aboutsummaryrefslogtreecommitdiff
path: root/gdb/doc/gdb.texinfo
blob: 7ec16dd184cbfc8ede391391cee75458a7691cb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
\input texinfo      @c -*-texinfo-*-
@c Copyright (C) 1988-2013 Free Software Foundation, Inc.
@c
@c %**start of header
@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
@c of @set vars.  However, you can override filename with makeinfo -o.
@setfilename gdb.info
@c
@c man begin INCLUDE
@include gdb-cfg.texi
@c man end
@c
@settitle Debugging with @value{GDBN}
@setchapternewpage odd
@c %**end of header

@iftex
@c @smallbook
@c @cropmarks
@end iftex

@finalout
@c To avoid file-name clashes between index.html and Index.html, when
@c the manual is produced on a Posix host and then moved to a
@c case-insensitive filesystem (e.g., MS-Windows), we separate the
@c indices into two: Concept Index and all the rest.
@syncodeindex ky fn
@syncodeindex tp fn

@c readline appendices use @vindex, @findex and @ftable,
@c annotate.texi and gdbmi use @findex.
@syncodeindex vr fn

@c !!set GDB manual's edition---not the same as GDB version!
@c This is updated by GNU Press.
@set EDITION Tenth

@c !!set GDB edit command default editor
@set EDITOR /bin/ex

@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.

@c This is a dir.info fragment to support semi-automated addition of
@c manuals to an info tree.
@dircategory Software development
@direntry
* Gdb: (gdb).                     The GNU debugger.
@end direntry

@copying
@c man begin COPYRIGHT
Copyright @copyright{} 1988-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Free Software'' and ``Free Software Needs
Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
and with the Back-Cover Texts as in (a) below.

(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
this GNU Manual.  Buying copies from GNU Press supports the FSF in
developing GNU and promoting software freedom.''
@c man end
@end copying

@ifnottex
This file documents the @sc{gnu} debugger @value{GDBN}.

This is the @value{EDITION} Edition, of @cite{Debugging with
@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
Version @value{GDBVN}.

@insertcopying
@end ifnottex

@titlepage
@title Debugging with @value{GDBN}
@subtitle The @sc{gnu} Source-Level Debugger
@sp 1
@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
@ifset VERSION_PACKAGE
@sp 1
@subtitle @value{VERSION_PACKAGE}
@end ifset
@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
@page
@tex
{\parskip=0pt
\hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
\hfill {\it Debugging with @value{GDBN}}\par
\hfill \TeX{}info \texinfoversion\par
}
@end tex

@vskip 0pt plus 1filll
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA@*
ISBN 978-0-9831592-3-0 @*

@insertcopying
@end titlepage
@page

@ifnottex
@node Top, Summary, (dir), (dir)

@top Debugging with @value{GDBN}

This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.

This is the @value{EDITION} Edition, for @value{GDBN}
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
Version @value{GDBVN}.

Copyright (C) 1988-2013 Free Software Foundation, Inc.

This edition of the GDB manual is dedicated to the memory of Fred
Fish.  Fred was a long-standing contributor to GDB and to Free
software in general.  We will miss him.

@menu
* Summary::                     Summary of @value{GDBN}
* Sample Session::              A sample @value{GDBN} session

* Invocation::                  Getting in and out of @value{GDBN}
* Commands::                    @value{GDBN} commands
* Running::                     Running programs under @value{GDBN}
* Stopping::                    Stopping and continuing
* Reverse Execution::           Running programs backward
* Process Record and Replay::   Recording inferior's execution and replaying it
* Stack::                       Examining the stack
* Source::                      Examining source files
* Data::                        Examining data
* Optimized Code::              Debugging optimized code
* Macros::                      Preprocessor Macros
* Tracepoints::                 Debugging remote targets non-intrusively
* Overlays::                    Debugging programs that use overlays

* Languages::                   Using @value{GDBN} with different languages

* Symbols::                     Examining the symbol table
* Altering::                    Altering execution
* GDB Files::                   @value{GDBN} files
* Targets::                     Specifying a debugging target
* Remote Debugging::            Debugging remote programs
* Configurations::              Configuration-specific information
* Controlling GDB::             Controlling @value{GDBN}
* Extending GDB::               Extending @value{GDBN}
* Interpreters::		Command Interpreters
* TUI::                         @value{GDBN} Text User Interface
* Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
* GDB/MI::                      @value{GDBN}'s Machine Interface.
* Annotations::                 @value{GDBN}'s annotation interface.
* JIT Interface::               Using the JIT debugging interface.
* In-Process Agent::            In-Process Agent

* GDB Bugs::                    Reporting bugs in @value{GDBN}

@ifset SYSTEM_READLINE
* Command Line Editing: (rluserman).         Command Line Editing
* Using History Interactively: (history).    Using History Interactively
@end ifset
@ifclear SYSTEM_READLINE
* Command Line Editing::        Command Line Editing
* Using History Interactively:: Using History Interactively
@end ifclear
* In Memoriam::                 In Memoriam
* Formatting Documentation::    How to format and print @value{GDBN} documentation
* Installing GDB::              Installing GDB
* Maintenance Commands::        Maintenance Commands
* Remote Protocol::             GDB Remote Serial Protocol
* Agent Expressions::           The GDB Agent Expression Mechanism
* Target Descriptions::         How targets can describe themselves to
                                @value{GDBN}
* Operating System Information:: Getting additional information from
                                 the operating system
* Trace File Format::		GDB trace file format
* Index Section Format::        .gdb_index section format
* Man Pages::			Manual pages
* Copying::			GNU General Public License says
                                how you can copy and share GDB
* GNU Free Documentation License::  The license for this documentation
* Concept Index::               Index of @value{GDBN} concepts
* Command and Variable Index::  Index of @value{GDBN} commands, variables,
                                  functions, and Python data types
@end menu

@end ifnottex

@contents

@node Summary
@unnumbered Summary of @value{GDBN}

The purpose of a debugger such as @value{GDBN} is to allow you to see what is
going on ``inside'' another program while it executes---or what another
program was doing at the moment it crashed.

@value{GDBN} can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

@itemize @bullet
@item
Start your program, specifying anything that might affect its behavior.

@item
Make your program stop on specified conditions.

@item
Examine what has happened, when your program has stopped.

@item
Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.
@end itemize

You can use @value{GDBN} to debug programs written in C and C@t{++}.
For more information, see @ref{Supported Languages,,Supported Languages}.
For more information, see @ref{C,,C and C++}.

Support for D is partial.  For information on D, see
@ref{D,,D}.

@cindex Modula-2
Support for Modula-2 is partial.  For information on Modula-2, see
@ref{Modula-2,,Modula-2}.

Support for OpenCL C is partial.  For information on OpenCL C, see
@ref{OpenCL C,,OpenCL C}.

@cindex Pascal
Debugging Pascal programs which use sets, subranges, file variables, or
nested functions does not currently work.  @value{GDBN} does not support
entering expressions, printing values, or similar features using Pascal
syntax.

@cindex Fortran
@value{GDBN} can be used to debug programs written in Fortran, although
it may be necessary to refer to some variables with a trailing
underscore.

@value{GDBN} can be used to debug programs written in Objective-C,
using either the Apple/NeXT or the GNU Objective-C runtime.

@menu
* Free Software::               Freely redistributable software
* Free Documentation::          Free Software Needs Free Documentation
* Contributors::                Contributors to GDB
@end menu

@node Free Software
@unnumberedsec Free Software

@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
General Public License
(GPL).  The GPL gives you the freedom to copy or adapt a licensed
program---but every person getting a copy also gets with it the
freedom to modify that copy (which means that they must get access to
the source code), and the freedom to distribute further copies.
Typical software companies use copyrights to limit your freedoms; the
Free Software Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that
you have these freedoms and that you cannot take these freedoms away
from anyone else.

@node Free Documentation
@unnumberedsec Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in
the software---it is the lack of good free documentation that we can
include with the free software.  Many of our most important
programs do not come with free reference manuals and free introductory
texts.  Documentation is an essential part of any software package;
when an important free software package does not come with a free
manual and a free tutorial, that is a major gap.  We have many such
gaps today.

Consider Perl, for instance.  The tutorial manuals that people
normally use are non-free.  How did this come about?  Because the
authors of those manuals published them with restrictive terms---no
copying, no modification, source files not available---which exclude
them from the free software world.

That wasn't the first time this sort of thing happened, and it was far
from the last.  Many times we have heard a GNU user eagerly describe a
manual that he is writing, his intended contribution to the community,
only to learn that he had ruined everything by signing a publication
contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not
price.  The problem with the non-free manual is not that publishers
charge a price for printed copies---that in itself is fine.  (The Free
Software Foundation sells printed copies of manuals, too.)  The
problem is the restrictions on the use of the manual.  Free manuals
are available in source code form, and give you permission to copy and
modify.  Non-free manuals do not allow this.

The criteria of freedom for a free manual are roughly the same as for
free software.  Redistribution (including the normal kinds of
commercial redistribution) must be permitted, so that the manual can
accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too.
When people modify the software, adding or changing features, if they
are conscientious they will change the manual too---so they can
provide accurate and clear documentation for the modified program.  A
manual that leaves you no choice but to write a new manual to document
a changed version of the program is not really available to our
community.

Some kinds of limits on the way modification is handled are
acceptable.  For example, requirements to preserve the original
author's copyright notice, the distribution terms, or the list of
authors, are ok.  It is also no problem to require modified versions
to include notice that they were modified.  Even entire sections that
may not be deleted or changed are acceptable, as long as they deal
with nontechnical topics (like this one).  These kinds of restrictions
are acceptable because they don't obstruct the community's normal use
of the manual.

However, it must be possible to modify all the @emph{technical}
content of the manual, and then distribute the result in all the usual
media, through all the usual channels.  Otherwise, the restrictions
obstruct the use of the manual, it is not free, and we need another
manual to replace it.

Please spread the word about this issue.  Our community continues to
lose manuals to proprietary publishing.  If we spread the word that
free software needs free reference manuals and free tutorials, perhaps
the next person who wants to contribute by writing documentation will
realize, before it is too late, that only free manuals contribute to
the free software community.

If you are writing documentation, please insist on publishing it under
the GNU Free Documentation License or another free documentation
license.  Remember that this decision requires your approval---you
don't have to let the publisher decide.  Some commercial publishers
will use a free license if you insist, but they will not propose the
option; it is up to you to raise the issue and say firmly that this is
what you want.  If the publisher you are dealing with refuses, please
try other publishers.  If you're not sure whether a proposed license
is free, write to @email{licensing@@gnu.org}.

You can encourage commercial publishers to sell more free, copylefted
manuals and tutorials by buying them, and particularly by buying
copies from the publishers that paid for their writing or for major
improvements.  Meanwhile, try to avoid buying non-free documentation
at all.  Check the distribution terms of a manual before you buy it,
and insist that whoever seeks your business must respect your freedom.
Check the history of the book, and try to reward the publishers that
have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation
published by other publishers, at
@url{http://www.fsf.org/doc/other-free-books.html}.

@node Contributors
@unnumberedsec Contributors to @value{GDBN}

Richard Stallman was the original author of @value{GDBN}, and of many
other @sc{gnu} programs.  Many others have contributed to its
development.  This section attempts to credit major contributors.  One
of the virtues of free software is that everyone is free to contribute
to it; with regret, we cannot actually acknowledge everyone here.  The
file @file{ChangeLog} in the @value{GDBN} distribution approximates a
blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

@quotation
@emph{Plea:} Additions to this section are particularly welcome.  If you
or your friends (or enemies, to be evenhanded) have been unfairly
omitted from this list, we would like to add your names!
@end quotation

So that they may not regard their many labors as thankless, we
particularly thank those who shepherded @value{GDBN} through major
releases:
Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
Jim Blandy (release 4.18);
Jason Molenda (release 4.17);
Stan Shebs (release 4.14);
Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
Jim Kingdon (releases 3.5, 3.4, and 3.3);
and Randy Smith (releases 3.2, 3.1, and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
in @value{GDBN}, with significant additional contributions from Per
Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
much general update work leading to release 3.0).

@value{GDBN} uses the BFD subroutine library to examine multiple
object-file formats; BFD was a joint project of David V.
Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did
the original support for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
support.
Jean-Daniel Fekete contributed Sun 386i support.
Chris Hanson improved the HP9000 support.
Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
David Johnson contributed Encore Umax support.
Jyrki Kuoppala contributed Altos 3068 support.
Jeff Law contributed HP PA and SOM support.
Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support.
Bob Rusk contributed Harris Nighthawk CX-UX support.
Chris Smith contributed Convex support (and Fortran debugging).
Jonathan Stone contributed Pyramid support.
Michael Tiemann contributed SPARC support.
Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
Pace Willison contributed Intel 386 support.
Jay Vosburgh contributed Symmetry support.
Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K @sc{gnu}/Linux support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared
libraries.

Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
about several machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
contributed remote debugging modules for the i960, VxWorks, A29K UDI,
and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing
command-line editing and command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the
Modula-2 support, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4.
He also enhanced the command-completion support to cover C@t{++} overloaded
symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for
H8/300, H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
processors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.

Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
watchpoints.

Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
nearly innumerable bug fixes and cleanups throughout @value{GDBN}.

The following people at the Hewlett-Packard Company contributed
support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
compiler, and the Text User Interface (nee Terminal User Interface):
Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
provided HP-specific information in this manual.

DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
Robert Hoehne made significant contributions to the DJGPP port.

Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
development since 1991.  Cygnus engineers who have worked on @value{GDBN}
fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
Cygnus Solutions, implemented the original @sc{gdb/mi} interface.

Jim Blandy added support for preprocessor macros, while working for Red
Hat.

Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
with the migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
unwinder framework, this consisting of a fresh new design featuring
frame IDs, independent frame sniffers, and the sentinel frame.  Mark
Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
trad unwinders.  The architecture-specific changes, each involving a
complete rewrite of the architecture's frame code, were carried out by
Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
Tensilica, Inc.@: contributed support for Xtensa processors.  Others
who have worked on the Xtensa port of @value{GDBN} in the past include
Steve Tjiang, John Newlin, and Scott Foehner.

Michael Eager and staff of Xilinx, Inc., contributed support for the
Xilinx MicroBlaze architecture.

@node Sample Session
@chapter A Sample @value{GDBN} Session

You can use this manual at your leisure to read all about @value{GDBN}.
However, a handful of commands are enough to get started using the
debugger.  This chapter illustrates those commands.

@iftex
In this sample session, we emphasize user input like this: @b{input},
to make it easier to pick out from the surrounding output.
@end iftex

@c FIXME: this example may not be appropriate for some configs, where
@c FIXME...primary interest is in remote use.

One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro
definition within another stop working.  In the following short @code{m4}
session, we define a macro @code{foo} which expands to @code{0000}; we
then use the @code{m4} built-in @code{defn} to define @code{bar} as the
same thing.  However, when we change the open quote string to
@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
procedure fails to define a new synonym @code{baz}:

@smallexample
$ @b{cd gnu/m4}
$ @b{./m4}
@b{define(foo,0000)}

@b{foo}
0000
@b{define(bar,defn(`foo'))}

@b{bar}
0000
@b{changequote(<QUOTE>,<UNQUOTE>)}

@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
@b{baz}
@b{Ctrl-d}
m4: End of input: 0: fatal error: EOF in string
@end smallexample

@noindent
Let us use @value{GDBN} to try to see what is going on.

@smallexample
$ @b{@value{GDBP} m4}
@c FIXME: this falsifies the exact text played out, to permit smallbook
@c FIXME... format to come out better.
@value{GDBN} is free software and you are welcome to distribute copies
 of it under certain conditions; type "show copying" to see
 the conditions.
There is absolutely no warranty for @value{GDBN}; type "show warranty"
 for details.

@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
(@value{GDBP})
@end smallexample

@noindent
@value{GDBN} reads only enough symbol data to know where to find the
rest when needed; as a result, the first prompt comes up very quickly.
We now tell @value{GDBN} to use a narrower display width than usual, so
that examples fit in this manual.

@smallexample
(@value{GDBP}) @b{set width 70}
@end smallexample

@noindent
We need to see how the @code{m4} built-in @code{changequote} works.
Having looked at the source, we know the relevant subroutine is
@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
@code{break} command.

@smallexample
(@value{GDBP}) @b{break m4_changequote}
Breakpoint 1 at 0x62f4: file builtin.c, line 879.
@end smallexample

@noindent
Using the @code{run} command, we start @code{m4} running under @value{GDBN}
control; as long as control does not reach the @code{m4_changequote}
subroutine, the program runs as usual:

@smallexample
(@value{GDBP}) @b{run}
Starting program: /work/Editorial/gdb/gnu/m4/m4
@b{define(foo,0000)}

@b{foo}
0000
@end smallexample

@noindent
To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
suspends execution of @code{m4}, displaying information about the
context where it stops.

@smallexample
@b{changequote(<QUOTE>,<UNQUOTE>)}

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
    at builtin.c:879
879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
@end smallexample

@noindent
Now we use the command @code{n} (@code{next}) to advance execution to
the next line of the current function.

@smallexample
(@value{GDBP}) @b{n}
882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
 : nil,
@end smallexample

@noindent
@code{set_quotes} looks like a promising subroutine.  We can go into it
by using the command @code{s} (@code{step}) instead of @code{next}.
@code{step} goes to the next line to be executed in @emph{any}
subroutine, so it steps into @code{set_quotes}.

@smallexample
(@value{GDBP}) @b{s}
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
    at input.c:530
530         if (lquote != def_lquote)
@end smallexample

@noindent
The display that shows the subroutine where @code{m4} is now
suspended (and its arguments) is called a stack frame display.  It
shows a summary of the stack.  We can use the @code{backtrace}
command (which can also be spelled @code{bt}), to see where we are
in the stack as a whole: the @code{backtrace} command displays a
stack frame for each active subroutine.

@smallexample
(@value{GDBP}) @b{bt}
#0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
    at input.c:530
#1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
    at builtin.c:882
#2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
    at macro.c:71
#4  0x79dc in expand_input () at macro.c:40
#5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
@end smallexample

@noindent
We step through a few more lines to see what happens.  The first two
times, we can use @samp{s}; the next two times we use @code{n} to avoid
falling into the @code{xstrdup} subroutine.

@smallexample
(@value{GDBP}) @b{s}
0x3b5c  532         if (rquote != def_rquote)
(@value{GDBP}) @b{s}
0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
def_lquote : xstrdup(lq);
(@value{GDBP}) @b{n}
536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup(rq);
(@value{GDBP}) @b{n}
538         len_lquote = strlen(rquote);
@end smallexample

@noindent
The last line displayed looks a little odd; we can examine the variables
@code{lquote} and @code{rquote} to see if they are in fact the new left
and right quotes we specified.  We use the command @code{p}
(@code{print}) to see their values.

@smallexample
(@value{GDBP}) @b{p lquote}
$1 = 0x35d40 "<QUOTE>"
(@value{GDBP}) @b{p rquote}
$2 = 0x35d50 "<UNQUOTE>"
@end smallexample

@noindent
@code{lquote} and @code{rquote} are indeed the new left and right quotes.
To look at some context, we can display ten lines of source
surrounding the current line with the @code{l} (@code{list}) command.

@smallexample
(@value{GDBP}) @b{l}
533             xfree(rquote);
534
535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
 : xstrdup (lq);
536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup (rq);
537
538         len_lquote = strlen(rquote);
539         len_rquote = strlen(lquote);
540     @}
541
542     void
@end smallexample

@noindent
Let us step past the two lines that set @code{len_lquote} and
@code{len_rquote}, and then examine the values of those variables.

@smallexample
(@value{GDBP}) @b{n}
539         len_rquote = strlen(lquote);
(@value{GDBP}) @b{n}
540     @}
(@value{GDBP}) @b{p len_lquote}
$3 = 9
(@value{GDBP}) @b{p len_rquote}
$4 = 7
@end smallexample

@noindent
That certainly looks wrong, assuming @code{len_lquote} and
@code{len_rquote} are meant to be the lengths of @code{lquote} and
@code{rquote} respectively.  We can set them to better values using
the @code{p} command, since it can print the value of
any expression---and that expression can include subroutine calls and
assignments.

@smallexample
(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
$5 = 7
(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
$6 = 9
@end smallexample

@noindent
Is that enough to fix the problem of using the new quotes with the
@code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
executing with the @code{c} (@code{continue}) command, and then try the
example that caused trouble initially:

@smallexample
(@value{GDBP}) @b{c}
Continuing.

@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}

baz
0000
@end smallexample

@noindent
Success!  The new quotes now work just as well as the default ones.  The
problem seems to have been just the two typos defining the wrong
lengths.  We allow @code{m4} exit by giving it an EOF as input:

@smallexample
@b{Ctrl-d}
Program exited normally.
@end smallexample

@noindent
The message @samp{Program exited normally.} is from @value{GDBN}; it
indicates @code{m4} has finished executing.  We can end our @value{GDBN}
session with the @value{GDBN} @code{quit} command.

@smallexample
(@value{GDBP}) @b{quit}
@end smallexample

@node Invocation
@chapter Getting In and Out of @value{GDBN}

This chapter discusses how to start @value{GDBN}, and how to get out of it.
The essentials are:
@itemize @bullet
@item
type @samp{@value{GDBP}} to start @value{GDBN}.
@item
type @kbd{quit} or @kbd{Ctrl-d} to exit.
@end itemize

@menu
* Invoking GDB::                How to start @value{GDBN}
* Quitting GDB::                How to quit @value{GDBN}
* Shell Commands::              How to use shell commands inside @value{GDBN}
* Logging Output::              How to log @value{GDBN}'s output to a file
@end menu

@node Invoking GDB
@section Invoking @value{GDBN}

Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
@value{GDBN} reads commands from the terminal until you tell it to exit.

You can also run @code{@value{GDBP}} with a variety of arguments and options,
to specify more of your debugging environment at the outset.

The command-line options described here are designed
to cover a variety of situations; in some environments, some of these
options may effectively be unavailable.

The most usual way to start @value{GDBN} is with one argument,
specifying an executable program:

@smallexample
@value{GDBP} @var{program}
@end smallexample

@noindent
You can also start with both an executable program and a core file
specified:

@smallexample
@value{GDBP} @var{program} @var{core}
@end smallexample

You can, instead, specify a process ID as a second argument, if you want
to debug a running process:

@smallexample
@value{GDBP} @var{program} 1234
@end smallexample

@noindent
would attach @value{GDBN} to process @code{1234} (unless you also have a file
named @file{1234}; @value{GDBN} does check for a core file first).

Taking advantage of the second command-line argument requires a fairly
complete operating system; when you use @value{GDBN} as a remote
debugger attached to a bare board, there may not be any notion of
``process'', and there is often no way to get a core dump.  @value{GDBN}
will warn you if it is unable to attach or to read core dumps.

You can optionally have @code{@value{GDBP}} pass any arguments after the
executable file to the inferior using @code{--args}.  This option stops
option processing.
@smallexample
@value{GDBP} --args gcc -O2 -c foo.c
@end smallexample
This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.

You can run @code{@value{GDBP}} without printing the front material, which describes
@value{GDBN}'s non-warranty, by specifying @code{-silent}:

@smallexample
@value{GDBP} -silent
@end smallexample

@noindent
You can further control how @value{GDBN} starts up by using command-line
options.  @value{GDBN} itself can remind you of the options available.

@noindent
Type

@smallexample
@value{GDBP} -help
@end smallexample

@noindent
to display all available options and briefly describe their use
(@samp{@value{GDBP} -h} is a shorter equivalent).

All options and command line arguments you give are processed
in sequential order.  The order makes a difference when the
@samp{-x} option is used.


@menu
* File Options::                Choosing files
* Mode Options::                Choosing modes
* Startup::                     What @value{GDBN} does during startup
@end menu

@node File Options
@subsection Choosing Files

When @value{GDBN} starts, it reads any arguments other than options as
specifying an executable file and core file (or process ID).  This is
the same as if the arguments were specified by the @samp{-se} and
@samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
first argument that does not have an associated option flag as
equivalent to the @samp{-se} option followed by that argument; and the
second argument that does not have an associated option flag, if any, as
equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
If the second argument begins with a decimal digit, @value{GDBN} will
first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile.  If you have a corefile whose name begins with
a digit, you can prevent @value{GDBN} from treating it as a pid by
prefixing it with @file{./}, e.g.@: @file{./12345}.

If @value{GDBN} has not been configured to included core file support,
such as for most embedded targets, then it will complain about a second
argument and ignore it.

Many options have both long and short forms; both are shown in the
following list.  @value{GDBN} also recognizes the long forms if you truncate
them, so long as enough of the option is present to be unambiguous.
(If you prefer, you can flag option arguments with @samp{--} rather
than @samp{-}, though we illustrate the more usual convention.)

@c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
@c way, both those who look for -foo and --foo in the index, will find
@c it.

@table @code
@item -symbols @var{file}
@itemx -s @var{file}
@cindex @code{--symbols}
@cindex @code{-s}
Read symbol table from file @var{file}.

@item -exec @var{file}
@itemx -e @var{file}
@cindex @code{--exec}
@cindex @code{-e}
Use file @var{file} as the executable file to execute when appropriate,
and for examining pure data in conjunction with a core dump.

@item -se @var{file}
@cindex @code{--se}
Read symbol table from file @var{file} and use it as the executable
file.

@item -core @var{file}
@itemx -c @var{file}
@cindex @code{--core}
@cindex @code{-c}
Use file @var{file} as a core dump to examine.

@item -pid @var{number}
@itemx -p @var{number}
@cindex @code{--pid}
@cindex @code{-p}
Connect to process ID @var{number}, as with the @code{attach} command.

@item -command @var{file}
@itemx -x @var{file}
@cindex @code{--command}
@cindex @code{-x}
Execute commands from file @var{file}.  The contents of this file is
evaluated exactly as the @code{source} command would.
@xref{Command Files,, Command files}.

@item -eval-command @var{command}
@itemx -ex @var{command}
@cindex @code{--eval-command}
@cindex @code{-ex}
Execute a single @value{GDBN} command.

This option may be used multiple times to call multiple commands.  It may
also be interleaved with @samp{-command} as required.

@smallexample
@value{GDBP} -ex 'target sim' -ex 'load' \
   -x setbreakpoints -ex 'run' a.out
@end smallexample

@item -init-command @var{file}
@itemx -ix @var{file}
@cindex @code{--init-command}
@cindex @code{-ix}
Execute commands from file @var{file} before loading the inferior (but
after loading gdbinit files).
@xref{Startup}.

@item -init-eval-command @var{command}
@itemx -iex @var{command}
@cindex @code{--init-eval-command}
@cindex @code{-iex}
Execute a single @value{GDBN} command before loading the inferior (but
after loading gdbinit files).
@xref{Startup}.

@item -directory @var{directory}
@itemx -d @var{directory}
@cindex @code{--directory}
@cindex @code{-d}
Add @var{directory} to the path to search for source and script files.

@item -r
@itemx -readnow
@cindex @code{--readnow}
@cindex @code{-r}
Read each symbol file's entire symbol table immediately, rather than
the default, which is to read it incrementally as it is needed.
This makes startup slower, but makes future operations faster.

@end table

@node Mode Options
@subsection Choosing Modes

You can run @value{GDBN} in various alternative modes---for example, in
batch mode or quiet mode.

@table @code
@anchor{-nx}
@item -nx
@itemx -n
@cindex @code{--nx}
@cindex @code{-n}
Do not execute commands found in any initialization file.
There are three init files, loaded in the following order:

@table @code
@item @file{system.gdbinit}
This is the system-wide init file.
Its location is specified with the @code{--with-system-gdbinit}
configure option (@pxref{System-wide configuration}).
It is loaded first when @value{GDBN} starts, before command line options
have been processed.
@item @file{~/.gdbinit}
This is the init file in your home directory.
It is loaded next, after @file{system.gdbinit}, and before
command options have been processed.
@item @file{./.gdbinit}
This is the init file in the current directory.
It is loaded last, after command line options other than @code{-x} and
@code{-ex} have been processed.  Command line options @code{-x} and
@code{-ex} are processed last, after @file{./.gdbinit} has been loaded.
@end table

For further documentation on startup processing, @xref{Startup}.
For documentation on how to write command files,
@xref{Command Files,,Command Files}.

@anchor{-nh}
@item -nh
@cindex @code{--nh}
Do not execute commands found in @file{~/.gdbinit}, the init file
in your home directory.
@xref{Startup}.

@item -quiet
@itemx -silent
@itemx -q
@cindex @code{--quiet}
@cindex @code{--silent}
@cindex @code{-q}
``Quiet''.  Do not print the introductory and copyright messages.  These
messages are also suppressed in batch mode.

@item -batch
@cindex @code{--batch}
Run in batch mode.  Exit with status @code{0} after processing all the
command files specified with @samp{-x} (and all commands from
initialization files, if not inhibited with @samp{-n}).  Exit with
nonzero status if an error occurs in executing the @value{GDBN} commands
in the command files.  Batch mode also disables pagination, sets unlimited
terminal width and height @pxref{Screen Size}, and acts as if @kbd{set confirm
off} were in effect (@pxref{Messages/Warnings}).

Batch mode may be useful for running @value{GDBN} as a filter, for
example to download and run a program on another computer; in order to
make this more useful, the message

@smallexample
Program exited normally.
@end smallexample

@noindent
(which is ordinarily issued whenever a program running under
@value{GDBN} control terminates) is not issued when running in batch
mode.

@item -batch-silent
@cindex @code{--batch-silent}
Run in batch mode exactly like @samp{-batch}, but totally silently.  All
@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
unaffected).  This is much quieter than @samp{-silent} and would be useless
for an interactive session.

This is particularly useful when using targets that give @samp{Loading section}
messages, for example.

Note that targets that give their output via @value{GDBN}, as opposed to
writing directly to @code{stdout}, will also be made silent.

@item -return-child-result
@cindex @code{--return-child-result}
The return code from @value{GDBN} will be the return code from the child
process (the process being debugged), with the following exceptions:

@itemize @bullet
@item
@value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
internal error.  In this case the exit code is the same as it would have been
without @samp{-return-child-result}.
@item
The user quits with an explicit value.  E.g., @samp{quit 1}.
@item
The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.
@end itemize

This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
when @value{GDBN} is being used as a remote program loader or simulator
interface.

@item -nowindows
@itemx -nw
@cindex @code{--nowindows}
@cindex @code{-nw}
``No windows''.  If @value{GDBN} comes with a graphical user interface
(GUI) built in, then this option tells @value{GDBN} to only use the command-line
interface.  If no GUI is available, this option has no effect.

@item -windows
@itemx -w
@cindex @code{--windows}
@cindex @code{-w}
If @value{GDBN} includes a GUI, then this option requires it to be
used if possible.

@item -cd @var{directory}
@cindex @code{--cd}
Run @value{GDBN} using @var{directory} as its working directory,
instead of the current directory.

@item -data-directory @var{directory}
@cindex @code{--data-directory}
Run @value{GDBN} using @var{directory} as its data directory.
The data directory is where @value{GDBN} searches for its
auxiliary files.  @xref{Data Files}.

@item -fullname
@itemx -f
@cindex @code{--fullname}
@cindex @code{-f}
@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
subprocess.  It tells @value{GDBN} to output the full file name and line
number in a standard, recognizable fashion each time a stack frame is
displayed (which includes each time your program stops).  This
recognizable format looks like two @samp{\032} characters, followed by
the file name, line number and character position separated by colons,
and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
@samp{\032} characters as a signal to display the source code for the
frame.

@item -annotate @var{level}
@cindex @code{--annotate}
This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
effect is identical to using @samp{set annotate @var{level}}
(@pxref{Annotations}).  The annotation @var{level} controls how much
information @value{GDBN} prints together with its prompt, values of
expressions, source lines, and other types of output.  Level 0 is the
normal, level 1 is for use when @value{GDBN} is run as a subprocess of
@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
that control @value{GDBN}, and level 2 has been deprecated.

The annotation mechanism has largely been superseded by @sc{gdb/mi}
(@pxref{GDB/MI}).

@item --args
@cindex @code{--args}
Change interpretation of command line so that arguments following the
executable file are passed as command line arguments to the inferior.
This option stops option processing.

@item -baud @var{bps}
@itemx -b @var{bps}
@cindex @code{--baud}
@cindex @code{-b}
Set the line speed (baud rate or bits per second) of any serial
interface used by @value{GDBN} for remote debugging.

@item -l @var{timeout}
@cindex @code{-l}
Set the timeout (in seconds) of any communication used by @value{GDBN}
for remote debugging.

@item -tty @var{device}
@itemx -t @var{device}
@cindex @code{--tty}
@cindex @code{-t}
Run using @var{device} for your program's standard input and output.
@c FIXME: kingdon thinks there is more to -tty.  Investigate.

@c resolve the situation of these eventually
@item -tui
@cindex @code{--tui}
Activate the @dfn{Text User Interface} when starting.  The Text User
Interface manages several text windows on the terminal, showing
source, assembly, registers and @value{GDBN} command outputs
(@pxref{TUI, ,@value{GDBN} Text User Interface}).  Do not use this
option if you run @value{GDBN} from Emacs (@pxref{Emacs, ,
Using @value{GDBN} under @sc{gnu} Emacs}).

@c @item -xdb
@c @cindex @code{--xdb}
@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
@c For information, see the file @file{xdb_trans.html}, which is usually
@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
@c systems.

@item -interpreter @var{interp}
@cindex @code{--interpreter}
Use the interpreter @var{interp} for interface with the controlling
program or device.  This option is meant to be set by programs which
communicate with @value{GDBN} using it as a back end.
@xref{Interpreters, , Command Interpreters}.

@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0.  The
previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
selected with @samp{--interpreter=mi1}, is deprecated.  Earlier
@sc{gdb/mi} interfaces are no longer supported.

@item -write
@cindex @code{--write}
Open the executable and core files for both reading and writing.  This
is equivalent to the @samp{set write on} command inside @value{GDBN}
(@pxref{Patching}).

@item -statistics
@cindex @code{--statistics}
This option causes @value{GDBN} to print statistics about time and
memory usage after it completes each command and returns to the prompt.

@item -version
@cindex @code{--version}
This option causes @value{GDBN} to print its version number and
no-warranty blurb, and exit.

@item -configuration
@cindex @code{--configuration}
This option causes @value{GDBN} to print details about its build-time
configuration parameters, and then exit.  These details can be
important when reporting @value{GDBN} bugs (@pxref{GDB Bugs}).

@end table

@node Startup
@subsection What @value{GDBN} Does During Startup
@cindex @value{GDBN} startup

Here's the description of what @value{GDBN} does during session startup:

@enumerate
@item
Sets up the command interpreter as specified by the command line
(@pxref{Mode Options, interpreter}).

@item
@cindex init file
Reads the system-wide @dfn{init file} (if @option{--with-system-gdbinit} was
used when building @value{GDBN}; @pxref{System-wide configuration,
 ,System-wide configuration and settings}) and executes all the commands in
that file.

@anchor{Home Directory Init File}
@item
Reads the init file (if any) in your home directory@footnote{On
DOS/Windows systems, the home directory is the one pointed to by the
@code{HOME} environment variable.} and executes all the commands in
that file.

@anchor{Option -init-eval-command}
@item
Executes commands and command files specified by the @samp{-iex} and
@samp{-ix} options in their specified order.  Usually you should use the
@samp{-ex} and @samp{-x} options instead, but this way you can apply
settings before @value{GDBN} init files get executed and before inferior
gets loaded.

@item
Processes command line options and operands.

@anchor{Init File in the Current Directory during Startup}
@item
Reads and executes the commands from init file (if any) in the current
working directory as long as @samp{set auto-load local-gdbinit} is set to
@samp{on} (@pxref{Init File in the Current Directory}).
This is only done if the current directory is
different from your home directory.  Thus, you can have more than one
init file, one generic in your home directory, and another, specific
to the program you are debugging, in the directory where you invoke
@value{GDBN}.

@item
If the command line specified a program to debug, or a process to
attach to, or a core file, @value{GDBN} loads any auto-loaded
scripts provided for the program or for its loaded shared libraries.
@xref{Auto-loading}.

If you wish to disable the auto-loading during startup,
you must do something like the following:

@smallexample
$ gdb -iex "set auto-load python-scripts off" myprogram
@end smallexample

Option @samp{-ex} does not work because the auto-loading is then turned
off too late.

@item
Executes commands and command files specified by the @samp{-ex} and
@samp{-x} options in their specified order.  @xref{Command Files}, for
more details about @value{GDBN} command files.

@item
Reads the command history recorded in the @dfn{history file}.
@xref{Command History}, for more details about the command history and the
files where @value{GDBN} records it.
@end enumerate

Init files use the same syntax as @dfn{command files} (@pxref{Command
Files}) and are processed by @value{GDBN} in the same way.  The init
file in your home directory can set options (such as @samp{set
complaints}) that affect subsequent processing of command line options
and operands.  Init files are not executed if you use the @samp{-nx}
option (@pxref{Mode Options, ,Choosing Modes}).

To display the list of init files loaded by gdb at startup, you
can use @kbd{gdb --help}.

@cindex init file name
@cindex @file{.gdbinit}
@cindex @file{gdb.ini}
The @value{GDBN} init files are normally called @file{.gdbinit}.
The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
the limitations of file names imposed by DOS filesystems.  The Windows
port of @value{GDBN} uses the standard name, but if it finds a
@file{gdb.ini} file in your home directory, it warns you about that
and suggests to rename the file to the standard name.


@node Quitting GDB
@section Quitting @value{GDBN}
@cindex exiting @value{GDBN}
@cindex leaving @value{GDBN}

@table @code
@kindex quit @r{[}@var{expression}@r{]}
@kindex q @r{(@code{quit})}
@item quit @r{[}@var{expression}@r{]}
@itemx q
To exit @value{GDBN}, use the @code{quit} command (abbreviated
@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
do not supply @var{expression}, @value{GDBN} will terminate normally;
otherwise it will terminate using the result of @var{expression} as the
error code.
@end table

@cindex interrupt
An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
terminates the action of any @value{GDBN} command that is in progress and
returns to @value{GDBN} command level.  It is safe to type the interrupt
character at any time because @value{GDBN} does not allow it to take effect
until a time when it is safe.

If you have been using @value{GDBN} to control an attached process or
device, you can release it with the @code{detach} command
(@pxref{Attach, ,Debugging an Already-running Process}).

@node Shell Commands
@section Shell Commands

If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend @value{GDBN}; you can
just use the @code{shell} command.

@table @code
@kindex shell
@kindex !
@cindex shell escape
@item shell @var{command-string}
@itemx !@var{command-string}
Invoke a standard shell to execute @var{command-string}.
Note that no space is needed between @code{!} and @var{command-string}.
If it exists, the environment variable @code{SHELL} determines which
shell to run.  Otherwise @value{GDBN} uses the default shell
(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
@end table

The utility @code{make} is often needed in development environments.
You do not have to use the @code{shell} command for this purpose in
@value{GDBN}:

@table @code
@kindex make
@cindex calling make
@item make @var{make-args}
Execute the @code{make} program with the specified
arguments.  This is equivalent to @samp{shell make @var{make-args}}.
@end table

@node Logging Output
@section Logging Output
@cindex logging @value{GDBN} output
@cindex save @value{GDBN} output to a file

You may want to save the output of @value{GDBN} commands to a file.
There are several commands to control @value{GDBN}'s logging.

@table @code
@kindex set logging
@item set logging on
Enable logging.
@item set logging off
Disable logging.
@cindex logging file name
@item set logging file @var{file}
Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
@item set logging overwrite [on|off]
By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
you want @code{set logging on} to overwrite the logfile instead.
@item set logging redirect [on|off]
By default, @value{GDBN} output will go to both the terminal and the logfile.
Set @code{redirect} if you want output to go only to the log file.
@kindex show logging
@item show logging
Show the current values of the logging settings.
@end table

@node Commands
@chapter @value{GDBN} Commands

You can abbreviate a @value{GDBN} command to the first few letters of the command
name, if that abbreviation is unambiguous; and you can repeat certain
@value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
key to get @value{GDBN} to fill out the rest of a word in a command (or to
show you the alternatives available, if there is more than one possibility).

@menu
* Command Syntax::              How to give commands to @value{GDBN}
* Completion::                  Command completion
* Help::                        How to ask @value{GDBN} for help
@end menu

@node Command Syntax
@section Command Syntax

A @value{GDBN} command is a single line of input.  There is no limit on
how long it can be.  It starts with a command name, which is followed by
arguments whose meaning depends on the command name.  For example, the
command @code{step} accepts an argument which is the number of times to
step, as in @samp{step 5}.  You can also use the @code{step} command
with no arguments.  Some commands do not allow any arguments.

@cindex abbreviation
@value{GDBN} command names may always be truncated if that abbreviation is
unambiguous.  Other possible command abbreviations are listed in the
documentation for individual commands.  In some cases, even ambiguous
abbreviations are allowed; for example, @code{s} is specially defined as
equivalent to @code{step} even though there are other commands whose
names start with @code{s}.  You can test abbreviations by using them as
arguments to the @code{help} command.

@cindex repeating commands
@kindex RET @r{(repeat last command)}
A blank line as input to @value{GDBN} (typing just @key{RET}) means to
repeat the previous command.  Certain commands (for example, @code{run})
will not repeat this way; these are commands whose unintentional
repetition might cause trouble and which you are unlikely to want to
repeat.  User-defined commands can disable this feature; see
@ref{Define, dont-repeat}.

The @code{list} and @code{x} commands, when you repeat them with
@key{RET}, construct new arguments rather than repeating
exactly as typed.  This permits easy scanning of source or memory.

@value{GDBN} can also use @key{RET} in another way: to partition lengthy
output, in a way similar to the common utility @code{more}
(@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
@key{RET} too many in this situation, @value{GDBN} disables command
repetition after any command that generates this sort of display.

@kindex # @r{(a comment)}
@cindex comment
Any text from a @kbd{#} to the end of the line is a comment; it does
nothing.  This is useful mainly in command files (@pxref{Command
Files,,Command Files}).

@cindex repeating command sequences
@kindex Ctrl-o @r{(operate-and-get-next)}
The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
commands.  This command accepts the current line, like @key{RET}, and
then fetches the next line relative to the current line from the history
for editing.

@node Completion
@section Command Completion

@cindex completion
@cindex word completion
@value{GDBN} can fill in the rest of a word in a command for you, if there is
only one possibility; it can also show you what the valid possibilities
are for the next word in a command, at any time.  This works for @value{GDBN}
commands, @value{GDBN} subcommands, and the names of symbols in your program.

Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
of a word.  If there is only one possibility, @value{GDBN} fills in the
word, and waits for you to finish the command (or press @key{RET} to
enter it).  For example, if you type

@c FIXME "@key" does not distinguish its argument sufficiently to permit
@c complete accuracy in these examples; space introduced for clarity.
@c If texinfo enhancements make it unnecessary, it would be nice to
@c replace " @key" by "@key" in the following...
@smallexample
(@value{GDBP}) info bre @key{TAB}
@end smallexample

@noindent
@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
the only @code{info} subcommand beginning with @samp{bre}:

@smallexample
(@value{GDBP}) info breakpoints
@end smallexample

@noindent
You can either press @key{RET} at this point, to run the @code{info
breakpoints} command, or backspace and enter something else, if
@samp{breakpoints} does not look like the command you expected.  (If you
were sure you wanted @code{info breakpoints} in the first place, you
might as well just type @key{RET} immediately after @samp{info bre},
to exploit command abbreviations rather than command completion).

If there is more than one possibility for the next word when you press
@key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
characters and try again, or just press @key{TAB} a second time;
@value{GDBN} displays all the possible completions for that word.  For
example, you might want to set a breakpoint on a subroutine whose name
begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
just sounds the bell.  Typing @key{TAB} again displays all the
function names in your program that begin with those characters, for
example:

@smallexample
(@value{GDBP}) b make_ @key{TAB}
@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
make_a_section_from_file     make_environ
make_abs_section             make_function_type
make_blockvector             make_pointer_type
make_cleanup                 make_reference_type
make_command                 make_symbol_completion_list
(@value{GDBP}) b make_
@end smallexample

@noindent
After displaying the available possibilities, @value{GDBN} copies your
partial input (@samp{b make_} in the example) so you can finish the
command.

If you just want to see the list of alternatives in the first place, you
can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
means @kbd{@key{META} ?}.  You can type this either by holding down a
key designated as the @key{META} shift on your keyboard (if there is
one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.

@cindex quotes in commands
@cindex completion of quoted strings
Sometimes the string you need, while logically a ``word'', may contain
parentheses or other characters that @value{GDBN} normally excludes from
its notion of a word.  To permit word completion to work in this
situation, you may enclose words in @code{'} (single quote marks) in
@value{GDBN} commands.

The most likely situation where you might need this is in typing the
name of a C@t{++} function.  This is because C@t{++} allows function
overloading (multiple definitions of the same function, distinguished
by argument type).  For example, when you want to set a breakpoint you
may need to distinguish whether you mean the version of @code{name}
that takes an @code{int} parameter, @code{name(int)}, or the version
that takes a @code{float} parameter, @code{name(float)}.  To use the
word-completion facilities in this situation, type a single quote
@code{'} at the beginning of the function name.  This alerts
@value{GDBN} that it may need to consider more information than usual
when you press @key{TAB} or @kbd{M-?} to request word completion:

@smallexample
(@value{GDBP}) b 'bubble( @kbd{M-?}
bubble(double,double)    bubble(int,int)
(@value{GDBP}) b 'bubble(
@end smallexample

In some cases, @value{GDBN} can tell that completing a name requires using
quotes.  When this happens, @value{GDBN} inserts the quote for you (while
completing as much as it can) if you do not type the quote in the first
place:

@smallexample
(@value{GDBP}) b bub @key{TAB}
@exdent @value{GDBN} alters your input line to the following, and rings a bell:
(@value{GDBP}) b 'bubble(
@end smallexample

@noindent
In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
you have not yet started typing the argument list when you ask for
completion on an overloaded symbol.

For more information about overloaded functions, see @ref{C Plus Plus
Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
overload-resolution off} to disable overload resolution;
see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.

@cindex completion of structure field names
@cindex structure field name completion
@cindex completion of union field names
@cindex union field name completion
When completing in an expression which looks up a field in a
structure, @value{GDBN} also tries@footnote{The completer can be
confused by certain kinds of invalid expressions.  Also, it only
examines the static type of the expression, not the dynamic type.} to
limit completions to the field names available in the type of the
left-hand-side:

@smallexample
(@value{GDBP}) p gdb_stdout.@kbd{M-?}
magic                to_fputs             to_rewind
to_data              to_isatty            to_write
to_delete            to_put               to_write_async_safe
to_flush             to_read
@end smallexample

@noindent
This is because the @code{gdb_stdout} is a variable of the type
@code{struct ui_file} that is defined in @value{GDBN} sources as
follows:

@smallexample
struct ui_file
@{
   int *magic;
   ui_file_flush_ftype *to_flush;
   ui_file_write_ftype *to_write;
   ui_file_write_async_safe_ftype *to_write_async_safe;
   ui_file_fputs_ftype *to_fputs;
   ui_file_read_ftype *to_read;
   ui_file_delete_ftype *to_delete;
   ui_file_isatty_ftype *to_isatty;
   ui_file_rewind_ftype *to_rewind;
   ui_file_put_ftype *to_put;
   void *to_data;
@}
@end smallexample


@node Help
@section Getting Help
@cindex online documentation
@kindex help

You can always ask @value{GDBN} itself for information on its commands,
using the command @code{help}.

@table @code
@kindex h @r{(@code{help})}
@item help
@itemx h
You can use @code{help} (abbreviated @code{h}) with no arguments to
display a short list of named classes of commands:

@smallexample
(@value{GDBP}) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without
               stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(@value{GDBP})
@end smallexample
@c the above line break eliminates huge line overfull...

