1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/* DWARF 2 Expression Evaluator.
Copyright (C) 2001-2019 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (DWARF2EXPR_H)
#define DWARF2EXPR_H
#include "gdbtypes.h"
#include "leb128.h"
/* The location of a value. */
enum dwarf_value_location
{
/* The piece is in memory.
The value on the dwarf stack is its address. */
DWARF_VALUE_MEMORY,
/* The piece is in a register.
The value on the dwarf stack is the register number. */
DWARF_VALUE_REGISTER,
/* The piece is on the dwarf stack. */
DWARF_VALUE_STACK,
/* The piece is a literal. */
DWARF_VALUE_LITERAL,
/* The piece was optimized out. */
DWARF_VALUE_OPTIMIZED_OUT,
/* The piece is an implicit pointer. */
DWARF_VALUE_IMPLICIT_POINTER
};
/* A piece of an object, as recorded by DW_OP_piece or DW_OP_bit_piece. */
struct dwarf_expr_piece
{
enum dwarf_value_location location;
union
{
struct
{
/* This piece's address, for DWARF_VALUE_MEMORY pieces. */
CORE_ADDR addr;
/* Non-zero if the piece is known to be in memory and on
the program's stack. */
bool in_stack_memory;
} mem;
/* The piece's register number, for DWARF_VALUE_REGISTER pieces. */
int regno;
/* The piece's literal value, for DWARF_VALUE_STACK pieces. */
struct value *value;
struct
{
/* A pointer to the data making up this piece,
for DWARF_VALUE_LITERAL pieces. */
const gdb_byte *data;
/* The length of the available data. */
ULONGEST length;
} literal;
/* Used for DWARF_VALUE_IMPLICIT_POINTER. */
struct
{
/* The referent DIE from DW_OP_implicit_pointer. */
sect_offset die_sect_off;
/* The byte offset into the resulting data. */
LONGEST offset;
} ptr;
} v;
/* The length of the piece, in bits. */
ULONGEST size;
/* The piece offset, in bits. */
ULONGEST offset;
};
/* The dwarf expression stack. */
struct dwarf_stack_value
{
dwarf_stack_value (struct value *value_, int in_stack_memory_)
: value (value_), in_stack_memory (in_stack_memory_)
{}
struct value *value;
/* True if the piece is in memory and is known to be on the program's stack.
It is always ok to set this to zero. This is used, for example, to
optimize memory access from the target. It can vastly speed up backtraces
on long latency connections when "set stack-cache on". */
bool in_stack_memory;
};
/* The expression evaluator works with a dwarf_expr_context, describing
its current state and its callbacks. */
struct dwarf_expr_context
{
dwarf_expr_context ();
virtual ~dwarf_expr_context () = default;
void push_address (CORE_ADDR value, bool in_stack_memory);
void eval (const gdb_byte *addr, size_t len);
struct value *fetch (int n);
CORE_ADDR fetch_address (int n);
bool fetch_in_stack_memory (int n);
/* The stack of values. */
std::vector<dwarf_stack_value> stack;
/* Target architecture to use for address operations. */
struct gdbarch *gdbarch;
/* Target address size in bytes. */
int addr_size;
/* DW_FORM_ref_addr size in bytes. If -1 DWARF is executed from a frame
context and operations depending on DW_FORM_ref_addr are not allowed. */
int ref_addr_size;
/* Offset used to relocate DW_OP_addr and DW_OP_GNU_addr_index arguments. */
CORE_ADDR offset;
/* The current depth of dwarf expression recursion, via DW_OP_call*,
DW_OP_fbreg, DW_OP_push_object_address, etc., and the maximum
depth we'll tolerate before raising an error. */
int recursion_depth, max_recursion_depth;
/* Location of the value. */
enum dwarf_value_location location;
/* For DWARF_VALUE_LITERAL, the current literal value's length and
data. For DWARF_VALUE_IMPLICIT_POINTER, LEN is the offset of the
target DIE of sect_offset kind. */
ULONGEST len;
const gdb_byte *data;
/* Initialization status of variable: Non-zero if variable has been
initialized; zero otherwise. */
int initialized;
/* A vector of pieces.
Each time DW_OP_piece is executed, we add a new element to the
end of this array, recording the current top of the stack, the
current location, and the size given as the operand to
DW_OP_piece. We then pop the top value from the stack, reset the
location, and resume evaluation.
The Dwarf spec doesn't say whether DW_OP_piece pops the top value
from the stack. We do, ensuring that clients of this interface
expecting to see a value left on the top of the stack (say, code
evaluating frame base expressions or CFA's specified with
DW_CFA_def_cfa_expression) will get an error if the expression
actually marks all the values it computes as pieces.
