_OP_implicit_value:
	  data = safe_read_uleb128 (data, end, &ul);
	  data += ul;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;

	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	  data = safe_read_sleb128 (data, end, &l);
	  fprintf_filtered (stream, " %s [$%s]", plongest (l),
			    locexpr_regname (arch, op - DW_OP_breg0));
	  break;

	case DW_OP_bregx:
	  data = safe_read_uleb128 (data, end, &ul);
	  data = safe_read_sleb128 (data, end, &l);
	  fprintf_filtered (stream, " register %s [$%s] offset %s",
			    pulongest (ul),
			    locexpr_regname (arch, (int) ul),
			    plongest (l));
	  break;

	case DW_OP_fbreg:
	  data = safe_read_sleb128 (data, end, &l);
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;

	case DW_OP_xderef_size:
	case DW_OP_deref_size:
	case DW_OP_pick:
	  fprintf_filtered (stream, " %d", *data);
	  ++data;
	  break;

	case DW_OP_plus_uconst:
	  data = safe_read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;

	case DW_OP_skip:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " to %ld",
			    (long) (data + l - start));
	  break;

	case DW_OP_bra:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %ld",
			    (long) (data + l - start));
	  break;

	case DW_OP_call2:
	  ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
	  break;

	case DW_OP_call4:
	  ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
	  break;

	case DW_OP_call_ref:
	  ul = extract_unsigned_integer (data, offset_size,
					 gdbarch_byte_order (arch));
	  data += offset_size;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
	  break;

        case DW_OP_piece:
	  data = safe_read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
	  break;

	case DW_OP_bit_piece:
	  {
	    uint64_t offset;

	    data = safe_read_uleb128 (data, end, &ul);
	    data = safe_read_uleb128 (data, end, &offset);
	    fprintf_filtered (stream, " size %s offset %s (bits)",
			      pulongest (ul), pulongest (offset));
	  }
	  break;

	case DW_OP_implicit_pointer:
	case DW_OP_GNU_implicit_pointer:
	  {
	    ul = extract_unsigned_integer (data, offset_size,
					   gdbarch_byte_order (arch));
	    data += offset_size;

	    data = safe_read_sleb128 (data, end, &l);

	    fprintf_filtered (stream, " DIE %s offset %s",
			      phex_nz (ul, offset_size),
			      plongest (l));
	  }
	  break;

	case DW_OP_deref_type:
	case DW_OP_GNU_deref_type:
	  {
	    int addr_size = *data++;
	    struct type *type;

	    data = safe_read_uleb128 (data, end, &ul);
	    cu_offset offset = (cu_offset) ul;
	    type = dwarf2_get_die_type (offset, per_cu);
	    fprintf_filtered (stream, "<");
	    type_print (type, "", stream, -1);
	    fprintf_filtered (stream, " [0x%s]> %d",
			      phex_nz (to_underlying (offset), 0),
			      addr_size);
	  }
	  break;

	case DW_OP_const_type:
	case DW_OP_GNU_const_type:
	  {
	    struct type *type;

	    data = safe_read_uleb128 (data, end, &ul);
	    cu_offset type_die = (cu_offset) ul;
	    type = dwarf2_get_die_type (type_die, per_cu);
	    fprintf_filtered (stream, "<");
	    type_print (type, "", stream, -1);
	    fprintf_filtered (stream, " [0x%s]>",
			      phex_nz (to_underlying (type_die), 0));
	  }
	  break;

	case DW_OP_regval_type:
	case DW_OP_GNU_regval_type:
	  {
	    uint64_t reg;
	    struct type *type;

	    data = safe_read_uleb128 (data, end, &reg);
	    data = safe_read_uleb128 (data, end, &ul);
	    cu_offset type_die = (cu_offset) ul;

	    type = dwarf2_get_die_type (type_die, per_cu);
	    fprintf_filtered (stream, "<");
	    type_print (type, "", stream, -1);
	    fprintf_filtered (stream, " [0x%s]> [$%s]",
			      phex_nz (to_underlying (type_die), 0),
			      locexpr_regname (arch, reg));
	  }
	  break;