@item help @var{class}
Using one of the general help classes as an argument, you can get a
list of the individual commands in that class.  For example, here is the
help display for the class @code{status}:

@smallexample
(@value{GDBP}) help status
Status inquiries.

List of commands:

@c Line break in "show" line falsifies real output, but needed
@c to fit in smallbook page size.
info -- Generic command for showing things
        about the program being debugged
show -- Generic command for showing things
        about the debugger

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(@value{GDBP})
@end smallexample

@item help @var{command}
With a command name as @code{help} argument, @value{GDBN} displays a
short paragraph on how to use that command.

@kindex apropos
@item apropos @var{args}
The @code{apropos} command searches through all of the @value{GDBN}
commands, and their documentation, for the regular expression specified in
@var{args}.  It prints out all matches found.  For example:

@smallexample
apropos alias
@end smallexample

@noindent
results in:

@smallexample
@c @group
alias -- Define a new command that is an alias of an existing command
aliases -- Aliases of other commands
d -- Delete some breakpoints or auto-display expressions
del -- Delete some breakpoints or auto-display expressions
delete -- Delete some breakpoints or auto-display expressions
@c @end group
@end smallexample

@kindex complete
@item complete @var{args}
The @code{complete @var{args}} command lists all the possible completions
for the beginning of a command.  Use @var{args} to specify the beginning of the
command you want completed.  For example:

@smallexample
complete i
@end smallexample

@noindent results in:

@smallexample
@group
if
ignore
info
inspect
@end group
@end smallexample

@noindent This is intended for use by @sc{gnu} Emacs.
@end table

In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
and @code{show} to inquire about the state of your program, or the state
of @value{GDBN} itself.  Each command supports many topics of inquiry; this
manual introduces each of them in the appropriate context.  The listings
under @code{info} and under @code{show} in the Command, Variable, and
Function Index point to all the sub-commands.  @xref{Command and Variable
Index}.

@c @group
@table @code
@kindex info
@kindex i @r{(@code{info})}
@item info
This command (abbreviated @code{i}) is for describing the state of your
program.  For example, you can show the arguments passed to a function
with @code{info args}, list the registers currently in use with @code{info
registers}, or list the breakpoints you have set with @code{info breakpoints}.
You can get a complete list of the @code{info} sub-commands with
@w{@code{help info}}.

@kindex set
@item set
You can assign the result of an expression to an environment variable with
@code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
@code{set prompt $}.

@kindex show
@item show
In contrast to @code{info}, @code{show} is for describing the state of
@value{GDBN} itself.
You can change most of the things you can @code{show}, by using the
related command @code{set}; for example, you can control what number
system is used for displays with @code{set radix}, or simply inquire
which is currently in use with @code{show radix}.

@kindex info set
To display all the settable parameters and their current
values, you can use @code{show} with no arguments; you may also use
@code{info set}.  Both commands produce the same display.
@c FIXME: "info set" violates the rule that "info" is for state of
@c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
@end table
@c @end group

Here are several miscellaneous @code{show} subcommands, all of which are
exceptional in lacking corresponding @code{set} commands:

@table @code
@kindex show version
@cindex @value{GDBN} version number
@item show version
Show what version of @value{GDBN} is running.  You should include this
information in @value{GDBN} bug-reports.  If multiple versions of
@value{GDBN} are in use at your site, you may need to determine which
version of @value{GDBN} you are running; as @value{GDBN} evolves, new
commands are introduced, and old ones may wither away.  Also, many
system vendors ship variant versions of @value{GDBN}, and there are
variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
The version number is the same as the one announced when you start
@value{GDBN}.

@kindex show copying
@kindex info copying
@cindex display @value{GDBN} copyright
@item show copying
@itemx info copying
Display information about permission for copying @value{GDBN}.

@kindex show warranty
@kindex info warranty
@item show warranty
@itemx info warranty
Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
if your version of @value{GDBN} comes with one.

@kindex show configuration
@item show configuration
Display detailed information about the way @value{GDBN} was configured
when it was built.  This displays the optional arguments passed to the
@file{configure} script and also configuration parameters detected
automatically by @command{configure}.  When reporting a @value{GDBN}
bug (@pxref{GDB Bugs}), it is important to include this information in
your report.

@end table

@node Running
@chapter Running Programs Under @value{GDBN}

When you run a program under @value{GDBN}, you must first generate
debugging information when you compile it.

You may start @value{GDBN} with its arguments, if any, in an environment
of your choice.  If you are doing native debugging, you may redirect
your program's input and output, debug an already running process, or
kill a child process.

@menu
* Compilation::                 Compiling for debugging
* Starting::                    Starting your program
* Arguments::                   Your program's arguments
* Environment::                 Your program's environment

* Working Directory::           Your program's working directory
* Input/Output::                Your program's input and output
* Attach::                      Debugging an already-running process
* Kill Process::                Killing the child process

* Inferiors and Programs::      Debugging multiple inferiors and programs
* Threads::                     Debugging programs with multiple threads
* Forks::                       Debugging forks
* Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
@end menu

@node Compilation
@section Compiling for Debugging

In order to debug a program effectively, you need to generate
debugging information when you compile it.  This debugging information
is stored in the object file; it describes the data type of each
variable or function and the correspondence between source line numbers
and addresses in the executable code.

To request debugging information, specify the @samp{-g} option when you run
the compiler.

Programs that are to be shipped to your customers are compiled with
optimizations, using the @samp{-O} compiler option.  However, some
compilers are unable to handle the @samp{-g} and @samp{-O} options
together.  Using those compilers, you cannot generate optimized
executables containing debugging information.

@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
without @samp{-O}, making it possible to debug optimized code.  We
recommend that you @emph{always} use @samp{-g} whenever you compile a
program.  You may think your program is correct, but there is no sense
in pushing your luck.  For more information, see @ref{Optimized Code}.

Older versions of the @sc{gnu} C compiler permitted a variant option
@w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
format; if your @sc{gnu} C compiler has this option, do not use it.

@value{GDBN} knows about preprocessor macros and can show you their
expansion (@pxref{Macros}).  Most compilers do not include information
about preprocessor macros in the debugging information if you specify
the @option{-g} flag alone.  Version 3.1 and later of @value{NGCC},
the @sc{gnu} C compiler, provides macro information if you are using
the DWARF debugging format, and specify the option @option{-g3}.

@xref{Debugging Options,,Options for Debugging Your Program or GCC,
gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}, for more
information on @value{NGCC} options affecting debug information.

You will have the best debugging experience if you use the latest
version of the DWARF debugging format that your compiler supports.
DWARF is currently the most expressive and best supported debugging
format in @value{GDBN}.

@need 2000
@node Starting
@section Starting your Program
@cindex starting
@cindex running

@table @code
@kindex run
@kindex r @r{(@code{run})}
@item run
@itemx r
Use the @code{run} command to start your program under @value{GDBN}.
You must first specify the program name (except on VxWorks) with an
argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
(@pxref{Files, ,Commands to Specify Files}).

@end table

If you are running your program in an execution environment that
supports processes, @code{run} creates an inferior process and makes
that process run your program.  In some environments without processes,
@code{run} jumps to the start of your program.  Other targets,
like @samp{remote}, are always running.  If you get an error
message like this one:

@smallexample
The "remote" target does not support "run".
Try "help target" or "continue".
@end smallexample

@noindent
then use @code{continue} to run your program.  You may need @code{load}
first (@pxref{load}).

The execution of a program is affected by certain information it
receives from its superior.  @value{GDBN} provides ways to specify this
information, which you must do @emph{before} starting your program.  (You
can change it after starting your program, but such changes only affect
your program the next time you start it.)  This information may be
divided into four categories:

@table @asis
@item The @emph{arguments.}
Specify the arguments to give your program as the arguments of the
@code{run} command.  If a shell is available on your target, the shell
is used to pass the arguments, so that you may use normal conventions
(such as wildcard expansion or variable substitution) in describing
the arguments.
In Unix systems, you can control which shell is used with the
@code{SHELL} environment variable.  If you do not define @code{SHELL},
@value{GDBN} uses the default shell (@file{/bin/sh}).  You can disable
use of any shell with the @code{set startup-with-shell} command (see
below for details).

@item The @emph{environment.}
Your program normally inherits its environment from @value{GDBN}, but you can
use the @value{GDBN} commands @code{set environment} and @code{unset
environment} to change parts of the environment that affect
your program.  @xref{Environment, ,Your Program's Environment}.

@item The @emph{working directory.}
Your program inherits its working directory from @value{GDBN}.  You can set
the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
@xref{Working Directory, ,Your Program's Working Directory}.

@item The @emph{standard input and output.}
Your program normally uses the same device for standard input and
standard output as @value{GDBN} is using.  You can redirect input and output
in the @code{run} command line, or you can use the @code{tty} command to
set a different device for your program.
@xref{Input/Output, ,Your Program's Input and Output}.

@cindex pipes
@emph{Warning:} While input and output redirection work, you cannot use
pipes to pass the output of the program you are debugging to another
program; if you attempt this, @value{GDBN} is likely to wind up debugging the
wrong program.
@end table

When you issue the @code{run} command, your program begins to execute
immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
of how to arrange for your program to stop.  Once your program has
stopped, you may call functions in your program, using the @code{print}
or @code{call} commands.  @xref{Data, ,Examining Data}.

If the modification time of your symbol file has changed since the last
time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
table, and reads it again.  When it does this, @value{GDBN} tries to retain
your current breakpoints.

@table @code
@kindex start
@item start
@cindex run to main procedure
The name of the main procedure can vary from language to language.
With C or C@t{++}, the main procedure name is always @code{main}, but
other languages such as Ada do not require a specific name for their
main procedure.  The debugger provides a convenient way to start the
execution of the program and to stop at the beginning of the main
procedure, depending on the language used.

The @samp{start} command does the equivalent of setting a temporary
breakpoint at the beginning of the main procedure and then invoking
the @samp{run} command.

@cindex elaboration phase
Some programs contain an @dfn{elaboration} phase where some startup code is
executed before the main procedure is called.  This depends on the
languages used to write your program.  In C@t{++}, for instance,
constructors for static and global objects are executed before
@code{main} is called.  It is therefore possible that the debugger stops
before reaching the main procedure.  However, the temporary breakpoint
will remain to halt execution.

Specify the arguments to give to your program as arguments to the
@samp{start} command.  These arguments will be given verbatim to the
underlying @samp{run} command.  Note that the same arguments will be
reused if no argument is provided during subsequent calls to
@samp{start} or @samp{run}.

It is sometimes necessary to debug the program during elaboration.  In
these cases, using the @code{start} command would stop the execution of
your program too late, as the program would have already completed the
elaboration phase.  Under these circumstances, insert breakpoints in your
elaboration code before running your program.

@kindex set exec-wrapper
@item set exec-wrapper @var{wrapper}
@itemx show exec-wrapper
@itemx unset exec-wrapper
When @samp{exec-wrapper} is set, the specified wrapper is used to
launch programs for debugging.  @value{GDBN} starts your program
with a shell command of the form @kbd{exec @var{wrapper}
@var{program}}.  Quoting is added to @var{program} and its
arguments, but not to @var{wrapper}, so you should add quotes if
appropriate for your shell.  The wrapper runs until it executes
your program, and then @value{GDBN} takes control.

You can use any program that eventually calls @code{execve} with
its arguments as a wrapper.  Several standard Unix utilities do
this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
with @code{exec "$@@"} will also work.

For example, you can use @code{env} to pass an environment variable to
the debugged program, without setting the variable in your shell's
environment:

@smallexample
(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
(@value{GDBP}) run
@end smallexample

This command is available when debugging locally on most targets, excluding
@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.

@kindex set startup-with-shell
@item set startup-with-shell
@itemx set startup-with-shell on
@itemx set startup-with-shell off
@itemx show set startup-with-shell
On Unix systems, by default, if a shell is available on your target,
@value{GDBN}) uses it to start your program.  Arguments of the
@code{run} command are passed to the shell, which does variable
substitution, expands wildcard characters and performs redirection of
I/O.  In some circumstances, it may be useful to disable such use of a
shell, for example, when debugging the shell itself or diagnosing
startup failures such as:

@smallexample
(@value{GDBP}) run
Starting program: ./a.out
During startup program terminated with signal SIGSEGV, Segmentation fault.
@end smallexample

@noindent
which indicates the shell or the wrapper specified with
@samp{exec-wrapper} crashed, not your program.  Most often, this is
caused by something odd in your shell's non-interactive mode
initialization file---such as @file{.cshrc} for C-shell,
$@file{.zshenv} for the Z shell, or the file specified in the
@samp{BASH_ENV} environment variable for BASH.

@kindex set disable-randomization
@item set disable-randomization
@itemx set disable-randomization on
This option (enabled by default in @value{GDBN}) will turn off the native
randomization of the virtual address space of the started program.  This option
is useful for multiple debugging sessions to make the execution better
reproducible and memory addresses reusable across debugging sessions.

This feature is implemented only on certain targets, including @sc{gnu}/Linux.
On @sc{gnu}/Linux you can get the same behavior using

@smallexample
(@value{GDBP}) set exec-wrapper setarch `uname -m` -R
@end smallexample

@item set disable-randomization off
Leave the behavior of the started executable unchanged.  Some bugs rear their
ugly heads only when the program is loaded at certain addresses.  If your bug
disappears when you run the program under @value{GDBN}, that might be because
@value{GDBN} by default disables the address randomization on platforms, such
as @sc{gnu}/Linux, which do that for stand-alone programs.  Use @kbd{set
disable-randomization off} to try to reproduce such elusive bugs.

On targets where it is available, virtual address space randomization
protects the programs against certain kinds of security attacks.  In these
cases the attacker needs to know the exact location of a concrete executable
code.  Randomizing its location makes it impossible to inject jumps misusing
a code at its expected addresses.

Prelinking shared libraries provides a startup performance advantage but it
makes addresses in these libraries predictable for privileged processes by
having just unprivileged access at the target system.  Reading the shared
library binary gives enough information for assembling the malicious code
misusing it.  Still even a prelinked shared library can get loaded at a new
random address just requiring the regular relocation process during the
startup.  Shared libraries not already prelinked are always loaded at
a randomly chosen address.

Position independent executables (PIE) contain position independent code
similar to the shared libraries and therefore such executables get loaded at
a randomly chosen address upon startup.  PIE executables always load even
already prelinked shared libraries at a random address.  You can build such
executable using @command{gcc -fPIE -pie}.

Heap (malloc storage), stack and custom mmap areas are always placed randomly
(as long as the randomization is enabled).

@item show disable-randomization
Show the current setting of the explicit disable of the native randomization of
the virtual address space of the started program.

@end table

@node Arguments
@section Your Program's Arguments

@cindex arguments (to your program)
The arguments to your program can be specified by the arguments of the
@code{run} command.
They are passed to a shell, which expands wildcard characters and
performs redirection of I/O, and thence to your program.  Your
@code{SHELL} environment variable (if it exists) specifies what shell
@value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
the default shell (@file{/bin/sh} on Unix).

On non-Unix systems, the program is usually invoked directly by
@value{GDBN}, which emulates I/O redirection via the appropriate system
calls, and the wildcard characters are expanded by the startup code of
the program, not by the shell.

@code{run} with no arguments uses the same arguments used by the previous
@code{run}, or those set by the @code{set args} command.

@table @code
@kindex set args
@item set args
Specify the arguments to be used the next time your program is run.  If
@code{set args} has no arguments, @code{run} executes your program
with no arguments.  Once you have run your program with arguments,
using @code{set args} before the next @code{run} is the only way to run
it again without arguments.

@kindex show args
@item show args
Show the arguments to give your program when it is started.
@end table

@node Environment
@section Your Program's Environment

@cindex environment (of your program)
The @dfn{environment} consists of a set of environment variables and
their values.  Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your search
path for programs to run.  Usually you set up environment variables with
the shell and they are inherited by all the other programs you run.  When
debugging, it can be useful to try running your program with a modified
environment without having to start @value{GDBN} over again.

@table @code
@kindex path
@item path @var{directory}
Add @var{directory} to the front of the @code{PATH} environment variable
(the search path for executables) that will be passed to your program.
The value of @code{PATH} used by @value{GDBN} does not change.
You may specify several directory names, separated by whitespace or by a
system-dependent separator character (@samp{:} on Unix, @samp{;} on
MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
is moved to the front, so it is searched sooner.

You can use the string @samp{$cwd} to refer to whatever is the current
working directory at the time @value{GDBN} searches the path.  If you
use @samp{.} instead, it refers to the directory where you executed the
@code{path} command.  @value{GDBN} replaces @samp{.} in the
@var{directory} argument (with the current path) before adding
@var{directory} to the search path.
@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
@c document that, since repeating it would be a no-op.

@kindex show paths
@item show paths
Display the list of search paths for executables (the @code{PATH}
environment variable).

@kindex show environment
@item show environment @r{[}@var{varname}@r{]}
Print the value of environment variable @var{varname} to be given to
your program when it starts.  If you do not supply @var{varname},
print the names and values of all environment variables to be given to
your program.  You can abbreviate @code{environment} as @code{env}.

@kindex set environment
@item set environment @var{varname} @r{[}=@var{value}@r{]}
Set environment variable @var{varname} to @var{value}.  The value
changes for your program only, not for @value{GDBN} itself.  @var{value} may
be any string; the values of environment variables are just strings, and
any interpretation is supplied by your program itself.  The @var{value}
parameter is optional; if it is eliminated, the variable is set to a
null value.
@c "any string" here does not include leading, trailing
@c blanks. Gnu asks: does anyone care?

For example, this command:

@smallexample
set env USER = foo
@end smallexample

@noindent
tells the debugged program, when subsequently run, that its user is named
@samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
are not actually required.)

@kindex unset environment
@item unset environment @var{varname}
Remove variable @var{varname} from the environment to be passed to your
program.  This is different from @samp{set env @var{varname} =};
@code{unset environment} removes the variable from the environment,
rather than assigning it an empty value.
@end table

@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
the shell indicated by your @code{SHELL} environment variable if it
exists (or @code{/bin/sh} if not).  If your @code{SHELL} variable
names a shell that runs an initialization file when started
non-interactively---such as @file{.cshrc} for C-shell, $@file{.zshenv}
for the Z shell, or the file specified in the @samp{BASH_ENV}
environment variable for BASH---any variables you set in that file
affect your program.  You may wish to move setting of environment
variables to files that are only run when you sign on, such as
@file{.login} or @file{.profile}.

@node Working Directory
@section Your Program's Working Directory

@cindex working directory (of your program)
Each time you start your program with @code{run}, it inherits its
working directory from the current working directory of @value{GDBN}.
The @value{GDBN} working directory is initially whatever it inherited
from its parent process (typically the shell), but you can specify a new
working directory in @value{GDBN} with the @code{cd} command.

The @value{GDBN} working directory also serves as a default for the commands
that specify files for @value{GDBN} to operate on.  @xref{Files, ,Commands to
Specify Files}.

@table @code
@kindex cd
@cindex change working directory
@item cd @r{[}@var{directory}@r{]}
Set the @value{GDBN} working directory to @var{directory}.  If not
given, @var{directory} uses @file{'~'}.

@kindex pwd
@item pwd
Print the @value{GDBN} working directory.
@end table

It is generally impossible to find the current working directory of
the process being debugged (since a program can change its directory
during its run).  If you work on a system where @value{GDBN} is
configured with the @file{/proc} support, you can use the @code{info
proc} command (@pxref{SVR4 Process Information}) to find out the
current working directory of the debuggee.

@node Input/Output
@section Your Program's Input and Output

@cindex redirection
@cindex i/o
@cindex terminal
By default, the program you run under @value{GDBN} does input and output to
the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
to its own terminal modes to interact with you, but it records the terminal
modes your program was using and switches back to them when you continue
running your program.

@table @code
@kindex info terminal
@item info terminal
Displays information recorded by @value{GDBN} about the terminal modes your
program is using.
@end table

You can redirect your program's input and/or output using shell
redirection with the @code{run} command.  For example,

@smallexample
run > outfile
@end smallexample

@noindent
starts your program, diverting its output to the file @file{outfile}.

@kindex tty
@cindex controlling terminal
Another way to specify where your program should do input and output is
with the @code{tty} command.  This command accepts a file name as
argument, and causes this file to be the default for future @code{run}
commands.  It also resets the controlling terminal for the child
process, for future @code{run} commands.  For example,

@smallexample
tty /dev/ttyb
@end smallexample

@noindent
directs that processes started with subsequent @code{run} commands
default to do input and output on the terminal @file{/dev/ttyb} and have
that as their controlling terminal.

An explicit redirection in @code{run} overrides the @code{tty} command's
effect on the input/output device, but not its effect on the controlling
terminal.

When you use the @code{tty} command or redirect input in the @code{run}
command, only the input @emph{for your program} is affected.  The input
for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
for @code{set inferior-tty}.

@cindex inferior tty
@cindex set inferior controlling terminal
You can use the @code{show inferior-tty} command to tell @value{GDBN} to
display the name of the terminal that will be used for future runs of your
program.

@table @code
@item set inferior-tty /dev/ttyb
@kindex set inferior-tty
Set the tty for the program being debugged to /dev/ttyb.

@item show inferior-tty
@kindex show inferior-tty
Show the current tty for the program being debugged.
@end table

@node Attach
@section Debugging an Already-running Process
@kindex attach
@cindex attach

@table @code
@item attach @var{process-id}
This command attaches to a running process---one that was started
outside @value{GDBN}.  (@code{info files} shows your active
targets.)  The command takes as argument a process ID.  The usual way to
find out the @var{process-id} of a Unix process is with the @code{ps} utility,
or with the @samp{jobs -l} shell command.

@code{attach} does not repeat if you press @key{RET} a second time after
executing the command.
@end table

To use @code{attach}, your program must be running in an environment
which supports processes; for example, @code{attach} does not work for
programs on bare-board targets that lack an operating system.  You must
also have permission to send the process a signal.

When you use @code{attach}, the debugger finds the program running in
the process first by looking in the current working directory, then (if
the program is not found) by using the source file search path
(@pxref{Source Path, ,Specifying Source Directories}).  You can also use
the @code{file} command to load the program.  @xref{Files, ,Commands to
Specify Files}.

The first thing @value{GDBN} does after arranging to debug the specified
process is to stop it.  You can examine and modify an attached process
with all the @value{GDBN} commands that are ordinarily available when
you start processes with @code{run}.  You can insert breakpoints; you
can step and continue; you can modify storage.  If you would rather the
process continue running, you may use the @code{continue} command after
attaching @value{GDBN} to the process.

@table @code
@kindex detach
@item detach
When you have finished debugging the attached process, you can use the
@code{detach} command to release it from @value{GDBN} control.  Detaching
the process continues its execution.  After the @code{detach} command,
that process and @value{GDBN} become completely independent once more, and you
are ready to @code{attach} another process or start one with @code{run}.
@code{detach} does not repeat if you press @key{RET} again after
executing the command.
@end table

If you exit @value{GDBN} while you have an attached process, you detach
that process.  If you use the @code{run} command, you kill that process.
By default, @value{GDBN} asks for confirmation if you try to do either of these
things; you can control whether or not you need to confirm by using the
@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
Messages}).

@node Kill Process
@section Killing the Child Process

@table @code
@kindex kill
@item kill
Kill the child process in which your program is running under @value{GDBN}.
@end table

This command is useful if you wish to debug a core dump instead of a
running process.  @value{GDBN} ignores any core dump file while your program
is running.

On some operating systems, a program cannot be executed outside @value{GDBN}
while you have breakpoints set on it inside @value{GDBN}.  You can use the
@code{kill} command in this situation to permit running your program
outside the debugger.

The @code{kill} command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process.  In this case, when you
next type @code{run}, @value{GDBN} notices that the file has changed, and
reads the symbol table again (while trying to preserve your current
breakpoint settings).

@node Inferiors and Programs
@section Debugging Multiple Inferiors and Programs

@value{GDBN} lets you run and debug multiple programs in a single
session.  In addition, @value{GDBN} on some systems may let you run
several programs simultaneously (otherwise you have to exit from one
before starting another).  In the most general case, you can have
multiple threads of execution in each of multiple processes, launched
from multiple executables.

@cindex inferior
@value{GDBN} represents the state of each program execution with an
object called an @dfn{inferior}.  An inferior typically corresponds to
a process, but is more general and applies also to targets that do not
have processes.  Inferiors may be created before a process runs, and
may be retained after a process exits.  Inferiors have unique
identifiers that are different from process ids.  Usually each
inferior will also have its own distinct address space, although some
embedded targets may have several inferiors running in different parts
of a single address space.  Each inferior may in turn have multiple
threads running in it.

To find out what inferiors exist at any moment, use @w{@code{info
inferiors}}:

@table @code
@kindex info inferiors
@item info inferiors
Print a list of all inferiors currently being managed by @value{GDBN}.

@value{GDBN} displays for each inferior (in this order):

@enumerate
@item
the inferior number assigned by @value{GDBN}

@item
the target system's inferior identifier

@item
the name of the executable the inferior is running.

@end enumerate

@noindent
An asterisk @samp{*} preceding the @value{GDBN} inferior number
indicates the current inferior.

For example,
@end table
@c end table here to get a little more width for example

@smallexample
(@value{GDBP}) info inferiors
  Num  Description       Executable
  2    process 2307      hello
* 1    process 3401      goodbye
@end smallexample

To switch focus between inferiors, use the @code{inferior} command:

@table @code
@kindex inferior @var{infno}
@item inferior @var{infno}
Make inferior number @var{infno} the current inferior.  The argument
@var{infno} is the inferior number assigned by @value{GDBN}, as shown
in the first field of the @samp{info inferiors} display.
@end table


You can get multiple executables into a debugging session via the
@code{add-inferior} and @w{@code{clone-inferior}} commands.  On some
systems @value{GDBN} can add inferiors to the debug session
automatically by following calls to @code{fork} and @code{exec}.  To
remove inferiors from the debugging session use the
@w{@code{remove-inferiors}} command.

@table @code
@kindex add-inferior
@item add-inferior [ -copies @var{n} ] [ -exec @var{executable} ]
Adds @var{n} inferiors to be run using @var{executable} as the
executable.  @var{n} defaults to 1.  If no executable is specified,
the inferiors begins empty, with no program.  You can still assign or
change the program assigned to the inferior at any time by using the
@code{file} command with the executable name as its argument.

@kindex clone-inferior
@item clone-inferior [ -copies @var{n} ] [ @var{infno} ]
Adds @var{n} inferiors ready to execute the same program as inferior
@var{infno}.  @var{n} defaults to 1.  @var{infno} defaults to the
number of the current inferior.  This is a convenient command when you
want to run another instance of the inferior you are debugging.

@smallexample
(@value{GDBP}) info inferiors
  Num  Description       Executable
* 1    process 29964     helloworld
(@value{GDBP}) clone-inferior
Added inferior 2.
1 inferiors added.
(@value{GDBP}) info inferiors
  Num  Description       Executable
  2    <null>            helloworld
* 1    process 29964     helloworld
@end smallexample

You can now simply switch focus to inferior 2 and run it.

@kindex remove-inferiors
@item remove-inferiors @var{infno}@dots{}
Removes the inferior or inferiors @var{infno}@dots{}.  It is not
possible to remove an inferior that is running with this command.  For
those, use the @code{kill} or @code{detach} command first.

@end table

To quit debugging one of the running inferiors that is not the current
inferior, you can either detach from it by using the @w{@code{detach
inferior}} command (allowing it to run independently), or kill it
using the @w{@code{kill inferiors}} command:

@table @code
@kindex detach inferiors @var{infno}@dots{}
@item detach inferior @var{infno}@dots{}
Detach from the inferior or inferiors identified by @value{GDBN}
inferior number(s) @var{infno}@dots{}.  Note that the inferior's entry
still stays on the list of inferiors shown by @code{info inferiors},
but its Description will show @samp{<null>}.

@kindex kill inferiors @var{infno}@dots{}
@item kill inferiors @var{infno}@dots{}
Kill the inferior or inferiors identified by @value{GDBN} inferior
number(s) @var{infno}@dots{}.  Note that the inferior's entry still
stays on the list of inferiors shown by @code{info inferiors}, but its
Description will show @samp{<null>}.
@end table

After the successful completion of a command such as @code{detach},
@code{detach inferiors}, @code{kill} or @code{kill inferiors}, or after
a normal process exit, the inferior is still valid and listed with
@code{info inferiors}, ready to be restarted.


To be notified when inferiors are started or exit under @value{GDBN}'s
control use @w{@code{set print inferior-events}}:

@table @code
@kindex set print inferior-events
@cindex print messages on inferior start and exit
@item set print inferior-events
@itemx set print inferior-events on
@itemx set print inferior-events off
The @code{set print inferior-events} command allows you to enable or
disable printing of messages when @value{GDBN} notices that new
inferiors have started or that inferiors have exited or have been
detached.  By default, these messages will not be printed.

@kindex show print inferior-events
@item show print inferior-events
Show whether messages will be printed when @value{GDBN} detects that
inferiors have started, exited or have been detached.
@end table

Many commands will work the same with multiple programs as with a
single program: e.g., @code{print myglobal} will simply display the
value of @code{myglobal} in the current inferior.


Occasionaly, when debugging @value{GDBN} itself, it may be useful to
get more info about the relationship of inferiors, programs, address
spaces in a debug session.  You can do that with the @w{@code{maint
info program-spaces}} command.

@table @code
@kindex maint info program-spaces
@item maint info program-spaces
Print a list of all program spaces currently being managed by
@value{GDBN}.

@value{GDBN} displays for each program space (in this order):

@enumerate
@item
the program space number assigned by @value{GDBN}

@item
the name of the executable loaded into the program space, with e.g.,
the @code{file} command.

@end enumerate

@noindent
An asterisk @samp{*} preceding the @value{GDBN} program space number
indicates the current program space.

In addition, below each program space line, @value{GDBN} prints extra
information that isn't suitable to display in tabular form.  For
example, the list of inferiors bound to the program space.

@smallexample
(@value{GDBP}) maint info program-spaces
  Id   Executable
  2    goodbye
        Bound inferiors: ID 1 (process 21561)
* 1    hello
@end smallexample

Here we can see that no inferior is running the program @code{hello},
while @code{process 21561} is running the program @code{goodbye}.  On
some targets, it is possible that multiple inferiors are bound to the
same program space.  The most common example is that of debugging both
the parent and child processes of a @code{vfork} call.  For example,

@smallexample
(@value{GDBP}) maint info program-spaces
  Id   Executable
* 1    vfork-test
        Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)
@end smallexample

Here, both inferior 2 and inferior 1 are running in the same program
space as a result of inferior 1 having executed a @code{vfork} call.
@end table

@node Threads
@section Debugging Programs with Multiple Threads

@cindex threads of execution
@cindex multiple threads
@cindex switching threads
In some operating systems, such as HP-UX and Solaris, a single program
may have more than one @dfn{thread} of execution.  The precise semantics
of threads differ from one operating system to another, but in general
the threads of a single program are akin to multiple processes---except
that they share one address space (that is, they can all examine and
modify the same variables).  On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

@value{GDBN} provides these facilities for debugging multi-thread
programs:

@itemize @bullet
@item automatic notification of new threads
@item @samp{thread @var{threadno}}, a command to switch among threads
@item @samp{info threads}, a command to inquire about existing threads
@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
a command to apply a command to a list of threads
@item thread-specific breakpoints
@item @samp{set print thread-events}, which controls printing of 
messages on thread start and exit.
@item @samp{set libthread-db-search-path @var{path}}, which lets
the user specify which @code{libthread_db} to use if the default choice
isn't compatible with the program.
@end itemize

@quotation
@emph{Warning:} These facilities are not yet available on every
@value{GDBN} configuration where the operating system supports threads.
If your @value{GDBN} does not support threads, these commands have no
effect.  For example, a system without thread support shows no output
from @samp{info threads}, and always rejects the @code{thread} command,
like this:

@smallexample
(@value{GDBP}) info threads
(@value{GDBP}) thread 1
Thread ID 1 not known.  Use the "info threads" command to
see the IDs of currently known threads.
@end smallexample
@c FIXME to implementors: how hard would it be to say "sorry, this GDB
@c                        doesn't support threads"?
@end quotation

@cindex focus of debugging
@cindex current thread
The @value{GDBN} thread debugging facility allows you to observe all
threads while your program runs---but whenever @value{GDBN} takes
control, one thread in particular is always the focus of debugging.
This thread is called the @dfn{current thread}.  Debugging commands show
program information from the perspective of the current thread.

@cindex @code{New} @var{systag} message
@cindex thread identifier (system)
@c FIXME-implementors!! It would be more helpful if the [New...] message
@c included GDB's numeric thread handle, so you could just go to that
@c thread without first checking `info threads'.
Whenever @value{GDBN} detects a new thread in your program, it displays
the target system's identification for the thread with a message in the
form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
whose form varies depending on the particular system.  For example, on
@sc{gnu}/Linux, you might see

@smallexample
[New Thread 0x41e02940 (LWP 25582)]
@end smallexample

@noindent
when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
the @var{systag} is simply something like @samp{process 368}, with no
further qualifier.

@c FIXME!! (1) Does the [New...] message appear even for the very first
@c         thread of a program, or does it only appear for the
@c         second---i.e.@: when it becomes obvious we have a multithread
@c         program?
@c         (2) *Is* there necessarily a first thread always?  Or do some
@c         multithread systems permit starting a program with multiple
@c         threads ab initio?

@cindex thread number
@cindex thread identifier (GDB)
For debugging purposes, @value{GDBN} associates its own thread
number---always a single integer---with each thread in your program.

@table @code
@kindex info threads
@item info threads @r{[}@var{id}@dots{}@r{]}
Display a summary of all threads currently in your program.  Optional 
argument @var{id}@dots{} is one or more thread ids separated by spaces, and
means to print information only about the specified thread or threads.
@value{GDBN} displays for each thread (in this order):

@enumerate
@item
the thread number assigned by @value{GDBN}

@item
the target system's thread identifier (@var{systag})

@item
the thread's name, if one is known.  A thread can either be named by
the user (see @code{thread name}, below), or, in some cases, by the
program itself.

@item
the current stack frame summary for that thread
@end enumerate

@noindent
An asterisk @samp{*} to the left of the @value{GDBN} thread number
indicates the current thread.

For example,
@end table
@c end table here to get a little more width for example

@smallexample
(@value{GDBP}) info threads
  Id   Target Id         Frame
  3    process 35 thread 27  0x34e5 in sigpause ()
  2    process 35 thread 23  0x34e5 in sigpause ()
* 1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
    at threadtest.c:68
@end smallexample

On Solaris, you can display more information about user threads with a
Solaris-specific command:

@table @code
@item maint info sol-threads
@kindex maint info sol-threads
@cindex thread info (Solaris)
Display info on Solaris user threads.
@end table

@table @code
@kindex thread @var{threadno}
@item thread @var{threadno}
Make thread number @var{threadno} the current thread.  The command
argument @var{threadno} is the internal @value{GDBN} thread number, as
shown in the first field of the @samp{info threads} display.
@value{GDBN} responds by displaying the system identifier of the thread
you selected, and its current stack frame summary:

@smallexample
(@value{GDBP}) thread 2
[Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]
#0  some_function (ignore=0x0) at example.c:8
8	    printf ("hello\n");
@end smallexample

@noindent
As with the @samp{[New @dots{}]} message, the form of the text after
@samp{Switching to} depends on your system's conventions for identifying
threads.

@vindex $_thread@r{, convenience variable}
The debugger convenience variable @samp{$_thread} contains the number
of the current thread.  You may find this useful in writing breakpoint
conditional expressions, command scripts, and so forth.  See
@xref{Convenience Vars,, Convenience Variables}, for general
information on convenience variables.

@kindex thread apply
@cindex apply command to several threads
@item thread apply [@var{threadno} | all] @var{command}
The @code{thread apply} command allows you to apply the named
@var{command} to one or more threads.  Specify the numbers of the
threads that you want affected with the command argument
@var{threadno}.  It can be a single thread number, one of the numbers
shown in the first field of the @samp{info threads} display; or it
could be a range of thread numbers, as in @code{2-4}.  To apply a
command to all threads, type @kbd{thread apply all @var{command}}.

@kindex thread name
@cindex name a thread
@item thread name [@var{name}]
This command assigns a name to the current thread.  If no argument is
given, any existing user-specified name is removed.  The thread name
appears in the @samp{info threads} display.

On some systems, such as @sc{gnu}/Linux, @value{GDBN} is able to
determine the name of the thread as given by the OS.  On these
systems, a name specified with @samp{thread name} will override the
system-give name, and removing the user-specified name will cause
@value{GDBN} to once again display the system-specified name.

@kindex thread find
@cindex search for a thread
@item thread find [@var{regexp}]
Search for and display thread ids whose name or @var{systag}
matches the supplied regular expression.

As well as being the complement to the @samp{thread name} command, 
this command also allows you to identify a thread by its target 
@var{systag}.  For instance, on @sc{gnu}/Linux, the target @var{systag}
is the LWP id.

@smallexample
(@value{GDBN}) thread find 26688
Thread 4 has target id 'Thread 0x41e02940 (LWP 26688)'
(@value{GDBN}) info thread 4
  Id   Target Id         Frame 
  4    Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()
@end smallexample

@kindex set print thread-events
@cindex print messages on thread start and exit
@item set print thread-events
@itemx set print thread-events on
@itemx set print thread-events off
The @code{set print thread-events} command allows you to enable or
disable printing of messages when @value{GDBN} notices that new threads have
started or that threads have exited.  By default, these messages will
be printed if detection of these events is supported by the target.
Note that these messages cannot be disabled on all targets.

@kindex show print thread-events
@item show print thread-events
Show whether messages will be printed when @value{GDBN} detects that threads
have started and exited.
@end table

@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
more information about how @value{GDBN} behaves when you stop and start
programs with multiple threads.

@xref{Set Watchpoints,,Setting Watchpoints}, for information about
watchpoints in programs with multiple threads.

@anchor{set libthread-db-search-path}
@table @code
@kindex set libthread-db-search-path
@cindex search path for @code{libthread_db}
@item set libthread-db-search-path @r{[}@var{path}@r{]}
If this variable is set, @var{path} is a colon-separated list of
directories @value{GDBN} will use to search for @code{libthread_db}.
If you omit @var{path}, @samp{libthread-db-search-path} will be reset to
its default value (@code{$sdir:$pdir} on @sc{gnu}/Linux and Solaris systems).
Internally, the default value comes from the @code{LIBTHREAD_DB_SEARCH_PATH}
macro.

On @sc{gnu}/Linux and Solaris systems, @value{GDBN} uses a ``helper''
@code{libthread_db} library to obtain information about threads in the
inferior process.  @value{GDBN} will use @samp{libthread-db-search-path}
to find @code{libthread_db}.  @value{GDBN} also consults first if inferior
specific thread debugging library loading is enabled
by @samp{set auto-load libthread-db} (@pxref{libthread_db.so.1 file}).

A special entry @samp{$sdir} for @samp{libthread-db-search-path}
refers to the default system directories that are
normally searched for loading shared libraries.  The @samp{$sdir} entry
is the only kind not needing to be enabled by @samp{set auto-load libthread-db}
(@pxref{libthread_db.so.1 file}).

A special entry @samp{$pdir} for @samp{libthread-db-search-path}
refers to the directory from which @code{libpthread}
was loaded in the inferior process.

For any @code{libthread_db} library @value{GDBN} finds in above directories,
@value{GDBN} attempts to initialize it with the current inferior process.
If this initialization fails (which could happen because of a version
mismatch between @code{libthread_db} and @code{libpthread}), @value{GDBN}
will unload @code{libthread_db}, and continue with the next directory.
If none of @code{libthread_db} libraries initialize successfully,
@value{GDBN} will issue a warning and thread debugging will be disabled.

Setting @code{libthread-db-search-path} is currently implemented
only on some platforms.

@kindex show libthread-db-search-path 
@item show libthread-db-search-path 
Display current libthread_db search path.

@kindex set debug libthread-db
@kindex show debug libthread-db
@cindex debugging @code{libthread_db}
@item set debug libthread-db
@itemx show debug libthread-db
Turns on or off display of @code{libthread_db}-related events.
Use @code{1} to enable, @code{0} to disable.
@end table

@node Forks
@section Debugging Forks

@cindex fork, debugging programs which call
@cindex multiple processes
@cindex processes, multiple
On most systems, @value{GDBN} has no special support for debugging
programs which create additional processes using the @code{fork}
function.  When a program forks, @value{GDBN} will continue to debug the
parent process and the child process will run unimpeded.  If you have
set a breakpoint in any code which the child then executes, the child
will get a @code{SIGTRAP} signal which (unless it catches the signal)
will cause it to terminate.

However, if you want to debug the child process there is a workaround
which isn't too painful.  Put a call to @code{sleep} in the code which
the child process executes after the fork.  It may be useful to sleep
only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don't want to run @value{GDBN}
on the child.  While the child is sleeping, use the @code{ps} program to
get its process ID.  Then tell @value{GDBN} (a new invocation of
@value{GDBN} if you are also debugging the parent process) to attach to
the child process (@pxref{Attach}).  From that point on you can debug
the child process just like any other process which you attached to.

On some systems, @value{GDBN} provides support for debugging programs that
create additional processes using the @code{fork} or @code{vfork} functions.
Currently, the only platforms with this feature are HP-UX (11.x and later
only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).

By default, when a program forks, @value{GDBN} will continue to debug
the parent process and the child process will run unimpeded.

If you want to follow the child process instead of the parent process,
use the command @w{@code{set follow-fork-mode}}.

@table @code
@kindex set follow-fork-mode
@item set follow-fork-mode @var{mode}
Set the debugger response to a program call of @code{fork} or
@code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
process.  The @var{mode} argument can be:

@table @code
@item parent
The original process is debugged after a fork.  The child process runs
unimpeded.  This is the default.

@item child
The new process is debugged after a fork.  The parent process runs
unimpeded.

@end table

@kindex show follow-fork-mode
@item show follow-fork-mode
Display the current debugger response to a @code{fork} or @code{vfork} call.
@end table

@cindex debugging multiple processes
On Linux, if you want to debug both the parent and child processes, use the
command @w{@code{set detach-on-fork}}.

@table @code
@kindex set detach-on-fork
@item set detach-on-fork @var{mode}
Tells gdb whether to detach one of the processes after a fork, or
retain debugger control over them both.

@table @code
@item on
The child process (or parent process, depending on the value of
@code{follow-fork-mode}) will be detached and allowed to run 
independently.  This is the default.

@item off
Both processes will be held under the control of @value{GDBN}.
One process (child or parent, depending on the value of 
@code{follow-fork-mode}) is debugged as usual, while the other
is held suspended.  

@end table

@kindex show detach-on-fork
@item show detach-on-fork
Show whether detach-on-fork mode is on/off.
@end table

If you choose to set @samp{detach-on-fork} mode off, then @value{GDBN}
will retain control of all forked processes (including nested forks).
You can list the forked processes under the control of @value{GDBN} by
using the @w{@code{info inferiors}} command, and switch from one fork
to another by using the @code{inferior} command (@pxref{Inferiors and
Programs, ,Debugging Multiple Inferiors and Programs}).

To quit debugging one of the forked processes, you can either detach
from it by using the @w{@code{detach inferiors}} command (allowing it
to run independently), or kill it using the @w{@code{kill inferiors}}
command.  @xref{Inferiors and Programs, ,Debugging Multiple Inferiors
and Programs}.

If you ask to debug a child process and a @code{vfork} is followed by an
@code{exec}, @value{GDBN} executes the new target up to the first
breakpoint in the new target.  If you have a breakpoint set on
@code{main} in your original program, the breakpoint will also be set on
the child process's @code{main}.

On some systems, when a child process is spawned by @code{vfork}, you
cannot debug the child or parent until an @code{exec} call completes.

If you issue a @code{run} command to @value{GDBN} after an @code{exec}
call executes, the new target restarts.  To restart the parent
process, use the @code{file} command with the parent executable name
as its argument.  By default, after an @code{exec} call executes,
@value{GDBN} discards the symbols of the previous executable image.
You can change this behaviour with the @w{@code{set follow-exec-mode}}
command.

@table @code
@kindex set follow-exec-mode
@item set follow-exec-mode @var{mode}

Set debugger response to a program call of @code{exec}.  An
@code{exec} call replaces the program image of a process.

@code{follow-exec-mode} can be:

@table @code
@item new
@value{GDBN} creates a new inferior and rebinds the process to this
new inferior.  The program the process was running before the
@code{exec} call can be restarted afterwards by restarting the
original inferior.

For example:

@smallexample
(@value{GDBP}) info inferiors
(gdb) info inferior
  Id   Description   Executable
* 1    <null>        prog1
(@value{GDBP}) run
process 12020 is executing new program: prog2
Program exited normally.
(@value{GDBP}) info inferiors
  Id   Description   Executable
* 2    <null>        prog2
  1    <null>        prog1
@end smallexample

@item same
@value{GDBN} keeps the process bound to the same inferior.  The new
executable image replaces the previous executable loaded in the
inferior.  Restarting the inferior after the @code{exec} call, with
e.g., the @code{run} command, restarts the executable the process was
running after the @code{exec} call.  This is the default mode.

For example:

@smallexample
(@value{GDBP}) info inferiors
  Id   Description   Executable
* 1    <null>        prog1
(@value{GDBP}) run
process 12020 is executing new program: prog2
Program exited normally.
(@value{GDBP}) info inferiors
  Id   Description   Executable
* 1    <null>        prog2
@end smallexample

@end table
@end table

You can use the @code{catch} command to make @value{GDBN} stop whenever
a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
Catchpoints, ,Setting Catchpoints}.

@node Checkpoint/Restart
@section Setting a @emph{Bookmark} to Return to Later

@cindex checkpoint
@cindex restart
@cindex bookmark
@cindex snapshot of a process
@cindex rewind program state

On certain operating systems@footnote{Currently, only
@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
program's state, called a @dfn{checkpoint}, and come back to it
later.

Returning to a checkpoint effectively undoes everything that has
happened in the program since the @code{checkpoint} was saved.  This
includes changes in memory, registers, and even (within some limits)
system state.  Effectively, it is like going back in time to the
moment when the checkpoint was saved.

Thus, if you're stepping thru a program and you think you're 
getting close to the point where things go wrong, you can save
a checkpoint.  Then, if you accidentally go too far and miss
the critical statement, instead of having to restart your program
from the beginning, you can just go back to the checkpoint and
start again from there.

This can be especially useful if it takes a lot of time or 
steps to reach the point where you think the bug occurs.  

To use the @code{checkpoint}/@code{restart} method of debugging:

@table @code
@kindex checkpoint
@item checkpoint
Save a snapshot of the debugged program's current execution state.
The @code{checkpoint} command takes no arguments, but each checkpoint
is assigned a small integer id, similar to a breakpoint id.

@kindex info checkpoints
@item info checkpoints
List the checkpoints that have been saved in the current debugging
session.  For each checkpoint, the following information will be
listed:

@table @code
@item Checkpoint ID
@item Process ID
@item Code Address
@item Source line, or label
@end table

@kindex restart @var{checkpoint-id}
@item restart @var{checkpoint-id}
Restore the program state that was saved as checkpoint number
@var{checkpoint-id}.  All program variables, registers, stack frames
etc.@:  will be returned to the values that they had when the checkpoint
was saved.  In essence, gdb will ``wind back the clock'' to the point
in time when the checkpoint was saved.

Note that breakpoints, @value{GDBN} variables, command history etc.
are not affected by restoring a checkpoint.  In general, a checkpoint
only restores things that reside in the program being debugged, not in
the debugger.

@kindex delete checkpoint @var{checkpoint-id}
@item delete checkpoint @var{checkpoint-id}
Delete the previously-saved checkpoint identified by @var{checkpoint-id}.

@end table

Returning to a previously saved checkpoint will restore the user state
of the program being debugged, plus a significant subset of the system
(OS) state, including file pointers.  It won't ``un-write'' data from
a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten.  For files
opened in read mode, the pointer will also be restored so that the
previously read data can be read again.