If an expression never uses DW_OP_piece, num_pieces will be zero.
(It would be nice to present these cases as expressions yielding
a single piece, so that callers need not distinguish between the
no-DW_OP_piece and one-DW_OP_piece cases. But expressions with
no DW_OP_piece operations have no value to place in a piece's
'size' field; the size comes from the surrounding data. So the
two cases need to be handled separately.) */
std::vector<dwarf_expr_piece> pieces;
/* Return the value of register number REGNUM (a DWARF register number),
read as an address. */
virtual CORE_ADDR read_addr_from_reg (int regnum) = 0;
/* Return a value of type TYPE, stored in register number REGNUM
of the frame associated to the given BATON.
REGNUM is a DWARF register number. */
virtual struct value *get_reg_value (struct type *type, int regnum) = 0;
/* Read LENGTH bytes at ADDR into BUF. */
virtual void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t length) = 0;
/* Return the location expression for the frame base attribute, in
START and LENGTH. The result must be live until the current
expression evaluation is complete. */
virtual void get_frame_base (const gdb_byte **start, size_t *length) = 0;
/* Return the CFA for the frame. */
virtual CORE_ADDR get_frame_cfa () = 0;
/* Return the PC for the frame. */
virtual CORE_ADDR get_frame_pc ()
{
error (_("%s is invalid in this context"), "DW_OP_implicit_pointer");
}
/* Return the thread-local storage address for
DW_OP_GNU_push_tls_address or DW_OP_form_tls_address. */
virtual CORE_ADDR get_tls_address (CORE_ADDR offset) = 0;
/* Execute DW_AT_location expression for the DWARF expression
subroutine in the DIE at DIE_CU_OFF in the CU. Do not touch
STACK while it being passed to and returned from the called DWARF
subroutine. */
virtual void dwarf_call (cu_offset die_cu_off) = 0;
/* Execute "variable value" operation on the DIE at SECT_OFF. */
virtual struct value *dwarf_variable_value (sect_offset sect_off) = 0;
/* Return the base type given by the indicated DIE at DIE_CU_OFF.
This can throw an exception if the DIE is invalid or does not
represent a base type. SIZE is non-zero if this function should
verify that the resulting type has the correct size. */
virtual struct type *get_base_type (cu_offset die_cu_off, int size)
{
/* Anything will do. */
return builtin_type (this->gdbarch)->builtin_int;
}
/* Push on DWARF stack an entry evaluated for DW_TAG_call_site's
parameter matching KIND and KIND_U at the caller of specified BATON.
If DEREF_SIZE is not -1 then use DW_AT_call_data_value instead of
DW_AT_call_value. */
virtual void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
union call_site_parameter_u kind_u,
int deref_size) = 0;
/* Return the address indexed by DW_OP_GNU_addr_index.
This can throw an exception if the index is out of range. */
virtual CORE_ADDR get_addr_index (unsigned int index) = 0;
/* Return the `object address' for DW_OP_push_object_address. */
virtual CORE_ADDR get_object_address () = 0;
private:
struct type *address_type () const;
void push (struct value *value, bool in_stack_memory);
bool stack_empty_p () const;
void add_piece (ULONGEST size, ULONGEST offset);
void execute_stack_op (const gdb_byte *op_ptr, const gdb_byte *op_end);
void pop ();
};
void dwarf_expr_require_composition (const gdb_byte *, const gdb_byte *,
const char *);
int dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end);
int dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf,
const gdb_byte *buf_end,
CORE_ADDR *deref_size_return);
int dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *fb_offset_return);
int dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
const gdb_byte *buf_end,
CORE_ADDR *sp_offset_return);
/* Wrappers around the leb128 reader routines to simplify them for our
purposes. */
static inline const gdb_byte *
gdb_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
uint64_t *r)
{
size_t bytes_read = read_uleb128_to_uint64 (buf, buf_end, r);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
static inline const gdb_byte *
gdb_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
int64_t *r)
{
size_t bytes_read = read_sleb128_to_int64 (buf, buf_end, r);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
static inline const gdb_byte *
gdb_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
{
size_t bytes_read = skip_leb128 (buf, buf_end);
if (bytes_read == 0)
return NULL;
return buf + bytes_read;
}
extern const gdb_byte *safe_read_uleb128 (const gdb_byte *buf,
const gdb_byte *buf_end,
uint64_t *r);
extern const gdb_byte *safe_read_sleb128 (const gdb_byte *buf,
const gdb_byte *buf_end,
int64_t *r);
extern const gdb_byte *safe_skip_leb128 (const gdb_byte *buf,
const gdb_byte *buf_end);
#endif /* dwarf2expr.h */
|