	case DW_OP_convert:
	case DW_OP_GNU_convert:
	case DW_OP_reinterpret:
	case DW_OP_GNU_reinterpret:
	  {
	    data = safe_read_uleb128 (data, end, &ul);
	    cu_offset type_die = (cu_offset) ul;

	    if (to_underlying (type_die) == 0)
	      fprintf_filtered (stream, "<0>");
	    else
	      {
		struct type *type;

		type = dwarf2_get_die_type (type_die, per_cu);
		fprintf_filtered (stream, "<");
		type_print (type, "", stream, -1);
		fprintf_filtered (stream, " [0x%s]>",
				  phex_nz (to_underlying (type_die), 0));
	      }
	  }
	  break;

	case DW_OP_entry_value:
	case DW_OP_GNU_entry_value:
	  data = safe_read_uleb128 (data, end, &ul);
	  fputc_filtered ('\n', stream);
	  disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
					start, data, data + ul, indent + 2,
					all, per_cu);
	  data += ul;
	  continue;

	case DW_OP_GNU_parameter_ref:
	  ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
	  break;

	case DW_OP_GNU_addr_index:
	  data = safe_read_uleb128 (data, end, &ul);
	  ul = dwarf2_read_addr_index (per_cu, ul);
	  fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
	  break;
	case DW_OP_GNU_const_index:
	  data = safe_read_uleb128 (data, end, &ul);
	  ul = dwarf2_read_addr_index (per_cu, ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	}

      fprintf_filtered (stream, "\n");
    }

  return data;
}

/* Describe a single location, which may in turn consist of multiple
   pieces.  */

static void
locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
			     struct ui_file *stream,
			     const gdb_byte *data, size_t size,
			     struct objfile *objfile, unsigned int addr_size,
			     int offset_size, struct dwarf2_per_cu_data *per_cu)
{
  const gdb_byte *end = data + size;
  int first_piece = 1, bad = 0;

  while (data < end)
    {
      const gdb_byte *here = data;
      int disassemble = 1;

      if (first_piece)
	first_piece = 0;
      else
	fprintf_filtered (stream, _(", and "));

      if (!dwarf_always_disassemble)
	{
	  data = locexpr_describe_location_piece (symbol, stream,
						  addr, objfile, per_cu,
						  data, end, addr_size);
	  /* If we printed anything, or if we have an empty piece,
	     then don't disassemble.  */
	  if (data != here
	      || data[0] == DW_OP_piece
	      || data[0] == DW_OP_bit_piece)
	    disassemble = 0;
	}
      if (disassemble)
	{
	  fprintf_filtered (stream, _("a complex DWARF expression:\n"));
	  data = disassemble_dwarf_expression (stream,
					       get_objfile_arch (objfile),
					       addr_size, offset_size, data,
					       data, end, 0,
					       dwarf_always_disassemble,
					       per_cu);
	}

      if (data < end)
	{
	  int empty = data == here;
	      
	  if (disassemble)
	    fprintf_filtered (stream, "   ");
	  if (data[0] == DW_OP_piece)
	    {
	      uint64_t bytes;

	      data = safe_read_uleb128 (data + 1, end, &bytes);

	      if (empty)
		fprintf_filtered (stream, _("an empty %s-byte piece"),
				  pulongest (bytes));
	      else
		fprintf_filtered (stream, _(" [%s-byte piece]"),
				  pulongest (bytes));
	    }
	  else if (data[0] == DW_OP_bit_piece)
	    {
	      uint64_t bits, offset;

	      data = safe_read_uleb128 (data + 1, end, &bits);
	      data = safe_read_uleb128 (data, end, &offset);

	      if (empty)
		fprintf_filtered (stream,
				  _("an empty %s-bit piece"),
				  pulongest (bits));
	      else
		fprintf_filtered (stream,
				  _(" [%s-bit piece, offset %s bits]"),
				  pulongest (bits), pulongest (offset));
	    }
	  else
	    {
	      bad = 1;
	      break;
	    }
	}
    }

  if (bad || data > end)
    error (_("Corrupted DWARF2 expression for \"%s\"."),
	   SYMBOL_PRINT_NAME (symbol));
}