Of course, characters that have been sent to a printer (or other
external device) cannot be ``snatched back'', and characters received
from eg.@: a serial device can be removed from internal program buffers,
but they cannot be ``pushed back'' into the serial pipeline, ready to
be received again.  Similarly, the actual contents of files that have
been changed cannot be restored (at this time).

However, within those constraints, you actually can ``rewind'' your
program to a previously saved point in time, and begin debugging it
again --- and you can change the course of events so as to debug a
different execution path this time.

@cindex checkpoints and process id
Finally, there is one bit of internal program state that will be
different when you return to a checkpoint --- the program's process
id.  Each checkpoint will have a unique process id (or @var{pid}), 
and each will be different from the program's original @var{pid}.
If your program has saved a local copy of its process id, this could
potentially pose a problem.

@subsection A Non-obvious Benefit of Using Checkpoints

On some systems such as @sc{gnu}/Linux, address space randomization
is performed on new processes for security reasons.  This makes it 
difficult or impossible to set a breakpoint, or watchpoint, on an
absolute address if you have to restart the program, since the 
absolute location of a symbol will change from one execution to the
next.

A checkpoint, however, is an @emph{identical} copy of a process. 
Therefore if you create a checkpoint at (eg.@:) the start of main, 
and simply return to that checkpoint instead of restarting the 
process, you can avoid the effects of address randomization and
your symbols will all stay in the same place.

@node Stopping
@chapter Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your
program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.

Inside @value{GDBN}, your program may stop for any of several reasons,
such as a signal, a breakpoint, or reaching a new line after a
@value{GDBN} command such as @code{step}.  You may then examine and
change variables, set new breakpoints or remove old ones, and then
continue execution.  Usually, the messages shown by @value{GDBN} provide
ample explanation of the status of your program---but you can also
explicitly request this information at any time.

@table @code
@kindex info program
@item info program
Display information about the status of your program: whether it is
running or not, what process it is, and why it stopped.
@end table

@menu
* Breakpoints::                 Breakpoints, watchpoints, and catchpoints
* Continuing and Stepping::     Resuming execution
* Skipping Over Functions and Files::
                                Skipping over functions and files
* Signals::                     Signals
* Thread Stops::                Stopping and starting multi-thread programs
@end menu

@node Breakpoints
@section Breakpoints, Watchpoints, and Catchpoints

@cindex breakpoints
A @dfn{breakpoint} makes your program stop whenever a certain point in
the program is reached.  For each breakpoint, you can add conditions to
control in finer detail whether your program stops.  You can set
breakpoints with the @code{break} command and its variants (@pxref{Set
Breaks, ,Setting Breakpoints}), to specify the place where your program
should stop by line number, function name or exact address in the
program.

On some systems, you can set breakpoints in shared libraries before
the executable is run.  There is a minor limitation on HP-UX systems:
you must wait until the executable is run in order to set breakpoints
in shared library routines that are not called directly by the program
(for example, routines that are arguments in a @code{pthread_create}
call).

@cindex watchpoints
@cindex data breakpoints
@cindex memory tracing
@cindex breakpoint on memory address
@cindex breakpoint on variable modification
A @dfn{watchpoint} is a special breakpoint that stops your program
when the value of an expression changes.  The expression may be a value
of a variable, or it could involve values of one or more variables
combined by operators, such as @samp{a + b}.  This is sometimes called
@dfn{data breakpoints}.  You must use a different command to set
watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
from that, you can manage a watchpoint like any other breakpoint: you
enable, disable, and delete both breakpoints and watchpoints using the
same commands.

You can arrange to have values from your program displayed automatically
whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
Automatic Display}.

@cindex catchpoints
@cindex breakpoint on events
A @dfn{catchpoint} is another special breakpoint that stops your program
when a certain kind of event occurs, such as the throwing of a C@t{++}
exception or the loading of a library.  As with watchpoints, you use a
different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
Catchpoints}), but aside from that, you can manage a catchpoint like any
other breakpoint.  (To stop when your program receives a signal, use the
@code{handle} command; see @ref{Signals, ,Signals}.)

@cindex breakpoint numbers
@cindex numbers for breakpoints
@value{GDBN} assigns a number to each breakpoint, watchpoint, or
catchpoint when you create it; these numbers are successive integers
starting with one.  In many of the commands for controlling various
features of breakpoints you use the breakpoint number to say which
breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
@dfn{disabled}; if disabled, it has no effect on your program until you
enable it again.

@cindex breakpoint ranges
@cindex ranges of breakpoints
Some @value{GDBN} commands accept a range of breakpoints on which to
operate.  A breakpoint range is either a single breakpoint number, like
@samp{5}, or two such numbers, in increasing order, separated by a
hyphen, like @samp{5-7}.  When a breakpoint range is given to a command,
all breakpoints in that range are operated on.

@menu
* Set Breaks::                  Setting breakpoints
* Set Watchpoints::             Setting watchpoints
* Set Catchpoints::             Setting catchpoints
* Delete Breaks::               Deleting breakpoints
* Disabling::                   Disabling breakpoints
* Conditions::                  Break conditions
* Break Commands::              Breakpoint command lists
* Dynamic Printf::              Dynamic printf
* Save Breakpoints::            How to save breakpoints in a file
* Static Probe Points::         Listing static probe points
* Error in Breakpoints::        ``Cannot insert breakpoints''
* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
@end menu

@node Set Breaks
@subsection Setting Breakpoints

@c FIXME LMB what does GDB do if no code on line of breakpt?
@c       consider in particular declaration with/without initialization.
@c
@c FIXME 2 is there stuff on this already? break at fun start, already init?

@kindex break
@kindex b @r{(@code{break})}
@vindex $bpnum@r{, convenience variable}
@cindex latest breakpoint
Breakpoints are set with the @code{break} command (abbreviated
@code{b}).  The debugger convenience variable @samp{$bpnum} records the
number of the breakpoint you've set most recently; see @ref{Convenience
Vars,, Convenience Variables}, for a discussion of what you can do with
convenience variables.

@table @code
@item break @var{location}
Set a breakpoint at the given @var{location}, which can specify a
function name, a line number, or an address of an instruction.
(@xref{Specify Location}, for a list of all the possible ways to
specify a @var{location}.)  The breakpoint will stop your program just
before it executes any of the code in the specified @var{location}.

When using source languages that permit overloading of symbols, such as
C@t{++}, a function name may refer to more than one possible place to break.
@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
that situation.

It is also possible to insert a breakpoint that will stop the program
only if a specific thread (@pxref{Thread-Specific Breakpoints})
or a specific task (@pxref{Ada Tasks}) hits that breakpoint.

@item break
When called without any arguments, @code{break} sets a breakpoint at
the next instruction to be executed in the selected stack frame
(@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
innermost, this makes your program stop as soon as control
returns to that frame.  This is similar to the effect of a
@code{finish} command in the frame inside the selected frame---except
that @code{finish} does not leave an active breakpoint.  If you use
@code{break} without an argument in the innermost frame, @value{GDBN} stops
the next time it reaches the current location; this may be useful
inside loops.

@value{GDBN} normally ignores breakpoints when it resumes execution, until at
least one instruction has been executed.  If it did not do this, you
would be unable to proceed past a breakpoint without first disabling the
breakpoint.  This rule applies whether or not the breakpoint already
existed when your program stopped.

@item break @dots{} if @var{cond}
Set a breakpoint with condition @var{cond}; evaluate the expression
@var{cond} each time the breakpoint is reached, and stop only if the
value is nonzero---that is, if @var{cond} evaluates as true.
@samp{@dots{}} stands for one of the possible arguments described
above (or no argument) specifying where to break.  @xref{Conditions,
,Break Conditions}, for more information on breakpoint conditions.

@kindex tbreak
@item tbreak @var{args}
Set a breakpoint enabled only for one stop.  @var{args} are the
same as for the @code{break} command, and the breakpoint is set in the same
way, but the breakpoint is automatically deleted after the first time your
program stops there.  @xref{Disabling, ,Disabling Breakpoints}.

@kindex hbreak
@cindex hardware breakpoints
@item hbreak @var{args}
Set a hardware-assisted breakpoint.  @var{args} are the same as for the
@code{break} command and the breakpoint is set in the same way, but the
breakpoint requires hardware support and some target hardware may not
have this support.  The main purpose of this is EPROM/ROM code
debugging, so you can set a breakpoint at an instruction without
changing the instruction.  This can be used with the new trap-generation
provided by SPARClite DSU and most x86-based targets.  These targets
will generate traps when a program accesses some data or instruction
address that is assigned to the debug registers.  However the hardware
breakpoint registers can take a limited number of breakpoints.  For
example, on the DSU, only two data breakpoints can be set at a time, and
@value{GDBN} will reject this command if more than two are used.  Delete
or disable unused hardware breakpoints before setting new ones
(@pxref{Disabling, ,Disabling Breakpoints}).
@xref{Conditions, ,Break Conditions}.
For remote targets, you can restrict the number of hardware
breakpoints @value{GDBN} will use, see @ref{set remote
hardware-breakpoint-limit}.

@kindex thbreak
@item thbreak @var{args}
Set a hardware-assisted breakpoint enabled only for one stop.  @var{args}
are the same as for the @code{hbreak} command and the breakpoint is set in
the same way.  However, like the @code{tbreak} command,
the breakpoint is automatically deleted after the
first time your program stops there.  Also, like the @code{hbreak}
command, the breakpoint requires hardware support and some target hardware
may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
See also @ref{Conditions, ,Break Conditions}.

@kindex rbreak
@cindex regular expression
@cindex breakpoints at functions matching a regexp
@cindex set breakpoints in many functions
@item rbreak @var{regex}
Set breakpoints on all functions matching the regular expression
@var{regex}.  This command sets an unconditional breakpoint on all
matches, printing a list of all breakpoints it set.  Once these
breakpoints are set, they are treated just like the breakpoints set with
the @code{break} command.  You can delete them, disable them, or make
them conditional the same way as any other breakpoint.

The syntax of the regular expression is the standard one used with tools
like @file{grep}.  Note that this is different from the syntax used by
shells, so for instance @code{foo*} matches all functions that include
an @code{fo} followed by zero or more @code{o}s.  There is an implicit
@code{.*} leading and trailing the regular expression you supply, so to
match only functions that begin with @code{foo}, use @code{^foo}.

@cindex non-member C@t{++} functions, set breakpoint in
When debugging C@t{++} programs, @code{rbreak} is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.

@cindex set breakpoints on all functions
The @code{rbreak} command can be used to set breakpoints in
@strong{all} the functions in a program, like this:

@smallexample
(@value{GDBP}) rbreak .
@end smallexample

@item rbreak @var{file}:@var{regex}
If @code{rbreak} is called with a filename qualification, it limits
the search for functions matching the given regular expression to the
specified @var{file}.  This can be used, for example, to set breakpoints on
every function in a given file:

@smallexample
(@value{GDBP}) rbreak file.c:.
@end smallexample

The colon separating the filename qualifier from the regex may
optionally be surrounded by spaces.

@kindex info breakpoints
@cindex @code{$_} and @code{info breakpoints}
@item info breakpoints @r{[}@var{n}@dots{}@r{]}
@itemx info break @r{[}@var{n}@dots{}@r{]}
Print a table of all breakpoints, watchpoints, and catchpoints set and
not deleted.  Optional argument @var{n} means print information only
about the specified breakpoint(s) (or watchpoint(s) or catchpoint(s)).
For each breakpoint, following columns are printed:

@table @emph
@item Breakpoint Numbers
@item Type
Breakpoint, watchpoint, or catchpoint.
@item Disposition
Whether the breakpoint is marked to be disabled or deleted when hit.
@item Enabled or Disabled
Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
that are not enabled.
@item Address
Where the breakpoint is in your program, as a memory address.  For a
pending breakpoint whose address is not yet known, this field will
contain @samp{<PENDING>}.  Such breakpoint won't fire until a shared
library that has the symbol or line referred by breakpoint is loaded.
See below for details.  A breakpoint with several locations will
have @samp{<MULTIPLE>} in this field---see below for details.
@item What
Where the breakpoint is in the source for your program, as a file and
line number.  For a pending breakpoint, the original string passed to
the breakpoint command will be listed as it cannot be resolved until
the appropriate shared library is loaded in the future.
@end table

@noindent
If a breakpoint is conditional, there are two evaluation modes: ``host'' and
``target''.  If mode is ``host'', breakpoint condition evaluation is done by
@value{GDBN} on the host's side.  If it is ``target'', then the condition
is evaluated by the target.  The @code{info break} command shows
the condition on the line following the affected breakpoint, together with
its condition evaluation mode in between parentheses.

Breakpoint commands, if any, are listed after that.  A pending breakpoint is
allowed to have a condition specified for it.  The condition is not parsed for
validity until a shared library is loaded that allows the pending
breakpoint to resolve to a valid location.

@noindent
@code{info break} with a breakpoint
number @var{n} as argument lists only that breakpoint.  The
convenience variable @code{$_} and the default examining-address for
the @code{x} command are set to the address of the last breakpoint
listed (@pxref{Memory, ,Examining Memory}).

@noindent
@code{info break} displays a count of the number of times the breakpoint
has been hit.  This is especially useful in conjunction with the
@code{ignore} command.  You can ignore a large number of breakpoint
hits, look at the breakpoint info to see how many times the breakpoint
was hit, and then run again, ignoring one less than that number.  This
will get you quickly to the last hit of that breakpoint.

@noindent
For a breakpoints with an enable count (xref) greater than 1,
@code{info break} also displays that count.

@end table

@value{GDBN} allows you to set any number of breakpoints at the same place in
your program.  There is nothing silly or meaningless about this.  When
the breakpoints are conditional, this is even useful
(@pxref{Conditions, ,Break Conditions}).

@cindex multiple locations, breakpoints
@cindex breakpoints, multiple locations
It is possible that a breakpoint corresponds to several locations
in your program.  Examples of this situation are:

@itemize @bullet
@item
Multiple functions in the program may have the same name.

@item
For a C@t{++} constructor, the @value{NGCC} compiler generates several
instances of the function body, used in different cases.

@item
For a C@t{++} template function, a given line in the function can
correspond to any number of instantiations.

@item
For an inlined function, a given source line can correspond to
several places where that function is inlined.
@end itemize

In all those cases, @value{GDBN} will insert a breakpoint at all
the relevant locations.

A breakpoint with multiple locations is displayed in the breakpoint
table using several rows---one header row, followed by one row for
each breakpoint location.  The header row has @samp{<MULTIPLE>} in the
address column.  The rows for individual locations contain the actual
addresses for locations, and show the functions to which those
locations belong.  The number column for a location is of the form
@var{breakpoint-number}.@var{location-number}.

For example:

@smallexample
Num     Type           Disp Enb  Address    What
1       breakpoint     keep y    <MULTIPLE>
        stop only if i==1
        breakpoint already hit 1 time
1.1                         y    0x080486a2 in void foo<int>() at t.cc:8
1.2                         y    0x080486ca in void foo<double>() at t.cc:8
@end smallexample

Each location can be individually enabled or disabled by passing
@var{breakpoint-number}.@var{location-number} as argument to the
@code{enable} and @code{disable} commands.  Note that you cannot
delete the individual locations from the list, you can only delete the
entire list of locations that belong to their parent breakpoint (with
the @kbd{delete @var{num}} command, where @var{num} is the number of
the parent breakpoint, 1 in the above example).  Disabling or enabling
the parent breakpoint (@pxref{Disabling}) affects all of the locations
that belong to that breakpoint.

@cindex pending breakpoints
It's quite common to have a breakpoint inside a shared library.
Shared libraries can be loaded and unloaded explicitly,
and possibly repeatedly, as the program is executed.  To support
this use case, @value{GDBN} updates breakpoint locations whenever
any shared library is loaded or unloaded.  Typically, you would
set a breakpoint in a shared library at the beginning of your
debugging session, when the library is not loaded, and when the
symbols from the library are not available.  When you try to set
breakpoint, @value{GDBN} will ask you if you want to set
a so called @dfn{pending breakpoint}---breakpoint whose address
is not yet resolved.

After the program is run, whenever a new shared library is loaded,
@value{GDBN} reevaluates all the breakpoints.  When a newly loaded
shared library contains the symbol or line referred to by some
pending breakpoint, that breakpoint is resolved and becomes an
ordinary breakpoint.  When a library is unloaded, all breakpoints
that refer to its symbols or source lines become pending again.

This logic works for breakpoints with multiple locations, too.  For
example, if you have a breakpoint in a C@t{++} template function, and
a newly loaded shared library has an instantiation of that template,
a new location is added to the list of locations for the breakpoint.

Except for having unresolved address, pending breakpoints do not
differ from regular breakpoints.  You can set conditions or commands,
enable and disable them and perform other breakpoint operations.

@value{GDBN} provides some additional commands for controlling what
happens when the @samp{break} command cannot resolve breakpoint
address specification to an address:

@kindex set breakpoint pending
@kindex show breakpoint pending
@table @code
@item set breakpoint pending auto
This is the default behavior.  When @value{GDBN} cannot find the breakpoint
location, it queries you whether a pending breakpoint should be created.

@item set breakpoint pending on
This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

@item set breakpoint pending off
This indicates that pending breakpoints are not to be created.  Any
unrecognized breakpoint location results in an error.  This setting does
not affect any pending breakpoints previously created.

@item show breakpoint pending
Show the current behavior setting for creating pending breakpoints.
@end table

The settings above only affect the @code{break} command and its
variants.  Once breakpoint is set, it will be automatically updated
as shared libraries are loaded and unloaded.

@cindex automatic hardware breakpoints
For some targets, @value{GDBN} can automatically decide if hardware or
software breakpoints should be used, depending on whether the
breakpoint address is read-only or read-write.  This applies to
breakpoints set with the @code{break} command as well as to internal
breakpoints set by commands like @code{next} and @code{finish}.  For
breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
breakpoints.

You can control this automatic behaviour with the following commands::

@kindex set breakpoint auto-hw
@kindex show breakpoint auto-hw
@table @code
@item set breakpoint auto-hw on
This is the default behavior.  When @value{GDBN} sets a breakpoint, it
will try to use the target memory map to decide if software or hardware
breakpoint must be used.

@item set breakpoint auto-hw off
This indicates @value{GDBN} should not automatically select breakpoint
type.  If the target provides a memory map, @value{GDBN} will warn when
trying to set software breakpoint at a read-only address.
@end table

@value{GDBN} normally implements breakpoints by replacing the program code
at the breakpoint address with a special instruction, which, when
executed, given control to the debugger.  By default, the program
code is so modified only when the program is resumed.  As soon as
the program stops, @value{GDBN} restores the original instructions.  This
behaviour guards against leaving breakpoints inserted in the
target should gdb abrubptly disconnect.  However, with slow remote
targets, inserting and removing breakpoint can reduce the performance.
This behavior can be controlled with the following commands::

@kindex set breakpoint always-inserted
@kindex show breakpoint always-inserted
@table @code
@item set breakpoint always-inserted off
All breakpoints, including newly added by the user, are inserted in
the target only when the target is resumed.  All breakpoints are
removed from the target when it stops.

@item set breakpoint always-inserted on
Causes all breakpoints to be inserted in the target at all times.  If
the user adds a new breakpoint, or changes an existing breakpoint, the
breakpoints in the target are updated immediately.  A breakpoint is
removed from the target only when breakpoint itself is removed.

@cindex non-stop mode, and @code{breakpoint always-inserted}
@item set breakpoint always-inserted auto
This is the default mode.  If @value{GDBN} is controlling the inferior
in non-stop mode (@pxref{Non-Stop Mode}), gdb behaves as if
@code{breakpoint always-inserted} mode is on.  If @value{GDBN} is
controlling the inferior in all-stop mode, @value{GDBN} behaves as if
@code{breakpoint always-inserted} mode is off.
@end table

@value{GDBN} handles conditional breakpoints by evaluating these conditions
when a breakpoint breaks.  If the condition is true, then the process being
debugged stops, otherwise the process is resumed.

If the target supports evaluating conditions on its end, @value{GDBN} may
download the breakpoint, together with its conditions, to it.

This feature can be controlled via the following commands:

@kindex set breakpoint condition-evaluation
@kindex show breakpoint condition-evaluation
@table @code
@item set breakpoint condition-evaluation host
This option commands @value{GDBN} to evaluate the breakpoint
conditions on the host's side.  Unconditional breakpoints are sent to
the target which in turn receives the triggers and reports them back to GDB
for condition evaluation.  This is the standard evaluation mode.

@item set breakpoint condition-evaluation target
This option commands @value{GDBN} to download breakpoint conditions
to the target at the moment of their insertion.  The target
is responsible for evaluating the conditional expression and reporting
breakpoint stop events back to @value{GDBN} whenever the condition
is true.  Due to limitations of target-side evaluation, some conditions
cannot be evaluated there, e.g., conditions that depend on local data
that is only known to the host.  Examples include
conditional expressions involving convenience variables, complex types
that cannot be handled by the agent expression parser and expressions
that are too long to be sent over to the target, specially when the
target is a remote system.  In these cases, the conditions will be
evaluated by @value{GDBN}.

@item set breakpoint condition-evaluation auto
This is the default mode.  If the target supports evaluating breakpoint
conditions on its end, @value{GDBN} will download breakpoint conditions to
the target (limitations mentioned previously apply).  If the target does
not support breakpoint condition evaluation, then @value{GDBN} will fallback
to evaluating all these conditions on the host's side.
@end table


@cindex negative breakpoint numbers
@cindex internal @value{GDBN} breakpoints
@value{GDBN} itself sometimes sets breakpoints in your program for
special purposes, such as proper handling of @code{longjmp} (in C
programs).  These internal breakpoints are assigned negative numbers,
starting with @code{-1}; @samp{info breakpoints} does not display them.
You can see these breakpoints with the @value{GDBN} maintenance command
@samp{maint info breakpoints} (@pxref{maint info breakpoints}).


@node Set Watchpoints
@subsection Setting Watchpoints

@cindex setting watchpoints
You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
The expression may be as simple as the value of a single variable, or
as complex as many variables combined by operators.  Examples include:

@itemize @bullet
@item
A reference to the value of a single variable.

@item
An address cast to an appropriate data type.  For example,
@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
address (assuming an @code{int} occupies 4 bytes).

@item
An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
expression can use any operators valid in the program's native
language (@pxref{Languages}).
@end itemize

You can set a watchpoint on an expression even if the expression can
not be evaluated yet.  For instance, you can set a watchpoint on
@samp{*global_ptr} before @samp{global_ptr} is initialized.
@value{GDBN} will stop when your program sets @samp{global_ptr} and
the expression produces a valid value.  If the expression becomes
valid in some other way than changing a variable (e.g.@: if the memory
pointed to by @samp{*global_ptr} becomes readable as the result of a
@code{malloc} call), @value{GDBN} may not stop until the next time
the expression changes.

@cindex software watchpoints
@cindex hardware watchpoints
Depending on your system, watchpoints may be implemented in software or
hardware.  @value{GDBN} does software watchpointing by single-stepping your
program and testing the variable's value each time, which is hundreds of
times slower than normal execution.  (But this may still be worth it, to
catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
x86-based targets, @value{GDBN} includes support for hardware
watchpoints, which do not slow down the running of your program.

@table @code
@kindex watch
@item watch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint for an expression.  @value{GDBN} will break when the
expression @var{expr} is written into by the program and its value
changes.  The simplest (and the most popular) use of this command is
to watch the value of a single variable:

@smallexample
(@value{GDBP}) watch foo
@end smallexample

If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
argument, @value{GDBN} breaks only when the thread identified by
@var{threadnum} changes the value of @var{expr}.  If any other threads
change the value of @var{expr}, @value{GDBN} will not break.  Note
that watchpoints restricted to a single thread in this way only work
with Hardware Watchpoints.

Ordinarily a watchpoint respects the scope of variables in @var{expr}
(see below).  The @code{-location} argument tells @value{GDBN} to
instead watch the memory referred to by @var{expr}.  In this case,
@value{GDBN} will evaluate @var{expr}, take the address of the result,
and watch the memory at that address.  The type of the result is used
to determine the size of the watched memory.  If the expression's
result does not have an address, then @value{GDBN} will print an
error.

The @code{@r{[}mask @var{maskvalue}@r{]}} argument allows creation
of masked watchpoints, if the current architecture supports this
feature (e.g., PowerPC Embedded architecture, see @ref{PowerPC
Embedded}.)  A @dfn{masked watchpoint} specifies a mask in addition
to an address to watch.  The mask specifies that some bits of an address
(the bits which are reset in the mask) should be ignored when matching
the address accessed by the inferior against the watchpoint address.
Thus, a masked watchpoint watches many addresses simultaneously---those
addresses whose unmasked bits are identical to the unmasked bits in the
watchpoint address.  The @code{mask} argument implies @code{-location}.
Examples:

@smallexample
(@value{GDBP}) watch foo mask 0xffff00ff
(@value{GDBP}) watch *0xdeadbeef mask 0xffffff00
@end smallexample

@kindex rwatch
@item rwatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint that will break when the value of @var{expr} is read
by the program.

@kindex awatch
@item awatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{threadnum}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint that will break when @var{expr} is either read from
or written into by the program.

@kindex info watchpoints @r{[}@var{n}@dots{}@r{]}
@item info watchpoints @r{[}@var{n}@dots{}@r{]}
This command prints a list of watchpoints, using the same format as
@code{info break} (@pxref{Set Breaks}).
@end table

If you watch for a change in a numerically entered address you need to
dereference it, as the address itself is just a constant number which will
never change.  @value{GDBN} refuses to create a watchpoint that watches
a never-changing value:

@smallexample
(@value{GDBP}) watch 0x600850
Cannot watch constant value 0x600850.
(@value{GDBP}) watch *(int *) 0x600850
Watchpoint 1: *(int *) 6293584
@end smallexample

@value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
watchpoints execute very quickly, and the debugger reports a change in
value at the exact instruction where the change occurs.  If @value{GDBN}
cannot set a hardware watchpoint, it sets a software watchpoint, which
executes more slowly and reports the change in value at the next
@emph{statement}, not the instruction, after the change occurs.

@cindex use only software watchpoints
You can force @value{GDBN} to use only software watchpoints with the
@kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
zero, @value{GDBN} will never try to use hardware watchpoints, even if
the underlying system supports them.  (Note that hardware-assisted
watchpoints that were set @emph{before} setting
@code{can-use-hw-watchpoints} to zero will still use the hardware
mechanism of watching expression values.)

@table @code
@item set can-use-hw-watchpoints
@kindex set can-use-hw-watchpoints
Set whether or not to use hardware watchpoints.

@item show can-use-hw-watchpoints
@kindex show can-use-hw-watchpoints
Show the current mode of using hardware watchpoints.
@end table

For remote targets, you can restrict the number of hardware
watchpoints @value{GDBN} will use, see @ref{set remote
hardware-breakpoint-limit}.

When you issue the @code{watch} command, @value{GDBN} reports

@smallexample
Hardware watchpoint @var{num}: @var{expr}
@end smallexample

@noindent
if it was able to set a hardware watchpoint.

Currently, the @code{awatch} and @code{rwatch} commands can only set
hardware watchpoints, because accesses to data that don't change the
value of the watched expression cannot be detected without examining
every instruction as it is being executed, and @value{GDBN} does not do
that currently.  If @value{GDBN} finds that it is unable to set a
hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
will print a message like this:

@smallexample
Expression cannot be implemented with read/access watchpoint.
@end smallexample

Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
data type of the watched expression is wider than what a hardware
watchpoint on the target machine can handle.  For example, some systems
can only watch regions that are up to 4 bytes wide; on such systems you
cannot set hardware watchpoints for an expression that yields a
double-precision floating-point number (which is typically 8 bytes
wide).  As a work-around, it might be possible to break the large region
into a series of smaller ones and watch them with separate watchpoints.

If you set too many hardware watchpoints, @value{GDBN} might be unable
to insert all of them when you resume the execution of your program.
Since the precise number of active watchpoints is unknown until such
time as the program is about to be resumed, @value{GDBN} might not be
able to warn you about this when you set the watchpoints, and the
warning will be printed only when the program is resumed:

@smallexample
Hardware watchpoint @var{num}: Could not insert watchpoint
@end smallexample

@noindent
If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also
exhaust the resources available for hardware-assisted watchpoints.
That's because @value{GDBN} needs to watch every variable in the
expression with separately allocated resources.

If you call a function interactively using @code{print} or @code{call},
any watchpoints you have set will be inactive until @value{GDBN} reaches another
kind of breakpoint or the call completes.

@value{GDBN} automatically deletes watchpoints that watch local
(automatic) variables, or expressions that involve such variables, when
they go out of scope, that is, when the execution leaves the block in
which these variables were defined.  In particular, when the program
being debugged terminates, @emph{all} local variables go out of scope,
and so only watchpoints that watch global variables remain set.  If you
rerun the program, you will need to set all such watchpoints again.  One
way of doing that would be to set a code breakpoint at the entry to the
@code{main} function and when it breaks, set all the watchpoints.

@cindex watchpoints and threads
@cindex threads and watchpoints
In multi-threaded programs, watchpoints will detect changes to the
watched expression from every thread.

@quotation
@emph{Warning:} In multi-threaded programs, software watchpoints
have only limited usefulness.  If @value{GDBN} creates a software
watchpoint, it can only watch the value of an expression @emph{in a
single thread}.  If you are confident that the expression can only
change due to the current thread's activity (and if you are also
confident that no other thread can become current), then you can use
software watchpoints as usual.  However, @value{GDBN} may not notice
when a non-current thread's activity changes the expression.  (Hardware
watchpoints, in contrast, watch an expression in all threads.)
@end quotation

@xref{set remote hardware-watchpoint-limit}.

@node Set Catchpoints
@subsection Setting Catchpoints
@cindex catchpoints, setting
@cindex exception handlers
@cindex event handling

You can use @dfn{catchpoints} to cause the debugger to stop for certain
kinds of program events, such as C@t{++} exceptions or the loading of a
shared library.  Use the @code{catch} command to set a catchpoint.

@table @code
@kindex catch
@item catch @var{event}
Stop when @var{event} occurs.  @var{event} can be any of the following:

@table @code
@item throw @r{[}@var{regexp}@r{]}
@itemx rethrow @r{[}@var{regexp}@r{]}
@itemx catch @r{[}@var{regexp}@r{]}
@cindex stop on C@t{++} exceptions
The throwing, re-throwing, or catching of a C@t{++} exception.

If @var{regexp} is given, then only exceptions whose type matches the
regular expression will be caught.

@vindex $_exception@r{, convenience variable}
The convenience variable @code{$_exception} is available at an
exception-related catchpoint, on some systems.  This holds the
exception being thrown.

There are currently some limitations to C@t{++} exception handling in
@value{GDBN}:

@itemize @bullet
@item
The support for these commands is system-dependent.  Currently, only
systems using the @samp{gnu-v3} C@t{++} ABI (@pxref{ABI}) are
supported.

@item
The regular expression feature and the @code{$_exception} convenience
variable rely on the presence of some SDT probes in @code{libstdc++}.
If these probes are not present, then these features cannot be used.
These probes were first available in the GCC 4.8 release, but whether
or not they are available in your GCC also depends on how it was
built.

@item
The @code{$_exception} convenience variable is only valid at the
instruction at which an exception-related catchpoint is set.

@item
When an exception-related catchpoint is hit, @value{GDBN} stops at a
location in the system library which implements runtime exception
support for C@t{++}, usually @code{libstdc++}.  You can use @code{up}
(@pxref{Selection}) to get to your code.

@item
If you call a function interactively, @value{GDBN} normally returns
control to you when the function has finished executing.  If the call
raises an exception, however, the call may bypass the mechanism that
returns control to you and cause your program either to abort or to
simply continue running until it hits a breakpoint, catches a signal
that @value{GDBN} is listening for, or exits.  This is the case even if
you set a catchpoint for the exception; catchpoints on exceptions are
disabled within interactive calls.  @xref{Calling}, for information on
controlling this with @code{set unwind-on-terminating-exception}.

@item
You cannot raise an exception interactively.

@item
You cannot install an exception handler interactively.
@end itemize

@item exception
@cindex Ada exception catching
@cindex catch Ada exceptions
An Ada exception being raised.  If an exception name is specified
at the end of the command (eg @code{catch exception Program_Error}),
the debugger will stop only when this specific exception is raised.
Otherwise, the debugger stops execution when any Ada exception is raised.

When inserting an exception catchpoint on a user-defined exception whose
name is identical to one of the exceptions defined by the language, the
fully qualified name must be used as the exception name.  Otherwise,
@value{GDBN} will assume that it should stop on the pre-defined exception
rather than the user-defined one.  For instance, assuming an exception
called @code{Constraint_Error} is defined in package @code{Pck}, then
the command to use to catch such exceptions is @kbd{catch exception
Pck.Constraint_Error}.

@item exception unhandled
An exception that was raised but is not handled by the program.

@item assert
A failed Ada assertion.

@item exec
@cindex break on fork/exec
A call to @code{exec}.  This is currently only available for HP-UX
and @sc{gnu}/Linux.

@item syscall
@itemx syscall @r{[}@var{name} @r{|} @var{number}@r{]} @dots{} 
@cindex break on a system call.
A call to or return from a system call, a.k.a.@: @dfn{syscall}.  A
syscall is a mechanism for application programs to request a service
from the operating system (OS) or one of the OS system services.
@value{GDBN} can catch some or all of the syscalls issued by the
debuggee, and show the related information for each syscall.  If no
argument is specified, calls to and returns from all system calls
will be caught.

@var{name} can be any system call name that is valid for the
underlying OS.  Just what syscalls are valid depends on the OS.  On
GNU and Unix systems, you can find the full list of valid syscall
names on @file{/usr/include/asm/unistd.h}.

@c For MS-Windows, the syscall names and the corresponding numbers
@c can be found, e.g., on this URL:
@c http://www.metasploit.com/users/opcode/syscalls.html
@c but we don't support Windows syscalls yet.

Normally, @value{GDBN} knows in advance which syscalls are valid for
each OS, so you can use the @value{GDBN} command-line completion
facilities (@pxref{Completion,, command completion}) to list the
available choices.

You may also specify the system call numerically.  A syscall's
number is the value passed to the OS's syscall dispatcher to
identify the requested service.  When you specify the syscall by its
name, @value{GDBN} uses its database of syscalls to convert the name
into the corresponding numeric code, but using the number directly
may be useful if @value{GDBN}'s database does not have the complete
list of syscalls on your system (e.g., because @value{GDBN} lags
behind the OS upgrades).

The example below illustrates how this command works if you don't provide
arguments to it:

@smallexample
(@value{GDBP}) catch syscall
Catchpoint 1 (syscall)
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'close'), \
	   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Catchpoint 1 (returned from syscall 'close'), \
	0xffffe424 in __kernel_vsyscall ()
(@value{GDBP})
@end smallexample

Here is an example of catching a system call by name:

@smallexample
(@value{GDBP}) catch syscall chroot
Catchpoint 1 (syscall 'chroot' [61])
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'chroot'), \
		   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Catchpoint 1 (returned from syscall 'chroot'), \
	0xffffe424 in __kernel_vsyscall ()
(@value{GDBP})
@end smallexample

An example of specifying a system call numerically.  In the case
below, the syscall number has a corresponding entry in the XML
file, so @value{GDBN} finds its name and prints it:

@smallexample
(@value{GDBP}) catch syscall 252
Catchpoint 1 (syscall(s) 'exit_group')
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'exit_group'), \
		   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Program exited normally.
(@value{GDBP})
@end smallexample

However, there can be situations when there is no corresponding name
in XML file for that syscall number.  In this case, @value{GDBN} prints
a warning message saying that it was not able to find the syscall name,
but the catchpoint will be set anyway.  See the example below:

@smallexample
(@value{GDBP}) catch syscall 764
warning: The number '764' does not represent a known syscall.
Catchpoint 2 (syscall 764)
(@value{GDBP})
@end smallexample

If you configure @value{GDBN} using the @samp{--without-expat} option,
it will not be able to display syscall names.  Also, if your
architecture does not have an XML file describing its system calls,
you will not be able to see the syscall names.  It is important to
notice that these two features are used for accessing the syscall
name database.  In either case, you will see a warning like this:

@smallexample
(@value{GDBP}) catch syscall
warning: Could not open "syscalls/i386-linux.xml"
warning: Could not load the syscall XML file 'syscalls/i386-linux.xml'.
GDB will not be able to display syscall names.
Catchpoint 1 (syscall)
(@value{GDBP})
@end smallexample

Of course, the file name will change depending on your architecture and system.

Still using the example above, you can also try to catch a syscall by its
number.  In this case, you would see something like:

@smallexample
(@value{GDBP}) catch syscall 252
Catchpoint 1 (syscall(s) 252)
@end smallexample

Again, in this case @value{GDBN} would not be able to display syscall's names.

@item fork
A call to @code{fork}.  This is currently only available for HP-UX
and @sc{gnu}/Linux.

@item vfork
A call to @code{vfork}.  This is currently only available for HP-UX
and @sc{gnu}/Linux.

@item load @r{[}regexp@r{]}
@itemx unload @r{[}regexp@r{]}
The loading or unloading of a shared library.  If @var{regexp} is
given, then the catchpoint will stop only if the regular expression
matches one of the affected libraries.

@item signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
The delivery of a signal.

With no arguments, this catchpoint will catch any signal that is not
used internally by @value{GDBN}, specifically, all signals except
@samp{SIGTRAP} and @samp{SIGINT}.

With the argument @samp{all}, all signals, including those used by
@value{GDBN}, will be caught.  This argument cannot be used with other
signal names.

Otherwise, the arguments are a list of signal names as given to
@code{handle} (@pxref{Signals}).  Only signals specified in this list
will be caught.

One reason that @code{catch signal} can be more useful than
@code{handle} is that you can attach commands and conditions to the
catchpoint.

When a signal is caught by a catchpoint, the signal's @code{stop} and
@code{print} settings, as specified by @code{handle}, are ignored.
However, whether the signal is still delivered to the inferior depends
on the @code{pass} setting; this can be changed in the catchpoint's
commands.

@end table

@item tcatch @var{event}
Set a catchpoint that is enabled only for one stop.  The catchpoint is
automatically deleted after the first time the event is caught.

@end table

Use the @code{info break} command to list the current catchpoints.


@node Delete Breaks
@subsection Deleting Breakpoints

@cindex clearing breakpoints, watchpoints, catchpoints
@cindex deleting breakpoints, watchpoints, catchpoints
It is often necessary to eliminate a breakpoint, watchpoint, or
catchpoint once it has done its job and you no longer want your program
to stop there.  This is called @dfn{deleting} the breakpoint.  A
breakpoint that has been deleted no longer exists; it is forgotten.

With the @code{clear} command you can delete breakpoints according to
where they are in your program.  With the @code{delete} command you can
delete individual breakpoints, watchpoints, or catchpoints by specifying
their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
automatically ignores breakpoints on the first instruction to be executed
when you continue execution without changing the execution address.

@table @code
@kindex clear
@item clear
Delete any breakpoints at the next instruction to be executed in the
selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
the innermost frame is selected, this is a good way to delete a
breakpoint where your program just stopped.

@item clear @var{location}
Delete any breakpoints set at the specified @var{location}.
@xref{Specify Location}, for the various forms of @var{location}; the
most useful ones are listed below:

@table @code
@item clear @var{function}
@itemx clear @var{filename}:@var{function}
Delete any breakpoints set at entry to the named @var{function}.

@item clear @var{linenum}
@itemx clear @var{filename}:@var{linenum}
Delete any breakpoints set at or within the code of the specified
@var{linenum} of the specified @var{filename}.
@end table

@cindex delete breakpoints
@kindex delete
@kindex d @r{(@code{delete})}
@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
ranges specified as arguments.  If no argument is specified, delete all
breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
confirm off}).  You can abbreviate this command as @code{d}.
@end table

@node Disabling
@subsection Disabling Breakpoints

@cindex enable/disable a breakpoint
Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
it had been deleted, but remembers the information on the breakpoint so
that you can @dfn{enable} it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with
the @code{enable} and @code{disable} commands, optionally specifying
one or more breakpoint numbers as arguments.  Use @code{info break} to
print a list of all breakpoints, watchpoints, and catchpoints if you
do not know which numbers to use.

Disabling and enabling a breakpoint that has multiple locations
affects all of its locations.

A breakpoint, watchpoint, or catchpoint can have any of several
different states of enablement:

@itemize @bullet
@item
Enabled.  The breakpoint stops your program.  A breakpoint set
with the @code{break} command starts out in this state.
@item
Disabled.  The breakpoint has no effect on your program.
@item
Enabled once.  The breakpoint stops your program, but then becomes
disabled.
@item
Enabled for a count.  The breakpoint stops your program for the next
N times, then becomes disabled.
@item
Enabled for deletion.  The breakpoint stops your program, but
immediately after it does so it is deleted permanently.  A breakpoint
set with the @code{tbreak} command starts out in this state.
@end itemize

You can use the following commands to enable or disable breakpoints,
watchpoints, and catchpoints:

@table @code
@kindex disable
@kindex dis @r{(@code{disable})}
@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
Disable the specified breakpoints---or all breakpoints, if none are
listed.  A disabled breakpoint has no effect but is not forgotten.  All
options such as ignore-counts, conditions and commands are remembered in
case the breakpoint is enabled again later.  You may abbreviate
@code{disable} as @code{dis}.

@kindex enable
@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
Enable the specified breakpoints (or all defined breakpoints).  They
become effective once again in stopping your program.

@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
Enable the specified breakpoints temporarily.  @value{GDBN} disables any
of these breakpoints immediately after stopping your program.

@item enable @r{[}breakpoints@r{]} count @var{count} @var{range}@dots{}
Enable the specified breakpoints temporarily.  @value{GDBN} records
@var{count} with each of the specified breakpoints, and decrements a
breakpoint's count when it is hit.  When any count reaches 0,
@value{GDBN} disables that breakpoint.  If a breakpoint has an ignore
count (@pxref{Conditions, ,Break Conditions}), that will be
decremented to 0 before @var{count} is affected.

@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
Enable the specified breakpoints to work once, then die.  @value{GDBN}
deletes any of these breakpoints as soon as your program stops there.
Breakpoints set by the @code{tbreak} command start out in this state.
@end table

@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
@c confusing: tbreak is also initially enabled.
Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
,Setting Breakpoints}), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use one of
the commands above.  (The command @code{until} can set and delete a
breakpoint of its own, but it does not change the state of your other
breakpoints; see @ref{Continuing and Stepping, ,Continuing and
Stepping}.)

@node Conditions
@subsection Break Conditions
@cindex conditional breakpoints
@cindex breakpoint conditions

@c FIXME what is scope of break condition expr?  Context where wanted?
@c      in particular for a watchpoint?
The simplest sort of breakpoint breaks every time your program reaches a
specified place.  You can also specify a @dfn{condition} for a
breakpoint.  A condition is just a Boolean expression in your
programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
a condition evaluates the expression each time your program reaches it,
and your program stops only if the condition is @emph{true}.

This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated---that is,
when the condition is false.  In C, if you want to test an assertion expressed
by the condition @var{assert}, you should set the condition
@samp{! @var{assert}} on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow---but
it might be simpler, say, to just set a watchpoint on a variable name,
and specify a condition that tests whether the new value is an interesting
one.

Break conditions can have side effects, and may even call functions in
your program.  This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to
format special data structures.  The effects are completely predictable
unless there is another enabled breakpoint at the same address.  (In
that case, @value{GDBN} might see the other breakpoint first and stop your
program without checking the condition of this one.)  Note that
breakpoint commands are usually more convenient and flexible than break
conditions for the
purpose of performing side effects when a breakpoint is reached
(@pxref{Break Commands, ,Breakpoint Command Lists}).

Breakpoint conditions can also be evaluated on the target's side if
the target supports it.  Instead of evaluating the conditions locally,
@value{GDBN} encodes the expression into an agent expression
(@pxref{Agent Expressions}) suitable for execution on the target,
independently of @value{GDBN}.  Global variables become raw memory
locations, locals become stack accesses, and so forth.

In this case, @value{GDBN} will only be notified of a breakpoint trigger
when its condition evaluates to true.  This mechanism may provide faster
response times depending on the performance characteristics of the target
since it does not need to keep @value{GDBN} informed about
every breakpoint trigger, even those with false conditions.

Break conditions can be specified when a breakpoint is set, by using
@samp{if} in the arguments to the @code{break} command.  @xref{Set
Breaks, ,Setting Breakpoints}.  They can also be changed at any time
with the @code{condition} command.

You can also use the @code{if} keyword with the @code{watch} command.
The @code{catch} command does not recognize the @code{if} keyword;
@code{condition} is the only way to impose a further condition on a
catchpoint.

@table @code
@kindex condition
@item condition @var{bnum} @var{expression}
Specify @var{expression} as the break condition for breakpoint,
watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
breakpoint @var{bnum} stops your program only if the value of
@var{expression} is true (nonzero, in C).  When you use
@code{condition}, @value{GDBN} checks @var{expression} immediately for
syntactic correctness, and to determine whether symbols in it have
referents in the context of your breakpoint.  If @var{expression} uses
symbols not referenced in the context of the breakpoint, @value{GDBN}
prints an error message:

@smallexample
No symbol "foo" in current context.
@end smallexample

@noindent
@value{GDBN} does
not actually evaluate @var{expression} at the time the @code{condition}
command (or a command that sets a breakpoint with a condition, like
@code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.

@item condition @var{bnum}
Remove the condition from breakpoint number @var{bnum}.  It becomes
an ordinary unconditional breakpoint.
@end table

@cindex ignore count (of breakpoint)
A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times.  This is so
useful that there is a special way to do it, using the @dfn{ignore
count} of the breakpoint.  Every breakpoint has an ignore count, which
is an integer.  Most of the time, the ignore count is zero, and
therefore has no effect.  But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements
the ignore count by one and continues.  As a result, if the ignore count
value is @var{n}, the breakpoint does not stop the next @var{n} times
your program reaches it.

@table @code
@kindex ignore
@item ignore @var{bnum} @var{count}
Set the ignore count of breakpoint number @var{bnum} to @var{count}.
The next @var{count} times the breakpoint is reached, your program's
execution does not stop; other than to decrement the ignore count, @value{GDBN}
takes no action.

To make the breakpoint stop the next time it is reached, specify
a count of zero.

When you use @code{continue} to resume execution of your program from a
breakpoint, you can specify an ignore count directly as an argument to
@code{continue}, rather than using @code{ignore}.  @xref{Continuing and
Stepping,,Continuing and Stepping}.

If a breakpoint has a positive ignore count and a condition, the
condition is not checked.  Once the ignore count reaches zero,
@value{GDBN} resumes checking the condition.

You could achieve the effect of the ignore count with a condition such
as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
is decremented each time.  @xref{Convenience Vars, ,Convenience
Variables}.
@end table

Ignore counts apply to breakpoints, watchpoints, and catchpoints.


@node Break Commands
@subsection Breakpoint Command Lists

@cindex breakpoint commands
You can give any breakpoint (or watchpoint or catchpoint) a series of
commands to execute when your program stops due to that breakpoint.  For
example, you might want to print the values of certain expressions, or
enable other breakpoints.

@table @code
@kindex commands
@kindex end@r{ (breakpoint commands)}
@item commands @r{[}@var{range}@dots{}@r{]}
@itemx @dots{} @var{command-list} @dots{}
@itemx end
Specify a list of commands for the given breakpoints.  The commands
themselves appear on the following lines.  Type a line containing just
@code{end} to terminate the commands.

To remove all commands from a breakpoint, type @code{commands} and
follow it immediately with @code{end}; that is, give no commands.

With no argument, @code{commands} refers to the last breakpoint,
watchpoint, or catchpoint set (not to the breakpoint most recently
encountered).  If the most recent breakpoints were set with a single
command, then the @code{commands} will apply to all the breakpoints
set by that command.  This applies to breakpoints set by
@code{rbreak}, and also applies when a single @code{break} command
creates multiple breakpoints (@pxref{Ambiguous Expressions,,Ambiguous
Expressions}).
@end table

Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
disabled within a @var{command-list}.

You can use breakpoint commands to start your program up again.  Simply
use the @code{continue} command, or @code{step}, or any other command
that resumes execution.

Any other commands in the command list, after a command that resumes
execution, are ignored.  This is because any time you resume execution
(even with a simple @code{next} or @code{step}), you may encounter
another breakpoint---which could have its own command list, leading to
ambiguities about which list to execute.

@kindex silent
If the first command you specify in a command list is @code{silent}, the
usual message about stopping at a breakpoint is not printed.  This may
be desirable for breakpoints that are to print a specific message and
then continue.  If none of the remaining commands print anything, you
see no sign that the breakpoint was reached.  @code{silent} is
meaningful only at the beginning of a breakpoint command list.

The commands @code{echo}, @code{output}, and @code{printf} allow you to
print precisely controlled output, and are often useful in silent
breakpoints.  @xref{Output, ,Commands for Controlled Output}.

For example, here is how you could use breakpoint commands to print the
value of @code{x} at entry to @code{foo} whenever @code{x} is positive.

@smallexample
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end
@end smallexample

One application for breakpoint commands is to compensate for one bug so
you can test for another.  Put a breakpoint just after the erroneous line
of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them.  End with the @code{continue} command
so that your program does not stop, and start with the @code{silent}
command so that no output is produced.  Here is an example:

@smallexample
break 403
commands
silent
set x = y + 4
cont
end
@end smallexample

@node Dynamic Printf
@subsection Dynamic Printf

@cindex dynamic printf
@cindex dprintf
The dynamic printf command @code{dprintf} combines a breakpoint with
formatted printing of your program's data to give you the effect of
inserting @code{printf} calls into your program on-the-fly, without
having to recompile it.

In its most basic form, the output goes to the GDB console.  However,
you can set the variable @code{dprintf-style} for alternate handling.
For instance, you can ask to format the output by calling your
program's @code{printf} function.  This has the advantage that the
characters go to the program's output device, so they can recorded in
redirects to files and so forth.

If you are doing remote debugging with a stub or agent, you can also
ask to have the printf handled by the remote agent.  In addition to
ensuring that the output goes to the remote program's device along
with any other output the program might produce, you can also ask that
the dprintf remain active even after disconnecting from the remote
target.  Using the stub/agent is also more efficient, as it can do
everything without needing to communicate with @value{GDBN}.

@table @code
@kindex dprintf
@item dprintf @var{location},@var{template},@var{expression}[,@var{expression}@dots{}]
Whenever execution reaches @var{location}, print the values of one or
more @var{expressions} under the control of the string @var{template}.
To print several values, separate them with commas.

@item set dprintf-style @var{style}
Set the dprintf output to be handled in one of several different
styles enumerated below.  A change of style affects all existing
dynamic printfs immediately.  (If you need individual control over the
print commands, simply define normal breakpoints with
explicitly-supplied command lists.)

@item gdb
@kindex dprintf-style gdb
Handle the output using the @value{GDBN} @code{printf} command.

@item call
@kindex dprintf-style call
Handle the output by calling a function in your program (normally
@code{printf}).

@item agent
@kindex dprintf-style agent
Have the remote debugging agent (such as @code{gdbserver}) handle
the output itself.  This style is only available for agents that
support running commands on the target.

@item set dprintf-function @var{function}
Set the function to call if the dprintf style is @code{call}.  By
default its value is @code{printf}.  You may set it to any expression.
that @value{GDBN} can evaluate to a function, as per the @code{call}
command.

@item set dprintf-channel @var{channel}
Set a ``channel'' for dprintf.  If set to a non-empty value,
@value{GDBN} will evaluate it as an expression and pass the result as
a first argument to the @code{dprintf-function}, in the manner of
@code{fprintf} and similar functions.  Otherwise, the dprintf format
string will be the first argument, in the manner of @code{printf}.

As an example, if you wanted @code{dprintf} output to go to a logfile
that is a standard I/O stream assigned to the variable @code{mylog},
you could do the following:

@example
(gdb) set dprintf-style call
(gdb) set dprintf-function fprintf
(gdb) set dprintf-channel mylog
(gdb) dprintf 25,"at line 25, glob=%d\n",glob
Dprintf 1 at 0x123456: file main.c, line 25.
(gdb) info break
1       dprintf        keep y   0x00123456 in main at main.c:25
        call (void) fprintf (mylog,"at line 25, glob=%d\n",glob)
        continue
(gdb)
@end example

Note that the @code{info break} displays the dynamic printf commands
as normal breakpoint commands; you can thus easily see the effect of
the variable settings.

@item set disconnected-dprintf on
@itemx set disconnected-dprintf off
@kindex set disconnected-dprintf
Choose whether @code{dprintf} commands should continue to run if
@value{GDBN} has disconnected from the target.  This only applies
if the @code{dprintf-style} is @code{agent}.

@item show disconnected-dprintf off
@kindex show disconnected-dprintf
Show the current choice for disconnected @code{dprintf}.

@end table

@value{GDBN} does not check the validity of function and channel,
relying on you to supply values that are meaningful for the contexts
in which they are being used.  For instance, the function and channel
may be the values of local variables, but if that is the case, then
all enabled dynamic prints must be at locations within the scope of
those locals.  If evaluation fails, @value{GDBN} will report an error.

@node Save Breakpoints
@subsection How to save breakpoints to a file

To save breakpoint definitions to a file use the @w{@code{save
breakpoints}} command.

@table @code
@kindex save breakpoints
@cindex save breakpoints to a file for future sessions
@item save breakpoints [@var{filename}]
This command saves all current breakpoint definitions together with
their commands and ignore counts, into a file @file{@var{filename}}
suitable for use in a later debugging session.  This includes all
types of breakpoints (breakpoints, watchpoints, catchpoints,
tracepoints).  To read the saved breakpoint definitions, use the
@code{source} command (@pxref{Command Files}).  Note that watchpoints
with expressions involving local variables may fail to be recreated
because it may not be possible to access the context where the
watchpoint is valid anymore.  Because the saved breakpoint definitions
are simply a sequence of @value{GDBN} commands that recreate the
breakpoints, you can edit the file in your favorite editing program,
and remove the breakpoint definitions you're not interested in, or
that can no longer be recreated.
@end table

@node Static Probe Points
@subsection Static Probe Points

@cindex static probe point, SystemTap
@value{GDBN} supports @dfn{SDT} probes in the code.  @acronym{SDT} stands
for Statically Defined Tracing, and the probes are designed to have a tiny
runtime code and data footprint, and no dynamic relocations.  They are
usable from assembly, C and C@t{++} languages.  See
@uref{http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation}
for a good reference on how the @acronym{SDT} probes are implemented.

Currently, @code{SystemTap} (@uref{http://sourceware.org/systemtap/})
@acronym{SDT} probes are supported on ELF-compatible systems.  See
@uref{http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps}
for more information on how to add @code{SystemTap} @acronym{SDT} probes
in your applications.

@cindex semaphores on static probe points
Some probes have an associated semaphore variable; for instance, this
happens automatically if you defined your probe using a DTrace-style
@file{.d} file.  If your probe has a semaphore, @value{GDBN} will
automatically enable it when you specify a breakpoint using the
@samp{-probe-stap} notation.  But, if you put a breakpoint at a probe's
location by some other method (e.g., @code{break file:line}), then
@value{GDBN} will not automatically set the semaphore.

You can examine the available static static probes using @code{info
probes}, with optional arguments:

@table @code
@kindex info probes
@item info probes stap @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
If given, @var{provider} is a regular expression used to match against provider
names when selecting which probes to list.  If omitted, probes by all
probes from all providers are listed.

If given, @var{name} is a regular expression to match against probe names
when selecting which probes to list.  If omitted, probe names are not
considered when deciding whether to display them.

If given, @var{objfile} is a regular expression used to select which
object files (executable or shared libraries) to examine.  If not
given, all object files are considered.

@item info probes all
List the available static probes, from all types.
@end table

@vindex $_probe_arg@r{, convenience variable}
A probe may specify up to twelve arguments.  These are available at the
point at which the probe is defined---that is, when the current PC is
at the probe's location.  The arguments are available using the
convenience variables (@pxref{Convenience Vars})
@code{$_probe_arg0}@dots{}@code{$_probe_arg11}.  Each probe argument is
an integer of the appropriate size; types are not preserved.  The
convenience variable @code{$_probe_argc} holds the number of arguments
at the current probe point.

These variables are always available, but attempts to access them at
any location other than a probe point will cause @value{GDBN} to give
an error message.


@c  @ifclear BARETARGET
@node Error in Breakpoints
@subsection ``Cannot insert breakpoints''

If you request too many active hardware-assisted breakpoints and
watchpoints, you will see this error message:

@c FIXME: the precise wording of this message may change; the relevant
@c source change is not committed yet (Sep 3, 1999).
@smallexample
Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.
@end smallexample

@noindent
This message is printed when you attempt to resume the program, since
only then @value{GDBN} knows exactly how many hardware breakpoints and
watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the
hardware-assisted breakpoints and watchpoints, and then continue.

@node Breakpoint-related Warnings
@subsection ``Breakpoint address adjusted...''
@cindex breakpoint address adjusted

Some processor architectures place constraints on the addresses at
which breakpoints may be placed.  For architectures thus constrained,
@value{GDBN} will attempt to adjust the breakpoint's address to comply
with the constraints dictated by the architecture.

One example of such an architecture is the Fujitsu FR-V.  The FR-V is
a VLIW architecture in which a number of RISC-like instructions may be
bundled together for parallel execution.  The FR-V architecture
constrains the location of a breakpoint instruction within such a
bundle to the instruction with the lowest address.  @value{GDBN}
honors this constraint by adjusting a breakpoint's address to the
first in the bundle.

It is not uncommon for optimized code to have bundles which contain
instructions from different source statements, thus it may happen that
a breakpoint's address will be adjusted from one source statement to
another.  Since this adjustment may significantly alter @value{GDBN}'s
breakpoint related behavior from what the user expects, a warning is
printed when the breakpoint is first set and also when the breakpoint
is hit.

A warning like the one below is printed when setting a breakpoint
that's been subject to address adjustment:

@smallexample
warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
@end smallexample

Such warnings are printed both for user settable and @value{GDBN}'s
internal breakpoints.  If you see one of these warnings, you should
verify that a breakpoint set at the adjusted address will have the
desired affect.  If not, the breakpoint in question may be removed and
other breakpoints may be set which will have the desired behavior.
E.g., it may be sufficient to place the breakpoint at a later
instruction.  A conditional breakpoint may also be useful in some
cases to prevent the breakpoint from triggering too often.

@value{GDBN} will also issue a warning when stopping at one of these
adjusted breakpoints:

@smallexample
warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.
@end smallexample

When this warning is encountered, it may be too late to take remedial
action except in cases where the breakpoint is hit earlier or more
frequently than expected.

@node Continuing and Stepping
@section Continuing and Stepping

@cindex stepping
@cindex continuing
@cindex resuming execution
@dfn{Continuing} means resuming program execution until your program
completes normally.  In contrast, @dfn{stepping} means executing just
one more ``step'' of your program, where ``step'' may mean either one
line of source code, or one machine instruction (depending on what
particular command you use).  Either when continuing or when stepping,
your program may stop even sooner, due to a breakpoint or a signal.  (If
it stops due to a signal, you may want to use @code{handle}, or use
@samp{signal 0} to resume execution.  @xref{Signals, ,Signals}.)

@table @code
@kindex continue
@kindex c @r{(@code{continue})}
@kindex fg @r{(resume foreground execution)}
@item continue @r{[}@var{ignore-count}@r{]}
@itemx c @r{[}@var{ignore-count}@r{]}
@itemx fg @r{[}@var{ignore-count}@r{]}
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed.  The optional argument
@var{ignore-count} allows you to specify a further number of times to
ignore a breakpoint at this location; its effect is like that of
@code{ignore} (@pxref{Conditions, ,Break Conditions}).

The argument @var{ignore-count} is meaningful only when your program
stopped due to a breakpoint.  At other times, the argument to
@code{continue} is ignored.

The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
debugged program is deemed to be the foreground program) are provided
purely for convenience, and have exactly the same behavior as
@code{continue}.
@end table

To resume execution at a different place, you can use @code{return}
(@pxref{Returning, ,Returning from a Function}) to go back to the
calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
Different Address}) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint
(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint,
and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

@table @code
@kindex step
@kindex s @r{(@code{step})}
@item step
Continue running your program until control reaches a different source
line, then stop it and return control to @value{GDBN}.  This command is
abbreviated @code{s}.

@quotation
@c "without debugging information" is imprecise; actually "without line
@c numbers in the debugging information".  (gcc -g1 has debugging info but
@c not line numbers).  But it seems complex to try to make that
@c distinction here.
@emph{Warning:} If you use the @code{step} command while control is
within a function that was compiled without debugging information,
execution proceeds until control reaches a function that does have
debugging information.  Likewise, it will not step into a function which
is compiled without debugging information.  To step through functions
without debugging information, use the @code{stepi} command, described
below.
@end quotation

The @code{step} command only stops at the first instruction of a source
line.  This prevents the multiple stops that could otherwise occur in
@code{switch} statements, @code{for} loops, etc.  @code{step} continues
to stop if a function that has debugging information is called within
the line.  In other words, @code{step} @emph{steps inside} any functions
called within the line.

Also, the @code{step} command only enters a function if there is line
number information for the function.  Otherwise it acts like the
@code{next} command.  This avoids problems when using @code{cc -gl}
on @acronym{MIPS} machines.  Previously, @code{step} entered subroutines if there
was any debugging information about the routine.

@item step @var{count}
Continue running as in @code{step}, but do so @var{count} times.  If a
breakpoint is reached, or a signal not related to stepping occurs before
@var{count} steps, stepping stops right away.

@kindex next
@kindex n @r{(@code{next})}
@item next @r{[}@var{count}@r{]}
Continue to the next source line in the current (innermost) stack frame.
This is similar to @code{step}, but function calls that appear within
the line of code are executed without stopping.  Execution stops when
control reaches a different line of code at the original stack level
that was executing when you gave the @code{next} command.  This command
is abbreviated @code{n}.

An argument @var{count} is a repeat count, as for @code{step}.


@c  FIX ME!!  Do we delete this, or is there a way it fits in with
@c  the following paragraph?   ---  Vctoria
@c
@c  @code{next} within a function that lacks debugging information acts like
@c  @code{step}, but any function calls appearing within the code of the
@c  function are executed without stopping.

The @code{next} command only stops at the first instruction of a
source line.  This prevents multiple stops that could otherwise occur in
@code{switch} statements, @code{for} loops, etc.

@kindex set step-mode
@item set step-mode
@cindex functions without line info, and stepping
@cindex stepping into functions with no line info
@itemx set step-mode on
The @code{set step-mode on} command causes the @code{step} command to
stop at the first instruction of a function which contains no debug line
information rather than stepping over it.

This is useful in cases where you may be interested in inspecting the
machine instructions of a function which has no symbolic info and do not
want @value{GDBN} to automatically skip over this function.

@item set step-mode off
Causes the @code{step} command to step over any functions which contains no
debug information.  This is the default.

@item show step-mode
Show whether @value{GDBN} will stop in or step over functions without
source line debug information.

@kindex finish
@kindex fin @r{(@code{finish})}
@item finish
Continue running until just after function in the selected stack frame
returns.  Print the returned value (if any).  This command can be
abbreviated as @code{fin}.

Contrast this with the @code{return} command (@pxref{Returning,
,Returning from a Function}).

@kindex until
@kindex u @r{(@code{until})}
@cindex run until specified location
@item until
@itemx u
Continue running until a source line past the current line, in the
current stack frame, is reached.  This command is used to avoid single
stepping through a loop more than once.  It is like the @code{next}
command, except that when @code{until} encounters a jump, it
automatically continues execution until the program counter is greater
than the address of the jump.

This means that when you reach the end of a loop after single stepping
though it, @code{until} makes your program continue execution until it
exits the loop.  In contrast, a @code{next} command at the end of a loop
simply steps back to the beginning of the loop, which forces you to step
through the next iteration.

@code{until} always stops your program if it attempts to exit the current
stack frame.

@code{until} may produce somewhat counterintuitive results if the order
of machine code does not match the order of the source lines.  For
example, in the following excerpt from a debugging session, the @code{f}
(@code{frame}) command shows that execution is stopped at line
@code{206}; yet when we use @code{until}, we get to line @code{195}:

@smallexample
(@value{GDBP}) f
#0  main (argc=4, argv=0xf7fffae8) at m4.c:206
206                 expand_input();
(@value{GDBP}) until
195             for ( ; argc > 0; NEXTARG) @{
@end smallexample

This happened because, for execution efficiency, the compiler had
generated code for the loop closure test at the end, rather than the
start, of the loop---even though the test in a C @code{for}-loop is
written before the body of the loop.  The @code{until} command appeared
to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier
statement---not in terms of the actual machine code.

@code{until} with no argument works by means of single
instruction stepping, and hence is slower than @code{until} with an
argument.

@item until @var{location}
@itemx u @var{location}
Continue running your program until either the specified location is
reached, or the current stack frame returns.  @var{location} is any of
the forms described in @ref{Specify Location}.
This form of the command uses temporary breakpoints, and
hence is quicker than @code{until} without an argument.  The specified
location is actually reached only if it is in the current frame.  This
implies that @code{until} can be used to skip over recursive function
invocations.  For instance in the code below, if the current location is
line @code{96}, issuing @code{until 99} will execute the program up to
line @code{99} in the same invocation of factorial, i.e., after the inner
invocations have returned.

@smallexample
94	int factorial (int value)
95	@{
96	    if (value > 1) @{
97            value *= factorial (value - 1);
98	    @}
99	    return (value);
100     @}
@end smallexample


@kindex advance @var{location}
@item advance @var{location}
Continue running the program up to the given @var{location}.  An argument is
required, which should be of one of the forms described in
@ref{Specify Location}.
Execution will also stop upon exit from the current stack
frame.  This command is similar to @code{until}, but @code{advance} will
not skip over recursive function calls, and the target location doesn't
have to be in the same frame as the current one.


@kindex stepi
@kindex si @r{(@code{stepi})}
@item stepi
@itemx stepi @var{arg}
@itemx si
Execute one machine instruction, then stop and return to the debugger.

It is often useful to do @samp{display/i $pc} when stepping by machine
instructions.  This makes @value{GDBN} automatically display the next
instruction to be executed, each time your program stops.  @xref{Auto
Display,, Automatic Display}.

An argument is a repeat count, as in @code{step}.

@need 750
@kindex nexti
@kindex ni @r{(@code{nexti})}
@item nexti
@itemx nexti @var{arg}
@itemx ni
Execute one machine instruction, but if it is a function call,
proceed until the function returns.

An argument is a repeat count, as in @code{next}.

@end table

@anchor{range stepping}
@cindex range stepping
@cindex target-assisted range stepping
By default, and if available, @value{GDBN} makes use of
target-assisted @dfn{range stepping}.  In other words, whenever you
use a stepping command (e.g., @code{step}, @code{next}), @value{GDBN}
tells the target to step the corresponding range of instruction
addresses instead of issuing multiple single-steps.  This speeds up
line stepping, particularly for remote targets.  Ideally, there should
be no reason you would want to turn range stepping off.  However, it's
possible that a bug in the debug info, a bug in the remote stub (for
remote targets), or even a bug in @value{GDBN} could make line
stepping behave incorrectly when target-assisted range stepping is
enabled.  You can use the following command to turn off range stepping
if necessary:

@table @code
@kindex set range-stepping
@kindex show range-stepping
@item set range-stepping
@itemx show range-stepping
Control whether range stepping is enabled.

If @code{on}, and the target supports it, @value{GDBN} tells the
target to step a range of addresses itself, instead of issuing
multiple single-steps.  If @code{off}, @value{GDBN} always issues
single-steps, even if range stepping is supported by the target.  The
default is @code{on}.

@end table

@node Skipping Over Functions and Files
@section Skipping Over Functions and Files
@cindex skipping over functions and files

The program you are debugging may contain some functions which are
uninteresting to debug.  The @code{skip} comand lets you tell @value{GDBN} to
skip a function or all functions in a file when stepping.

For example, consider the following C function:

@smallexample
101     int func()
102     @{
103         foo(boring());
104         bar(boring());
105     @}
@end smallexample

@noindent
Suppose you wish to step into the functions @code{foo} and @code{bar}, but you
are not interested in stepping through @code{boring}.  If you run @code{step}
at line 103, you'll enter @code{boring()}, but if you run @code{next}, you'll
step over both @code{foo} and @code{boring}!

One solution is to @code{step} into @code{boring} and use the @code{finish}
command to immediately exit it.  But this can become tedious if @code{boring}
is called from many places.

A more flexible solution is to execute @kbd{skip boring}.  This instructs
@value{GDBN} never to step into @code{boring}.  Now when you execute
@code{step} at line 103, you'll step over @code{boring} and directly into
@code{foo}.

You can also instruct @value{GDBN} to skip all functions in a file, with, for
example, @code{skip file boring.c}.

@table @code
@kindex skip function
@item skip @r{[}@var{linespec}@r{]}
@itemx skip function @r{[}@var{linespec}@r{]}
After running this command, the function named by @var{linespec} or the
function containing the line named by @var{linespec} will be skipped over when
stepping.  @xref{Specify Location}.

If you do not specify @var{linespec}, the function you're currently debugging
will be skipped.

(If you have a function called @code{file} that you want to skip, use
@kbd{skip function file}.)

@kindex skip file
@item skip file @r{[}@var{filename}@r{]}
After running this command, any function whose source lives in @var{filename}
will be skipped over when stepping.

If you do not specify @var{filename}, functions whose source lives in the file
you're currently debugging will be skipped.
@end table

Skips can be listed, deleted, disabled, and enabled, much like breakpoints.
These are the commands for managing your list of skips:

@table @code
@kindex info skip
@item info skip @r{[}@var{range}@r{]}
Print details about the specified skip(s).  If @var{range} is not specified,
print a table with details about all functions and files marked for skipping.
@code{info skip} prints the following information about each skip:

@table @emph
@item Identifier
A number identifying this skip.
@item Type
The type of this skip, either @samp{function} or @samp{file}.
@item Enabled or Disabled
Enabled skips are marked with @samp{y}.  Disabled skips are marked with @samp{n}.
@item Address
For function skips, this column indicates the address in memory of the function
being skipped.  If you've set a function skip on a function which has not yet
been loaded, this field will contain @samp{<PENDING>}.  Once a shared library
which has the function is loaded, @code{info skip} will show the function's
address here.
@item What
For file skips, this field contains the filename being skipped.  For functions
skips, this field contains the function name and its line number in the file
where it is defined.
@end table

@kindex skip delete
@item skip delete @r{[}@var{range}@r{]}
Delete the specified skip(s).  If @var{range} is not specified, delete all
skips.

@kindex skip enable
@item skip enable @r{[}@var{range}@r{]}
Enable the specified skip(s).  If @var{range} is not specified, enable all
skips.

@kindex skip disable
@item skip disable @r{[}@var{range}@r{]}
Disable the specified skip(s).  If @var{range} is not specified, disable all
skips.

@end table

@node Signals
@section Signals
@cindex signals

A signal is an asynchronous event that can happen in a program.  The
operating system defines the possible kinds of signals, and gives each
kind a name and a number.  For example, in Unix @code{SIGINT} is the
signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
@code{SIGSEGV} is the signal a program gets from referencing a place in
memory far away from all the areas in use; @code{SIGALRM} occurs when
the alarm clock timer goes off (which happens only if your program has
requested an alarm).

@cindex fatal signals
Some signals, including @code{SIGALRM}, are a normal part of the
functioning of your program.  Others, such as @code{SIGSEGV}, indicate
errors; these signals are @dfn{fatal} (they kill your program immediately) if the
program has not specified in advance some other way to handle the signal.
@code{SIGINT} does not indicate an error in your program, but it is normally
fatal so it can carry out the purpose of the interrupt: to kill the program.

@value{GDBN} has the ability to detect any occurrence of a signal in your
program.  You can tell @value{GDBN} in advance what to do for each kind of
signal.

@cindex handling signals
Normally, @value{GDBN} is set up to let the non-erroneous signals like
@code{SIGALRM} be silently passed to your program
(so as not to interfere with their role in the program's functioning)
but to stop your program immediately whenever an error signal happens.
You can change these settings with the @code{handle} command.

@table @code
@kindex info signals
@kindex info handle
@item info signals
@itemx info handle
Print a table of all the kinds of signals and how @value{GDBN} has been told to
handle each one.  You can use this to see the signal numbers of all
the defined types of signals.

@item info signals @var{sig}
Similar, but print information only about the specified signal number.

@code{info handle} is an alias for @code{info signals}.

@item catch signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
Set a catchpoint for the indicated signals.  @xref{Set Catchpoints},
for details about this command.

@kindex handle
@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
Change the way @value{GDBN} handles signal @var{signal}.  @var{signal}
can be the number of a signal or its name (with or without the
@samp{SIG} at the beginning); a list of signal numbers of the form
@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
known signals.  Optional arguments @var{keywords}, described below,
say what change to make.
@end table

@c @group
The keywords allowed by the @code{handle} command can be abbreviated.
Their full names are:

@table @code
@item nostop
@value{GDBN} should not stop your program when this signal happens.  It may
still print a message telling you that the signal has come in.

@item stop
@value{GDBN} should stop your program when this signal happens.  This implies
the @code{print} keyword as well.

@item print
@value{GDBN} should print a message when this signal happens.

@item noprint
@value{GDBN} should not mention the occurrence of the signal at all.  This
implies the @code{nostop} keyword as well.

@item pass
@itemx noignore
@value{GDBN} should allow your program to see this signal; your program
can handle the signal, or else it may terminate if the signal is fatal
and not handled.  @code{pass} and @code{noignore} are synonyms.

@item nopass
@itemx ignore
@value{GDBN} should not allow your program to see this signal.
@code{nopass} and @code{ignore} are synonyms.
@end table
@c @end group

When a signal stops your program, the signal is not visible to the
program until you
continue.  Your program sees the signal then, if @code{pass} is in
effect for the signal in question @emph{at that time}.  In other words,
after @value{GDBN} reports a signal, you can use the @code{handle}
command with @code{pass} or @code{nopass} to control whether your
program sees that signal when you continue.

The default is set to @code{nostop}, @code{noprint}, @code{pass} for
non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
erroneous signals.

You can also use the @code{signal} command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time.  For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal.  To prevent this,
you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
Program a Signal}.

@cindex extra signal information
@anchor{extra signal information}

On some targets, @value{GDBN} can inspect extra signal information
associated with the intercepted signal, before it is actually
delivered to the program being debugged.  This information is exported
by the convenience variable @code{$_siginfo}, and consists of data
that is passed by the kernel to the signal handler at the time of the
receipt of a signal.  The data type of the information itself is
target dependent.  You can see the data type using the @code{ptype
$_siginfo} command.  On Unix systems, it typically corresponds to the
standard @code{siginfo_t} type, as defined in the @file{signal.h}
system header.

Here's an example, on a @sc{gnu}/Linux system, printing the stray
referenced address that raised a segmentation fault.

@smallexample
@group
(@value{GDBP}) continue
Program received signal SIGSEGV, Segmentation fault.
0x0000000000400766 in main ()
69        *(int *)p = 0;
(@value{GDBP}) ptype $_siginfo
type = struct @{
    int si_signo;
    int si_errno;
    int si_code;
    union @{
        int _pad[28];
        struct @{...@} _kill;
        struct @{...@} _timer;
        struct @{...@} _rt;
        struct @{...@} _sigchld;
        struct @{...@} _sigfault;
        struct @{...@} _sigpoll;
    @} _sifields;
@}
(@value{GDBP}) ptype $_siginfo._sifields._sigfault
type = struct @{
    void *si_addr;
@}
(@value{GDBP}) p $_siginfo._sifields._sigfault.si_addr
$1 = (void *) 0x7ffff7ff7000
@end group
@end smallexample

Depending on target support, @code{$_siginfo} may also be writable.

@node Thread Stops
@section Stopping and Starting Multi-thread Programs

@cindex stopped threads
@cindex threads, stopped

@cindex continuing threads
@cindex threads, continuing

@value{GDBN} supports debugging programs with multiple threads
(@pxref{Threads,, Debugging Programs with Multiple Threads}).  There
are two modes of controlling execution of your program within the
debugger.  In the default mode, referred to as @dfn{all-stop mode},
when any thread in your program stops (for example, at a breakpoint 
or while being stepped), all other threads in the program are also stopped by 
@value{GDBN}.  On some targets, @value{GDBN} also supports 
@dfn{non-stop mode}, in which other threads can continue to run freely while
you examine the stopped thread in the debugger.

@menu
* All-Stop Mode::		All threads stop when GDB takes control
* Non-Stop Mode::		Other threads continue to execute
* Background Execution::	Running your program asynchronously
* Thread-Specific Breakpoints::	Controlling breakpoints
* Interrupted System Calls::	GDB may interfere with system calls
* Observer Mode::               GDB does not alter program behavior
@end menu

@node All-Stop Mode
@subsection All-Stop Mode

@cindex all-stop mode

In all-stop mode, whenever your program stops under @value{GDBN} for any reason,
@emph{all} threads of execution stop, not just the current thread.  This
allows you to examine the overall state of the program, including
switching between threads, without worrying that things may change
underfoot.

Conversely, whenever you restart the program, @emph{all} threads start
executing.  @emph{This is true even when single-stepping} with commands
like @code{step} or @code{next}.

In particular, @value{GDBN} cannot single-step all threads in lockstep.
Since thread scheduling is up to your debugging target's operating
system (not controlled by @value{GDBN}), other threads may
execute more than one statement while the current thread completes a
single step.  Moreover, in general other threads stop in the middle of a
statement, rather than at a clean statement boundary, when the program
stops.

You might even find your program stopped in another thread after
continuing or even single-stepping.  This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the
first thread completes whatever you requested.

@cindex automatic thread selection
@cindex switching threads automatically
@cindex threads, automatic switching
Whenever @value{GDBN} stops your program, due to a breakpoint or a
signal, it automatically selects the thread where that breakpoint or
signal happened.  @value{GDBN} alerts you to the context switch with a
message such as @samp{[Switching to Thread @var{n}]} to identify the
thread.  

On some OSes, you can modify @value{GDBN}'s default behavior by
locking the OS scheduler to allow only a single thread to run.

@table @code
@item set scheduler-locking @var{mode}
@cindex scheduler locking mode
@cindex lock scheduler
Set the scheduler locking mode.  If it is @code{off}, then there is no
locking and any thread may run at any time.  If @code{on}, then only the
current thread may run when the inferior is resumed.  The @code{step}
mode optimizes for single-stepping; it prevents other threads 
from preempting the current thread while you are stepping, so that 
the focus of debugging does not change unexpectedly.
Other threads only rarely (or never) get a chance to run
when you step.  They are more likely to run when you @samp{next} over a
function call, and they are completely free to run when you use commands
like @samp{continue}, @samp{until}, or @samp{finish}.  However, unless another
thread hits a breakpoint during its timeslice, @value{GDBN} does not change
the current thread away from the thread that you are debugging.

@item show scheduler-locking
Display the current scheduler locking mode.
@end table

@cindex resume threads of multiple processes simultaneously
By default, when you issue one of the execution commands such as
@code{continue}, @code{next} or @code{step}, @value{GDBN} allows only
threads of the current inferior to run.  For example, if @value{GDBN}
is attached to two inferiors, each with two threads, the
@code{continue} command resumes only the two threads of the current
inferior.  This is useful, for example, when you debug a program that
forks and you want to hold the parent stopped (so that, for instance,
it doesn't run to exit), while you debug the child.  In other
situations, you may not be interested in inspecting the current state
of any of the processes @value{GDBN} is attached to, and you may want
to resume them all until some breakpoint is hit.  In the latter case,
you can instruct @value{GDBN} to allow all threads of all the
inferiors to run with the @w{@code{set schedule-multiple}} command.

@table @code
@kindex set schedule-multiple
@item set schedule-multiple
Set the mode for allowing threads of multiple processes to be resumed
when an execution command is issued.  When @code{on}, all threads of
all processes are allowed to run.  When @code{off}, only the threads
of the current process are resumed.  The default is @code{off}.  The
@code{scheduler-locking} mode takes precedence when set to @code{on},
or while you are stepping and set to @code{step}.

@item show schedule-multiple
Display the current mode for resuming the execution of threads of
multiple processes.
@end table

@node Non-Stop Mode
@subsection Non-Stop Mode

@cindex non-stop mode

@c This section is really only a place-holder, and needs to be expanded
@c with more details.  

For some multi-threaded targets, @value{GDBN} supports an optional
mode of operation in which you can examine stopped program threads in
the debugger while other threads continue to execute freely.  This
minimizes intrusion when debugging live systems, such as programs 
where some threads have real-time constraints or must continue to 
respond to external events.  This is referred to as @dfn{non-stop} mode.

In non-stop mode, when a thread stops to report a debugging event,
@emph{only} that thread is stopped; @value{GDBN} does not stop other
threads as well, in contrast to the all-stop mode behavior.  Additionally,
execution commands such as @code{continue} and @code{step} apply by default
only to the current thread in non-stop mode, rather than all threads as
in all-stop mode.  This allows you to control threads explicitly in
ways that are not possible in all-stop mode --- for example, stepping 
one thread while allowing others to run freely, stepping
one thread while holding all others stopped, or stepping several threads 
independently and simultaneously.

To enter non-stop mode, use this sequence of commands before you run
or attach to your program:

@smallexample
# Enable the async interface.  
set target-async 1

# If using the CLI, pagination breaks non-stop.
set pagination off

# Finally, turn it on!
set non-stop on
@end smallexample

You can use these commands to manipulate the non-stop mode setting:

@table @code
@kindex set non-stop
@item set non-stop on
Enable selection of non-stop mode.
@item set non-stop off
Disable selection of non-stop mode.
@kindex show non-stop
@item show non-stop
Show the current non-stop enablement setting.
@end table

Note these commands only reflect whether non-stop mode is enabled,
not whether the currently-executing program is being run in non-stop mode.  
In particular, the @code{set non-stop} preference is only consulted when
@value{GDBN} starts or connects to the target program, and it is generally 
not possible to switch modes once debugging has started.  Furthermore,
since not all targets support non-stop mode, even when you have enabled
non-stop mode, @value{GDBN} may still fall back to all-stop operation by
default.

In non-stop mode, all execution commands apply only to the current thread
by default.  That is, @code{continue} only continues one thread.  
To continue all threads, issue @code{continue -a} or @code{c -a}.

You can use @value{GDBN}'s background execution commands 
(@pxref{Background Execution}) to run some threads in the background
while you continue to examine or step others from @value{GDBN}.  
The MI execution commands (@pxref{GDB/MI Program Execution}) are
always executed asynchronously in non-stop mode.

Suspending execution is done with the @code{interrupt} command when
running in the background, or @kbd{Ctrl-c} during foreground execution.  
In all-stop mode, this stops the whole process; 
but in non-stop mode the interrupt applies only to the current thread.  
To stop the whole program, use @code{interrupt -a}.

Other execution commands do not currently support the @code{-a} option.

In non-stop mode, when a thread stops, @value{GDBN} doesn't automatically make
that thread current, as it does in all-stop mode.  This is because the
thread stop notifications are asynchronous with respect to @value{GDBN}'s 
command interpreter, and it would be confusing if @value{GDBN} unexpectedly
changed to a different thread just as you entered a command to operate on the
previously current thread.

@node Background Execution
@subsection Background Execution

@cindex foreground execution
@cindex background execution
@cindex asynchronous execution
@cindex execution, foreground, background and asynchronous

@value{GDBN}'s execution commands have two variants:  the normal
foreground (synchronous) behavior, and a background
(asynchronous) behavior.  In foreground execution, @value{GDBN} waits for 
the program to report that some thread has stopped before prompting for
another command.  In background execution, @value{GDBN} immediately gives
a command prompt so that you can issue other commands while your program runs.

You need to explicitly enable asynchronous mode before you can use
background execution commands.  You can use these commands to
manipulate the asynchronous mode setting:

@table @code
@kindex set target-async
@item set target-async on
Enable asynchronous mode.
@item set target-async off
Disable asynchronous mode.
@kindex show target-async
@item show target-async
Show the current target-async setting.
@end table

If the target doesn't support async mode, @value{GDBN} issues an error
message if you attempt to use the background execution commands.

To specify background execution, add a @code{&} to the command.  For example,
the background form of the @code{continue} command is @code{continue&}, or
just @code{c&}.  The execution commands that accept background execution
are:

@table @code
@kindex run&
@item run
@xref{Starting, , Starting your Program}.

@item attach
@kindex attach&
@xref{Attach, , Debugging an Already-running Process}.

@item step
@kindex step&
@xref{Continuing and Stepping, step}.

@item stepi
@kindex stepi&
@xref{Continuing and Stepping, stepi}.

@item next
@kindex next&
@xref{Continuing and Stepping, next}.

@item nexti
@kindex nexti&
@xref{Continuing and Stepping, nexti}.

@item continue
@kindex continue&
@xref{Continuing and Stepping, continue}.

@item finish
@kindex finish&
@xref{Continuing and Stepping, finish}.

@item until
@kindex until&
@xref{Continuing and Stepping, until}.

@end table

Background execution is especially useful in conjunction with non-stop
mode for debugging programs with multiple threads; see @ref{Non-Stop Mode}.
However, you can also use these commands in the normal all-stop mode with
the restriction that you cannot issue another execution command until the
previous one finishes.  Examples of commands that are valid in all-stop
mode while the program is running include @code{help} and @code{info break}.

You can interrupt your program while it is running in the background by
using the @code{interrupt} command.

@table @code
@kindex interrupt
@item interrupt
@itemx interrupt -a

Suspend execution of the running program.  In all-stop mode, 
@code{interrupt} stops the whole process, but in non-stop mode, it stops
only the current thread.  To stop the whole program in non-stop mode, 
use @code{interrupt -a}.
@end table

@node Thread-Specific Breakpoints
@subsection Thread-Specific Breakpoints

When your program has multiple threads (@pxref{Threads,, Debugging
Programs with Multiple Threads}), you can choose whether to set
breakpoints on all threads, or on a particular thread.

@table @code
@cindex breakpoints and threads
@cindex thread breakpoints
@kindex break @dots{} thread @var{threadno}
@item break @var{linespec} thread @var{threadno}
@itemx break @var{linespec} thread @var{threadno} if @dots{}
@var{linespec} specifies source lines; there are several ways of
writing them (@pxref{Specify Location}), but the effect is always to
specify some source line.

Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
to specify that you only want @value{GDBN} to stop the program when a
particular thread reaches this breakpoint.  @var{threadno} is one of the
numeric thread identifiers assigned by @value{GDBN}, shown in the first
column of the @samp{info threads} display.

If you do not specify @samp{thread @var{threadno}} when you set a
breakpoint, the breakpoint applies to @emph{all} threads of your
program.

You can use the @code{thread} qualifier on conditional breakpoints as
well; in this case, place @samp{thread @var{threadno}} before or
after the breakpoint condition, like this:

@smallexample
(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
@end smallexample

@end table

Thread-specific breakpoints are automatically deleted when
@value{GDBN} detects the corresponding thread is no longer in the
thread list.  For example:

@smallexample
(@value{GDBP}) c
Thread-specific breakpoint 3 deleted - thread 28 no longer in the thread list.
@end smallexample

There are several ways for a thread to disappear, such as a regular
thread exit, but also when you detach from the process with the
@code{detach} command (@pxref{Attach, ,Debugging an Already-running
Process}), or if @value{GDBN} loses the remote connection
(@pxref{Remote Debugging}), etc.  Note that with some targets,
@value{GDBN} is only able to detect a thread has exited when the user
explictly asks for the thread list with the @code{info threads}
command.

@node Interrupted System Calls
@subsection Interrupted System Calls 

@cindex thread breakpoints and system calls
@cindex system calls and thread breakpoints
@cindex premature return from system calls
There is an unfortunate side effect when using @value{GDBN} to debug
multi-threaded programs.  If one thread stops for a
breakpoint, or for some other reason, and another thread is blocked in a
system call, then the system call may return prematurely.  This is a
consequence of the interaction between multiple threads and the signals
that @value{GDBN} uses to implement breakpoints and other events that
stop execution.

To handle this problem, your program should check the return value of
each system call and react appropriately.  This is good programming
style anyways.

For example, do not write code like this:

@smallexample
  sleep (10);
@end smallexample

The call to @code{sleep} will return early if a different thread stops
at a breakpoint or for some other reason.

Instead, write this:

@smallexample
  int unslept = 10;
  while (unslept > 0)
    unslept = sleep (unslept);
@end smallexample

A system call is allowed to return early, so the system is still
conforming to its specification.  But @value{GDBN} does cause your
multi-threaded program to behave differently than it would without
@value{GDBN}.

Also, @value{GDBN} uses internal breakpoints in the thread library to
monitor certain events such as thread creation and thread destruction.
When such an event happens, a system call in another thread may return
prematurely, even though your program does not appear to stop.

@node Observer Mode
@subsection Observer Mode

If you want to build on non-stop mode and observe program behavior
without any chance of disruption by @value{GDBN}, you can set
variables to disable all of the debugger's attempts to modify state,
whether by writing memory, inserting breakpoints, etc.  These operate
at a low level, intercepting operations from all commands.

When all of these are set to @code{off}, then @value{GDBN} is said to
be @dfn{observer mode}.  As a convenience, the variable
@code{observer} can be set to disable these, plus enable non-stop
mode.

Note that @value{GDBN} will not prevent you from making nonsensical
combinations of these settings. For instance, if you have enabled
@code{may-insert-breakpoints} but disabled @code{may-write-memory},
then breakpoints that work by writing trap instructions into the code
stream will still not be able to be placed.

@table @code

@kindex observer
@item set observer on
@itemx set observer off
When set to @code{on}, this disables all the permission variables
below (except for @code{insert-fast-tracepoints}), plus enables
non-stop debugging.  Setting this to @code{off} switches back to
normal debugging, though remaining in non-stop mode.

@item show observer
Show whether observer mode is on or off.

@kindex may-write-registers
@item set may-write-registers on
@itemx set may-write-registers off
This controls whether @value{GDBN} will attempt to alter the values of
registers, such as with assignment expressions in @code{print}, or the
@code{jump} command.  It defaults to @code{on}.

@item show may-write-registers
Show the current permission to write registers.

@kindex may-write-memory
@item set may-write-memory on
@itemx set may-write-memory off
This controls whether @value{GDBN} will attempt to alter the contents
of memory, such as with assignment expressions in @code{print}.  It
defaults to @code{on}.

@item show may-write-memory
Show the current permission to write memory.

@kindex may-insert-breakpoints
@item set may-insert-breakpoints on
@itemx set may-insert-breakpoints off
This controls whether @value{GDBN} will attempt to insert breakpoints.
This affects all breakpoints, including internal breakpoints defined
by @value{GDBN}.  It defaults to @code{on}.

@item show may-insert-breakpoints
Show the current permission to insert breakpoints.

@kindex may-insert-tracepoints
@item set may-insert-tracepoints on
@itemx set may-insert-tracepoints off
This controls whether @value{GDBN} will attempt to insert (regular)
tracepoints at the beginning of a tracing experiment.  It affects only
non-fast tracepoints, fast tracepoints being under the control of
@code{may-insert-fast-tracepoints}.  It defaults to @code{on}.

@item show may-insert-tracepoints
Show the current permission to insert tracepoints.

@kindex may-insert-fast-tracepoints
@item set may-insert-fast-tracepoints on
@itemx set may-insert-fast-tracepoints off
This controls whether @value{GDBN} will attempt to insert fast
tracepoints at the beginning of a tracing experiment.  It affects only
fast tracepoints, regular (non-fast) tracepoints being under the
control of @code{may-insert-tracepoints}.  It defaults to @code{on}.

@item show may-insert-fast-tracepoints
Show the current permission to insert fast tracepoints.

@kindex may-interrupt
@item set may-interrupt on
@itemx set may-interrupt off
This controls whether @value{GDBN} will attempt to interrupt or stop
program execution.  When this variable is @code{off}, the
@code{interrupt} command will have no effect, nor will
@kbd{Ctrl-c}. It defaults to @code{on}.

@item show may-interrupt
Show the current permission to interrupt or stop the program.

@end table

@node Reverse Execution
@chapter Running programs backward
@cindex reverse execution
@cindex running programs backward

When you are debugging a program, it is not unusual to realize that
you have gone too far, and some event of interest has already happened.
If the target environment supports it, @value{GDBN} can allow you to
``rewind'' the program by running it backward.

A target environment that supports reverse execution should be able
to ``undo'' the changes in machine state that have taken place as the
program was executing normally.  Variables, registers etc.@: should
revert to their previous values.  Obviously this requires a great
deal of sophistication on the part of the target environment; not
all target environments can support reverse execution.

When a program is executed in reverse, the instructions that
have most recently been executed are ``un-executed'', in reverse
order.  The program counter runs backward, following the previous
thread of execution in reverse.  As each instruction is ``un-executed'',
the values of memory and/or registers that were changed by that
instruction are reverted to their previous states.  After executing
a piece of source code in reverse, all side effects of that code
should be ``undone'', and all variables should be returned to their
prior values@footnote{
Note that some side effects are easier to undo than others.  For instance,
memory and registers are relatively easy, but device I/O is hard.  Some
targets may be able undo things like device I/O, and some may not.

The contract between @value{GDBN} and the reverse executing target
requires only that the target do something reasonable when
@value{GDBN} tells it to execute backwards, and then report the 
results back to @value{GDBN}.  Whatever the target reports back to
@value{GDBN}, @value{GDBN} will report back to the user.  @value{GDBN}
assumes that the memory and registers that the target reports are in a
consistant state, but @value{GDBN} accepts whatever it is given.
}.

If you are debugging in a target environment that supports
reverse execution, @value{GDBN} provides the following commands.

@table @code
@kindex reverse-continue
@kindex rc @r{(@code{reverse-continue})}
@item reverse-continue @r{[}@var{ignore-count}@r{]}
@itemx rc @r{[}@var{ignore-count}@r{]}
Beginning at the point where your program last stopped, start executing
in reverse.  Reverse execution will stop for breakpoints and synchronous
exceptions (signals), just like normal execution.  Behavior of
asynchronous signals depends on the target environment.

@kindex reverse-step
@kindex rs @r{(@code{step})}
@item reverse-step @r{[}@var{count}@r{]}
Run the program backward until control reaches the start of a
different source line; then stop it, and return control to @value{GDBN}.

Like the @code{step} command, @code{reverse-step} will only stop
at the beginning of a source line.  It ``un-executes'' the previously
executed source line.  If the previous source line included calls to
debuggable functions, @code{reverse-step} will step (backward) into
the called function, stopping at the beginning of the @emph{last}
statement in the called function (typically a return statement).

Also, as with the @code{step} command, if non-debuggable functions are
called, @code{reverse-step} will run thru them backward without stopping.

@kindex reverse-stepi
@kindex rsi @r{(@code{reverse-stepi})}
@item reverse-stepi @r{[}@var{count}@r{]}
Reverse-execute one machine instruction.  Note that the instruction
to be reverse-executed is @emph{not} the one pointed to by the program
counter, but the instruction executed prior to that one.  For instance,
if the last instruction was a jump, @code{reverse-stepi} will take you
back from the destination of the jump to the jump instruction itself.