/* Print a natural-language description of SYMBOL to STREAM.  This
   version is for a symbol with a single location.  */

static void
locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
			   struct ui_file *stream)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
  struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);

  locexpr_describe_location_1 (symbol, addr, stream,
			       dlbaton->data, dlbaton->size,
			       objfile, addr_size, offset_size,
			       dlbaton->per_cu);
}

/* Describe the location of SYMBOL as an agent value in VALUE, generating
   any necessary bytecode in AX.  */

static void
locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
			    struct agent_expr *ax, struct axs_value *value)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);

  if (dlbaton->size == 0)
    value->optimized_out = 1;
  else
    dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
			       dlbaton->data, dlbaton->data + dlbaton->size,
			       dlbaton->per_cu);
}

/* symbol_computed_ops 'generate_c_location' method.  */

static void
locexpr_generate_c_location (struct symbol *sym, string_file &stream,
			     struct gdbarch *gdbarch,
			     unsigned char *registers_used,
			     CORE_ADDR pc, const char *result_name)
{
  struct dwarf2_locexpr_baton *dlbaton
    = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);

  if (dlbaton->size == 0)
    error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));

  compile_dwarf_expr_to_c (stream, result_name,
			   sym, pc, gdbarch, registers_used, addr_size,
			   dlbaton->data, dlbaton->data + dlbaton->size,
			   dlbaton->per_cu);
}

/* The set of location functions used with the DWARF-2 expression
   evaluator.  */
const struct symbol_computed_ops dwarf2_locexpr_funcs = {
  locexpr_read_variable,
  locexpr_read_variable_at_entry,
  locexpr_get_symbol_read_needs,
  locexpr_describe_location,
  0,	/* location_has_loclist */
  locexpr_tracepoint_var_ref,
  locexpr_generate_c_location
};


/* Wrapper functions for location lists.  These generally find
   the appropriate location expression and call something above.  */

/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
   evaluator to calculate the location.  */
static struct value *
loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_loclist_baton *dlbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
  struct value *val;
  const gdb_byte *data;
  size_t size;
  CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;

  data = dwarf2_find_location_expression (dlbaton, &size, pc);
  val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
				  dlbaton->per_cu);

  return val;
}

/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
   entry.  SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
   will be thrown.

   Function always returns non-NULL value, it may be marked optimized out if
   inferior frame information is not available.  It throws NO_ENTRY_VALUE_ERROR
   if it cannot resolve the parameter for any reason.  */

static struct value *
loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_loclist_baton *dlbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
  const gdb_byte *data;
  size_t size;
  CORE_ADDR pc;

  if (frame == NULL || !get_frame_func_if_available (frame, &pc))
    return allocate_optimized_out_value (SYMBOL_TYPE (symbol));

  data = dwarf2_find_location_expression (dlbaton, &size, pc);
  if (data == NULL)
    return allocate_optimized_out_value (SYMBOL_TYPE (symbol));

  return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
}

/* Implementation of get_symbol_read_needs from
   symbol_computed_ops.  */

static enum symbol_needs_kind
loclist_symbol_needs (struct symbol *symbol)
{
  /* If there's a location list, then assume we need to have a frame
     to choose the appropriate location expression.  With tracking of
     global variables this is not necessarily true, but such tracking
     is disabled in GCC at the moment until we figure out how to
     represent it.  */

  return SYMBOL_NEEDS_FRAME;
}

/* Print a natural-language description of SYMBOL to STREAM.  This
   version applies when there is a list of different locations, each
   with a specified address range.  */

static void
loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
			   struct ui_file *stream)
{
  struct dwarf2_loclist_baton *dlbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
  const gdb_byte *loc_ptr, *buf_end;
  struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
  int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
  /* Adjust base_address for relocatable objects.  */
  CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
  CORE_ADDR base_address = dlbaton->base_address + base_offset;
  int done = 0;

  loc_ptr = dlbaton->data;
  buf_end = dlbaton->data + dlbaton->size;

  fprintf_filtered (stream, _("multi-location:\n"));