@kindex reverse-next
@kindex rn @r{(@code{reverse-next})}
@item reverse-next @r{[}@var{count}@r{]}
Run backward to the beginning of the previous line executed in
the current (innermost) stack frame.  If the line contains function
calls, they will be ``un-executed'' without stopping.  Starting from
the first line of a function, @code{reverse-next} will take you back
to the caller of that function, @emph{before} the function was called,
just as the normal @code{next} command would take you from the last 
line of a function back to its return to its caller
@footnote{Unless the code is too heavily optimized.}.

@kindex reverse-nexti
@kindex rni @r{(@code{reverse-nexti})}
@item reverse-nexti @r{[}@var{count}@r{]}
Like @code{nexti}, @code{reverse-nexti} executes a single instruction
in reverse, except that called functions are ``un-executed'' atomically.
That is, if the previously executed instruction was a return from
another function, @code{reverse-nexti} will continue to execute
in reverse until the call to that function (from the current stack
frame) is reached.

@kindex reverse-finish
@item reverse-finish
Just as the @code{finish} command takes you to the point where the
current function returns, @code{reverse-finish} takes you to the point
where it was called.  Instead of ending up at the end of the current
function invocation, you end up at the beginning.

@kindex set exec-direction
@item set exec-direction
Set the direction of target execution.
@item set exec-direction reverse
@cindex execute forward or backward in time
@value{GDBN} will perform all execution commands in reverse, until the
exec-direction mode is changed to ``forward''.  Affected commands include
@code{step, stepi, next, nexti, continue, and finish}.  The @code{return}
command cannot be used in reverse mode.
@item set exec-direction forward
@value{GDBN} will perform all execution commands in the normal fashion.
This is the default.
@end table


@node Process Record and Replay
@chapter Recording Inferior's Execution and Replaying It
@cindex process record and replay
@cindex recording inferior's execution and replaying it

On some platforms, @value{GDBN} provides a special @dfn{process record
and replay} target that can record a log of the process execution, and
replay it later with both forward and reverse execution commands.

@cindex replay mode
When this target is in use, if the execution log includes the record
for the next instruction, @value{GDBN} will debug in @dfn{replay
mode}.  In the replay mode, the inferior does not really execute code
instructions.  Instead, all the events that normally happen during
code execution are taken from the execution log.  While code is not
really executed in replay mode, the values of registers (including the
program counter register) and the memory of the inferior are still
changed as they normally would.  Their contents are taken from the
execution log.

@cindex record mode
If the record for the next instruction is not in the execution log,
@value{GDBN} will debug in @dfn{record mode}.  In this mode, the
inferior executes normally, and @value{GDBN} records the execution log
for future replay.

The process record and replay target supports reverse execution
(@pxref{Reverse Execution}), even if the platform on which the
inferior runs does not.  However, the reverse execution is limited in
this case by the range of the instructions recorded in the execution
log.  In other words, reverse execution on platforms that don't
support it directly can only be done in the replay mode.

When debugging in the reverse direction, @value{GDBN} will work in
replay mode as long as the execution log includes the record for the
previous instruction; otherwise, it will work in record mode, if the
platform supports reverse execution, or stop if not.

For architecture environments that support process record and replay,
@value{GDBN} provides the following commands:

@table @code
@kindex target record
@kindex target record-full
@kindex target record-btrace
@kindex record
@kindex record full
@kindex record btrace
@kindex rec
@kindex rec full
@kindex rec btrace
@item record @var{method}
This command starts the process record and replay target.  The
recording method can be specified as parameter.  Without a parameter
the command uses the @code{full} recording method.  The following
recording methods are available:

@table @code
@item full
Full record/replay recording using @value{GDBN}'s software record and
replay implementation.  This method allows replaying and reverse
execution.

@item btrace
Hardware-supported instruction recording.  This method does not allow
replaying and reverse execution.

This recording method may not be available on all processors.
@end table

The process record and replay target can only debug a process that is
already running.  Therefore, you need first to start the process with
the @kbd{run} or @kbd{start} commands, and then start the recording
with the @kbd{record @var{method}} command.

Both @code{record @var{method}} and @code{rec @var{method}} are
aliases of @code{target record-@var{method}}.

@cindex displaced stepping, and process record and replay
Displaced stepping (@pxref{Maintenance Commands,, displaced stepping})
will be automatically disabled when process record and replay target
is started.  That's because the process record and replay target
doesn't support displaced stepping.

@cindex non-stop mode, and process record and replay
@cindex asynchronous execution, and process record and replay
If the inferior is in the non-stop mode (@pxref{Non-Stop Mode}) or in
the asynchronous execution mode (@pxref{Background Execution}), not
all recording methods are available.  The @code{full} recording method
does not support these two modes.

@kindex record stop
@kindex rec s
@item record stop
Stop the process record and replay target.  When process record and
replay target stops, the entire execution log will be deleted and the
inferior will either be terminated, or will remain in its final state.

When you stop the process record and replay target in record mode (at
the end of the execution log), the inferior will be stopped at the
next instruction that would have been recorded.  In other words, if
you record for a while and then stop recording, the inferior process
will be left in the same state as if the recording never happened.

On the other hand, if the process record and replay target is stopped
while in replay mode (that is, not at the end of the execution log,
but at some earlier point), the inferior process will become ``live''
at that earlier state, and it will then be possible to continue the
usual ``live'' debugging of the process from that state.

When the inferior process exits, or @value{GDBN} detaches from it,
process record and replay target will automatically stop itself.

@kindex record goto
@item record goto
Go to a specific location in the execution log.  There are several
ways to specify the location to go to:

@table @code
@item record goto begin
@itemx record goto start
Go to the beginning of the execution log.

@item record goto end
Go to the end of the execution log.

@item record goto @var{n}
Go to instruction number @var{n} in the execution log.
@end table

@kindex record save
@item record save @var{filename}
Save the execution log to a file @file{@var{filename}}.
Default filename is @file{gdb_record.@var{process_id}}, where
@var{process_id} is the process ID of the inferior.

This command may not be available for all recording methods.

@kindex record restore
@item record restore @var{filename}
Restore the execution log from a file @file{@var{filename}}.
File must have been created with @code{record save}.

@kindex set record full
@item set record full insn-number-max @var{limit}
@itemx set record full insn-number-max unlimited
Set the limit of instructions to be recorded for the @code{full}
recording method.  Default value is 200000.

If @var{limit} is a positive number, then @value{GDBN} will start
deleting instructions from the log once the number of the record
instructions becomes greater than @var{limit}.  For every new recorded
instruction, @value{GDBN} will delete the earliest recorded
instruction to keep the number of recorded instructions at the limit.
(Since deleting recorded instructions loses information, @value{GDBN}
lets you control what happens when the limit is reached, by means of
the @code{stop-at-limit} option, described below.)

If @var{limit} is @code{unlimited} or zero, @value{GDBN} will never
delete recorded instructions from the execution log.  The number of
recorded instructions is limited only by the available memory.

@kindex show record full
@item show record full insn-number-max
Show the limit of instructions to be recorded with the @code{full}
recording method.

@item set record full stop-at-limit
Control the behavior of the  @code{full} recording method when the
number of recorded instructions reaches the limit.  If ON (the
default), @value{GDBN} will stop when the limit is reached for the
first time and ask you whether you want to stop the inferior or
continue running it and recording the execution log.  If you decide
to continue recording, each new recorded instruction will cause the
oldest one to be deleted.

If this option is OFF, @value{GDBN} will automatically delete the
oldest record to make room for each new one, without asking.

@item show record full stop-at-limit
Show the current setting of @code{stop-at-limit}.

@item set record full memory-query
Control the behavior when @value{GDBN} is unable to record memory
changes caused by an instruction for the @code{full} recording method.
If ON, @value{GDBN} will query whether to stop the inferior in that
case.

If this option is OFF (the default), @value{GDBN} will automatically
ignore the effect of such instructions on memory.  Later, when
@value{GDBN} replays this execution log, it will mark the log of this
instruction as not accessible, and it will not affect the replay
results.

@item show record full memory-query
Show the current setting of @code{memory-query}.

@kindex info record
@item info record
Show various statistics about the recording depending on the recording
method:

@table @code
@item full
For the @code{full} recording method, it shows the state of process
record and its in-memory execution log buffer, including:

@itemize @bullet
@item
Whether in record mode or replay mode.
@item
Lowest recorded instruction number (counting from when the current execution log started recording instructions).
@item
Highest recorded instruction number.
@item
Current instruction about to be replayed (if in replay mode).
@item
Number of instructions contained in the execution log.
@item
Maximum number of instructions that may be contained in the execution log.
@end itemize

@item btrace
For the @code{btrace} recording method, it shows the number of
instructions that have been recorded and the number of blocks of
sequential control-flow that is formed by the recorded instructions.
@end table

@kindex record delete
@kindex rec del
@item record delete
When record target runs in replay mode (``in the past''), delete the
subsequent execution log and begin to record a new execution log starting
from the current address.  This means you will abandon the previously
recorded ``future'' and begin recording a new ``future''.

@kindex record instruction-history
@kindex rec instruction-history
@item record instruction-history
Disassembles instructions from the recorded execution log.  By
default, ten instructions are disassembled.  This can be changed using
the @code{set record instruction-history-size} command.  Instructions
are printed in execution order.  There are several ways to specify
what part of the execution log to disassemble:

@table @code
@item record instruction-history @var{insn}
Disassembles ten instructions starting from instruction number
@var{insn}.

@item record instruction-history @var{insn}, +/-@var{n}
Disassembles @var{n} instructions around instruction number
@var{insn}.  If @var{n} is preceded with @code{+}, disassembles
@var{n} instructions after instruction number @var{insn}.  If
@var{n} is preceded with @code{-}, disassembles @var{n}
instructions before instruction number @var{insn}.

@item record instruction-history
Disassembles ten more instructions after the last disassembly.

@item record instruction-history -
Disassembles ten more instructions before the last disassembly.

@item record instruction-history @var{begin} @var{end}
Disassembles instructions beginning with instruction number
@var{begin} until instruction number @var{end}.  The instruction
number @var{end} is not included.
@end table

This command may not be available for all recording methods.

@kindex set record
@item set record instruction-history-size @var{size}
@itemx set record instruction-history-size unlimited
Define how many instructions to disassemble in the @code{record
instruction-history} command.  The default value is 10.
A @var{size} of @code{unlimited} means unlimited instructions.

@kindex show record
@item show record instruction-history-size
Show how many instructions to disassemble in the @code{record
instruction-history} command.

@kindex record function-call-history
@kindex rec function-call-history
@item record function-call-history
Prints the execution history at function granularity. It prints one
line for each sequence of instructions that belong to the same
function giving the name of that function, the source lines
for this instruction sequence (if the @code{/l} modifier is
specified), and the instructions numbers that form the sequence (if
the @code{/i} modifier is specified).

@smallexample
(@value{GDBP}) @b{list 1, 10}
1   void foo (void)
2   @{
3   @}
4
5   void bar (void)
6   @{
7     ...
8     foo ();
9     ...
10  @}
(@value{GDBP}) @b{record function-call-history /l}
1  foo.c:6-8   bar
2  foo.c:2-3   foo
3  foo.c:9-10  bar
@end smallexample

By default, ten lines are printed.  This can be changed using the
@code{set record function-call-history-size} command.  Functions are
printed in execution order.  There are several ways to specify what
to print:

@table @code
@item record function-call-history @var{func}
Prints ten functions starting from function number @var{func}.

@item record function-call-history @var{func}, +/-@var{n}
Prints @var{n} functions around function number @var{func}.  If
@var{n} is preceded with @code{+}, prints @var{n} functions after
function number @var{func}.  If @var{n} is preceded with @code{-},
prints @var{n} functions before function number @var{func}.

@item record function-call-history
Prints ten more functions after the last ten-line print.

@item record function-call-history -
Prints ten more functions before the last ten-line print.

@item record function-call-history @var{begin} @var{end}
Prints functions beginning with function number @var{begin} until
function number @var{end}.  The function number @var{end} is not
included.
@end table

This command may not be available for all recording methods.

@item set record function-call-history-size @var{size}
@itemx set record function-call-history-size unlimited
Define how many lines to print in the
@code{record function-call-history} command.  The default value is 10.
A size of @code{unlimited} means unlimited lines.

@item show record function-call-history-size
Show how many lines to print in the
@code{record function-call-history} command.
@end table


@node Stack
@chapter Examining the Stack

When your program has stopped, the first thing you need to know is where it
stopped and how it got there.

@cindex call stack
Each time your program performs a function call, information about the call
is generated.
That information includes the location of the call in your program,
the arguments of the call,
and the local variables of the function being called.
The information is saved in a block of data called a @dfn{stack frame}.
The stack frames are allocated in a region of memory called the @dfn{call
stack}.

When your program stops, the @value{GDBN} commands for examining the
stack allow you to see all of this information.

@cindex selected frame
One of the stack frames is @dfn{selected} by @value{GDBN} and many
@value{GDBN} commands refer implicitly to the selected frame.  In
particular, whenever you ask @value{GDBN} for the value of a variable in
your program, the value is found in the selected frame.  There are
special @value{GDBN} commands to select whichever frame you are
interested in.  @xref{Selection, ,Selecting a Frame}.

When your program stops, @value{GDBN} automatically selects the
currently executing frame and describes it briefly, similar to the
@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).

@menu
* Frames::                      Stack frames
* Backtrace::                   Backtraces
* Frame Filter Management::     Managing frame filters
* Selection::                   Selecting a frame
* Frame Info::                  Information on a frame

@end menu

@node Frames
@section Stack Frames

@cindex frame, definition
@cindex stack frame
The call stack is divided up into contiguous pieces called @dfn{stack
frames}, or @dfn{frames} for short; each frame is the data associated
with one call to one function.  The frame contains the arguments given
to the function, the function's local variables, and the address at
which the function is executing.

@cindex initial frame
@cindex outermost frame
@cindex innermost frame
When your program is started, the stack has only one frame, that of the
function @code{main}.  This is called the @dfn{initial} frame or the
@dfn{outermost} frame.  Each time a function is called, a new frame is
made.  Each time a function returns, the frame for that function invocation
is eliminated.  If a function is recursive, there can be many frames for
the same function.  The frame for the function in which execution is
actually occurring is called the @dfn{innermost} frame.  This is the most
recently created of all the stack frames that still exist.

@cindex frame pointer
Inside your program, stack frames are identified by their addresses.  A
stack frame consists of many bytes, each of which has its own address; each
kind of computer has a convention for choosing one byte whose
address serves as the address of the frame.  Usually this address is kept
in a register called the @dfn{frame pointer register}
(@pxref{Registers, $fp}) while execution is going on in that frame.

@cindex frame number
@value{GDBN} assigns numbers to all existing stack frames, starting with
zero for the innermost frame, one for the frame that called it,
and so on upward.  These numbers do not really exist in your program;
they are assigned by @value{GDBN} to give you a way of designating stack
frames in @value{GDBN} commands.

@c The -fomit-frame-pointer below perennially causes hbox overflow
@c underflow problems.
@cindex frameless execution
Some compilers provide a way to compile functions so that they operate
without stack frames.  (For example, the @value{NGCC} option
@smallexample
@samp{-fomit-frame-pointer}
@end smallexample
generates functions without a frame.)
This is occasionally done with heavily used library functions to save
the frame setup time.  @value{GDBN} has limited facilities for dealing
with these function invocations.  If the innermost function invocation
has no stack frame, @value{GDBN} nevertheless regards it as though
it had a separate frame, which is numbered zero as usual, allowing
correct tracing of the function call chain.  However, @value{GDBN} has
no provision for frameless functions elsewhere in the stack.

@table @code
@kindex frame@r{, command}
@cindex current stack frame
@item frame @var{args}
The @code{frame} command allows you to move from one stack frame to another,
and to print the stack frame you select.  @var{args} may be either the
address of the frame or the stack frame number.  Without an argument,
@code{frame} prints the current stack frame.

@kindex select-frame
@cindex selecting frame silently
@item select-frame
The @code{select-frame} command allows you to move from one stack frame
to another without printing the frame.  This is the silent version of
@code{frame}.
@end table

@node Backtrace
@section Backtraces

@cindex traceback
@cindex call stack traces
A backtrace is a summary of how your program got where it is.  It shows one
line per frame, for many frames, starting with the currently executing
frame (frame zero), followed by its caller (frame one), and on up the
stack.

@anchor{backtrace-command}
@table @code
@kindex backtrace
@kindex bt @r{(@code{backtrace})}
@item backtrace
@itemx bt
Print a backtrace of the entire stack: one line per frame for all
frames in the stack.

You can stop the backtrace at any time by typing the system interrupt
character, normally @kbd{Ctrl-c}.

@item backtrace @var{n}
@itemx bt @var{n}
Similar, but print only the innermost @var{n} frames.

@item backtrace -@var{n}
@itemx bt -@var{n}
Similar, but print only the outermost @var{n} frames.

@item backtrace full
@itemx bt full
@itemx bt full @var{n}
@itemx bt full -@var{n}
Print the values of the local variables also.  @var{n} specifies the
number of frames to print, as described above.

@item backtrace no-filters
@itemx bt no-filters
@itemx bt no-filters @var{n}
@itemx bt no-filters -@var{n}
@itemx bt no-filters full
@itemx bt no-filters full @var{n}
@itemx bt no-filters full -@var{n}
Do not run Python frame filters on this backtrace.  @xref{Frame
Filter API}, for more information.  Additionally use @ref{disable
frame-filter all} to turn off all frame filters.  This is only
relevant when @value{GDBN} has been configured with @code{Python}
support.
@end table

@kindex where
@kindex info stack
The names @code{where} and @code{info stack} (abbreviated @code{info s})
are additional aliases for @code{backtrace}.

@cindex multiple threads, backtrace
In a multi-threaded program, @value{GDBN} by default shows the
backtrace only for the current thread.  To display the backtrace for
several or all of the threads, use the command @code{thread apply}
(@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
apply all backtrace}, @value{GDBN} will display the backtrace for all
the threads; this is handy when you debug a core dump of a
multi-threaded program.

Each line in the backtrace shows the frame number and the function name.
The program counter value is also shown---unless you use @code{set
print address off}.  The backtrace also shows the source file name and
line number, as well as the arguments to the function.  The program
counter value is omitted if it is at the beginning of the code for that
line number.

Here is an example of a backtrace.  It was made with the command
@samp{bt 3}, so it shows the innermost three frames.

@smallexample
@group
#0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
    at builtin.c:993
#1  0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242
#2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
    at macro.c:71
(More stack frames follow...)
@end group
@end smallexample

@noindent
The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning of the
code for line @code{993} of @code{builtin.c}.

@noindent
The value of parameter @code{data} in frame 1 has been replaced by
@code{@dots{}}.  By default, @value{GDBN} prints the value of a parameter
only if it is a scalar (integer, pointer, enumeration, etc).  See command
@kbd{set print frame-arguments} in @ref{Print Settings} for more details
on how to configure the way function parameter values are printed.

@cindex optimized out, in backtrace
@cindex function call arguments, optimized out
If your program was compiled with optimizations, some compilers will
optimize away arguments passed to functions if those arguments are
never used after the call.  Such optimizations generate code that
passes arguments through registers, but doesn't store those arguments
in the stack frame.  @value{GDBN} has no way of displaying such
arguments in stack frames other than the innermost one.  Here's what
such a backtrace might look like:

@smallexample
@group
#0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
    at builtin.c:993
#1  0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242
#2  0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)
    at macro.c:71
(More stack frames follow...)
@end group
@end smallexample

@noindent
The values of arguments that were not saved in their stack frames are
shown as @samp{<optimized out>}.

If you need to display the values of such optimized-out arguments,
either deduce that from other variables whose values depend on the one
you are interested in, or recompile without optimizations.

@cindex backtrace beyond @code{main} function
@cindex program entry point
@cindex startup code, and backtrace
Most programs have a standard user entry point---a place where system
libraries and startup code transition into user code.  For C this is
@code{main}@footnote{
Note that embedded programs (the so-called ``free-standing''
environment) are not required to have a @code{main} function as the
entry point.  They could even have multiple entry points.}.
When @value{GDBN} finds the entry function in a backtrace
it will terminate the backtrace, to avoid tracing into highly
system-specific (and generally uninteresting) code.

If you need to examine the startup code, or limit the number of levels
in a backtrace, you can change this behavior:

@table @code
@item set backtrace past-main
@itemx set backtrace past-main on
@kindex set backtrace
Backtraces will continue past the user entry point.

@item set backtrace past-main off
Backtraces will stop when they encounter the user entry point.  This is the
default.

@item show backtrace past-main
@kindex show backtrace
Display the current user entry point backtrace policy.

@item set backtrace past-entry
@itemx set backtrace past-entry on
Backtraces will continue past the internal entry point of an application.
This entry point is encoded by the linker when the application is built,
and is likely before the user entry point @code{main} (or equivalent) is called.

@item set backtrace past-entry off
Backtraces will stop when they encounter the internal entry point of an
application.  This is the default.

@item show backtrace past-entry
Display the current internal entry point backtrace policy.

@item set backtrace limit @var{n}
@itemx set backtrace limit 0
@itemx set backtrace limit unlimited
@cindex backtrace limit
Limit the backtrace to @var{n} levels.  A value of @code{unlimited}
or zero means unlimited levels.

@item show backtrace limit
Display the current limit on backtrace levels.
@end table

You can control how file names are displayed.

@table @code
@item set filename-display
@itemx set filename-display relative
@cindex filename-display
Display file names relative to the compilation directory.  This is the default.

@item set filename-display basename
Display only basename of a filename.

@item set filename-display absolute
Display an absolute filename.

@item show filename-display
Show the current way to display filenames.
@end table

@node Frame Filter Management
@section Management of Frame Filters.
@cindex managing frame filters

Frame filters are Python based utilities to manage and decorate the
output of frames.  @xref{Frame Filter API}, for further information.

Managing frame filters is performed by several commands available
within @value{GDBN}, detailed here.

@table @code
@kindex info frame-filter
@item info frame-filter
Print a list of installed frame filters from all dictionaries, showing
their name, priority and enabled status.

@kindex disable frame-filter
@anchor{disable frame-filter all}
@item disable frame-filter @var{filter-dictionary} @var{filter-name}
Disable a frame filter in the dictionary matching
@var{filter-dictionary}, or @code{all}, and @var{filter-name}.
@var{filter-dictionary} may be @code{all}, @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.  When @code{all} is specified, all frame filters
across all dictionaries are disabled.  @var{filter-name} is the name
of the frame filter and is used when @code{all} is not the option for
@var{filter-dictionary}.  A disabled frame-filter is not deleted, it
may be enabled again later.

@kindex enable frame-filter
@item enable frame-filter @var{filter-dictionary} @var{filter-name}
Enable a frame filter in the dictionary matching
@var{filter-dictionary}, or @code{all}, and @var{filter-name}.
@var{filter-dictionary} may be @code{all}, @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.  When @code{all} is specified, all frame filters across
all dictionaries are enabled.  @var{filter-name} is the name of the frame
filter and is used when @code{all} is not the option for
@var{filter-dictionary}.

Example:

@smallexample
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      No       PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       Yes      BuildProgra Filter

(gdb) disable frame-filter /build/test BuildProgramFilter
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      No       PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter

(gdb) enable frame-filter global PrimaryFunctionFilter
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter
@end smallexample

@kindex set frame-filter priority
@item set frame-filter priority @var{filter-dictionary} @var{filter-name} @var{priority}
Set the @var{priority} of a frame filter in the dictionary matching
@var{filter-dictionary}, and the frame filter name matching
@var{filter-name}.  @var{filter-dictionary} may be @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.  @var{priority} is an integer.

@kindex show frame-filter priority
@item show frame-filter priority @var{filter-dictionary} @var{filter-name}
Show the @var{priority} of a frame filter in the dictionary matching
@var{filter-dictionary}, and the frame filter name matching
@var{filter-name}.  @var{filter-dictionary} may be @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.

Example:

@smallexample
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter

(gdb) set frame-filter priority global Reverse 50
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  50        Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter
@end smallexample
@end table

@node Selection
@section Selecting a Frame

Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment.  Here are the commands for
selecting a stack frame; all of them finish by printing a brief description
of the stack frame just selected.

@table @code
@kindex frame@r{, selecting}
@kindex f @r{(@code{frame})}
@item frame @var{n}
@itemx f @var{n}
Select frame number @var{n}.  Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on.  The highest-numbered frame is the one for
@code{main}.

@item frame @var{addr}
@itemx f @var{addr}
Select the frame at address @var{addr}.  This is useful mainly if the
chaining of stack frames has been damaged by a bug, making it
impossible for @value{GDBN} to assign numbers properly to all frames.  In
addition, this can be useful when your program has multiple stacks and
switches between them.

On the SPARC architecture, @code{frame} needs two addresses to
select an arbitrary frame: a frame pointer and a stack pointer.

On the @acronym{MIPS} and Alpha architecture, it needs two addresses: a stack
pointer and a program counter.

On the 29k architecture, it needs three addresses: a register stack
pointer, a program counter, and a memory stack pointer.

@kindex up
@item up @var{n}
Move @var{n} frames up the stack.  For positive numbers @var{n}, this
advances toward the outermost frame, to higher frame numbers, to frames
that have existed longer.  @var{n} defaults to one.

@kindex down
@kindex do @r{(@code{down})}
@item down @var{n}
Move @var{n} frames down the stack.  For positive numbers @var{n}, this
advances toward the innermost frame, to lower frame numbers, to frames
that were created more recently.  @var{n} defaults to one.  You may
abbreviate @code{down} as @code{do}.
@end table

All of these commands end by printing two lines of output describing the
frame.  The first line shows the frame number, the function name, the
arguments, and the source file and line number of execution in that
frame.  The second line shows the text of that source line.

@need 1000
For example:

@smallexample
@group
(@value{GDBP}) up
#1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
    at env.c:10
10              read_input_file (argv[i]);
@end group
@end smallexample

After such a printout, the @code{list} command with no arguments
prints ten lines centered on the point of execution in the frame.
You can also edit the program at the point of execution with your favorite
editing program by typing @code{edit}.
@xref{List, ,Printing Source Lines},
for details.

@table @code
@kindex down-silently
@kindex up-silently
@item up-silently @var{n}
@itemx down-silently @var{n}
These two commands are variants of @code{up} and @code{down},
respectively; they differ in that they do their work silently, without
causing display of the new frame.  They are intended primarily for use
in @value{GDBN} command scripts, where the output might be unnecessary and
distracting.
@end table

@node Frame Info
@section Information About a Frame

There are several other commands to print information about the selected
stack frame.

@table @code
@item frame
@itemx f
When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently
selected stack frame.  It can be abbreviated @code{f}.  With an
argument, this command is used to select a stack frame.
@xref{Selection, ,Selecting a Frame}.

@kindex info frame
@kindex info f @r{(@code{info frame})}
@item info frame
@itemx info f
This command prints a verbose description of the selected stack frame,
including:

@itemize @bullet
@item
the address of the frame
@item
the address of the next frame down (called by this frame)
@item
the address of the next frame up (caller of this frame)
@item
the language in which the source code corresponding to this frame is written
@item
the address of the frame's arguments
@item
the address of the frame's local variables
@item
the program counter saved in it (the address of execution in the caller frame)
@item
which registers were saved in the frame
@end itemize

@noindent The verbose description is useful when
something has gone wrong that has made the stack format fail to fit
the usual conventions.

@item info frame @var{addr}
@itemx info f @var{addr}
Print a verbose description of the frame at address @var{addr}, without
selecting that frame.  The selected frame remains unchanged by this
command.  This requires the same kind of address (more than one for some
architectures) that you specify in the @code{frame} command.
@xref{Selection, ,Selecting a Frame}.

@kindex info args
@item info args
Print the arguments of the selected frame, each on a separate line.

@item info locals
@kindex info locals
Print the local variables of the selected frame, each on a separate
line.  These are all variables (declared either static or automatic)
accessible at the point of execution of the selected frame.

@end table


@node Source
@chapter Examining Source Files

@value{GDBN} can print parts of your program's source, since the debugging
information recorded in the program tells @value{GDBN} what source files were
used to build it.  When your program stops, @value{GDBN} spontaneously prints
the line where it stopped.  Likewise, when you select a stack frame
(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
execution in that frame has stopped.  You can print other portions of
source files by explicit command.

If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
@value{GDBN} under @sc{gnu} Emacs}.

@menu
* List::                        Printing source lines
* Specify Location::            How to specify code locations
* Edit::                        Editing source files
* Search::                      Searching source files
* Source Path::                 Specifying source directories
* Machine Code::                Source and machine code
@end menu

@node List
@section Printing Source Lines

@kindex list
@kindex l @r{(@code{list})}
To print lines from a source file, use the @code{list} command
(abbreviated @code{l}).  By default, ten lines are printed.
There are several ways to specify what part of the file you want to
print; see @ref{Specify Location}, for the full list.

Here are the forms of the @code{list} command most commonly used:

@table @code
@item list @var{linenum}
Print lines centered around line number @var{linenum} in the
current source file.

@item list @var{function}
Print lines centered around the beginning of function
@var{function}.

@item list
Print more lines.  If the last lines printed were printed with a
@code{list} command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line printed
as part of displaying a stack frame (@pxref{Stack, ,Examining the
Stack}), this prints lines centered around that line.

@item list -
Print lines just before the lines last printed.
@end table

@cindex @code{list}, how many lines to display
By default, @value{GDBN} prints ten source lines with any of these forms of
the @code{list} command.  You can change this using @code{set listsize}:

@table @code
@kindex set listsize
@item set listsize @var{count}
@itemx set listsize unlimited
Make the @code{list} command display @var{count} source lines (unless
the @code{list} argument explicitly specifies some other number).
Setting @var{count} to @code{unlimited} or 0 means there's no limit.

@kindex show listsize
@item show listsize
Display the number of lines that @code{list} prints.
@end table

Repeating a @code{list} command with @key{RET} discards the argument,
so it is equivalent to typing just @code{list}.  This is more useful
than listing the same lines again.  An exception is made for an
argument of @samp{-}; that argument is preserved in repetition so that
each repetition moves up in the source file.

In general, the @code{list} command expects you to supply zero, one or two
@dfn{linespecs}.  Linespecs specify source lines; there are several ways
of writing them (@pxref{Specify Location}), but the effect is always
to specify some source line.

Here is a complete description of the possible arguments for @code{list}:

@table @code
@item list @var{linespec}
Print lines centered around the line specified by @var{linespec}.

@item list @var{first},@var{last}
Print lines from @var{first} to @var{last}.  Both arguments are
linespecs.  When a @code{list} command has two linespecs, and the
source file of the second linespec is omitted, this refers to
the same source file as the first linespec.

@item list ,@var{last}
Print lines ending with @var{last}.

@item list @var{first},
Print lines starting with @var{first}.

@item list +
Print lines just after the lines last printed.

@item list -
Print lines just before the lines last printed.

@item list
As described in the preceding table.
@end table

@node Specify Location
@section Specifying a Location
@cindex specifying location
@cindex linespec

Several @value{GDBN} commands accept arguments that specify a location
of your program's code.  Since @value{GDBN} is a source-level
debugger, a location usually specifies some line in the source code;
for that reason, locations are also known as @dfn{linespecs}.

Here are all the different ways of specifying a code location that
@value{GDBN} understands:

@table @code
@item @var{linenum}
Specifies the line number @var{linenum} of the current source file.

@item -@var{offset}
@itemx +@var{offset}
Specifies the line @var{offset} lines before or after the @dfn{current
line}.  For the @code{list} command, the current line is the last one
printed; for the breakpoint commands, this is the line at which
execution stopped in the currently selected @dfn{stack frame}
(@pxref{Frames, ,Frames}, for a description of stack frames.)  When
used as the second of the two linespecs in a @code{list} command,
this specifies the line @var{offset} lines up or down from the first
linespec.

@item @var{filename}:@var{linenum}
Specifies the line @var{linenum} in the source file @var{filename}.
If @var{filename} is a relative file name, then it will match any
source file name with the same trailing components.  For example, if
@var{filename} is @samp{gcc/expr.c}, then it will match source file
name of @file{/build/trunk/gcc/expr.c}, but not
@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.

@item @var{function}
Specifies the line that begins the body of the function @var{function}.
For example, in C, this is the line with the open brace.

@item @var{function}:@var{label}
Specifies the line where @var{label} appears in @var{function}.

@item @var{filename}:@var{function}
Specifies the line that begins the body of the function @var{function}
in the file @var{filename}.  You only need the file name with a
function name to avoid ambiguity when there are identically named
functions in different source files.

@item @var{label}
Specifies the line at which the label named @var{label} appears.
@value{GDBN} searches for the label in the function corresponding to
the currently selected stack frame.  If there is no current selected
stack frame (for instance, if the inferior is not running), then
@value{GDBN} will not search for a label.

@item *@var{address}
Specifies the program address @var{address}.  For line-oriented
commands, such as @code{list} and @code{edit}, this specifies a source
line that contains @var{address}.  For @code{break} and other
breakpoint oriented commands, this can be used to set breakpoints in
parts of your program which do not have debugging information or
source files.

Here @var{address} may be any expression valid in the current working
language (@pxref{Languages, working language}) that specifies a code
address.  In addition, as a convenience, @value{GDBN} extends the
semantics of expressions used in locations to cover the situations
that frequently happen during debugging.  Here are the various forms
of @var{address}:

@table @code
@item @var{expression}
Any expression valid in the current working language.

@item @var{funcaddr}
An address of a function or procedure derived from its name.  In C,
C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
simply the function's name @var{function} (and actually a special case
of a valid expression).  In Pascal and Modula-2, this is
@code{&@var{function}}.  In Ada, this is @code{@var{function}'Address}
(although the Pascal form also works).

This form specifies the address of the function's first instruction,
before the stack frame and arguments have been set up.

@item '@var{filename}'::@var{funcaddr}
Like @var{funcaddr} above, but also specifies the name of the source
file explicitly.  This is useful if the name of the function does not
specify the function unambiguously, e.g., if there are several
functions with identical names in different source files.
@end table

@cindex breakpoint at static probe point
@item -pstap|-probe-stap @r{[}@var{objfile}:@r{[}@var{provider}:@r{]}@r{]}@var{name}
The @sc{gnu}/Linux tool @code{SystemTap} provides a way for
applications to embed static probes.  @xref{Static Probe Points}, for more
information on finding and using static probes.  This form of linespec
specifies the location of such a static probe.

If @var{objfile} is given, only probes coming from that shared library
or executable matching @var{objfile} as a regular expression are considered.
If @var{provider} is given, then only probes from that provider are considered.
If several probes match the spec, @value{GDBN} will insert a breakpoint at
each one of those probes.

@end table


@node Edit
@section Editing Source Files
@cindex editing source files

@kindex edit
@kindex e @r{(@code{edit})}
To edit the lines in a source file, use the @code{edit} command.
The editing program of your choice
is invoked with the current line set to
the active line in the program.
Alternatively, there are several ways to specify what part of the file you
want to print if you want to see other parts of the program:

@table @code
@item edit @var{location}
Edit the source file specified by @code{location}.  Editing starts at
that @var{location}, e.g., at the specified source line of the
specified file.  @xref{Specify Location}, for all the possible forms
of the @var{location} argument; here are the forms of the @code{edit}
command most commonly used:

@table @code
@item edit @var{number}
Edit the current source file with @var{number} as the active line number.

@item edit @var{function}
Edit the file containing @var{function} at the beginning of its definition.
@end table

@end table

@subsection Choosing your Editor
You can customize @value{GDBN} to use any editor you want
@footnote{
The only restriction is that your editor (say @code{ex}), recognizes the
following command-line syntax:
@smallexample
ex +@var{number} file
@end smallexample
The optional numeric value +@var{number} specifies the number of the line in
the file where to start editing.}.
By default, it is @file{@value{EDITOR}}, but you can change this
by setting the environment variable @code{EDITOR} before using
@value{GDBN}.  For example, to configure @value{GDBN} to use the
@code{vi} editor, you could use these commands with the @code{sh} shell:
@smallexample
EDITOR=/usr/bin/vi
export EDITOR
gdb @dots{}
@end smallexample
or in the @code{csh} shell,
@smallexample
setenv EDITOR /usr/bin/vi
gdb @dots{}
@end smallexample

@node Search
@section Searching Source Files
@cindex searching source files

There are two commands for searching through the current source file for a
regular expression.

@table @code
@kindex search
@kindex forward-search
@kindex fo @r{(@code{forward-search})}
@item forward-search @var{regexp}
@itemx search @var{regexp}
The command @samp{forward-search @var{regexp}} checks each line,
starting with the one following the last line listed, for a match for
@var{regexp}.  It lists the line that is found.  You can use the
synonym @samp{search @var{regexp}} or abbreviate the command name as
@code{fo}.

@kindex reverse-search
@item reverse-search @var{regexp}
The command @samp{reverse-search @var{regexp}} checks each line, starting
with the one before the last line listed and going backward, for a match
for @var{regexp}.  It lists the line that is found.  You can abbreviate
this command as @code{rev}.
@end table

@node Source Path
@section Specifying Source Directories

@cindex source path
@cindex directories for source files
Executable programs sometimes do not record the directories of the source
files from which they were compiled, just the names.  Even when they do,
the directories could be moved between the compilation and your debugging
session.  @value{GDBN} has a list of directories to search for source files;
this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
it tries all the directories in the list, in the order they are present
in the list, until it finds a file with the desired name.

For example, suppose an executable references the file
@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
@file{/mnt/cross}.  The file is first looked up literally; if this
fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
message is printed.  @value{GDBN} does not look up the parts of the
source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
Likewise, the subdirectories of the source path are not searched: if
the source path is @file{/mnt/cross}, and the binary refers to
@file{foo.c}, @value{GDBN} would not find it under
@file{/mnt/cross/usr/src/foo-1.0/lib}.

Plain file names, relative file names with leading directories, file
names containing dots, etc.@: are all treated as described above; for
instance, if the source path is @file{/mnt/cross}, and the source file
is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
that---@file{/mnt/cross/foo.c}.

Note that the executable search path is @emph{not} used to locate the
source files.

Whenever you reset or rearrange the source path, @value{GDBN} clears out
any information it has cached about where source files are found and where
each line is in the file.

@kindex directory
@kindex dir
When you start @value{GDBN}, its source path includes only @samp{cdir}
and @samp{cwd}, in that order.
To add other directories, use the @code{directory} command.

The search path is used to find both program source files and @value{GDBN}
script files (read using the @samp{-command} option and @samp{source} command).

In addition to the source path, @value{GDBN} provides a set of commands
that manage a list of source path substitution rules.  A @dfn{substitution
rule} specifies how to rewrite source directories stored in the program's
debug information in case the sources were moved to a different
directory between compilation and debugging.  A rule is made of
two strings, the first specifying what needs to be rewritten in
the path, and the second specifying how it should be rewritten.
In @ref{set substitute-path}, we name these two parts @var{from} and
@var{to} respectively.  @value{GDBN} does a simple string replacement
of @var{from} with @var{to} at the start of the directory part of the
source file name, and uses that result instead of the original file
name to look up the sources.

Using the previous example, suppose the @file{foo-1.0} tree has been
moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
@value{GDBN} to replace @file{/usr/src} in all source path names with
@file{/mnt/cross}.  The first lookup will then be
@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
substitution rule, use the @code{set substitute-path} command
(@pxref{set substitute-path}).

To avoid unexpected substitution results, a rule is applied only if the
@var{from} part of the directory name ends at a directory separator.
For instance, a rule substituting  @file{/usr/source} into
@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
is applied only at the beginning of the directory name, this rule will
not be applied to @file{/root/usr/source/baz.c} either.

In many cases, you can achieve the same result using the @code{directory}
command.  However, @code{set substitute-path} can be more efficient in
the case where the sources are organized in a complex tree with multiple
subdirectories.  With the @code{directory} command, you need to add each
subdirectory of your project.  If you moved the entire tree while
preserving its internal organization, then @code{set substitute-path}
allows you to direct the debugger to all the sources with one single
command.

@code{set substitute-path} is also more than just a shortcut command.
The source path is only used if the file at the original location no
longer exists.  On the other hand, @code{set substitute-path} modifies
the debugger behavior to look at the rewritten location instead.  So, if
for any reason a source file that is not relevant to your executable is
located at the original location, a substitution rule is the only
method available to point @value{GDBN} at the new location.

@cindex @samp{--with-relocated-sources}
@cindex default source path substitution
You can configure a default source path substitution rule by
configuring @value{GDBN} with the
@samp{--with-relocated-sources=@var{dir}} option.  The @var{dir}
should be the name of a directory under @value{GDBN}'s configured
prefix (set with @samp{--prefix} or @samp{--exec-prefix}), and
directory names in debug information under @var{dir} will be adjusted
automatically if the installed @value{GDBN} is moved to a new
location.  This is useful if @value{GDBN}, libraries or executables
with debug information and corresponding source code are being moved
together.

@table @code
@item directory @var{dirname} @dots{}
@item dir @var{dirname} @dots{}
Add directory @var{dirname} to the front of the source path.  Several
directory names may be given to this command, separated by @samp{:}
(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
part of absolute file names) or
whitespace.  You may specify a directory that is already in the source
path; this moves it forward, so @value{GDBN} searches it sooner.

@kindex cdir
@kindex cwd
@vindex $cdir@r{, convenience variable}
@vindex $cwd@r{, convenience variable}
@cindex compilation directory
@cindex current directory
@cindex working directory
@cindex directory, current
@cindex directory, compilation
You can use the string @samp{$cdir} to refer to the compilation
directory (if one is recorded), and @samp{$cwd} to refer to the current
working directory.  @samp{$cwd} is not the same as @samp{.}---the former
tracks the current working directory as it changes during your @value{GDBN}
session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

@item directory
Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.

@c RET-repeat for @code{directory} is explicitly disabled, but since
@c repeating it would be a no-op we do not say that.  (thanks to RMS)

@item set directories @var{path-list}
@kindex set directories
Set the source path to @var{path-list}.
@samp{$cdir:$cwd} are added if missing.

@item show directories
@kindex show directories
Print the source path: show which directories it contains.

@anchor{set substitute-path}
@item set substitute-path @var{from} @var{to}
@kindex set substitute-path
Define a source path substitution rule, and add it at the end of the
current list of existing substitution rules.  If a rule with the same
@var{from} was already defined, then the old rule is also deleted.

For example, if the file @file{/foo/bar/baz.c} was moved to
@file{/mnt/cross/baz.c}, then the command

@smallexample
(@value{GDBP}) set substitute-path /usr/src /mnt/cross
@end smallexample

@noindent
will tell @value{GDBN} to replace @samp{/usr/src} with
@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
@file{baz.c} even though it was moved.

In the case when more than one substitution rule have been defined,
the rules are evaluated one by one in the order where they have been
defined.  The first one matching, if any, is selected to perform
the substitution.

For instance, if we had entered the following commands:

@smallexample
(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
(@value{GDBP}) set substitute-path /usr/src /mnt/src
@end smallexample

@noindent
@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
@file{/mnt/include/defs.h} by using the first rule.  However, it would
use the second rule to rewrite @file{/usr/src/lib/foo.c} into
@file{/mnt/src/lib/foo.c}.


@item unset substitute-path [path]
@kindex unset substitute-path
If a path is specified, search the current list of substitution rules
for a rule that would rewrite that path.  Delete that rule if found.
A warning is emitted by the debugger if no rule could be found.

If no path is specified, then all substitution rules are deleted.

@item show substitute-path [path]
@kindex show substitute-path
If a path is specified, then print the source path substitution rule
which would rewrite that path, if any.

If no path is specified, then print all existing source path substitution
rules.

@end table

If your source path is cluttered with directories that are no longer of
interest, @value{GDBN} may sometimes cause confusion by finding the wrong
versions of source.  You can correct the situation as follows:

@enumerate
@item
Use @code{directory} with no argument to reset the source path to its default value.

@item
Use @code{directory} with suitable arguments to reinstall the
directories you want in the source path.  You can add all the
directories in one command.
@end enumerate

@node Machine Code
@section Source and Machine Code
@cindex source line and its code address

You can use the command @code{info line} to map source lines to program
addresses (and vice versa), and the command @code{disassemble} to display
a range of addresses as machine instructions.  You can use the command
@code{set disassemble-next-line} to set whether to disassemble next
source line when execution stops.  When run under @sc{gnu} Emacs
mode, the @code{info line} command causes the arrow to point to the
line specified.  Also, @code{info line} prints addresses in symbolic form as
well as hex.

@table @code
@kindex info line
@item info line @var{linespec}
Print the starting and ending addresses of the compiled code for
source line @var{linespec}.  You can specify source lines in any of
the ways documented in @ref{Specify Location}.
@end table

For example, we can use @code{info line} to discover the location of
the object code for the first line of function
@code{m4_changequote}:

@c FIXME: I think this example should also show the addresses in
@c symbolic form, as they usually would be displayed.
@smallexample
(@value{GDBP}) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
@end smallexample

@noindent
@cindex code address and its source line
We can also inquire (using @code{*@var{addr}} as the form for
@var{linespec}) what source line covers a particular address:
@smallexample
(@value{GDBP}) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
@end smallexample

@cindex @code{$_} and @code{info line}
@cindex @code{x} command, default address
@kindex x@r{(examine), and} info line
After @code{info line}, the default address for the @code{x} command
is changed to the starting address of the line, so that @samp{x/i} is
sufficient to begin examining the machine code (@pxref{Memory,
,Examining Memory}).  Also, this address is saved as the value of the
convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
Variables}).

@table @code
@kindex disassemble
@cindex assembly instructions
@cindex instructions, assembly
@cindex machine instructions
@cindex listing machine instructions
@item disassemble
@itemx disassemble /m
@itemx disassemble /r
This specialized command dumps a range of memory as machine
instructions.  It can also print mixed source+disassembly by specifying
the @code{/m} modifier and print the raw instructions in hex as well as
in symbolic form by specifying the @code{/r}.
The default memory range is the function surrounding the
program counter of the selected frame.  A single argument to this
command is a program counter value; @value{GDBN} dumps the function
surrounding this value.  When two arguments are given, they should
be separated by a comma, possibly surrounded by whitespace.  The
arguments specify a range of addresses to dump, in one of two forms:

@table @code
@item @var{start},@var{end}
the addresses from @var{start} (inclusive) to @var{end} (exclusive)
@item @var{start},+@var{length}
the addresses from @var{start} (inclusive) to
@code{@var{start}+@var{length}} (exclusive).
@end table

@noindent
When 2 arguments are specified, the name of the function is also
printed (since there could be several functions in the given range).

The argument(s) can be any expression yielding a numeric value, such as
@samp{0x32c4}, @samp{&main+10} or @samp{$pc - 8}.

If the range of memory being disassembled contains current program counter,
the instruction at that location is shown with a @code{=>} marker.
@end table

The following example shows the disassembly of a range of addresses of
HP PA-RISC 2.0 code:

@smallexample
(@value{GDBP}) disas 0x32c4, 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:
   0x32c4 <main+204>:      addil 0,dp
   0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
   0x32cc <main+212>:      ldil 0x3000,r31
   0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
   0x32d4 <main+220>:      ldo 0(r31),rp
   0x32d8 <main+224>:      addil -0x800,dp
   0x32dc <main+228>:      ldo 0x588(r1),r26
   0x32e0 <main+232>:      ldil 0x3000,r31
End of assembler dump.
@end smallexample

Here is an example showing mixed source+assembly for Intel x86, when the
program is stopped just after function prologue:

@smallexample
(@value{GDBP}) disas /m main
Dump of assembler code for function main:
5       @{
   0x08048330 <+0>:    push   %ebp
   0x08048331 <+1>:    mov    %esp,%ebp
   0x08048333 <+3>:    sub    $0x8,%esp
   0x08048336 <+6>:    and    $0xfffffff0,%esp
   0x08048339 <+9>:    sub    $0x10,%esp

6         printf ("Hello.\n");
=> 0x0804833c <+12>:   movl   $0x8048440,(%esp)
   0x08048343 <+19>:   call   0x8048284 <puts@@plt>

7         return 0;
8       @}
   0x08048348 <+24>:   mov    $0x0,%eax
   0x0804834d <+29>:   leave
   0x0804834e <+30>:   ret

End of assembler dump.
@end smallexample

Here is another example showing raw instructions in hex for AMD x86-64,

@smallexample
(gdb) disas /r 0x400281,+10
Dump of assembler code from 0x400281 to 0x40028b:
   0x0000000000400281:  38 36  cmp    %dh,(%rsi)
   0x0000000000400283:  2d 36 34 2e 73 sub    $0x732e3436,%eax
   0x0000000000400288:  6f     outsl  %ds:(%rsi),(%dx)
   0x0000000000400289:  2e 32 00       xor    %cs:(%rax),%al
End of assembler dump.
@end smallexample

Addresses cannot be specified as a linespec (@pxref{Specify Location}).
So, for example, if you want to disassemble function @code{bar}
in file @file{foo.c}, you must type @samp{disassemble 'foo.c'::bar}
and not @samp{disassemble foo.c:bar}.

Some architectures have more than one commonly-used set of instruction
mnemonics or other syntax.

For programs that were dynamically linked and use shared libraries,
instructions that call functions or branch to locations in the shared
libraries might show a seemingly bogus location---it's actually a
location of the relocation table.  On some architectures, @value{GDBN}
might be able to resolve these to actual function names.

@table @code
@kindex set disassembly-flavor
@cindex Intel disassembly flavor
@cindex AT&T disassembly flavor
@item set disassembly-flavor @var{instruction-set}
Select the instruction set to use when disassembling the
program via the @code{disassemble} or @code{x/i} commands.

Currently this command is only defined for the Intel x86 family.  You
can set @var{instruction-set} to either @code{intel} or @code{att}.
The default is @code{att}, the AT&T flavor used by default by Unix
assemblers for x86-based targets.

@kindex show disassembly-flavor
@item show disassembly-flavor
Show the current setting of the disassembly flavor.
@end table

@table @code
@kindex set disassemble-next-line
@kindex show disassemble-next-line
@item set disassemble-next-line
@itemx show disassemble-next-line
Control whether or not @value{GDBN} will disassemble the next source
line or instruction when execution stops.  If ON, @value{GDBN} will
display disassembly of the next source line when execution of the
program being debugged stops.  This is @emph{in addition} to
displaying the source line itself, which @value{GDBN} always does if
possible.  If the next source line cannot be displayed for some reason
(e.g., if @value{GDBN} cannot find the source file, or there's no line
info in the debug info), @value{GDBN} will display disassembly of the
next @emph{instruction} instead of showing the next source line.  If
AUTO, @value{GDBN} will display disassembly of next instruction only
if the source line cannot be displayed.  This setting causes
@value{GDBN} to display some feedback when you step through a function
with no line info or whose source file is unavailable.  The default is
OFF, which means never display the disassembly of the next line or
instruction.
@end table


@node Data
@chapter Examining Data

@cindex printing data
@cindex examining data
@kindex print
@kindex inspect
The usual way to examine data in your program is with the @code{print}
command (abbreviated @code{p}), or its synonym @code{inspect}.  It
evaluates and prints the value of an expression of the language your
program is written in (@pxref{Languages, ,Using @value{GDBN} with
Different Languages}).  It may also print the expression using a
Python-based pretty-printer (@pxref{Pretty Printing}).

@table @code
@item print @var{expr}
@itemx print /@var{f} @var{expr}
@var{expr} is an expression (in the source language).  By default the
value of @var{expr} is printed in a format appropriate to its data type;
you can choose a different format by specifying @samp{/@var{f}}, where
@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
Formats}.

@item print
@itemx print /@var{f}
@cindex reprint the last value
If you omit @var{expr}, @value{GDBN} displays the last value again (from the
@dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
conveniently inspect the same value in an alternative format.
@end table

A more low-level way of examining data is with the @code{x} command.
It examines data in memory at a specified address and prints it in a
specified format.  @xref{Memory, ,Examining Memory}.

If you are interested in information about types, or about how the
fields of a struct or a class are declared, use the @code{ptype @var{exp}}
command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
Table}.

@cindex exploring hierarchical data structures
@kindex explore
Another way of examining values of expressions and type information is
through the Python extension command @code{explore} (available only if
the @value{GDBN} build is configured with @code{--with-python}).  It
offers an interactive way to start at the highest level (or, the most
abstract level) of the data type of an expression (or, the data type
itself) and explore all the way down to leaf scalar values/fields
embedded in the higher level data types.

@table @code
@item explore @var{arg}
@var{arg} is either an expression (in the source language), or a type
visible in the current context of the program being debugged.
@end table

The working of the @code{explore} command can be illustrated with an
example.  If a data type @code{struct ComplexStruct} is defined in your
C program as

@smallexample
struct SimpleStruct
@{
  int i;
  double d;
@};

struct ComplexStruct
@{
  struct SimpleStruct *ss_p;
  int arr[10];
@};
@end smallexample

@noindent
followed by variable declarations as

@smallexample
struct SimpleStruct ss = @{ 10, 1.11 @};
struct ComplexStruct cs = @{ &ss, @{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 @} @};
@end smallexample

@noindent
then, the value of the variable @code{cs} can be explored using the
@code{explore} command as follows.

@smallexample
(gdb) explore cs
The value of `cs' is a struct/class of type `struct ComplexStruct' with
the following fields:

  ss_p = <Enter 0 to explore this field of type `struct SimpleStruct *'>
   arr = <Enter 1 to explore this field of type `int [10]'>

Enter the field number of choice:
@end smallexample

@noindent
Since the fields of @code{cs} are not scalar values, you are being
prompted to chose the field you want to explore.  Let's say you choose
the field @code{ss_p} by entering @code{0}.  Then, since this field is a
pointer, you will be asked if it is pointing to a single value.  From
the declaration of @code{cs} above, it is indeed pointing to a single
value, hence you enter @code{y}.  If you enter @code{n}, then you will
be asked if it were pointing to an array of values, in which case this
field will be explored as if it were an array.

@smallexample
`cs.ss_p' is a pointer to a value of type `struct SimpleStruct'
Continue exploring it as a pointer to a single value [y/n]: y
The value of `*(cs.ss_p)' is a struct/class of type `struct
SimpleStruct' with the following fields:

  i = 10 .. (Value of type `int')
  d = 1.1100000000000001 .. (Value of type `double')

Press enter to return to parent value:
@end smallexample

@noindent
If the field @code{arr} of @code{cs} was chosen for exploration by
entering @code{1} earlier, then since it is as array, you will be
prompted to enter the index of the element in the array that you want
to explore.

@smallexample
`cs.arr' is an array of `int'.
Enter the index of the element you want to explore in `cs.arr': 5

`(cs.arr)[5]' is a scalar value of type `int'.

(cs.arr)[5] = 4

Press enter to return to parent value: 
@end smallexample

In general, at any stage of exploration, you can go deeper towards the
leaf values by responding to the prompts appropriately, or hit the
return key to return to the enclosing data structure (the @i{higher}
level data structure).

Similar to exploring values, you can use the @code{explore} command to
explore types.  Instead of specifying a value (which is typically a
variable name or an expression valid in the current context of the
program being debugged), you specify a type name.  If you consider the
same example as above, your can explore the type
@code{struct ComplexStruct} by passing the argument
@code{struct ComplexStruct} to the @code{explore} command.

@smallexample
(gdb) explore struct ComplexStruct
@end smallexample

@noindent
By responding to the prompts appropriately in the subsequent interactive
session, you can explore the type @code{struct ComplexStruct} in a
manner similar to how the value @code{cs} was explored in the above
example.

The @code{explore} command also has two sub-commands,
@code{explore value} and @code{explore type}. The former sub-command is
a way to explicitly specify that value exploration of the argument is
being invoked, while the latter is a way to explicitly specify that type
exploration of the argument is being invoked.

@table @code
@item explore value @var{expr}
@cindex explore value
This sub-command of @code{explore} explores the value of the
expression @var{expr} (if @var{expr} is an expression valid in the
current context of the program being debugged).  The behavior of this
command is identical to that of the behavior of the @code{explore}
command being passed the argument @var{expr}.

@item explore type @var{arg}
@cindex explore type
This sub-command of @code{explore} explores the type of @var{arg} (if
@var{arg} is a type visible in the current context of program being
debugged), or the type of the value/expression @var{arg} (if @var{arg}
is an expression valid in the current context of the program being
debugged).  If @var{arg} is a type, then the behavior of this command is
identical to that of the @code{explore} command being passed the
argument @var{arg}.  If @var{arg} is an expression, then the behavior of
this command will be identical to that of the @code{explore} command
being passed the type of @var{arg} as the argument.
@end table

@menu
* Expressions::                 Expressions
* Ambiguous Expressions::       Ambiguous Expressions
* Variables::                   Program variables
* Arrays::                      Artificial arrays
* Output Formats::              Output formats
* Memory::                      Examining memory
* Auto Display::                Automatic display
* Print Settings::              Print settings
* Pretty Printing::             Python pretty printing
* Value History::               Value history
* Convenience Vars::            Convenience variables
* Convenience Funs::            Convenience functions
* Registers::                   Registers
* Floating Point Hardware::     Floating point hardware
* Vector Unit::                 Vector Unit
* OS Information::              Auxiliary data provided by operating system
* Memory Region Attributes::    Memory region attributes
* Dump/Restore Files::          Copy between memory and a file
* Core File Generation::        Cause a program dump its core
* Character Sets::              Debugging programs that use a different
                                character set than GDB does
* Caching Target Data::         Data caching for targets
* Searching Memory::            Searching memory for a sequence of bytes
@end menu

@node Expressions
@section Expressions

@cindex expressions
@code{print} and many other @value{GDBN} commands accept an expression and
compute its value.  Any kind of constant, variable or operator defined
by the programming language you are using is valid in an expression in
@value{GDBN}.  This includes conditional expressions, function calls,
casts, and string constants.  It also includes preprocessor macros, if
you compiled your program to include this information; see
@ref{Compilation}.

@cindex arrays in expressions
@value{GDBN} supports array constants in expressions input by
the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
you can use the command @code{print @{1, 2, 3@}} to create an array
of three integers.  If you pass an array to a function or assign it
to a program variable, @value{GDBN} copies the array to memory that
is @code{malloc}ed in the target program.

Because C is so widespread, most of the expressions shown in examples in
this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
Languages}, for information on how to use expressions in other
languages.

In this section, we discuss operators that you can use in @value{GDBN}
expressions regardless of your programming language.

@cindex casts, in expressions
Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure
at that address in memory.
@c FIXME: casts supported---Mod2 true?

@value{GDBN} supports these operators, in addition to those common
to programming languages:

@table @code
@item @@
@samp{@@} is a binary operator for treating parts of memory as arrays.
@xref{Arrays, ,Artificial Arrays}, for more information.

@item ::
@samp{::} allows you to specify a variable in terms of the file or
function where it is defined.  @xref{Variables, ,Program Variables}.

@cindex @{@var{type}@}
@cindex type casting memory
@cindex memory, viewing as typed object
@cindex casts, to view memory
@item @{@var{type}@} @var{addr}
Refers to an object of type @var{type} stored at address @var{addr} in
memory.  @var{addr} may be any expression whose value is an integer or
pointer (but parentheses are required around binary operators, just as in
a cast).  This construct is allowed regardless of what kind of data is
normally supposed to reside at @var{addr}.
@end table

@node Ambiguous Expressions
@section Ambiguous Expressions
@cindex ambiguous expressions

Expressions can sometimes contain some ambiguous elements.  For instance,
some programming languages (notably Ada, C@t{++} and Objective-C) permit
a single function name to be defined several times, for application in
different contexts.  This is called @dfn{overloading}.  Another example
involving Ada is generics.  A @dfn{generic package} is similar to C@t{++}
templates and is typically instantiated several times, resulting in
the same function name being defined in different contexts.

In some cases and depending on the language, it is possible to adjust
the expression to remove the ambiguity.  For instance in C@t{++}, you
can specify the signature of the function you want to break on, as in
@kbd{break @var{function}(@var{types})}.  In Ada, using the fully
qualified name of your function often makes the expression unambiguous
as well.

When an ambiguity that needs to be resolved is detected, the debugger
has the capability to display a menu of numbered choices for each
possibility, and then waits for the selection with the prompt @samp{>}.
The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
aborts the current command.  If the command in which the expression was
used allows more than one choice to be selected, the next option in the
menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
choices.

For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol @code{String::after}.
We choose three particular definitions of that function name:

@c FIXME! This is likely to change to show arg type lists, at least
@smallexample
@group
(@value{GDBP}) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
 breakpoints.
(@value{GDBP})
@end group
@end smallexample

@table @code
@kindex set multiple-symbols
@item set multiple-symbols @var{mode}
@cindex multiple-symbols menu

This option allows you to adjust the debugger behavior when an expression
is ambiguous.

By default, @var{mode} is set to @code{all}.  If the command with which
the expression is used allows more than one choice, then @value{GDBN}
automatically selects all possible choices.  For instance, inserting
a breakpoint on a function using an ambiguous name results in a breakpoint
inserted on each possible match.  However, if a unique choice must be made,
then @value{GDBN} uses the menu to help you disambiguate the expression.
For instance, printing the address of an overloaded function will result
in the use of the menu.

When @var{mode} is set to @code{ask}, the debugger always uses the menu
when an ambiguity is detected.

Finally, when @var{mode} is set to @code{cancel}, the debugger reports
an error due to the ambiguity and the command is aborted.

@kindex show multiple-symbols
@item show multiple-symbols
Show the current value of the @code{multiple-symbols} setting.
@end table

@node Variables
@section Program Variables

The most common kind of expression to use is the name of a variable
in your program.

Variables in expressions are understood in the selected stack frame
(@pxref{Selection, ,Selecting a Frame}); they must be either:

@itemize @bullet
@item
global (or file-static)
@end itemize

@noindent or

@itemize @bullet
@item
visible according to the scope rules of the
programming language from the point of execution in that frame
@end itemize

@noindent This means that in the function

@smallexample
foo (a)
     int a;
@{
  bar (a);
  @{
    int b = test ();
    bar (b);
  @}
@}
@end smallexample

@noindent
you can examine and use the variable @code{a} whenever your program is
executing within the function @code{foo}, but you can only use or
examine the variable @code{b} while your program is executing inside
the block where @code{b} is declared.

@cindex variable name conflict
There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file.  But it is possible to have more than one such variable or
function with the same name (in different source files).  If that
happens, referring to that name has unpredictable effects.  If you wish,
you can specify a static variable in a particular function or file by
using the colon-colon (@code{::}) notation:

@cindex colon-colon, context for variables/functions
@ifnotinfo
@c info cannot cope with a :: index entry, but why deprive hard copy readers?
@cindex @code{::}, context for variables/functions
@end ifnotinfo
@smallexample
@var{file}::@var{variable}
@var{function}::@var{variable}
@end smallexample

@noindent
Here @var{file} or @var{function} is the name of the context for the
static @var{variable}.  In the case of file names, you can use quotes to
make sure @value{GDBN} parses the file name as a single word---for example,
to print a global value of @code{x} defined in @file{f2.c}:

@smallexample
(@value{GDBP}) p 'f2.c'::x
@end smallexample

The @code{::} notation is normally used for referring to
static variables, since you typically disambiguate uses of local variables
in functions by selecting the appropriate frame and using the
simple name of the variable.  However, you may also use this notation
to refer to local variables in frames enclosing the selected frame:

@smallexample
void
foo (int a)
@{
  if (a < 10)
    bar (a);
  else
    process (a);    /* Stop here */
@}

int
bar (int a)
@{
  foo (a + 5);
@}
@end smallexample

@noindent
For example, if there is a breakpoint at the commented line,
here is what you might see
when the program stops after executing the call @code{bar(0)}:

@smallexample
(@value{GDBP}) p a
$1 = 10
(@value{GDBP}) p bar::a
$2 = 5
(@value{GDBP}) up 2
#2  0x080483d0 in foo (a=5) at foobar.c:12
(@value{GDBP}) p a
$3 = 5
(@value{GDBP}) p bar::a
$4 = 0
@end smallexample

@cindex C@t{++} scope resolution
These uses of @samp{::} are very rarely in conflict with the very
similar use of the same notation in C@t{++}.  When they are in
conflict, the C@t{++} meaning takes precedence; however, this can be
overridden by quoting the file or function name with single quotes.

For example, suppose the program is stopped in a method of a class
that has a field named @code{includefile}, and there is also an
include file named @file{includefile} that defines a variable,
@code{some_global}.

@smallexample
(@value{GDBP}) p includefile
$1 = 23
(@value{GDBP}) p includefile::some_global
A syntax error in expression, near `'.
(@value{GDBP}) p 'includefile'::some_global
$2 = 27
@end smallexample

@cindex wrong values
@cindex variable values, wrong
@cindex function entry/exit, wrong values of variables
@cindex optimized code, wrong values of variables
@quotation
@emph{Warning:} Occasionally, a local variable may appear to have the
wrong value at certain points in a function---just after entry to a new
scope, and just before exit.
@end quotation
You may see this problem when you are stepping by machine instructions.
This is because, on most machines, it takes more than one instruction to
set up a stack frame (including local variable definitions); if you are
stepping by machine instructions, variables may appear to have the wrong
values until the stack frame is completely built.  On exit, it usually
also takes more than one machine instruction to destroy a stack frame;
after you begin stepping through that group of instructions, local
variable definitions may be gone.

This may also happen when the compiler does significant optimizations.
To be sure of always seeing accurate values, turn off all optimization
when compiling.

@cindex ``No symbol "foo" in current context''
Another possible effect of compiler optimizations is to optimize
unused variables out of existence, or assign variables to registers (as
opposed to memory addresses).  Depending on the support for such cases
offered by the debug info format used by the compiler, @value{GDBN}
might not be able to display values for such local variables.  If that
happens, @value{GDBN} will print a message like this:

@smallexample
No symbol "foo" in current context.
@end smallexample

To solve such problems, either recompile without optimizations, or use a
different debug info format, if the compiler supports several such
formats.  @xref{Compilation}, for more information on choosing compiler
options.  @xref{C, ,C and C@t{++}}, for more information about debug
info formats that are best suited to C@t{++} programs.

If you ask to print an object whose contents are unknown to
@value{GDBN}, e.g., because its data type is not completely specified
by the debug information, @value{GDBN} will say @samp{<incomplete
type>}.  @xref{Symbols, incomplete type}, for more about this.

If you append @kbd{@@entry} string to a function parameter name you get its
value at the time the function got called.  If the value is not available an
error message is printed.  Entry values are available only with some compilers.
Entry values are normally also printed at the function parameter list according
to @ref{set print entry-values}.

@smallexample
Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29
29	  i++;
(gdb) next
30	  e (i);
(gdb) print i
$1 = 31
(gdb) print i@@entry
$2 = 30
@end smallexample

Strings are identified as arrays of @code{char} values without specified
signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
defines literal string type @code{"char"} as @code{char} without a sign.
For program code

@smallexample
char var0[] = "A";
signed char var1[] = "A";
@end smallexample

You get during debugging
@smallexample
(gdb) print var0
$1 = "A"
(gdb) print var1
$2 = @{65 'A', 0 '\0'@}
@end smallexample

@node Arrays
@section Artificial Arrays

@cindex artificial array
@cindex arrays
@kindex @@@r{, referencing memory as an array}
It is often useful to print out several successive objects of the
same type in memory; a section of an array, or an array of
dynamically determined size for which only a pointer exists in the
program.

You can do this by referring to a contiguous span of memory as an
@dfn{artificial array}, using the binary operator @samp{@@}.  The left
operand of @samp{@@} should be the first element of the desired array
and be an individual object.  The right operand should be the desired length
of the array.  The result is an array value whose elements are all of
the type of the left argument.  The first element is actually the left
argument; the second element comes from bytes of memory immediately
following those that hold the first element, and so on.  Here is an
example.  If a program says

@smallexample
int *array = (int *) malloc (len * sizeof (int));
@end smallexample

@noindent
you can print the contents of @code{array} with

@smallexample
p *array@@len
@end smallexample

The left operand of @samp{@@} must reside in memory.  Array values made
with @samp{@@} in this way behave just like other arrays in terms of
subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value history
(@pxref{Value History, ,Value History}), after printing one out.

Another way to create an artificial array is to use a cast.
This re-interprets a value as if it were an array.
The value need not be in memory:
@smallexample
(@value{GDBP}) p/x (short[2])0x12345678
$1 = @{0x1234, 0x5678@}
@end smallexample

As a convenience, if you leave the array length out (as in
@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
@smallexample
(@value{GDBP}) p/x (short[])0x12345678
$2 = @{0x1234, 0x5678@}
@end smallexample

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent---for example, if you are interested in the values
of pointers in an array.  One useful work-around in this situation is
to use a convenience variable (@pxref{Convenience Vars, ,Convenience
Variables}) as a counter in an expression that prints the first
interesting value, and then repeat that expression via @key{RET}.  For
instance, suppose you have an array @code{dtab} of pointers to
structures, and you are interested in the values of a field @code{fv}
in each structure.  Here is an example of what you might type:

@smallexample
set $i = 0
p dtab[$i++]->fv
@key{RET}
@key{RET}
@dots{}
@end smallexample

@node Output Formats
@section Output Formats

@cindex formatted output
@cindex output formats
By default, @value{GDBN} prints a value according to its data type.  Sometimes
this is not what you want.  For example, you might want to print a number
in hex, or a pointer in decimal.  Or you might want to view data in memory
at a certain address as a character string or as an instruction.  To do
these things, specify an @dfn{output format} when you print a value.

The simplest use of output formats is to say how to print a value
already computed.  This is done by starting the arguments of the
@code{print} command with a slash and a format letter.  The format
letters supported are:

@table @code
@item x
Regard the bits of the value as an integer, and print the integer in
hexadecimal.

@item d
Print as integer in signed decimal.

@item u
Print as integer in unsigned decimal.

@item o
Print as integer in octal.

@item t
Print as integer in binary.  The letter @samp{t} stands for ``two''.
@footnote{@samp{b} cannot be used because these format letters are also
used with the @code{x} command, where @samp{b} stands for ``byte'';
see @ref{Memory,,Examining Memory}.}

@item a
@cindex unknown address, locating
@cindex locate address
Print as an address, both absolute in hexadecimal and as an offset from
the nearest preceding symbol.  You can use this format used to discover
where (in what function) an unknown address is located:

@smallexample
(@value{GDBP}) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>
@end smallexample

@noindent
The command @code{info symbol 0x54320} yields similar results.
@xref{Symbols, info symbol}.

@item c
Regard as an integer and print it as a character constant.  This
prints both the numerical value and its character representation.  The
character representation is replaced with the octal escape @samp{\nnn}
for characters outside the 7-bit @sc{ascii} range.

Without this format, @value{GDBN} displays @code{char},
@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
constants.  Single-byte members of vectors are displayed as integer
data.

@item f
Regard the bits of the value as a floating point number and print
using typical floating point syntax.

@item s
@cindex printing strings
@cindex printing byte arrays
Regard as a string, if possible.  With this format, pointers to single-byte
data are displayed as null-terminated strings and arrays of single-byte data
are displayed as fixed-length strings.  Other values are displayed in their
natural types.

Without this format, @value{GDBN} displays pointers to and arrays of
@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
strings.  Single-byte members of a vector are displayed as an integer
array.

@item z
Like @samp{x} formatting, the value is treated as an integer and
printed as hexadecimal, but leading zeros are printed to pad the value
to the size of the integer type.

@item r
@cindex raw printing
Print using the @samp{raw} formatting.  By default, @value{GDBN} will
use a Python-based pretty-printer, if one is available (@pxref{Pretty
Printing}).  This typically results in a higher-level display of the
value's contents.  The @samp{r} format bypasses any Python
pretty-printer which might exist.
@end table

For example, to print the program counter in hex (@pxref{Registers}), type

@smallexample
p/x $pc
@end smallexample

@noindent
Note that no space is required before the slash; this is because command
names in @value{GDBN} cannot contain a slash.

To reprint the last value in the value history with a different format,
you can use the @code{print} command with just a format and no
expression.  For example, @samp{p/x} reprints the last value in hex.

@node Memory
@section Examining Memory

You can use the command @code{x} (for ``examine'') to examine memory in
any of several formats, independently of your program's data types.

@cindex examining memory
@table @code
@kindex x @r{(examine memory)}
@item x/@var{nfu} @var{addr}
@itemx x @var{addr}
@itemx x
Use the @code{x} command to examine memory.
@end table

@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
much memory to display and how to format it; @var{addr} is an
expression giving the address where you want to start displaying memory.
If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
Several commands set convenient defaults for @var{addr}.

@table @r
@item @var{n}, the repeat count
The repeat count is a decimal integer; the default is 1.  It specifies
how much memory (counting by units @var{u}) to display.
@c This really is **decimal**; unaffected by 'set radix' as of GDB
@c 4.1.2.

@item @var{f}, the display format
The display format is one of the formats used by @code{print}
(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
The default is @samp{x} (hexadecimal) initially.  The default changes
each time you use either @code{x} or @code{print}.

@item @var{u}, the unit size
The unit size is any of

@table @code
@item b
Bytes.
@item h
Halfwords (two bytes).
@item w
Words (four bytes).  This is the initial default.
@item g
Giant words (eight bytes).
@end table

Each time you specify a unit size with @code{x}, that size becomes the
default unit the next time you use @code{x}.  For the @samp{i} format,
the unit size is ignored and is normally not written.  For the @samp{s} format,
the unit size defaults to @samp{b}, unless it is explicitly given.
Use @kbd{x /hs} to display 16-bit char strings and @kbd{x /ws} to display
32-bit strings.  The next use of @kbd{x /s} will again display 8-bit strings.
Note that the results depend on the programming language of the
current compilation unit.  If the language is C, the @samp{s}
modifier will use the UTF-16 encoding while @samp{w} will use
UTF-32.  The encoding is set by the programming language and cannot
be altered.

@item @var{addr}, starting display address
@var{addr} is the address where you want @value{GDBN} to begin displaying
memory.  The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.
@xref{Expressions, ,Expressions}, for more information on expressions.  The default for
@var{addr} is usually just after the last address examined---but several
other commands also set the default address: @code{info breakpoints} (to
the address of the last breakpoint listed), @code{info line} (to the
starting address of a line), and @code{print} (if you use it to display
a value from memory).
@end table

For example, @samp{x/3uh 0x54320} is a request to display three halfwords
(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).

Since the letters indicating unit sizes are all distinct from the
letters specifying output formats, you do not have to remember whether
unit size or format comes first; either order works.  The output
specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
(However, the count @var{n} must come first; @samp{wx4} does not work.)

Even though the unit size @var{u} is ignored for the formats @samp{s}
and @samp{i}, you might still want to use a count @var{n}; for example,
@samp{3i} specifies that you want to see three machine instructions,
including any operands.  For convenience, especially when used with
the @code{display} command, the @samp{i} format also prints branch delay
slot instructions, if any, beyond the count specified, which immediately
follow the last instruction that is within the count.  The command
@code{disassemble} gives an alternative way of inspecting machine
instructions; see @ref{Machine Code,,Source and Machine Code}.

All the defaults for the arguments to @code{x} are designed to make it
easy to continue scanning memory with minimal specifications each time
you use @code{x}.  For example, after you have inspected three machine
instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
the repeat count @var{n} is used again; the other arguments default as
for successive uses of @code{x}.

When examining machine instructions, the instruction at current program
counter is shown with a @code{=>} marker. For example:

@smallexample
(@value{GDBP}) x/5i $pc-6
   0x804837f <main+11>: mov    %esp,%ebp
   0x8048381 <main+13>: push   %ecx
   0x8048382 <main+14>: sub    $0x4,%esp
=> 0x8048385 <main+17>: movl   $0x8048460,(%esp)
   0x804838c <main+24>: call   0x80482d4 <puts@@plt>
@end smallexample

@cindex @code{$_}, @code{$__}, and value history
The addresses and contents printed by the @code{x} command are not saved
in the value history because there is often too much of them and they
would get in the way.  Instead, @value{GDBN} makes these values available for
subsequent use in expressions as values of the convenience variables
@code{$_} and @code{$__}.  After an @code{x} command, the last address
examined is available for use in expressions in the convenience variable
@code{$_}.  The contents of that address, as examined, are available in
the convenience variable @code{$__}.

If the @code{x} command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.

@cindex remote memory comparison
@cindex verify remote memory image
When you are debugging a program running on a remote target machine
(@pxref{Remote Debugging}), you may wish to verify the program's image in the
remote machine's memory against the executable file you downloaded to
the target.  The @code{compare-sections} command is provided for such
situations.

@table @code
@kindex compare-sections
@item compare-sections @r{[}@var{section-name}@r{]}
Compare the data of a loadable section @var{section-name} in the
executable file of the program being debugged with the same section in
the remote machine's memory, and report any mismatches.  With no
arguments, compares all loadable sections.  This command's
availability depends on the target's support for the @code{"qCRC"}
remote request.
@end table

@node Auto Display
@section Automatic Display
@cindex automatic display
@cindex display of expressions

If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the @dfn{automatic
display list} so that @value{GDBN} prints its value each time your program stops.
Each expression added to the list is given a number to identify it;
to remove an expression from the list, you specify that number.
The automatic display looks like this:

@smallexample
2: foo = 38
3: bar[5] = (struct hack *) 0x3804
@end smallexample

@noindent
This display shows item numbers, expressions and their current values.  As with
displays you request manually using @code{x} or @code{print}, you can
specify the output format you prefer; in fact, @code{display} decides
whether to use @code{print} or @code{x} depending your format
specification---it uses @code{x} if you specify either the @samp{i}
or @samp{s} format, or a unit size; otherwise it uses @code{print}.

@table @code
@kindex display
@item display @var{expr}
Add the expression @var{expr} to the list of expressions to display
each time your program stops.  @xref{Expressions, ,Expressions}.

@code{display} does not repeat if you press @key{RET} again after using it.

@item display/@var{fmt} @var{expr}
For @var{fmt} specifying only a display format and not a size or
count, add the expression @var{expr} to the auto-display list but
arrange to display it each time in the specified format @var{fmt}.
@xref{Output Formats,,Output Formats}.

@item display/@var{fmt} @var{addr}
For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
number of units, add the expression @var{addr} as a memory address to
be examined each time your program stops.  Examining means in effect
doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
@end table

For example, @samp{display/i $pc} can be helpful, to see the machine
instruction about to be executed each time execution stops (@samp{$pc}
is a common name for the program counter; @pxref{Registers, ,Registers}).

@table @code
@kindex delete display
@kindex undisplay
@item undisplay @var{dnums}@dots{}
@itemx delete display @var{dnums}@dots{}
Remove items from the list of expressions to display.  Specify the
numbers of the displays that you want affected with the command
argument @var{dnums}.  It can be a single display number, one of the
numbers shown in the first field of the @samp{info display} display;
or it could be a range of display numbers, as in @code{2-4}.

@code{undisplay} does not repeat if you press @key{RET} after using it.
(Otherwise you would just get the error @samp{No display number @dots{}}.)

@kindex disable display
@item disable display @var{dnums}@dots{}
Disable the display of item numbers @var{dnums}.  A disabled display
item is not printed automatically, but is not forgotten.  It may be
enabled again later.  Specify the numbers of the displays that you
want affected with the command argument @var{dnums}.  It can be a
single display number, one of the numbers shown in the first field of
the @samp{info display} display; or it could be a range of display
numbers, as in @code{2-4}.

@kindex enable display
@item enable display @var{dnums}@dots{}
Enable display of item numbers @var{dnums}.  It becomes effective once
again in auto display of its expression, until you specify otherwise.
Specify the numbers of the displays that you want affected with the
command argument @var{dnums}.  It can be a single display number, one
of the numbers shown in the first field of the @samp{info display}
display; or it could be a range of display numbers, as in @code{2-4}.

@item display
Display the current values of the expressions on the list, just as is
done when your program stops.

@kindex info display
@item info display
Print the list of expressions previously set up to display
automatically, each one with its item number, but without showing the
values.  This includes disabled expressions, which are marked as such.
It also includes expressions which would not be displayed right now
because they refer to automatic variables not currently available.
@end table

@cindex display disabled out of scope
If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up.  Such an
expression is disabled when execution enters a context where one of its
variables is not defined.  For example, if you give the command
@code{display last_char} while inside a function with an argument
@code{last_char}, @value{GDBN} displays this argument while your program
continues to stop inside that function.  When it stops elsewhere---where
there is no variable @code{last_char}---the display is disabled
automatically.  The next time your program stops where @code{last_char}
is meaningful, you can enable the display expression once again.

@node Print Settings
@section Print Settings

@cindex format options
@cindex print settings
@value{GDBN} provides the following ways to control how arrays, structures,
and symbols are printed.

@noindent
These settings are useful for debugging programs in any language:

@table @code
@kindex set print
@item set print address
@itemx set print address on
@cindex print/don't print memory addresses
@value{GDBN} prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so forth,
even when it also displays the contents of those addresses.  The default
is @code{on}.  For example, this is what a stack frame display looks like with
@code{set print address on}:

@smallexample
@group
(@value{GDBP}) f
#0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
    at input.c:530
530         if (lquote != def_lquote)
@end group
@end smallexample

@item set print address off
Do not print addresses when displaying their contents.  For example,
this is the same stack frame displayed with @code{set print address off}:

@smallexample
@group
(@value{GDBP}) set print addr off
(@value{GDBP}) f
#0  set_quotes (lq="<<", rq=">>") at input.c:530
530         if (lquote != def_lquote)
@end group
@end smallexample

You can use @samp{set print address off} to eliminate all machine
dependent displays from the @value{GDBN} interface.  For example, with
@code{print address off}, you should get the same text for backtraces on
all machines---whether or not they involve pointer arguments.

@kindex show print
@item show print address
Show whether or not addresses are to be printed.
@end table

When @value{GDBN} prints a symbolic address, it normally prints the
closest earlier symbol plus an offset.  If that symbol does not uniquely
identify the address (for example, it is a name whose scope is a single
source file), you may need to clarify.  One way to do this is with
@code{info line}, for example @samp{info line *0x4537}.  Alternately,
you can set @value{GDBN} to print the source file and line number when
it prints a symbolic address:

@table @code
@item set print symbol-filename on
@cindex source file and line of a symbol
@cindex symbol, source file and line
Tell @value{GDBN} to print the source file name and line number of a
symbol in the symbolic form of an address.

@item set print symbol-filename off
Do not print source file name and line number of a symbol.  This is the
default.

@item show print symbol-filename
Show whether or not @value{GDBN} will print the source file name and
line number of a symbol in the symbolic form of an address.
@end table

Another situation where it is helpful to show symbol filenames and line
numbers is when disassembling code; @value{GDBN} shows you the line
number and source file that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:

@table @code
@item set print max-symbolic-offset @var{max-offset}
@itemx set print max-symbolic-offset unlimited
@cindex maximum value for offset of closest symbol
Tell @value{GDBN} to only display the symbolic form of an address if the
offset between the closest earlier symbol and the address is less than
@var{max-offset}.  The default is @code{unlimited}, which tells @value{GDBN}
to always print the symbolic form of an address if any symbol precedes
it.  Zero is equivalent to @code{unlimited}.

@item show print max-symbolic-offset
Ask how large the maximum offset is that @value{GDBN} prints in a
symbolic address.
@end table

@cindex wild pointer, interpreting
@cindex pointer, finding referent
If you have a pointer and you are not sure where it points, try
@samp{set print symbol-filename on}.  Then you can determine the name
and source file location of the variable where it points, using
@samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
For example, here @value{GDBN} shows that a variable @code{ptt} points
at another variable @code{t}, defined in @file{hi2.c}:

@smallexample
(@value{GDBP}) set print symbol-filename on
(@value{GDBP}) p/a ptt
$4 = 0xe008 <t in hi2.c>
@end smallexample

@quotation
@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
does not show the symbol name and filename of the referent, even with
the appropriate @code{set print} options turned on.
@end quotation

You can also enable @samp{/a}-like formatting all the time using
@samp{set print symbol on}:

@table @code
@item set print symbol on
Tell @value{GDBN} to print the symbol corresponding to an address, if
one exists.

@item set print symbol off
Tell @value{GDBN} not to print the symbol corresponding to an
address.  In this mode, @value{GDBN} will still print the symbol
corresponding to pointers to functions.  This is the default.

@item show print symbol
Show whether @value{GDBN} will display the symbol corresponding to an
address.
@end table

Other settings control how different kinds of objects are printed:

@table @code
@item set print array
@itemx set print array on
@cindex pretty print arrays
Pretty print arrays.  This format is more convenient to read,
but uses more space.  The default is off.

@item set print array off
Return to compressed format for arrays.

@item show print array
Show whether compressed or pretty format is selected for displaying
arrays.

@cindex print array indexes
@item set print array-indexes
@itemx set print array-indexes on
Print the index of each element when displaying arrays.  May be more
convenient to locate a given element in the array or quickly find the
index of a given element in that printed array.  The default is off.

@item set print array-indexes off
Stop printing element indexes when displaying arrays.

@item show print array-indexes
Show whether the index of each element is printed when displaying
arrays.

@item set print elements @var{number-of-elements}
@itemx set print elements unlimited
@cindex number of array elements to print
@cindex limit on number of printed array elements
Set a limit on how many elements of an array @value{GDBN} will print.
If @value{GDBN} is printing a large array, it stops printing after it has
printed the number of elements set by the @code{set print elements} command.
This limit also applies to the display of strings.
When @value{GDBN} starts, this limit is set to 200.
Setting @var{number-of-elements} to @code{unlimited} or zero means
that the number of elements to print is unlimited.

@item show print elements
Display the number of elements of a large array that @value{GDBN} will print.
If the number is 0, then the printing is unlimited.

@item set print frame-arguments @var{value}
@kindex set print frame-arguments
@cindex printing frame argument values
@cindex print all frame argument values
@cindex print frame argument values for scalars only
@cindex do not print frame argument values
This command allows to control how the values of arguments are printed
when the debugger prints a frame (@pxref{Frames}).  The possible
values are:

@table @code
@item all
The values of all arguments are printed.

@item scalars
Print the value of an argument only if it is a scalar.  The value of more
complex arguments such as arrays, structures, unions, etc, is replaced
by @code{@dots{}}.  This is the default.  Here is an example where
only scalar arguments are shown:

@smallexample
#1  0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
  at frame-args.c:23
@end smallexample

@item none
None of the argument values are printed.  Instead, the value of each argument
is replaced by @code{@dots{}}.  In this case, the example above now becomes:

@smallexample
#1  0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
  at frame-args.c:23
@end smallexample
@end table

By default, only scalar arguments are printed.  This command can be used
to configure the debugger to print the value of all arguments, regardless
of their type.  However, it is often advantageous to not print the value
of more complex parameters.  For instance, it reduces the amount of
information printed in each frame, making the backtrace more readable.
Also, it improves performance when displaying Ada frames, because
the computation of large arguments can sometimes be CPU-intensive,
especially in large applications.  Setting @code{print frame-arguments}
to @code{scalars} (the default) or @code{none} avoids this computation,
thus speeding up the display of each Ada frame.

@item show print frame-arguments
Show how the value of arguments should be displayed when printing a frame.

@item set print raw frame-arguments on
Print frame arguments in raw, non pretty-printed, form.

@item set print raw frame-arguments off
Print frame arguments in pretty-printed form, if there is a pretty-printer
for the value (@pxref{Pretty Printing}),
otherwise print the value in raw form.
This is the default.

@item show print raw frame-arguments
Show whether to print frame arguments in raw form.

@anchor{set print entry-values}
@item set print entry-values @var{value}
@kindex set print entry-values
Set printing of frame argument values at function entry.  In some cases
@value{GDBN} can determine the value of function argument which was passed by
the function caller, even if the value was modified inside the called function
and therefore is different.  With optimized code, the current value could be
unavailable, but the entry value may still be known.

The default value is @code{default} (see below for its description).  Older
@value{GDBN} behaved as with the setting @code{no}.  Compilers not supporting
this feature will behave in the @code{default} setting the same way as with the
@code{no} setting.

This functionality is currently supported only by DWARF 2 debugging format and
the compiler has to produce @samp{DW_TAG_GNU_call_site} tags.  With
@value{NGCC}, you need to specify @option{-O -g} during compilation, to get
this information.

The @var{value} parameter can be one of the following:

@table @code
@item no
Print only actual parameter values, never print values from function entry
point.
@smallexample
#0  equal (val=5)
#0  different (val=6)
#0  lost (val=<optimized out>)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item only
Print only parameter values from function entry point.  The actual parameter
values are never printed.
@smallexample
#0  equal (val@@entry=5)
#0  different (val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val@@entry=<optimized out>)
#0  invalid (val@@entry=<optimized out>)
@end smallexample

@item preferred
Print only parameter values from function entry point.  If value from function
entry point is not known while the actual value is known, print the actual
value for such parameter.
@smallexample
#0  equal (val@@entry=5)
#0  different (val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val@@entry=<optimized out>)
@end smallexample

@item if-needed
Print actual parameter values.  If actual parameter value is not known while
value from function entry point is known, print the entry point value for such
parameter.
@smallexample
#0  equal (val=5)
#0  different (val=6)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item both
Always print both the actual parameter value and its value from function entry
point, even if values of one or both are not available due to compiler
optimizations.
@smallexample
#0  equal (val=5, val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val=<optimized out>, val@@entry=5)
#0  born (val=10, val@@entry=<optimized out>)
#0  invalid (val=<optimized out>, val@@entry=<optimized out>)
@end smallexample

@item compact
Print the actual parameter value if it is known and also its value from
function entry point if it is known.  If neither is known, print for the actual
value @code{<optimized out>}.  If not in MI mode (@pxref{GDB/MI}) and if both
values are known and identical, print the shortened
@code{param=param@@entry=VALUE} notation.
@smallexample
#0  equal (val=val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item default
Always print the actual parameter value.  Print also its value from function
entry point, but only if it is known.  If not in MI mode (@pxref{GDB/MI}) and
if both values are known and identical, print the shortened
@code{param=param@@entry=VALUE} notation.
@smallexample
#0  equal (val=val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val=<optimized out>, val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample
@end table

For analysis messages on possible failures of frame argument values at function
entry resolution see @ref{set debug entry-values}.

@item show print entry-values
Show the method being used for printing of frame argument values at function
entry.

@item set print repeats @var{number-of-repeats}
@itemx set print repeats unlimited
@cindex repeated array elements
Set the threshold for suppressing display of repeated array
elements.  When the number of consecutive identical elements of an
array exceeds the threshold, @value{GDBN} prints the string
@code{"<repeats @var{n} times>"}, where @var{n} is the number of
identical repetitions, instead of displaying the identical elements
themselves.  Setting the threshold to @code{unlimited} or zero will
cause all elements to be individually printed.  The default threshold
is 10.

@item show print repeats
Display the current threshold for printing repeated identical
elements.

@item set print null-stop
@cindex @sc{null} elements in arrays
Cause @value{GDBN} to stop printing the characters of an array when the first
@sc{null} is encountered.  This is useful when large arrays actually
contain only short strings.
The default is off.

@item show print null-stop
Show whether @value{GDBN} stops printing an array on the first
@sc{null} character.

@item set print pretty on
@cindex print structures in indented form
@cindex indentation in structure display
Cause @value{GDBN} to print structures in an indented format with one member
per line, like this:

@smallexample
@group
$1 = @{
  next = 0x0,
  flags = @{
    sweet = 1,
    sour = 1
  @},
  meat = 0x54 "Pork"
@}
@end group
@end smallexample

@item set print pretty off
Cause @value{GDBN} to print structures in a compact format, like this:

@smallexample
@group
$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
meat = 0x54 "Pork"@}
@end group
@end smallexample

@noindent
This is the default format.

@item show print pretty
Show which format @value{GDBN} is using to print structures.

@item set print sevenbit-strings on
@cindex eight-bit characters in strings
@cindex octal escapes in strings
Print using only seven-bit characters; if this option is set,
@value{GDBN} displays any eight-bit characters (in strings or
character values) using the notation @code{\}@var{nnn}.  This setting is
best if you are working in English (@sc{ascii}) and you use the
high-order bit of characters as a marker or ``meta'' bit.

@item set print sevenbit-strings off
Print full eight-bit characters.  This allows the use of more
international character sets, and is the default.

@item show print sevenbit-strings
Show whether or not @value{GDBN} is printing only seven-bit characters.

@item set print union on
@cindex unions in structures, printing
Tell @value{GDBN} to print unions which are contained in structures
and other unions.  This is the default setting.

@item set print union off
Tell @value{GDBN} not to print unions which are contained in
structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
instead.

@item show print union
Ask @value{GDBN} whether or not it will print unions which are contained in
structures and other unions.

For example, given the declarations

@smallexample
typedef enum @{Tree, Bug@} Species;
typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
typedef enum @{Caterpillar, Cocoon, Butterfly@}
              Bug_forms;

struct thing @{
  Species it;
  union @{
    Tree_forms tree;
    Bug_forms bug;
  @} form;
@};

struct thing foo = @{Tree, @{Acorn@}@};
@end smallexample

@noindent
with @code{set print union on} in effect @samp{p foo} would print

@smallexample
$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
@end smallexample

@noindent
and with @code{set print union off} in effect it would print

@smallexample
$1 = @{it = Tree, form = @{...@}@}
@end smallexample

@noindent
@code{set print union} affects programs written in C-like languages
and in Pascal.
@end table

@need 1000
@noindent
These settings are of interest when debugging C@t{++} programs:

@table @code
@cindex demangling C@t{++} names
@item set print demangle
@itemx set print demangle on
Print C@t{++} names in their source form rather than in the encoded
(``mangled'') form passed to the assembler and linker for type-safe
linkage.  The default is on.

@item show print demangle
Show whether C@t{++} names are printed in mangled or demangled form.

@item set print asm-demangle
@itemx set print asm-demangle on
Print C@t{++} names in their source form rather than their mangled form, even
in assembler code printouts such as instruction disassemblies.
The default is off.

@item show print asm-demangle
Show whether C@t{++} names in assembly listings are printed in mangled
or demangled form.

@cindex C@t{++} symbol decoding style
@cindex symbol decoding style, C@t{++}
@kindex set demangle-style
@item set demangle-style @var{style}
Choose among several encoding schemes used by different compilers to
represent C@t{++} names.  The choices for @var{style} are currently:

@table @code
@item auto
Allow @value{GDBN} to choose a decoding style by inspecting your program.
This is the default.

@item gnu
Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.

@item hp
Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.

@item lucid
Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.

@item arm
Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
@strong{Warning:} this setting alone is not sufficient to allow
debugging @code{cfront}-generated executables.  @value{GDBN} would
require further enhancement to permit that.

@end table
If you omit @var{style}, you will see a list of possible formats.

@item show demangle-style
Display the encoding style currently in use for decoding C@t{++} symbols.

@item set print object
@itemx set print object on
@cindex derived type of an object, printing
@cindex display derived types
When displaying a pointer to an object, identify the @emph{actual}
(derived) type of the object rather than the @emph{declared} type, using
the virtual function table.  Note that the virtual function table is
required---this feature can only work for objects that have run-time
type identification; a single virtual method in the object's declared
type is sufficient.  Note that this setting is also taken into account when
working with variable objects via MI (@pxref{GDB/MI}).

@item set print object off
Display only the declared type of objects, without reference to the
virtual function table.  This is the default setting.

@item show print object
Show whether actual, or declared, object types are displayed.

@item set print static-members
@itemx set print static-members on
@cindex static members of C@t{++} objects
Print static members when displaying a C@t{++} object.  The default is on.

@item set print static-members off
Do not print static members when displaying a C@t{++} object.

@item show print static-members
Show whether C@t{++} static members are printed or not.

@item set print pascal_static-members
@itemx set print pascal_static-members on
@cindex static members of Pascal objects
@cindex Pascal objects, static members display
Print static members when displaying a Pascal object.  The default is on.