  /* Iterate through locations until we run out.  */
  while (!done)
    {
      CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
      int length;
      enum debug_loc_kind kind;
      const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */

      if (dlbaton->from_dwo)
	kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
					       loc_ptr, buf_end, &new_ptr,
					       &low, &high, byte_order);
      else
	kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
					   &low, &high,
					   byte_order, addr_size,
					   signed_addr_p);
      loc_ptr = new_ptr;
      switch (kind)
	{
	case DEBUG_LOC_END_OF_LIST:
	  done = 1;
	  continue;
	case DEBUG_LOC_BASE_ADDRESS:
	  base_address = high + base_offset;
	  fprintf_filtered (stream, _("  Base address %s"),
			    paddress (gdbarch, base_address));
	  continue;
	case DEBUG_LOC_START_END:
	case DEBUG_LOC_START_LENGTH:
	  break;
	case DEBUG_LOC_BUFFER_OVERFLOW:
	case DEBUG_LOC_INVALID_ENTRY:
	  error (_("Corrupted DWARF expression for symbol \"%s\"."),
		 SYMBOL_PRINT_NAME (symbol));
	default:
	  gdb_assert_not_reached ("bad debug_loc_kind");
	}

      /* Otherwise, a location expression entry.  */
      low += base_address;
      high += base_address;

      low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
      high = gdbarch_adjust_dwarf2_addr (gdbarch, high);

      length = extract_unsigned_integer (loc_ptr, 2, byte_order);
      loc_ptr += 2;

      /* (It would improve readability to print only the minimum
	 necessary digits of the second number of the range.)  */
      fprintf_filtered (stream, _("  Range %s-%s: "),
			paddress (gdbarch, low), paddress (gdbarch, high));

      /* Now describe this particular location.  */
      locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
				   objfile, addr_size, offset_size,
				   dlbaton->per_cu);

      fprintf_filtered (stream, "\n");

      loc_ptr += length;
    }
}

/* Describe the location of SYMBOL as an agent value in VALUE, generating
   any necessary bytecode in AX.  */
static void
loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
			    struct agent_expr *ax, struct axs_value *value)
{
  struct dwarf2_loclist_baton *dlbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
  const gdb_byte *data;
  size_t size;
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);

  data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
  if (size == 0)
    value->optimized_out = 1;
  else
    dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
			       dlbaton->per_cu);
}

/* symbol_computed_ops 'generate_c_location' method.  */

static void
loclist_generate_c_location (struct symbol *sym, string_file &stream,
			     struct gdbarch *gdbarch,
			     unsigned char *registers_used,
			     CORE_ADDR pc, const char *result_name)
{
  struct dwarf2_loclist_baton *dlbaton
    = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  const gdb_byte *data;
  size_t size;

  data = dwarf2_find_location_expression (dlbaton, &size, pc);
  if (size == 0)
    error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));

  compile_dwarf_expr_to_c (stream, result_name,
			   sym, pc, gdbarch, registers_used, addr_size,
			   data, data + size,
			   dlbaton->per_cu);
}

/* The set of location functions used with the DWARF-2 expression
   evaluator and location lists.  */
const struct symbol_computed_ops dwarf2_loclist_funcs = {
  loclist_read_variable,
  loclist_read_variable_at_entry,
  loclist_symbol_needs,
  loclist_describe_location,
  1,	/* location_has_loclist */
  loclist_tracepoint_var_ref,
  loclist_generate_c_location
};

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_dwarf2loc;

void
_initialize_dwarf2loc (void)
{
  add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
			     &entry_values_debug,
			     _("Set entry values and tail call frames "
			       "debugging."),
			     _("Show entry values and tail call frames "
			       "debugging."),
			     _("When non-zero, the process of determining "
			       "parameter values from function entry point "
			       "and tail call frames will be printed."),
			     NULL,
			     show_entry_values_debug,
			     &setdebuglist, &showdebuglist);

#if GDB_SELF_TEST
  register_self_test (selftests::copy_bitwise_tests);
#endif
}