@item set print pascal_static-members off
Do not print static members when displaying a Pascal object.

@item show print pascal_static-members
Show whether Pascal static members are printed or not.

@c These don't work with HP ANSI C++ yet.
@item set print vtbl
@itemx set print vtbl on
@cindex pretty print C@t{++} virtual function tables
@cindex virtual functions (C@t{++}) display
@cindex VTBL display
Pretty print C@t{++} virtual function tables.  The default is off.
(The @code{vtbl} commands do not work on programs compiled with the HP
ANSI C@t{++} compiler (@code{aCC}).)

@item set print vtbl off
Do not pretty print C@t{++} virtual function tables.

@item show print vtbl
Show whether C@t{++} virtual function tables are pretty printed, or not.
@end table

@node Pretty Printing
@section Pretty Printing

@value{GDBN} provides a mechanism to allow pretty-printing of values using
Python code.  It greatly simplifies the display of complex objects.  This
mechanism works for both MI and the CLI.

@menu
* Pretty-Printer Introduction::  Introduction to pretty-printers
* Pretty-Printer Example::       An example pretty-printer
* Pretty-Printer Commands::      Pretty-printer commands
@end menu

@node Pretty-Printer Introduction
@subsection Pretty-Printer Introduction

When @value{GDBN} prints a value, it first sees if there is a pretty-printer
registered for the value.  If there is then @value{GDBN} invokes the
pretty-printer to print the value.  Otherwise the value is printed normally.

Pretty-printers are normally named.  This makes them easy to manage.
The @samp{info pretty-printer} command will list all the installed
pretty-printers with their names.
If a pretty-printer can handle multiple data types, then its
@dfn{subprinters} are the printers for the individual data types.
Each such subprinter has its own name.
The format of the name is @var{printer-name};@var{subprinter-name}.

Pretty-printers are installed by @dfn{registering} them with @value{GDBN}.
Typically they are automatically loaded and registered when the corresponding
debug information is loaded, thus making them available without having to
do anything special.

There are three places where a pretty-printer can be registered.

@itemize @bullet
@item
Pretty-printers registered globally are available when debugging
all inferiors.

@item
Pretty-printers registered with a program space are available only
when debugging that program.
@xref{Progspaces In Python}, for more details on program spaces in Python.

@item
Pretty-printers registered with an objfile are loaded and unloaded
with the corresponding objfile (e.g., shared library).
@xref{Objfiles In Python}, for more details on objfiles in Python.
@end itemize

@xref{Selecting Pretty-Printers}, for further information on how 
pretty-printers are selected,

@xref{Writing a Pretty-Printer}, for implementing pretty printers
for new types.

@node Pretty-Printer Example
@subsection Pretty-Printer Example

Here is how a C@t{++} @code{std::string} looks without a pretty-printer:

@smallexample
(@value{GDBP}) print s
$1 = @{
  static npos = 4294967295, 
  _M_dataplus = @{
    <std::allocator<char>> = @{
      <__gnu_cxx::new_allocator<char>> = @{
        <No data fields>@}, <No data fields>
      @},
    members of std::basic_string<char, std::char_traits<char>,
      std::allocator<char> >::_Alloc_hider:
    _M_p = 0x804a014 "abcd"
  @}
@}
@end smallexample

With a pretty-printer for @code{std::string} only the contents are printed:

@smallexample
(@value{GDBP}) print s
$2 = "abcd"
@end smallexample

@node Pretty-Printer Commands
@subsection Pretty-Printer Commands
@cindex pretty-printer commands

@table @code
@kindex info pretty-printer
@item info pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Print the list of installed pretty-printers.
This includes disabled pretty-printers, which are marked as such.

@var{object-regexp} is a regular expression matching the objects
whose pretty-printers to list.
Objects can be @code{global}, the program space's file
(@pxref{Progspaces In Python}),
and the object files within that program space (@pxref{Objfiles In Python}).
@xref{Selecting Pretty-Printers}, for details on how @value{GDBN}
looks up a printer from these three objects.

@var{name-regexp} is a regular expression matching the name of the printers
to list.

@kindex disable pretty-printer
@item disable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Disable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
A disabled pretty-printer is not forgotten, it may be enabled again later.

@kindex enable pretty-printer
@item enable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Enable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
@end table

Example:

Suppose we have three pretty-printers installed: one from library1.so
named @code{foo} that prints objects of type @code{foo}, and
another from library2.so named @code{bar} that prints two types of objects,
@code{bar1} and @code{bar2}.

@smallexample
(gdb) info pretty-printer
library1.so:
  foo
library2.so:
  bar
    bar1
    bar2
(gdb) info pretty-printer library2
library2.so:
  bar
    bar1
    bar2
(gdb) disable pretty-printer library1
1 printer disabled
2 of 3 printers enabled
(gdb) info pretty-printer
library1.so:
  foo [disabled]
library2.so:
  bar
    bar1
    bar2
(gdb) disable pretty-printer library2 bar:bar1
1 printer disabled
1 of 3 printers enabled
(gdb) info pretty-printer library2
library1.so:
  foo [disabled]
library2.so:
  bar
    bar1 [disabled]
    bar2
(gdb) disable pretty-printer library2 bar
1 printer disabled
0 of 3 printers enabled
(gdb) info pretty-printer library2
library1.so:
  foo [disabled]
library2.so:
  bar [disabled]
    bar1 [disabled]
    bar2
@end smallexample

Note that for @code{bar} the entire printer can be disabled,
as can each individual subprinter.

@node Value History
@section Value History

@cindex value history
@cindex history of values printed by @value{GDBN}
Values printed by the @code{print} command are saved in the @value{GDBN}
@dfn{value history}.  This allows you to refer to them in other expressions.
Values are kept until the symbol table is re-read or discarded
(for example with the @code{file} or @code{symbol-file} commands).
When the symbol table changes, the value history is discarded,
since the values may contain pointers back to the types defined in the
symbol table.

@cindex @code{$}
@cindex @code{$$}
@cindex history number
The values printed are given @dfn{history numbers} by which you can
refer to them.  These are successive integers starting with one.
@code{print} shows you the history number assigned to a value by
printing @samp{$@var{num} = } before the value; here @var{num} is the
history number.

To refer to any previous value, use @samp{$} followed by the value's
history number.  The way @code{print} labels its output is designed to
remind you of this.  Just @code{$} refers to the most recent value in
the history, and @code{$$} refers to the value before that.
@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
is the value just prior to @code{$$}, @code{$$1} is equivalent to
@code{$$}, and @code{$$0} is equivalent to @code{$}.

For example, suppose you have just printed a pointer to a structure and
want to see the contents of the structure.  It suffices to type

@smallexample
p *$
@end smallexample

If you have a chain of structures where the component @code{next} points
to the next one, you can print the contents of the next one with this:

@smallexample
p *$.next
@end smallexample

@noindent
You can print successive links in the chain by repeating this
command---which you can do by just typing @key{RET}.

Note that the history records values, not expressions.  If the value of
@code{x} is 4 and you type these commands:

@smallexample
print x
set x=5
@end smallexample

@noindent
then the value recorded in the value history by the @code{print} command
remains 4 even though the value of @code{x} has changed.

@table @code
@kindex show values
@item show values
Print the last ten values in the value history, with their item numbers.
This is like @samp{p@ $$9} repeated ten times, except that @code{show
values} does not change the history.

@item show values @var{n}
Print ten history values centered on history item number @var{n}.

@item show values +
Print ten history values just after the values last printed.  If no more
values are available, @code{show values +} produces no display.
@end table

Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
same effect as @samp{show values +}.

@node Convenience Vars
@section Convenience Variables

@cindex convenience variables
@cindex user-defined variables
@value{GDBN} provides @dfn{convenience variables} that you can use within
@value{GDBN} to hold on to a value and refer to it later.  These variables
exist entirely within @value{GDBN}; they are not part of your program, and
setting a convenience variable has no direct effect on further execution
of your program.  That is why you can use them freely.

Convenience variables are prefixed with @samp{$}.  Any name preceded by
@samp{$} can be used for a convenience variable, unless it is one of
the predefined machine-specific register names (@pxref{Registers, ,Registers}).
(Value history references, in contrast, are @emph{numbers} preceded
by @samp{$}.  @xref{Value History, ,Value History}.)

You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program.
For example:

@smallexample
set $foo = *object_ptr
@end smallexample

@noindent
would save in @code{$foo} the value contained in the object pointed to by
@code{object_ptr}.

Using a convenience variable for the first time creates it, but its
value is @code{void} until you assign a new value.  You can alter the
value with another assignment at any time.

Convenience variables have no fixed types.  You can assign a convenience
variable any type of value, including structures and arrays, even if
that variable already has a value of a different type.  The convenience
variable, when used as an expression, has the type of its current value.

@table @code
@kindex show convenience
@cindex show all user variables and functions
@item show convenience
Print a list of convenience variables used so far, and their values,
as well as a list of the convenience functions.
Abbreviated @code{show conv}.

@kindex init-if-undefined
@cindex convenience variables, initializing
@item init-if-undefined $@var{variable} = @var{expression}
Set a convenience variable if it has not already been set.  This is useful
for user-defined commands that keep some state.  It is similar, in concept,
to using local static variables with initializers in C (except that
convenience variables are global).  It can also be used to allow users to
override default values used in a command script.

If the variable is already defined then the expression is not evaluated so
any side-effects do not occur.
@end table

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced.  For example, to print
a field from successive elements of an array of structures:

@smallexample
set $i = 0
print bar[$i++]->contents
@end smallexample

@noindent
Repeat that command by typing @key{RET}.

Some convenience variables are created automatically by @value{GDBN} and given
values likely to be useful.

@table @code
@vindex $_@r{, convenience variable}
@item $_
The variable @code{$_} is automatically set by the @code{x} command to
the last address examined (@pxref{Memory, ,Examining Memory}).  Other
commands which provide a default address for @code{x} to examine also
set @code{$_} to that address; these commands include @code{info line}
and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
except when set by the @code{x} command, in which case it is a pointer
to the type of @code{$__}.

@vindex $__@r{, convenience variable}
@item $__
The variable @code{$__} is automatically set by the @code{x} command
to the value found in the last address examined.  Its type is chosen
to match the format in which the data was printed.

@item $_exitcode
@vindex $_exitcode@r{, convenience variable}
When the program being debugged terminates normally, @value{GDBN}
automatically sets this variable to the exit code of the program, and
resets @code{$_exitsignal} to @code{void}.

@item $_exitsignal
@vindex $_exitsignal@r{, convenience variable}
When the program being debugged dies due to an uncaught signal,
@value{GDBN} automatically sets this variable to that signal's number,
and resets @code{$_exitcode} to @code{void}.

To distinguish between whether the program being debugged has exited
(i.e., @code{$_exitcode} is not @code{void}) or signalled (i.e.,
@code{$_exitsignal} is not @code{void}), the convenience function
@code{$_isvoid} can be used (@pxref{Convenience Funs,, Convenience
Functions}).  For example, considering the following source code:

@smallexample
#include <signal.h>

int
main (int argc, char *argv[])
@{
  raise (SIGALRM);
  return 0;
@}
@end smallexample

A valid way of telling whether the program being debugged has exited
or signalled would be:

@smallexample
(@value{GDBP}) define has_exited_or_signalled
Type commands for definition of ``has_exited_or_signalled''.
End with a line saying just ``end''.
>if $_isvoid ($_exitsignal)
 >echo The program has exited\n
 >else
 >echo The program has signalled\n
 >end
>end
(@value{GDBP}) run
Starting program:

Program terminated with signal SIGALRM, Alarm clock.
The program no longer exists.
(@value{GDBP}) has_exited_or_signalled
The program has signalled
@end smallexample

As can be seen, @value{GDBN} correctly informs that the program being
debugged has signalled, since it calls @code{raise} and raises a
@code{SIGALRM} signal.  If the program being debugged had not called
@code{raise}, then @value{GDBN} would report a normal exit:

@smallexample
(@value{GDBP}) has_exited_or_signalled
The program has exited
@end smallexample

@item $_exception
The variable @code{$_exception} is set to the exception object being
thrown at an exception-related catchpoint.  @xref{Set Catchpoints}.

@item $_probe_argc
@itemx $_probe_arg0@dots{}$_probe_arg11
Arguments to a static probe.  @xref{Static Probe Points}.

@item $_sdata
@vindex $_sdata@r{, inspect, convenience variable}
The variable @code{$_sdata} contains extra collected static tracepoint
data.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.  Note that
@code{$_sdata} could be empty, if not inspecting a trace buffer, or
if extra static tracepoint data has not been collected.

@item $_siginfo
@vindex $_siginfo@r{, convenience variable}
The variable @code{$_siginfo} contains extra signal information
(@pxref{extra signal information}).  Note that @code{$_siginfo}
could be empty, if the application has not yet received any signals.
For example, it will be empty before you execute the @code{run} command.

@item $_tlb
@vindex $_tlb@r{, convenience variable}
The variable @code{$_tlb} is automatically set when debugging
applications running on MS-Windows in native mode or connected to
gdbserver that supports the @code{qGetTIBAddr} request. 
@xref{General Query Packets}.
This variable contains the address of the thread information block.

@end table

On HP-UX systems, if you refer to a function or variable name that
begins with a dollar sign, @value{GDBN} searches for a user or system
name first, before it searches for a convenience variable.

@node Convenience Funs
@section Convenience Functions

@cindex convenience functions
@value{GDBN} also supplies some @dfn{convenience functions}.  These
have a syntax similar to convenience variables.  A convenience
function can be used in an expression just like an ordinary function;
however, a convenience function is implemented internally to
@value{GDBN}.

These functions do not require @value{GDBN} to be configured with
@code{Python} support, which means that they are always available.

@table @code

@item $_isvoid (@var{expr})
@findex $_isvoid@r{, convenience function}
Return one if the expression @var{expr} is @code{void}.  Otherwise it
returns zero.

A @code{void} expression is an expression where the type of the result
is @code{void}.  For example, you can examine a convenience variable
(see @ref{Convenience Vars,, Convenience Variables}) to check whether
it is @code{void}:

@smallexample
(@value{GDBP}) print $_exitcode
$1 = void
(@value{GDBP}) print $_isvoid ($_exitcode)
$2 = 1
(@value{GDBP}) run
Starting program: ./a.out
[Inferior 1 (process 29572) exited normally]
(@value{GDBP}) print $_exitcode
$3 = 0
(@value{GDBP}) print $_isvoid ($_exitcode)
$4 = 0
@end smallexample

In the example above, we used @code{$_isvoid} to check whether
@code{$_exitcode} is @code{void} before and after the execution of the
program being debugged.  Before the execution there is no exit code to
be examined, therefore @code{$_exitcode} is @code{void}.  After the
execution the program being debugged returned zero, therefore
@code{$_exitcode} is zero, which means that it is not @code{void}
anymore.

The @code{void} expression can also be a call of a function from the
program being debugged.  For example, given the following function:

@smallexample
void
foo (void)
@{
@}
@end smallexample

The result of calling it inside @value{GDBN} is @code{void}:

@smallexample
(@value{GDBP}) print foo ()
$1 = void
(@value{GDBP}) print $_isvoid (foo ())
$2 = 1
(@value{GDBP}) set $v = foo ()
(@value{GDBP}) print $v
$3 = void
(@value{GDBP}) print $_isvoid ($v)
$4 = 1
@end smallexample

@end table

These functions require @value{GDBN} to be configured with
@code{Python} support.

@table @code

@item $_memeq(@var{buf1}, @var{buf2}, @var{length})
@findex $_memeq@r{, convenience function}
Returns one if the @var{length} bytes at the addresses given by
@var{buf1} and @var{buf2} are equal.
Otherwise it returns zero.

@item $_regex(@var{str}, @var{regex})
@findex $_regex@r{, convenience function}
Returns one if the string @var{str} matches the regular expression
@var{regex}.  Otherwise it returns zero.
The syntax of the regular expression is that specified by @code{Python}'s
regular expression support.

@item $_streq(@var{str1}, @var{str2})
@findex $_streq@r{, convenience function}
Returns one if the strings @var{str1} and @var{str2} are equal.
Otherwise it returns zero.

@item $_strlen(@var{str})
@findex $_strlen@r{, convenience function}
Returns the length of string @var{str}.

@end table

@value{GDBN} provides the ability to list and get help on
convenience functions.

@table @code
@item help function
@kindex help function
@cindex show all convenience functions
Print a list of all convenience functions.
@end table

@node Registers
@section Registers

@cindex registers
You can refer to machine register contents, in expressions, as variables
with names starting with @samp{$}.  The names of registers are different
for each machine; use @code{info registers} to see the names used on
your machine.

@table @code
@kindex info registers
@item info registers
Print the names and values of all registers except floating-point
and vector registers (in the selected stack frame).

@kindex info all-registers
@cindex floating point registers
@item info all-registers
Print the names and values of all registers, including floating-point
and vector registers (in the selected stack frame).

@item info registers @var{regname} @dots{}
Print the @dfn{relativized} value of each specified register @var{regname}.
As discussed in detail below, register values are normally relative to
the selected stack frame.  @var{regname} may be any register name valid on
the machine you are using, with or without the initial @samp{$}.
@end table

@cindex stack pointer register
@cindex program counter register
@cindex process status register
@cindex frame pointer register
@cindex standard registers
@value{GDBN} has four ``standard'' register names that are available (in
expressions) on most machines---whenever they do not conflict with an
architecture's canonical mnemonics for registers.  The register names
@code{$pc} and @code{$sp} are used for the program counter register and
the stack pointer.  @code{$fp} is used for a register that contains a
pointer to the current stack frame, and @code{$ps} is used for a
register that contains the processor status.  For example,
you could print the program counter in hex with

@smallexample
p/x $pc
@end smallexample

@noindent
or print the instruction to be executed next with

@smallexample
x/i $pc
@end smallexample

@noindent
or add four to the stack pointer@footnote{This is a way of removing
one word from the stack, on machines where stacks grow downward in
memory (most machines, nowadays).  This assumes that the innermost
stack frame is selected; setting @code{$sp} is not allowed when other
stack frames are selected.  To pop entire frames off the stack,
regardless of machine architecture, use @code{return};
see @ref{Returning, ,Returning from a Function}.} with

@smallexample
set $sp += 4
@end smallexample

Whenever possible, these four standard register names are available on
your machine even though the machine has different canonical mnemonics,
so long as there is no conflict.  The @code{info registers} command
shows the canonical names.  For example, on the SPARC, @code{info
registers} displays the processor status register as @code{$psr} but you
can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
is an alias for the @sc{eflags} register.

@value{GDBN} always considers the contents of an ordinary register as an
integer when the register is examined in this way.  Some machines have
special registers which can hold nothing but floating point; these
registers are considered to have floating point values.  There is no way
to refer to the contents of an ordinary register as floating point value
(although you can @emph{print} it as a floating point value with
@samp{print/f $@var{regname}}).

Some registers have distinct ``raw'' and ``virtual'' data formats.  This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees.  For example, the registers of the 68881 floating point
coprocessor are always saved in ``extended'' (raw) format, but all C
programs expect to work with ``double'' (virtual) format.  In such
cases, @value{GDBN} normally works with the virtual format only (the format
that makes sense for your program), but the @code{info registers} command
prints the data in both formats.

@cindex SSE registers (x86)
@cindex MMX registers (x86)
Some machines have special registers whose contents can be interpreted
in several different ways.  For example, modern x86-based machines
have SSE and MMX registers that can hold several values packed
together in several different formats.  @value{GDBN} refers to such
registers in @code{struct} notation:

@smallexample
(@value{GDBP}) print $xmm1
$1 = @{
  v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
  v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
  v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
  v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
  v4_int32 = @{0, 20657912, 11, 13@},
  v2_int64 = @{88725056443645952, 55834574859@},
  uint128 = 0x0000000d0000000b013b36f800000000
@}
@end smallexample

@noindent
To set values of such registers, you need to tell @value{GDBN} which
view of the register you wish to change, as if you were assigning
value to a @code{struct} member:

@smallexample
 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
@end smallexample

Normally, register values are relative to the selected stack frame
(@pxref{Selection, ,Selecting a Frame}).  This means that you get the
value that the register would contain if all stack frames farther in
were exited and their saved registers restored.  In order to see the
true contents of hardware registers, you must select the innermost
frame (with @samp{frame 0}).

@cindex caller-saved registers
@cindex call-clobbered registers
@cindex volatile registers
@cindex <not saved> values
Usually ABIs reserve some registers as not needed to be saved by the
callee (a.k.a.: ``caller-saved'', ``call-clobbered'' or ``volatile''
registers).  It may therefore not be possible for @value{GDBN} to know
the value a register had before the call (in other words, in the outer
frame), if the register value has since been changed by the callee.
@value{GDBN} tries to deduce where the inner frame saved
(``callee-saved'') registers, from the debug info, unwind info, or the
machine code generated by your compiler.  If some register is not
saved, and @value{GDBN} knows the register is ``caller-saved'' (via
its own knowledge of the ABI, or because the debug/unwind info
explicitly says the register's value is undefined), @value{GDBN}
displays @w{@samp{<not saved>}} as the register's value.  With targets
that @value{GDBN} has no knowledge of the register saving convention,
if a register was not saved by the callee, then its value and location
in the outer frame are assumed to be the same of the inner frame.
This is usually harmless, because if the register is call-clobbered,
the caller either does not care what is in the register after the
call, or has code to restore the value that it does care about.  Note,
however, that if you change such a register in the outer frame, you
may also be affecting the inner frame.  Also, the more ``outer'' the
frame is you're looking at, the more likely a call-clobbered
register's value is to be wrong, in the sense that it doesn't actually
represent the value the register had just before the call.

@node Floating Point Hardware
@section Floating Point Hardware
@cindex floating point

Depending on the configuration, @value{GDBN} may be able to give
you more information about the status of the floating point hardware.

@table @code
@kindex info float
@item info float
Display hardware-dependent information about the floating
point unit.  The exact contents and layout vary depending on the
floating point chip.  Currently, @samp{info float} is supported on
the ARM and x86 machines.
@end table

@node Vector Unit
@section Vector Unit
@cindex vector unit

Depending on the configuration, @value{GDBN} may be able to give you
more information about the status of the vector unit.

@table @code
@kindex info vector
@item info vector
Display information about the vector unit.  The exact contents and
layout vary depending on the hardware.
@end table

@node OS Information
@section Operating System Auxiliary Information
@cindex OS information

@value{GDBN} provides interfaces to useful OS facilities that can help
you debug your program.

@cindex auxiliary vector
@cindex vector, auxiliary
Some operating systems supply an @dfn{auxiliary vector} to programs at
startup.  This is akin to the arguments and environment that you
specify for a program, but contains a system-dependent variety of
binary values that tell system libraries important details about the
hardware, operating system, and process.  Each value's purpose is
identified by an integer tag; the meanings are well-known but system-specific.
Depending on the configuration and operating system facilities,
@value{GDBN} may be able to show you this information.  For remote
targets, this functionality may further depend on the remote stub's
support of the @samp{qXfer:auxv:read} packet, see
@ref{qXfer auxiliary vector read}.

@table @code
@kindex info auxv
@item info auxv
Display the auxiliary vector of the inferior, which can be either a
live process or a core dump file.  @value{GDBN} prints each tag value
numerically, and also shows names and text descriptions for recognized
tags.  Some values in the vector are numbers, some bit masks, and some
pointers to strings or other data.  @value{GDBN} displays each value in the
most appropriate form for a recognized tag, and in hexadecimal for
an unrecognized tag.
@end table

On some targets, @value{GDBN} can access operating system-specific
information and show it to you.  The types of information available
will differ depending on the type of operating system running on the
target.  The mechanism used to fetch the data is described in
@ref{Operating System Information}.  For remote targets, this
functionality depends on the remote stub's support of the
@samp{qXfer:osdata:read} packet, see @ref{qXfer osdata read}.

@table @code
@kindex info os
@item info os @var{infotype}

Display OS information of the requested type.

On @sc{gnu}/Linux, the following values of @var{infotype} are valid:

@anchor{linux info os infotypes}
@table @code
@kindex info os processes
@item processes
Display the list of processes on the target.  For each process,
@value{GDBN} prints the process identifier, the name of the user, the
command corresponding to the process, and the list of processor cores
that the process is currently running on.  (To understand what these
properties mean, for this and the following info types, please consult
the general @sc{gnu}/Linux documentation.)

@kindex info os procgroups
@item procgroups
Display the list of process groups on the target.  For each process,
@value{GDBN} prints the identifier of the process group that it belongs
to, the command corresponding to the process group leader, the process
identifier, and the command line of the process.  The list is sorted
first by the process group identifier, then by the process identifier,
so that processes belonging to the same process group are grouped together
and the process group leader is listed first.

@kindex info os threads
@item threads
Display the list of threads running on the target.  For each thread,
@value{GDBN} prints the identifier of the process that the thread
belongs to, the command of the process, the thread identifier, and the
processor core that it is currently running on.  The main thread of a
process is not listed.

@kindex info os files
@item files
Display the list of open file descriptors on the target.  For each
file descriptor, @value{GDBN} prints the identifier of the process
owning the descriptor, the command of the owning process, the value
of the descriptor, and the target of the descriptor.

@kindex info os sockets
@item sockets
Display the list of Internet-domain sockets on the target.  For each
socket, @value{GDBN} prints the address and port of the local and
remote endpoints, the current state of the connection, the creator of
the socket, the IP address family of the socket, and the type of the
connection.

@kindex info os shm
@item shm
Display the list of all System V shared-memory regions on the target.
For each shared-memory region, @value{GDBN} prints the region key,
the shared-memory identifier, the access permissions, the size of the
region, the process that created the region, the process that last
attached to or detached from the region, the current number of live
attaches to the region, and the times at which the region was last
attached to, detach from, and changed.

@kindex info os semaphores
@item semaphores
Display the list of all System V semaphore sets on the target.  For each
semaphore set, @value{GDBN} prints the semaphore set key, the semaphore
set identifier, the access permissions, the number of semaphores in the
set, the user and group of the owner and creator of the semaphore set,
and the times at which the semaphore set was operated upon and changed.

@kindex info os msg
@item msg
Display the list of all System V message queues on the target.  For each
message queue, @value{GDBN} prints the message queue key, the message
queue identifier, the access permissions, the current number of bytes
on the queue, the current number of messages on the queue, the processes
that last sent and received a message on the queue, the user and group
of the owner and creator of the message queue, the times at which a
message was last sent and received on the queue, and the time at which
the message queue was last changed.

@kindex info os modules
@item modules
Display the list of all loaded kernel modules on the target.  For each
module, @value{GDBN} prints the module name, the size of the module in
bytes, the number of times the module is used, the dependencies of the
module, the status of the module, and the address of the loaded module
in memory.
@end table

@item info os
If @var{infotype} is omitted, then list the possible values for
@var{infotype} and the kind of OS information available for each
@var{infotype}.  If the target does not return a list of possible
types, this command will report an error.
@end table

@node Memory Region Attributes
@section Memory Region Attributes
@cindex memory region attributes

@dfn{Memory region attributes} allow you to describe special handling
required by regions of your target's memory.  @value{GDBN} uses
attributes to determine whether to allow certain types of memory
accesses; whether to use specific width accesses; and whether to cache
target memory.  By default the description of memory regions is
fetched from the target (if the current target supports this), but the
user can override the fetched regions.

Defined memory regions can be individually enabled and disabled.  When a
memory region is disabled, @value{GDBN} uses the default attributes when
accessing memory in that region.  Similarly, if no memory regions have
been defined, @value{GDBN} uses the default attributes when accessing
all memory.

When a memory region is defined, it is given a number to identify it;
to enable, disable, or remove a memory region, you specify that number.

@table @code
@kindex mem
@item mem @var{lower} @var{upper} @var{attributes}@dots{}
Define a memory region bounded by @var{lower} and @var{upper} with
attributes @var{attributes}@dots{}, and add it to the list of regions
monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
case: it is treated as the target's maximum memory address.
(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)

@item mem auto
Discard any user changes to the memory regions and use target-supplied
regions, if available, or no regions if the target does not support.

@kindex delete mem
@item delete mem @var{nums}@dots{}
Remove memory regions @var{nums}@dots{} from the list of regions
monitored by @value{GDBN}.

@kindex disable mem
@item disable mem @var{nums}@dots{}
Disable monitoring of memory regions @var{nums}@dots{}.
A disabled memory region is not forgotten.
It may be enabled again later.

@kindex enable mem
@item enable mem @var{nums}@dots{}
Enable monitoring of memory regions @var{nums}@dots{}.

@kindex info mem
@item info mem
Print a table of all defined memory regions, with the following columns
for each region:

@table @emph
@item Memory Region Number
@item Enabled or Disabled.
Enabled memory regions are marked with @samp{y}.
Disabled memory regions are marked with @samp{n}.

@item Lo Address
The address defining the inclusive lower bound of the memory region.

@item Hi Address
The address defining the exclusive upper bound of the memory region.

@item Attributes
The list of attributes set for this memory region.
@end table
@end table


@subsection Attributes

@subsubsection Memory Access Mode
The access mode attributes set whether @value{GDBN} may make read or
write accesses to a memory region.

While these attributes prevent @value{GDBN} from performing invalid
memory accesses, they do nothing to prevent the target system, I/O DMA,
etc.@: from accessing memory.

@table @code
@item ro
Memory is read only.
@item wo
Memory is write only.
@item rw
Memory is read/write.  This is the default.
@end table

@subsubsection Memory Access Size
The access size attribute tells @value{GDBN} to use specific sized
accesses in the memory region.  Often memory mapped device registers
require specific sized accesses.  If no access size attribute is
specified, @value{GDBN} may use accesses of any size.

@table @code
@item 8
Use 8 bit memory accesses.
@item 16
Use 16 bit memory accesses.
@item 32
Use 32 bit memory accesses.
@item 64
Use 64 bit memory accesses.
@end table

@c @subsubsection Hardware/Software Breakpoints
@c The hardware/software breakpoint attributes set whether @value{GDBN}
@c will use hardware or software breakpoints for the internal breakpoints
@c used by the step, next, finish, until, etc. commands.
@c
@c @table @code
@c @item hwbreak
@c Always use hardware breakpoints
@c @item swbreak (default)
@c @end table

@subsubsection Data Cache
The data cache attributes set whether @value{GDBN} will cache target
memory.  While this generally improves performance by reducing debug
protocol overhead, it can lead to incorrect results because @value{GDBN}
does not know about volatile variables or memory mapped device
registers.

@table @code
@item cache
Enable @value{GDBN} to cache target memory.
@item nocache
Disable @value{GDBN} from caching target memory.  This is the default.
@end table

@subsection Memory Access Checking
@value{GDBN} can be instructed to refuse accesses to memory that is
not explicitly described.  This can be useful if accessing such
regions has undesired effects for a specific target, or to provide
better error checking.  The following commands control this behaviour.

@table @code
@kindex set mem inaccessible-by-default
@item set mem inaccessible-by-default [on|off]
If @code{on} is specified, make  @value{GDBN} treat memory not
explicitly described by the memory ranges as non-existent and refuse accesses
to such memory.  The checks are only performed if there's at least one
memory range defined.  If @code{off} is specified, make @value{GDBN}
treat the memory not explicitly described by the memory ranges as RAM.
The default value is @code{on}.
@kindex show mem inaccessible-by-default
@item show mem inaccessible-by-default
Show the current handling of accesses to unknown memory.
@end table


@c @subsubsection Memory Write Verification
@c The memory write verification attributes set whether @value{GDBN}
@c will re-reads data after each write to verify the write was successful.
@c
@c @table @code
@c @item verify
@c @item noverify (default)
@c @end table

@node Dump/Restore Files
@section Copy Between Memory and a File
@cindex dump/restore files
@cindex append data to a file
@cindex dump data to a file
@cindex restore data from a file

You can use the commands @code{dump}, @code{append}, and
@code{restore} to copy data between target memory and a file.  The
@code{dump} and @code{append} commands write data to a file, and the
@code{restore} command reads data from a file back into the inferior's
memory.  Files may be in binary, Motorola S-record, Intel hex, or
Tektronix Hex format; however, @value{GDBN} can only append to binary
files.

@table @code

@kindex dump
@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
Dump the contents of memory from @var{start_addr} to @var{end_addr},
or the value of @var{expr}, to @var{filename} in the given format.

The @var{format} parameter may be any one of:
@table @code
@item binary
Raw binary form.
@item ihex
Intel hex format.
@item srec
Motorola S-record format.
@item tekhex
Tektronix Hex format.
@end table

@value{GDBN} uses the same definitions of these formats as the
@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
@var{format} is omitted, @value{GDBN} dumps the data in raw binary
form.

@kindex append
@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
Append the contents of memory from @var{start_addr} to @var{end_addr},
or the value of @var{expr}, to the file @var{filename}, in raw binary form.
(@value{GDBN} can only append data to files in raw binary form.)

@kindex restore
@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
Restore the contents of file @var{filename} into memory.  The
@code{restore} command can automatically recognize any known @sc{bfd}
file format, except for raw binary.  To restore a raw binary file you
must specify the optional keyword @code{binary} after the filename.

If @var{bias} is non-zero, its value will be added to the addresses
contained in the file.  Binary files always start at address zero, so
they will be restored at address @var{bias}.  Other bfd files have
a built-in location; they will be restored at offset @var{bias}
from that location.

If @var{start} and/or @var{end} are non-zero, then only data between
file offset @var{start} and file offset @var{end} will be restored.
These offsets are relative to the addresses in the file, before
the @var{bias} argument is applied.

@end table

@node Core File Generation
@section How to Produce a Core File from Your Program
@cindex dump core from inferior

A @dfn{core file} or @dfn{core dump} is a file that records the memory
image of a running process and its process status (register values
etc.).  Its primary use is post-mortem debugging of a program that
crashed while it ran outside a debugger.  A program that crashes
automatically produces a core file, unless this feature is disabled by
the user.  @xref{Files}, for information on invoking @value{GDBN} in
the post-mortem debugging mode.

Occasionally, you may wish to produce a core file of the program you
are debugging in order to preserve a snapshot of its state.
@value{GDBN} has a special command for that.

@table @code
@kindex gcore
@kindex generate-core-file
@item generate-core-file [@var{file}]
@itemx gcore [@var{file}]
Produce a core dump of the inferior process.  The optional argument
@var{file} specifies the file name where to put the core dump.  If not
specified, the file name defaults to @file{core.@var{pid}}, where
@var{pid} is the inferior process ID.

Note that this command is implemented only for some systems (as of
this writing, @sc{gnu}/Linux, FreeBSD, Solaris, and S390).
@end table

@node Character Sets
@section Character Sets
@cindex character sets
@cindex charset
@cindex translating between character sets
@cindex host character set
@cindex target character set

If the program you are debugging uses a different character set to
represent characters and strings than the one @value{GDBN} uses itself,
@value{GDBN} can automatically translate between the character sets for
you.  The character set @value{GDBN} uses we call the @dfn{host
character set}; the one the inferior program uses we call the
@dfn{target character set}.

For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
remote protocol (@pxref{Remote Debugging}) to debug a program
running on an IBM mainframe, which uses the @sc{ebcdic} character set,
then the host character set is Latin-1, and the target character set is
@sc{ebcdic}.  If you give @value{GDBN} the command @code{set
target-charset EBCDIC-US}, then @value{GDBN} translates between
@sc{ebcdic} and Latin 1 as you print character or string values, or use
character and string literals in expressions.

@value{GDBN} has no way to automatically recognize which character set
the inferior program uses; you must tell it, using the @code{set
target-charset} command, described below.

Here are the commands for controlling @value{GDBN}'s character set
support:

@table @code
@item set target-charset @var{charset}
@kindex set target-charset
Set the current target character set to @var{charset}.  To display the
list of supported target character sets, type
@kbd{@w{set target-charset @key{TAB}@key{TAB}}}.

@item set host-charset @var{charset}
@kindex set host-charset
Set the current host character set to @var{charset}.

By default, @value{GDBN} uses a host character set appropriate to the
system it is running on; you can override that default using the
@code{set host-charset} command.  On some systems, @value{GDBN} cannot
automatically determine the appropriate host character set.  In this
case, @value{GDBN} uses @samp{UTF-8}.

@value{GDBN} can only use certain character sets as its host character
set.  If you type @kbd{@w{set host-charset @key{TAB}@key{TAB}}},
@value{GDBN} will list the host character sets it supports.

@item set charset @var{charset}
@kindex set charset
Set the current host and target character sets to @var{charset}.  As
above, if you type @kbd{@w{set charset @key{TAB}@key{TAB}}},
@value{GDBN} will list the names of the character sets that can be used
for both host and target.

@item show charset
@kindex show charset
Show the names of the current host and target character sets.

@item show host-charset
@kindex show host-charset
Show the name of the current host character set.

@item show target-charset
@kindex show target-charset
Show the name of the current target character set.

@item set target-wide-charset @var{charset}
@kindex set target-wide-charset
Set the current target's wide character set to @var{charset}.  This is
the character set used by the target's @code{wchar_t} type.  To
display the list of supported wide character sets, type
@kbd{@w{set target-wide-charset @key{TAB}@key{TAB}}}.

@item show target-wide-charset
@kindex show target-wide-charset
Show the name of the current target's wide character set.
@end table

Here is an example of @value{GDBN}'s character set support in action.
Assume that the following source code has been placed in the file
@file{charset-test.c}:

@smallexample
#include <stdio.h>

char ascii_hello[]
  = @{72, 101, 108, 108, 111, 44, 32, 119,
     111, 114, 108, 100, 33, 10, 0@};
char ibm1047_hello[]
  = @{200, 133, 147, 147, 150, 107, 64, 166,
     150, 153, 147, 132, 90, 37, 0@};

main ()
@{
  printf ("Hello, world!\n");
@}
@end smallexample

In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
containing the string @samp{Hello, world!} followed by a newline,
encoded in the @sc{ascii} and @sc{ibm1047} character sets.

We compile the program, and invoke the debugger on it:

@smallexample
$ gcc -g charset-test.c -o charset-test
$ gdb -nw charset-test
GNU gdb 2001-12-19-cvs
Copyright 2001 Free Software Foundation, Inc.
@dots{}
(@value{GDBP})
@end smallexample

We can use the @code{show charset} command to see what character sets
@value{GDBN} is currently using to interpret and display characters and
strings:

@smallexample
(@value{GDBP}) show charset
The current host and target character set is `ISO-8859-1'.
(@value{GDBP})
@end smallexample

For the sake of printing this manual, let's use @sc{ascii} as our
initial character set:
@smallexample
(@value{GDBP}) set charset ASCII
(@value{GDBP}) show charset
The current host and target character set is `ASCII'.
(@value{GDBP})
@end smallexample

Let's assume that @sc{ascii} is indeed the correct character set for our
host system --- in other words, let's assume that if @value{GDBN} prints
characters using the @sc{ascii} character set, our terminal will display
them properly.  Since our current target character set is also
@sc{ascii}, the contents of @code{ascii_hello} print legibly:

@smallexample
(@value{GDBP}) print ascii_hello
$1 = 0x401698 "Hello, world!\n"
(@value{GDBP}) print ascii_hello[0]
$2 = 72 'H'
(@value{GDBP})
@end smallexample

@value{GDBN} uses the target character set for character and string
literals you use in expressions:

@smallexample
(@value{GDBP}) print '+'
$3 = 43 '+'
(@value{GDBP})
@end smallexample

The @sc{ascii} character set uses the number 43 to encode the @samp{+}
character.

@value{GDBN} relies on the user to tell it which character set the
target program uses.  If we print @code{ibm1047_hello} while our target
character set is still @sc{ascii}, we get jibberish:

@smallexample
(@value{GDBP}) print ibm1047_hello
$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
(@value{GDBP}) print ibm1047_hello[0]
$5 = 200 '\310'
(@value{GDBP})
@end smallexample

If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
@value{GDBN} tells us the character sets it supports:

@smallexample
(@value{GDBP}) set target-charset
ASCII       EBCDIC-US   IBM1047     ISO-8859-1
(@value{GDBP}) set target-charset
@end smallexample

We can select @sc{ibm1047} as our target character set, and examine the
program's strings again.  Now the @sc{ascii} string is wrong, but
@value{GDBN} translates the contents of @code{ibm1047_hello} from the
target character set, @sc{ibm1047}, to the host character set,
@sc{ascii}, and they display correctly:

@smallexample
(@value{GDBP}) set target-charset IBM1047
(@value{GDBP}) show charset
The current host character set is `ASCII'.
The current target character set is `IBM1047'.
(@value{GDBP}) print ascii_hello
$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
(@value{GDBP}) print ascii_hello[0]
$7 = 72 '\110'
(@value{GDBP}) print ibm1047_hello
$8 = 0x4016a8 "Hello, world!\n"
(@value{GDBP}) print ibm1047_hello[0]
$9 = 200 'H'
(@value{GDBP})
@end smallexample

As above, @value{GDBN} uses the target character set for character and
string literals you use in expressions:

@smallexample
(@value{GDBP}) print '+'
$10 = 78 '+'
(@value{GDBP})
@end smallexample

The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
character.

@node Caching Target Data
@section Caching Data of Targets
@cindex caching data of targets

@value{GDBN} caches data exchanged between the debugger and a target.
Such caching generally improves performance in remote debugging
(@pxref{Remote Debugging}), because it reduces the overhead of the
remote protocol by bundling memory reads and writes into large chunks.
Unfortunately, simply caching everything would lead to incorrect results,
since @value{GDBN} does not necessarily know anything about volatile
values, memory-mapped I/O addresses, etc.  Furthermore, in non-stop mode
(@pxref{Non-Stop Mode}) memory can be changed @emph{while} a gdb command
is executing.
Therefore, by default, @value{GDBN} only caches data
known to be on the stack@footnote{In non-stop mode, it is moderately
rare for a running thread to modify the stack of a stopped thread
in a way that would interfere with a backtrace, and caching of
stack reads provides a significant speed up of remote backtraces.}.
Other regions of memory can be explicitly marked as
cacheable; see @pxref{Memory Region Attributes}.

@table @code
@kindex set remotecache
@item set remotecache on
@itemx set remotecache off
This option no longer does anything; it exists for compatibility
with old scripts.

@kindex show remotecache
@item show remotecache
Show the current state of the obsolete remotecache flag.

@kindex set stack-cache
@item set stack-cache on
@itemx set stack-cache off
Enable or disable caching of stack accesses.  When @code{ON}, use
caching.  By default, this option is @code{ON}.

@kindex show stack-cache
@item show stack-cache
Show the current state of data caching for memory accesses.

@kindex info dcache
@item info dcache @r{[}line@r{]}
Print the information about the data cache performance.  The
information displayed includes the dcache width and depth, and for
each cache line, its number, address, and how many times it was
referenced.  This command is useful for debugging the data cache
operation.

If a line number is specified, the contents of that line will be
printed in hex.

@item set dcache size @var{size}
@cindex dcache size
@kindex set dcache size
Set maximum number of entries in dcache (dcache depth above).

@item set dcache line-size @var{line-size}
@cindex dcache line-size
@kindex set dcache line-size
Set number of bytes each dcache entry caches (dcache width above).
Must be a power of 2.

@item show dcache size
@kindex show dcache size
Show maximum number of dcache entries.  @xref{Caching Target Data, info dcache}.

@item show dcache line-size
@kindex show dcache line-size
Show default size of dcache lines.

@end table

@node Searching Memory
@section Search Memory
@cindex searching memory

Memory can be searched for a particular sequence of bytes with the
@code{find} command.

@table @code
@kindex find
@item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
@itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
etc.  The search begins at address @var{start_addr} and continues for either
@var{len} bytes or through to @var{end_addr} inclusive.
@end table

@var{s} and @var{n} are optional parameters.
They may be specified in either order, apart or together.

@table @r
@item @var{s}, search query size
The size of each search query value.

@table @code
@item b
bytes
@item h
halfwords (two bytes)
@item w
words (four bytes)
@item g
giant words (eight bytes)
@end table

All values are interpreted in the current language.
This means, for example, that if the current source language is C/C@t{++}
then searching for the string ``hello'' includes the trailing '\0'.

If the value size is not specified, it is taken from the
value's type in the current language.
This is useful when one wants to specify the search
pattern as a mixture of types.
Note that this means, for example, that in the case of C-like languages
a search for an untyped 0x42 will search for @samp{(int) 0x42}
which is typically four bytes.

@item @var{n}, maximum number of finds
The maximum number of matches to print.  The default is to print all finds.
@end table

You can use strings as search values.  Quote them with double-quotes
 (@code{"}).
The string value is copied into the search pattern byte by byte,
regardless of the endianness of the target and the size specification.

The address of each match found is printed as well as a count of the
number of matches found.

The address of the last value found is stored in convenience variable
@samp{$_}.
A count of the number of matches is stored in @samp{$numfound}.

For example, if stopped at the @code{printf} in this function:

@smallexample
void
hello ()
@{
  static char hello[] = "hello-hello";
  static struct @{ char c; short s; int i; @}
    __attribute__ ((packed)) mixed
    = @{ 'c', 0x1234, 0x87654321 @};
  printf ("%s\n", hello);
@}
@end smallexample

@noindent
you get during debugging:

@smallexample
(gdb) find &hello[0], +sizeof(hello), "hello"
0x804956d <hello.1620+6>
1 pattern found
(gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
0x8049567 <hello.1620>
0x804956d <hello.1620+6>
2 patterns found
(gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
0x8049567 <hello.1620>
1 pattern found
(gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
0x8049560 <mixed.1625>
1 pattern found
(gdb) print $numfound
$1 = 1
(gdb) print $_
$2 = (void *) 0x8049560
@end smallexample

@node Optimized Code
@chapter Debugging Optimized Code
@cindex optimized code, debugging
@cindex debugging optimized code

Almost all compilers support optimization.  With optimization
disabled, the compiler generates assembly code that corresponds
directly to your source code, in a simplistic way.  As the compiler
applies more powerful optimizations, the generated assembly code
diverges from your original source code.  With help from debugging
information generated by the compiler, @value{GDBN} can map from
the running program back to constructs from your original source.

@value{GDBN} is more accurate with optimization disabled.  If you
can recompile without optimization, it is easier to follow the
progress of your program during debugging.  But, there are many cases
where you may need to debug an optimized version.

When you debug a program compiled with @samp{-g -O}, remember that the
optimizer has rearranged your code; the debugger shows you what is
really there.  Do not be too surprised when the execution path does not
exactly match your source file!  An extreme example: if you define a
variable, but never use it, @value{GDBN} never sees that
variable---because the compiler optimizes it out of existence.

Some things do not work as well with @samp{-g -O} as with just
@samp{-g}, particularly on machines with instruction scheduling.  If in
doubt, recompile with @samp{-g} alone, and if this fixes the problem,
please report it to us as a bug (including a test case!).
@xref{Variables}, for more information about debugging optimized code.

@menu
* Inline Functions::            How @value{GDBN} presents inlining
* Tail Call Frames::            @value{GDBN} analysis of jumps to functions
@end menu

@node Inline Functions
@section Inline Functions
@cindex inline functions, debugging

@dfn{Inlining} is an optimization that inserts a copy of the function
body directly at each call site, instead of jumping to a shared
routine.  @value{GDBN} displays inlined functions just like
non-inlined functions.  They appear in backtraces.  You can view their
arguments and local variables, step into them with @code{step}, skip
them with @code{next}, and escape from them with @code{finish}.
You can check whether a function was inlined by using the
@code{info frame} command.

For @value{GDBN} to support inlined functions, the compiler must
record information about inlining in the debug information ---
@value{NGCC} using the @sc{dwarf 2} format does this, and several
other compilers do also.  @value{GDBN} only supports inlined functions
when using @sc{dwarf 2}.  Versions of @value{NGCC} before 4.1
do not emit two required attributes (@samp{DW_AT_call_file} and
@samp{DW_AT_call_line}); @value{GDBN} does not display inlined
function calls with earlier versions of @value{NGCC}.  It instead
displays the arguments and local variables of inlined functions as
local variables in the caller.

The body of an inlined function is directly included at its call site;
unlike a non-inlined function, there are no instructions devoted to
the call.  @value{GDBN} still pretends that the call site and the
start of the inlined function are different instructions.  Stepping to
the call site shows the call site, and then stepping again shows
the first line of the inlined function, even though no additional
instructions are executed.

This makes source-level debugging much clearer; you can see both the
context of the call and then the effect of the call.  Only stepping by
a single instruction using @code{stepi} or @code{nexti} does not do
this; single instruction steps always show the inlined body.

There are some ways that @value{GDBN} does not pretend that inlined
function calls are the same as normal calls:

@itemize @bullet
@item
Setting breakpoints at the call site of an inlined function may not
work, because the call site does not contain any code.  @value{GDBN}
may incorrectly move the breakpoint to the next line of the enclosing
function, after the call.  This limitation will be removed in a future
version of @value{GDBN}; until then, set a breakpoint on an earlier line
or inside the inlined function instead.

@item
@value{GDBN} cannot locate the return value of inlined calls after
using the @code{finish} command.  This is a limitation of compiler-generated
debugging information; after @code{finish}, you can step to the next line
and print a variable where your program stored the return value.

@end itemize

@node Tail Call Frames
@section Tail Call Frames
@cindex tail call frames, debugging

Function @code{B} can call function @code{C} in its very last statement.  In
unoptimized compilation the call of @code{C} is immediately followed by return
instruction at the end of @code{B} code.  Optimizing compiler may replace the
call and return in function @code{B} into one jump to function @code{C}
instead.  Such use of a jump instruction is called @dfn{tail call}.

During execution of function @code{C}, there will be no indication in the
function call stack frames that it was tail-called from @code{B}.  If function
@code{A} regularly calls function @code{B} which tail-calls function @code{C},
then @value{GDBN} will see @code{A} as the caller of @code{C}.  However, in
some cases @value{GDBN} can determine that @code{C} was tail-called from
@code{B}, and it will then create fictitious call frame for that, with the
return address set up as if @code{B} called @code{C} normally.

This functionality is currently supported only by DWARF 2 debugging format and
the compiler has to produce @samp{DW_TAG_GNU_call_site} tags.  With
@value{NGCC}, you need to specify @option{-O -g} during compilation, to get
this information.

@kbd{info frame} command (@pxref{Frame Info}) will indicate the tail call frame
kind by text @code{tail call frame} such as in this sample @value{GDBN} output:

@smallexample
(gdb) x/i $pc - 2
   0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>
(gdb) info frame
Stack level 1, frame at 0x7fffffffda30:
 rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
 tail call frame, caller of frame at 0x7fffffffda30
 source language c++.
 Arglist at unknown address.
 Locals at unknown address, Previous frame's sp is 0x7fffffffda30
@end smallexample

The detection of all the possible code path executions can find them ambiguous.
There is no execution history stored (possible @ref{Reverse Execution} is never
used for this purpose) and the last known caller could have reached the known
callee by multiple different jump sequences.  In such case @value{GDBN} still
tries to show at least all the unambiguous top tail callers and all the
unambiguous bottom tail calees, if any.

@table @code
@anchor{set debug entry-values}
@item set debug entry-values
@kindex set debug entry-values
When set to on, enables printing of analysis messages for both frame argument
values at function entry and tail calls.  It will show all the possible valid
tail calls code paths it has considered.  It will also print the intersection
of them with the final unambiguous (possibly partial or even empty) code path
result.

@item show debug entry-values
@kindex show debug entry-values
Show the current state of analysis messages printing for both frame argument
values at function entry and tail calls.
@end table

The analysis messages for tail calls can for example show why the virtual tail
call frame for function @code{c} has not been recognized (due to the indirect
reference by variable @code{x}):

@smallexample
static void __attribute__((noinline, noclone)) c (void);
void (*x) (void) = c;
static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
static void __attribute__((noinline, noclone)) c (void) @{ a (); @}
int main (void) @{ x (); return 0; @}

Breakpoint 1, DW_OP_GNU_entry_value resolving cannot find
DW_TAG_GNU_call_site 0x40039a in main
a () at t.c:3
3	static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
(gdb) bt
#0  a () at t.c:3
#1  0x000000000040039a in main () at t.c:5
@end smallexample

Another possibility is an ambiguous virtual tail call frames resolution:

@smallexample
int i;
static void __attribute__((noinline, noclone)) f (void) @{ i++; @}
static void __attribute__((noinline, noclone)) e (void) @{ f (); @}
static void __attribute__((noinline, noclone)) d (void) @{ f (); @}
static void __attribute__((noinline, noclone)) c (void) @{ d (); @}
static void __attribute__((noinline, noclone)) b (void)
@{ if (i) c (); else e (); @}
static void __attribute__((noinline, noclone)) a (void) @{ b (); @}
int main (void) @{ a (); return 0; @}

tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)
tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)
tailcall: reduced: 0x4004d2(a) |
(gdb) bt
#0  f () at t.c:2
#1  0x00000000004004d2 in a () at t.c:8
#2  0x0000000000400395 in main () at t.c:9
@end smallexample

@set CALLSEQ1A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}c@value{ARROW}d@value{ARROW}f}
@set CALLSEQ2A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}e@value{ARROW}f}

@c Convert CALLSEQ#A to CALLSEQ#B depending on HAVE_MAKEINFO_CLICK.
@ifset HAVE_MAKEINFO_CLICK
@set ARROW @click{}
@set CALLSEQ1B @clicksequence{@value{CALLSEQ1A}}
@set CALLSEQ2B @clicksequence{@value{CALLSEQ2A}}
@end ifset
@ifclear HAVE_MAKEINFO_CLICK
@set ARROW ->
@set CALLSEQ1B @value{CALLSEQ1A}
@set CALLSEQ2B @value{CALLSEQ2A}
@end ifclear

Frames #0 and #2 are real, #1 is a virtual tail call frame.
The code can have possible execution paths @value{CALLSEQ1B} or
@value{CALLSEQ2B}, @value{GDBN} cannot find which one from the inferior state.

@code{initial:} state shows some random possible calling sequence @value{GDBN}
has found.  It then finds another possible calling sequcen - that one is
prefixed by @code{compare:}.  The non-ambiguous intersection of these two is
printed as the @code{reduced:} calling sequence.  That one could have many
futher @code{compare:} and @code{reduced:} statements as long as there remain
any non-ambiguous sequence entries.

For the frame of function @code{b} in both cases there are different possible
@code{$pc} values (@code{0x4004cc} or @code{0x4004ce}), therefore this frame is
also ambigous.  The only non-ambiguous frame is the one for function @code{a},
therefore this one is displayed to the user while the ambiguous frames are
omitted.

There can be also reasons why printing of frame argument values at function
entry may fail:

@smallexample
int v;
static void __attribute__((noinline, noclone)) c (int i) @{ v++; @}
static void __attribute__((noinline, noclone)) a (int i);
static void __attribute__((noinline, noclone)) b (int i) @{ a (i); @}
static void __attribute__((noinline, noclone)) a (int i)
@{ if (i) b (i - 1); else c (0); @}
int main (void) @{ a (5); return 0; @}

(gdb) bt
#0  c (i=i@@entry=0) at t.c:2
#1  0x0000000000400428 in a (DW_OP_GNU_entry_value resolving has found
function "a" at 0x400420 can call itself via tail calls
i=<optimized out>) at t.c:6
#2  0x000000000040036e in main () at t.c:7
@end smallexample

@value{GDBN} cannot find out from the inferior state if and how many times did
function @code{a} call itself (via function @code{b}) as these calls would be
tail calls.  Such tail calls would modify thue @code{i} variable, therefore
@value{GDBN} cannot be sure the value it knows would be right - @value{GDBN}
prints @code{<optimized out>} instead.

@node Macros
@chapter C Preprocessor Macros

Some languages, such as C and C@t{++}, provide a way to define and invoke
``preprocessor macros'' which expand into strings of tokens.
@value{GDBN} can evaluate expressions containing macro invocations, show
the result of macro expansion, and show a macro's definition, including
where it was defined.

You may need to compile your program specially to provide @value{GDBN}
with information about preprocessor macros.  Most compilers do not
include macros in their debugging information, even when you compile
with the @option{-g} flag.  @xref{Compilation}.

A program may define a macro at one point, remove that definition later,
and then provide a different definition after that.  Thus, at different
points in the program, a macro may have different definitions, or have
no definition at all.  If there is a current stack frame, @value{GDBN}
uses the macros in scope at that frame's source code line.  Otherwise,
@value{GDBN} uses the macros in scope at the current listing location;
see @ref{List}.

Whenever @value{GDBN} evaluates an expression, it always expands any
macro invocations present in the expression.  @value{GDBN} also provides
the following commands for working with macros explicitly.

@table @code

@kindex macro expand
@cindex macro expansion, showing the results of preprocessor
@cindex preprocessor macro expansion, showing the results of
@cindex expanding preprocessor macros
@item macro expand @var{expression}
@itemx macro exp @var{expression}
Show the results of expanding all preprocessor macro invocations in
@var{expression}.  Since @value{GDBN} simply expands macros, but does
not parse the result, @var{expression} need not be a valid expression;
it can be any string of tokens.

@kindex macro exp1
@item macro expand-once @var{expression}
@itemx macro exp1 @var{expression}
@cindex expand macro once
@i{(This command is not yet implemented.)}  Show the results of
expanding those preprocessor macro invocations that appear explicitly in
@var{expression}.  Macro invocations appearing in that expansion are
left unchanged.  This command allows you to see the effect of a
particular macro more clearly, without being confused by further
expansions.  Since @value{GDBN} simply expands macros, but does not
parse the result, @var{expression} need not be a valid expression; it
can be any string of tokens.

@kindex info macro
@cindex macro definition, showing
@cindex definition of a macro, showing
@cindex macros, from debug info
@item info macro [-a|-all] [--] @var{macro}
Show the current definition or all definitions of the named @var{macro},
and describe the source location or compiler command-line where that
definition was established.  The optional double dash is to signify the end of
argument processing and the beginning of @var{macro} for non C-like macros where
the macro may begin with a hyphen.

@kindex info macros
@item info macros @var{linespec}
Show all macro definitions that are in effect at the location specified
by @var{linespec},  and describe the source location or compiler
command-line where those definitions were established.

@kindex macro define
@cindex user-defined macros
@cindex defining macros interactively
@cindex macros, user-defined
@item macro define @var{macro} @var{replacement-list}
@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
Introduce a definition for a preprocessor macro named @var{macro},
invocations of which are replaced by the tokens given in
@var{replacement-list}.  The first form of this command defines an
``object-like'' macro, which takes no arguments; the second form
defines a ``function-like'' macro, which takes the arguments given in
@var{arglist}.

A definition introduced by this command is in scope in every
expression evaluated in @value{GDBN}, until it is removed with the
@code{macro undef} command, described below.  The definition overrides
all definitions for @var{macro} present in the program being debugged,
as well as any previous user-supplied definition.

@kindex macro undef
@item macro undef @var{macro}
Remove any user-supplied definition for the macro named @var{macro}.
This command only affects definitions provided with the @code{macro
define} command, described above; it cannot remove definitions present
in the program being debugged.

@kindex macro list
@item macro list
List all the macros defined using the @code{macro define} command.
@end table

@cindex macros, example of debugging with
Here is a transcript showing the above commands in action.  First, we
show our source files:

@smallexample
$ cat sample.c
#include <stdio.h>
#include "sample.h"

#define M 42
#define ADD(x) (M + x)

main ()
@{
#define N 28
  printf ("Hello, world!\n");
#undef N
  printf ("We're so creative.\n");
#define N 1729
  printf ("Goodbye, world!\n");
@}
$ cat sample.h
#define Q <
$
@end smallexample

Now, we compile the program using the @sc{gnu} C compiler,
@value{NGCC}.  We pass the @option{-gdwarf-2}@footnote{This is the
minimum.  Recent versions of @value{NGCC} support @option{-gdwarf-3}
and @option{-gdwarf-4}; we recommend always choosing the most recent
version of DWARF.} @emph{and} @option{-g3} flags to ensure the compiler
includes information about preprocessor macros in the debugging
information.

@smallexample
$ gcc -gdwarf-2 -g3 sample.c -o sample
$
@end smallexample

Now, we start @value{GDBN} on our sample program:

@smallexample
$ gdb -nw sample
GNU gdb 2002-05-06-cvs
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, @dots{}
(@value{GDBP})
@end smallexample

We can expand macros and examine their definitions, even when the
program is not running.  @value{GDBN} uses the current listing position
to decide which macro definitions are in scope:

@smallexample
(@value{GDBP}) list main
3
4       #define M 42
5       #define ADD(x) (M + x)
6
7       main ()
8       @{
9       #define N 28
10        printf ("Hello, world!\n");
11      #undef N
12        printf ("We're so creative.\n");
(@value{GDBP}) info macro ADD
Defined at /home/jimb/gdb/macros/play/sample.c:5
#define ADD(x) (M + x)
(@value{GDBP}) info macro Q
Defined at /home/jimb/gdb/macros/play/sample.h:1
  included at /home/jimb/gdb/macros/play/sample.c:2
#define Q <
(@value{GDBP}) macro expand ADD(1)
expands to: (42 + 1)
(@value{GDBP}) macro expand-once ADD(1)
expands to: once (M + 1)
(@value{GDBP})
@end smallexample

In the example above, note that @code{macro expand-once} expands only
the macro invocation explicit in the original text --- the invocation of
@code{ADD} --- but does not expand the invocation of the macro @code{M},
which was introduced by @code{ADD}.

Once the program is running, @value{GDBN} uses the macro definitions in
force at the source line of the current stack frame:

@smallexample
(@value{GDBP}) break main
Breakpoint 1 at 0x8048370: file sample.c, line 10.
(@value{GDBP}) run
Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10
10        printf ("Hello, world!\n");
(@value{GDBP})
@end smallexample

At line 10, the definition of the macro @code{N} at line 9 is in force:

@smallexample
(@value{GDBP}) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28
(@value{GDBP}) macro expand N Q M
expands to: 28 < 42
(@value{GDBP}) print N Q M
$1 = 1
(@value{GDBP})
@end smallexample

As we step over directives that remove @code{N}'s definition, and then
give it a new definition, @value{GDBN} finds the definition (or lack
thereof) in force at each point:

@smallexample
(@value{GDBP}) next
Hello, world!
12        printf ("We're so creative.\n");
(@value{GDBP}) info macro N
The symbol `N' has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12
(@value{GDBP}) next
We're so creative.
14        printf ("Goodbye, world!\n");
(@value{GDBP}) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:13
#define N 1729
(@value{GDBP}) macro expand N Q M
expands to: 1729 < 42
(@value{GDBP}) print N Q M
$2 = 0
(@value{GDBP})
@end smallexample

In addition to source files, macros can be defined on the compilation command
line using the @option{-D@var{name}=@var{value}} syntax.  For macros defined in
such a way, @value{GDBN} displays the location of their definition as line zero
of the source file submitted to the compiler.

@smallexample
(@value{GDBP}) info macro __STDC__
Defined at /home/jimb/gdb/macros/play/sample.c:0
-D__STDC__=1
(@value{GDBP})
@end smallexample


@node Tracepoints
@chapter Tracepoints
@c This chapter is based on the documentation written by Michael
@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.

@cindex tracepoints
In some applications, it is not feasible for the debugger to interrupt
the program's execution long enough for the developer to learn
anything helpful about its behavior.  If the program's correctness
depends on its real-time behavior, delays introduced by a debugger
might cause the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.  It is useful to be able
to observe the program's behavior without interrupting it.

Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
specify locations in the program, called @dfn{tracepoints}, and
arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the @code{tfind} command, you can examine the values
those expressions had when the program hit the tracepoints.  The
expressions may also denote objects in memory---structures or arrays,
for example---whose values @value{GDBN} should record; while visiting
a particular tracepoint, you may inspect those objects as if they were
in memory at that moment.  However, because @value{GDBN} records these
values without interacting with you, it can do so quickly and
unobtrusively, hopefully not disturbing the program's behavior.

The tracepoint facility is currently available only for remote
targets.  @xref{Targets}.  In addition, your remote target must know
how to collect trace data.  This functionality is implemented in the
remote stub; however, none of the stubs distributed with @value{GDBN}
support tracepoints as of this writing.  The format of the remote
packets used to implement tracepoints are described in @ref{Tracepoint
Packets}.

It is also possible to get trace data from a file, in a manner reminiscent
of corefiles; you specify the filename, and use @code{tfind} to search
through the file.  @xref{Trace Files}, for more details.

This chapter describes the tracepoint commands and features.

@menu
* Set Tracepoints::
* Analyze Collected Data::
* Tracepoint Variables::
* Trace Files::
@end menu

@node Set Tracepoints
@section Commands to Set Tracepoints

Before running such a @dfn{trace experiment}, an arbitrary number of
tracepoints can be set.  A tracepoint is actually a special type of
breakpoint (@pxref{Set Breaks}), so you can manipulate it using
standard breakpoint commands.  For instance, as with breakpoints,
tracepoint numbers are successive integers starting from one, and many
of the commands associated with tracepoints take the tracepoint number
as their argument, to identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set
of data that you want the target to collect in the trace buffer when
it hits that tracepoint.  The collected data can include registers,
local variables, or global data.  Later, you can use @value{GDBN}
commands to examine the values these data had at the time the
tracepoint was hit.

Tracepoints do not support every breakpoint feature.  Ignore counts on
tracepoints have no effect, and tracepoints cannot run @value{GDBN}
commands when they are hit.  Tracepoints may not be thread-specific
either.

@cindex fast tracepoints
Some targets may support @dfn{fast tracepoints}, which are inserted in
a different way (such as with a jump instead of a trap), that is
faster but possibly restricted in where they may be installed.

@cindex static tracepoints
@cindex markers, static tracepoints
@cindex probing markers, static tracepoints
Regular and fast tracepoints are dynamic tracing facilities, meaning
that they can be used to insert tracepoints at (almost) any location
in the target.  Some targets may also support controlling @dfn{static
tracepoints} from @value{GDBN}.  With static tracing, a set of
instrumentation points, also known as @dfn{markers}, are embedded in
the target program, and can be activated or deactivated by name or
address.  These are usually placed at locations which facilitate
investigating what the target is actually doing.  @value{GDBN}'s
support for static tracing includes being able to list instrumentation
points, and attach them with @value{GDBN} defined high level
tracepoints that expose the whole range of convenience of
@value{GDBN}'s tracepoints support.  Namely, support for collecting
registers values and values of global or local (to the instrumentation
point) variables; tracepoint conditions and trace state variables.
The act of installing a @value{GDBN} static tracepoint on an
instrumentation point, or marker, is referred to as @dfn{probing} a
static tracepoint marker.

@code{gdbserver} supports tracepoints on some target systems.
@xref{Server,,Tracepoints support in @code{gdbserver}}.

This section describes commands to set tracepoints and associated
conditions and actions.

@menu
* Create and Delete Tracepoints::
* Enable and Disable Tracepoints::
* Tracepoint Passcounts::
* Tracepoint Conditions::
* Trace State Variables::
* Tracepoint Actions::
* Listing Tracepoints::
* Listing Static Tracepoint Markers::
* Starting and Stopping Trace Experiments::
* Tracepoint Restrictions::
@end menu

@node Create and Delete Tracepoints
@subsection Create and Delete Tracepoints

@table @code
@cindex set tracepoint
@kindex trace
@item trace @var{location}
The @code{trace} command is very similar to the @code{break} command.
Its argument @var{location} can be a source line, a function name, or
an address in the target program.  @xref{Specify Location}.  The
@code{trace} command defines a tracepoint, which is a point in the
target program where the debugger will briefly stop, collect some
data, and then allow the program to continue.  Setting a tracepoint or
changing its actions takes effect immediately if the remote stub
supports the @samp{InstallInTrace} feature (@pxref{install tracepoint
in tracing}).
If remote stub doesn't support the @samp{InstallInTrace} feature, all
these changes don't take effect until the next @code{tstart}
command, and once a trace experiment is running, further changes will
not have any effect until the next trace experiment starts.  In addition,
@value{GDBN} supports @dfn{pending tracepoints}---tracepoints whose
address is not yet resolved.  (This is similar to pending breakpoints.)
Pending tracepoints are not downloaded to the target and not installed
until they are resolved.  The resolution of pending tracepoints requires
@value{GDBN} support---when debugging with the remote target, and
@value{GDBN} disconnects from the remote stub (@pxref{disconnected
tracing}), pending tracepoints can not be resolved (and downloaded to
the remote stub) while @value{GDBN} is disconnected.

Here are some examples of using the @code{trace} command:

@smallexample
(@value{GDBP}) @b{trace foo.c:121}    // a source file and line number

(@value{GDBP}) @b{trace +2}           // 2 lines forward

(@value{GDBP}) @b{trace my_function}  // first source line of function

(@value{GDBP}) @b{trace *my_function} // EXACT start address of function

(@value{GDBP}) @b{trace *0x2117c4}    // an address
@end smallexample

@noindent
You can abbreviate @code{trace} as @code{tr}.

@item trace @var{location} if @var{cond}
Set a tracepoint with condition @var{cond}; evaluate the expression
@var{cond} each time the tracepoint is reached, and collect data only
if the value is nonzero---that is, if @var{cond} evaluates as true.
@xref{Tracepoint Conditions, ,Tracepoint Conditions}, for more
information on tracepoint conditions.

@item ftrace @var{location} [ if @var{cond} ]
@cindex set fast tracepoint
@cindex fast tracepoints, setting
@kindex ftrace
The @code{ftrace} command sets a fast tracepoint.  For targets that
support them, fast tracepoints will use a more efficient but possibly
less general technique to trigger data collection, such as a jump
instruction instead of a trap, or some sort of hardware support.  It
may not be possible to create a fast tracepoint at the desired
location, in which case the command will exit with an explanatory
message.

@value{GDBN} handles arguments to @code{ftrace} exactly as for
@code{trace}.

On 32-bit x86-architecture systems, fast tracepoints normally need to
be placed at an instruction that is 5 bytes or longer, but can be
placed at 4-byte instructions if the low 64K of memory of the target
program is available to install trampolines.  Some Unix-type systems,
such as @sc{gnu}/Linux, exclude low addresses from the program's
address space; but for instance with the Linux kernel it is possible
to let @value{GDBN} use this area by doing a @command{sysctl} command
to set the @code{mmap_min_addr} kernel parameter, as in

@example
sudo sysctl -w vm.mmap_min_addr=32768
@end example

@noindent
which sets the low address to 32K, which leaves plenty of room for
trampolines.  The minimum address should be set to a page boundary.

@item strace @var{location} [ if @var{cond} ]
@cindex set static tracepoint
@cindex static tracepoints, setting
@cindex probe static tracepoint marker
@kindex strace
The @code{strace} command sets a static tracepoint.  For targets that
support it, setting a static tracepoint probes a static
instrumentation point, or marker, found at @var{location}.  It may not
be possible to set a static tracepoint at the desired location, in
which case the command will exit with an explanatory message.

@value{GDBN} handles arguments to @code{strace} exactly as for
@code{trace}, with the addition that the user can also specify
@code{-m @var{marker}} as @var{location}.  This probes the marker
identified by the @var{marker} string identifier.  This identifier
depends on the static tracepoint backend library your program is
using.  You can find all the marker identifiers in the @samp{ID} field
of the @code{info static-tracepoint-markers} command output.
@xref{Listing Static Tracepoint Markers,,Listing Static Tracepoint
Markers}.  For example, in the following small program using the UST
tracing engine:

@smallexample
main ()
@{
  trace_mark(ust, bar33, "str %s", "FOOBAZ");
@}
@end smallexample

@noindent
the marker id is composed of joining the first two arguments to the
@code{trace_mark} call with a slash, which translates to:

@smallexample
(@value{GDBP}) info static-tracepoint-markers
Cnt Enb ID         Address            What
1   n   ust/bar33  0x0000000000400ddc in main at stexample.c:22
         Data: "str %s"
[etc...]
@end smallexample

@noindent
so you may probe the marker above with:

@smallexample
(@value{GDBP}) strace -m ust/bar33
@end smallexample

Static tracepoints accept an extra collect action --- @code{collect
$_sdata}.  This collects arbitrary user data passed in the probe point
call to the tracing library.  In the UST example above, you'll see
that the third argument to @code{trace_mark} is a printf-like format
string.  The user data is then the result of running that formating
string against the following arguments.  Note that @code{info
static-tracepoint-markers} command output lists that format string in
the @samp{Data:} field.

You can inspect this data when analyzing the trace buffer, by printing
the $_sdata variable like any other variable available to
@value{GDBN}.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.

@vindex $tpnum
@cindex last tracepoint number
@cindex recent tracepoint number
@cindex tracepoint number
The convenience variable @code{$tpnum} records the tracepoint number
of the most recently set tracepoint.

@kindex delete tracepoint
@cindex tracepoint deletion
@item delete tracepoint @r{[}@var{num}@r{]}
Permanently delete one or more tracepoints.  With no argument, the
default is to delete all tracepoints.  Note that the regular
@code{delete} command can remove tracepoints also.

Examples:

@smallexample
(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints

(@value{GDBP}) @b{delete trace}       // remove all tracepoints
@end smallexample

@noindent
You can abbreviate this command as @code{del tr}.
@end table

@node Enable and Disable Tracepoints
@subsection Enable and Disable Tracepoints

These commands are deprecated; they are equivalent to plain @code{disable} and @code{enable}.

@table @code
@kindex disable tracepoint
@item disable tracepoint @r{[}@var{num}@r{]}
Disable tracepoint @var{num}, or all tracepoints if no argument
@var{num} is given.  A disabled tracepoint will have no effect during
a trace experiment, but it is not forgotten.  You can re-enable
a disabled tracepoint using the @code{enable tracepoint} command.
If the command is issued during a trace experiment and the debug target
has support for disabling tracepoints during a trace experiment, then the
change will be effective immediately.  Otherwise, it will be applied to the
next trace experiment.

@kindex enable tracepoint
@item enable tracepoint @r{[}@var{num}@r{]}
Enable tracepoint @var{num}, or all tracepoints.  If this command is
issued during a trace experiment and the debug target supports enabling
tracepoints during a trace experiment, then the enabled tracepoints will
become effective immediately.  Otherwise, they will become effective the
next time a trace experiment is run.
@end table

@node Tracepoint Passcounts
@subsection Tracepoint Passcounts

@table @code
@kindex passcount
@cindex tracepoint pass count
@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
automatically stop a trace experiment.  If a tracepoint's passcount is
@var{n}, then the trace experiment will be automatically stopped on
the @var{n}'th time that tracepoint is hit.  If the tracepoint number
@var{num} is not specified, the @code{passcount} command sets the
passcount of the most recently defined tracepoint.  If no passcount is
given, the trace experiment will run until stopped explicitly by the
user.

Examples:

@smallexample
(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}

(@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
(@value{GDBP}) @b{trace foo}
(@value{GDBP}) @b{pass 3}
(@value{GDBP}) @b{trace bar}
(@value{GDBP}) @b{pass 2}
(@value{GDBP}) @b{trace baz}
(@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
@end smallexample
@end table

@node Tracepoint Conditions
@subsection Tracepoint Conditions
@cindex conditional tracepoints
@cindex tracepoint conditions

The simplest sort of tracepoint collects data every time your program
reaches a specified place.  You can also specify a @dfn{condition} for
a tracepoint.  A condition is just a Boolean expression in your
programming language (@pxref{Expressions, ,Expressions}).  A
tracepoint with a condition evaluates the expression each time your
program reaches it, and data collection happens only if the condition
is true.

Tracepoint conditions can be specified when a tracepoint is set, by
using @samp{if} in the arguments to the @code{trace} command.
@xref{Create and Delete Tracepoints, ,Setting Tracepoints}.  They can
also be set or changed at any time with the @code{condition} command,
just as with breakpoints.

Unlike breakpoint conditions, @value{GDBN} does not actually evaluate
the conditional expression itself.  Instead, @value{GDBN} encodes the
expression into an agent expression (@pxref{Agent Expressions})
suitable for execution on the target, independently of @value{GDBN}.
Global variables become raw memory locations, locals become stack
accesses, and so forth.

For instance, suppose you have a function that is usually called
frequently, but should not be called after an error has occurred.  You
could use the following tracepoint command to collect data about calls
of that function that happen while the error code is propagating
through the program; an unconditional tracepoint could end up
collecting thousands of useless trace frames that you would have to
search through.

@smallexample
(@value{GDBP}) @kbd{trace normal_operation if errcode > 0}
@end smallexample

@node Trace State Variables
@subsection Trace State Variables
@cindex trace state variables

A @dfn{trace state variable} is a special type of variable that is
created and managed by target-side code.  The syntax is the same as
that for GDB's convenience variables (a string prefixed with ``$''),
but they are stored on the target.  They must be created explicitly,
using a @code{tvariable} command.  They are always 64-bit signed
integers.

Trace state variables are remembered by @value{GDBN}, and downloaded
to the target along with tracepoint information when the trace
experiment starts.  There are no intrinsic limits on the number of
trace state variables, beyond memory limitations of the target.

@cindex convenience variables, and trace state variables
Although trace state variables are managed by the target, you can use
them in print commands and expressions as if they were convenience
variables; @value{GDBN} will get the current value from the target
while the trace experiment is running.  Trace state variables share
the same namespace as other ``$'' variables, which means that you
cannot have trace state variables with names like @code{$23} or
@code{$pc}, nor can you have a trace state variable and a convenience
variable with the same name.

@table @code

@item tvariable $@var{name} [ = @var{expression} ]
@kindex tvariable
The @code{tvariable} command creates a new trace state variable named
@code{$@var{name}}, and optionally gives it an initial value of
@var{expression}.  @var{expression} is evaluated when this command is
entered; the result will be converted to an integer if possible,
otherwise @value{GDBN} will report an error. A subsequent
@code{tvariable} command specifying the same name does not create a
variable, but instead assigns the supplied initial value to the
existing variable of that name, overwriting any previous initial
value. The default initial value is 0.

@item info tvariables
@kindex info tvariables
List all the trace state variables along with their initial values.
Their current values may also be displayed, if the trace experiment is
currently running.

@item delete tvariable @r{[} $@var{name} @dots{} @r{]}
@kindex delete tvariable
Delete the given trace state variables, or all of them if no arguments
are specified.

@end table

@node Tracepoint Actions
@subsection Tracepoint Action Lists

@table @code
@kindex actions
@cindex tracepoint actions
@item actions @r{[}@var{num}@r{]}
This command will prompt for a list of actions to be taken when the
tracepoint is hit.  If the tracepoint number @var{num} is not
specified, this command sets the actions for the one that was most
recently defined (so that you can define a tracepoint and then say
@code{actions} without bothering about its number).  You specify the
actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just @code{end}.  So
far, the only defined actions are @code{collect}, @code{teval}, and
@code{while-stepping}.

@code{actions} is actually equivalent to @code{commands} (@pxref{Break
Commands, ,Breakpoint Command Lists}), except that only the defined
actions are allowed; any other @value{GDBN} command is rejected.

@cindex remove actions from a tracepoint
To remove all actions from a tracepoint, type @samp{actions @var{num}}
and follow it immediately with @samp{end}.

@smallexample
(@value{GDBP}) @b{collect @var{data}} // collect some data

(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data

(@value{GDBP}) @b{end}              // signals the end of actions.
@end smallexample

In the following example, the action list begins with @code{collect}
commands indicating the things to be collected when the tracepoint is
hit.  Then, in order to single-step and collect additional data
following the tracepoint, a @code{while-stepping} command is used,
followed by the list of things to be collected after each step in a
sequence of single steps.  The @code{while-stepping} command is
terminated by its own separate @code{end} command.  Lastly, the action
list is terminated by an @code{end} command.

@smallexample
(@value{GDBP}) @b{trace foo}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
  > collect $pc, arr[i]
  > end
end
@end smallexample

@kindex collect @r{(tracepoints)}
@item collect@r{[}/@var{mods}@r{]} @var{expr1}, @var{expr2}, @dots{}
Collect values of the given expressions when the tracepoint is hit.
This command accepts a comma-separated list of any valid expressions.
In addition to global, static, or local variables, the following
special arguments are supported:

@table @code
@item $regs
Collect all registers.

@item $args
Collect all function arguments.

@item $locals
Collect all local variables.

@item $_ret
Collect the return address.  This is helpful if you want to see more
of a backtrace.

@item $_probe_argc
Collects the number of arguments from the static probe at which the
tracepoint is located.
@xref{Static Probe Points}.

@item $_probe_arg@var{n}
@var{n} is an integer between 0 and 11.  Collects the @var{n}th argument
from the static probe at which the tracepoint is located.
@xref{Static Probe Points}.

@item $_sdata
@vindex $_sdata@r{, collect}
Collect static tracepoint marker specific data.  Only available for
static tracepoints.  @xref{Tracepoint Actions,,Tracepoint Action
Lists}.  On the UST static tracepoints library backend, an
instrumentation point resembles a @code{printf} function call.  The
tracing library is able to collect user specified data formatted to a
character string using the format provided by the programmer that
instrumented the program.  Other backends have similar mechanisms.
Here's an example of a UST marker call:

@smallexample
 const char master_name[] = "$your_name";
 trace_mark(channel1, marker1, "hello %s", master_name)
@end smallexample

In this case, collecting @code{$_sdata} collects the string
@samp{hello $yourname}.  When analyzing the trace buffer, you can
inspect @samp{$_sdata} like any other variable available to
@value{GDBN}.
@end table

You can give several consecutive @code{collect} commands, each one
with a single argument, or one @code{collect} command with several
arguments separated by commas; the effect is the same.

The optional @var{mods} changes the usual handling of the arguments.
@code{s} requests that pointers to chars be handled as strings, in
particular collecting the contents of the memory being pointed at, up
to the first zero.  The upper bound is by default the value of the
@code{print elements} variable; if @code{s} is followed by a decimal
number, that is the upper bound instead.  So for instance
@samp{collect/s25 mystr} collects as many as 25 characters at
@samp{mystr}.

The command @code{info scope} (@pxref{Symbols, info scope}) is
particularly useful for figuring out what data to collect.

@kindex teval @r{(tracepoints)}
@item teval @var{expr1}, @var{expr2}, @dots{}
Evaluate the given expressions when the tracepoint is hit.  This
command accepts a comma-separated list of expressions.  The results
are discarded, so this is mainly useful for assigning values to trace
state variables (@pxref{Trace State Variables}) without adding those
values to the trace buffer, as would be the case if the @code{collect}
action were used.

@kindex while-stepping @r{(tracepoints)}
@item while-stepping @var{n}
Perform @var{n} single-step instruction traces after the tracepoint,
collecting new data after each step.  The @code{while-stepping}
command is followed by the list of what to collect while stepping
(followed by its own @code{end} command):

@smallexample
> while-stepping 12
  > collect $regs, myglobal
  > end
>
@end smallexample

@noindent
Note that @code{$pc} is not automatically collected by
@code{while-stepping}; you need to explicitly collect that register if
you need it.  You may abbreviate @code{while-stepping} as @code{ws} or
@code{stepping}.

@item set default-collect @var{expr1}, @var{expr2}, @dots{}
@kindex set default-collect
@cindex default collection action
This variable is a list of expressions to collect at each tracepoint
hit.  It is effectively an additional @code{collect} action prepended
to every tracepoint action list.  The expressions are parsed
individually for each tracepoint, so for instance a variable named
@code{xyz} may be interpreted as a global for one tracepoint, and a
local for another, as appropriate to the tracepoint's location.

@item show default-collect
@kindex show default-collect
Show the list of expressions that are collected by default at each
tracepoint hit.

@end table

@node Listing Tracepoints
@subsection Listing Tracepoints

@table @code
@kindex info tracepoints @r{[}@var{n}@dots{}@r{]}
@kindex info tp @r{[}@var{n}@dots{}@r{]}
@cindex information about tracepoints
@item info tracepoints @r{[}@var{num}@dots{}@r{]}
Display information about the tracepoint @var{num}.  If you don't
specify a tracepoint number, displays information about all the
tracepoints defined so far.  The format is similar to that used for
@code{info breakpoints}; in fact, @code{info tracepoints} is the same
command, simply restricting itself to tracepoints.

A tracepoint's listing may include additional information specific to
tracing:

@itemize @bullet
@item
its passcount as given by the @code{passcount @var{n}} command

@item
the state about installed on target of each location
@end itemize

@smallexample
(@value{GDBP}) @b{info trace}
Num     Type           Disp Enb Address    What
1       tracepoint     keep y   0x0804ab57 in foo() at main.cxx:7
        while-stepping 20
          collect globfoo, $regs
        end
        collect globfoo2
        end
        pass count 1200 
2       tracepoint     keep y   <MULTIPLE>
        collect $eip
2.1                         y     0x0804859c in func4 at change-loc.h:35
        installed on target
2.2                         y     0xb7ffc480 in func4 at change-loc.h:35
        installed on target
2.3                         y     <PENDING>  set_tracepoint
3       tracepoint     keep y   0x080485b1 in foo at change-loc.c:29
        not installed on target
(@value{GDBP})
@end smallexample

@noindent
This command can be abbreviated @code{info tp}.
@end table

@node Listing Static Tracepoint Markers
@subsection Listing Static Tracepoint Markers

@table @code
@kindex info static-tracepoint-markers
@cindex information about static tracepoint markers
@item info static-tracepoint-markers
Display information about all static tracepoint markers defined in the
program.

For each marker, the following columns are printed:

@table @emph
@item Count
An incrementing counter, output to help readability.  This is not a
stable identifier.
@item ID
The marker ID, as reported by the target.
@item Enabled or Disabled
Probed markers are tagged with @samp{y}.  @samp{n} identifies marks
that are not enabled.
@item Address
Where the marker is in your program, as a memory address.
@item What
Where the marker is in the source for your program, as a file and line
number.  If the debug information included in the program does not
allow @value{GDBN} to locate the source of the marker, this column
will be left blank.
@end table

@noindent
In addition, the following information may be printed for each marker:

@table @emph
@item Data
User data passed to the tracing library by the marker call.  In the
UST backend, this is the format string passed as argument to the
marker call.
@item Static tracepoints probing the marker
The list of static tracepoints attached to the marker.
@end table

@smallexample
(@value{GDBP}) info static-tracepoint-markers
Cnt ID         Enb Address            What
1   ust/bar2   y   0x0000000000400e1a in main at stexample.c:25
     Data: number1 %d number2 %d
     Probed by static tracepoints: #2
2   ust/bar33  n   0x0000000000400c87 in main at stexample.c:24
     Data: str %s
(@value{GDBP})
@end smallexample
@end table

@node Starting and Stopping Trace Experiments
@subsection Starting and Stopping Trace Experiments

@table @code
@kindex tstart [ @var{notes} ]
@cindex start a new trace experiment
@cindex collected data discarded
@item tstart
This command starts the trace experiment, and begins collecting data.
It has the side effect of discarding all the data collected in the
trace buffer during the previous trace experiment.  If any arguments
are supplied, they are taken as a note and stored with the trace
experiment's state.  The notes may be arbitrary text, and are
especially useful with disconnected tracing in a multi-user context;
the notes can explain what the trace is doing, supply user contact
information, and so forth.

@kindex tstop [ @var{notes} ]
@cindex stop a running trace experiment
@item tstop
This command stops the trace experiment.  If any arguments are
supplied, they are recorded with the experiment as a note.  This is
useful if you are stopping a trace started by someone else, for
instance if the trace is interfering with the system's behavior and
needs to be stopped quickly.

@strong{Note}: a trace experiment and data collection may stop
automatically if any tracepoint's passcount is reached
(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.

@kindex tstatus
@cindex status of trace data collection
@cindex trace experiment, status of
@item tstatus
This command displays the status of the current trace data
collection.
@end table

Here is an example of the commands we described so far:

@smallexample
(@value{GDBP}) @b{trace gdb_c_test}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11
  > collect $regs
  > end
> end
(@value{GDBP}) @b{tstart}
	[time passes @dots{}]
(@value{GDBP}) @b{tstop}
@end smallexample

@anchor{disconnected tracing}
@cindex disconnected tracing
You can choose to continue running the trace experiment even if
@value{GDBN} disconnects from the target, voluntarily or
involuntarily.  For commands such as @code{detach}, the debugger will
ask what you want to do with the trace.  But for unexpected
terminations (@value{GDBN} crash, network outage), it would be
unfortunate to lose hard-won trace data, so the variable
@code{disconnected-tracing} lets you decide whether the trace should
continue running without @value{GDBN}.

@table @code
@item set disconnected-tracing on
@itemx set disconnected-tracing off
@kindex set disconnected-tracing
Choose whether a tracing run should continue to run if @value{GDBN}
has disconnected from the target.  Note that @code{detach} or
@code{quit} will ask you directly what to do about a running trace no
matter what this variable's setting, so the variable is mainly useful
for handling unexpected situations, such as loss of the network.

@item show disconnected-tracing
@kindex show disconnected-tracing
Show the current choice for disconnected tracing.

@end table

When you reconnect to the target, the trace experiment may or may not
still be running; it might have filled the trace buffer in the
meantime, or stopped for one of the other reasons.  If it is running,
it will continue after reconnection.

Upon reconnection, the target will upload information about the
tracepoints in effect.  @value{GDBN} will then compare that
information to the set of tracepoints currently defined, and attempt
to match them up, allowing for the possibility that the numbers may
have changed due to creation and deletion in the meantime.  If one of
the target's tracepoints does not match any in @value{GDBN}, the
debugger will create a new tracepoint, so that you have a number with
which to specify that tracepoint.  This matching-up process is
necessarily heuristic, and it may result in useless tracepoints being
created; you may simply delete them if they are of no use.

@cindex circular trace buffer
If your target agent supports a @dfn{circular trace buffer}, then you
can run a trace experiment indefinitely without filling the trace
buffer; when space runs out, the agent deletes already-collected trace
frames, oldest first, until there is enough room to continue
collecting.  This is especially useful if your tracepoints are being
hit too often, and your trace gets terminated prematurely because the
buffer is full.  To ask for a circular trace buffer, simply set
@samp{circular-trace-buffer} to on.  You can set this at any time,
including during tracing; if the agent can do it, it will change
buffer handling on the fly, otherwise it will not take effect until
the next run.

@table @code
@item set circular-trace-buffer on
@itemx set circular-trace-buffer off
@kindex set circular-trace-buffer
Choose whether a tracing run should use a linear or circular buffer
for trace data.  A linear buffer will not lose any trace data, but may
fill up prematurely, while a circular buffer will discard old trace
data, but it will have always room for the latest tracepoint hits.

@item show circular-trace-buffer
@kindex show circular-trace-buffer
Show the current choice for the trace buffer.  Note that this may not
match the agent's current buffer handling, nor is it guaranteed to
match the setting that might have been in effect during a past run,
for instance if you are looking at frames from a trace file.

@end table

@table @code
@item set trace-buffer-size @var{n}
@itemx set trace-buffer-size unlimited
@kindex set trace-buffer-size
Request that the target use a trace buffer of @var{n} bytes.  Not all
targets will honor the request; they may have a compiled-in size for
the trace buffer, or some other limitation.  Set to a value of
@code{unlimited} or @code{-1} to let the target use whatever size it
likes.  This is also the default.

@item show trace-buffer-size
@kindex show trace-buffer-size
Show the current requested size for the trace buffer.  Note that this
will only match the actual size if the target supports size-setting,
and was able to handle the requested size.  For instance, if the
target can only change buffer size between runs, this variable will
not reflect the change until the next run starts.  Use @code{tstatus}
to get a report of the actual buffer size.
@end table

@table @code
@item set trace-user @var{text}
@kindex set trace-user

@item show trace-user
@kindex show trace-user

@item set trace-notes @var{text}
@kindex set trace-notes
Set the trace run's notes.

@item show trace-notes
@kindex show trace-notes
Show the trace run's notes.

@item set trace-stop-notes @var{text}
@kindex set trace-stop-notes
Set the trace run's stop notes.  The handling of the note is as for
@code{tstop} arguments; the set command is convenient way to fix a
stop note that is mistaken or incomplete.

@item show trace-stop-notes
@kindex show trace-stop-notes
Show the trace run's stop notes.

@end table

@node Tracepoint Restrictions
@subsection Tracepoint Restrictions

@cindex tracepoint restrictions
There are a number of restrictions on the use of tracepoints.  As
described above, tracepoint data gathering occurs on the target
without interaction from @value{GDBN}.  Thus the full capabilities of
the debugger are not available during data gathering, and then at data
examination time, you will be limited by only having what was
collected.  The following items describe some common problems, but it
is not exhaustive, and you may run into additional difficulties not
mentioned here.

@itemize @bullet

@item
Tracepoint expressions are intended to gather objects (lvalues).  Thus
the full flexibility of GDB's expression evaluator is not available.
You cannot call functions, cast objects to aggregate types, access
convenience variables or modify values (except by assignment to trace
state variables).  Some language features may implicitly call
functions (for instance Objective-C fields with accessors), and therefore
cannot be collected either.

@item
Collection of local variables, either individually or in bulk with
@code{$locals} or @code{$args}, during @code{while-stepping} may
behave erratically.  The stepping action may enter a new scope (for
instance by stepping into a function), or the location of the variable
may change (for instance it is loaded into a register).  The
tracepoint data recorded uses the location information for the
variables that is correct for the tracepoint location.  When the
tracepoint is created, it is not possible, in general, to determine
where the steps of a @code{while-stepping} sequence will advance the
program---particularly if a conditional branch is stepped.

@item
Collection of an incompletely-initialized or partially-destroyed object
may result in something that @value{GDBN} cannot display, or displays
in a misleading way.

@item
When @value{GDBN} displays a pointer to character it automatically
dereferences the pointer to also display characters of the string
being pointed to.  However, collecting the pointer during tracing does
not automatically collect the string.  You need to explicitly
dereference the pointer and provide size information if you want to
collect not only the pointer, but the memory pointed to.  For example,
@code{*ptr@@50} can be used to collect the 50 element array pointed to
by @code{ptr}.

@item
It is not possible to collect a complete stack backtrace at a
tracepoint.  Instead, you may collect the registers and a few hundred
bytes from the stack pointer with something like @code{*(unsigned char *)$esp@@300}
(adjust to use the name of the actual stack pointer register on your
target architecture, and the amount of stack you wish to capture).
Then the @code{backtrace} command will show a partial backtrace when
using a trace frame.  The number of stack frames that can be examined
depends on the sizes of the frames in the collected stack.  Note that
if you ask for a block so large that it goes past the bottom of the
stack, the target agent may report an error trying to read from an
invalid address.

@item
If you do not collect registers at a tracepoint, @value{GDBN} can
infer that the value of @code{$pc} must be the same as the address of
the tracepoint and use that when you are looking at a trace frame
for that tracepoint.  However, this cannot work if the tracepoint has
multiple locations (for instance if it was set in a function that was
inlined), or if it has a @code{while-stepping} loop.  In those cases
@value{GDBN} will warn you that it can't infer @code{$pc}, and default
it to zero.

@end itemize

@node Analyze Collected Data
@section Using the Collected Data

After the tracepoint experiment ends, you use @value{GDBN} commands
for examining the trace data.  The basic idea is that each tracepoint
collects a trace @dfn{snapshot} every time it is hit and another
snapshot every time it single-steps.  All these snapshots are
consecutively numbered from zero and go into a buffer, and you can
examine them later.  The way you examine them is to @dfn{focus} on a
specific trace snapshot.  When the remote stub is focused on a trace
snapshot, it will respond to all @value{GDBN} requests for memory and
registers by reading from the buffer which belongs to that snapshot,
rather than from @emph{real} memory or registers of the program being
debugged.  This means that @strong{all} @value{GDBN} commands
(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
behave as if we were currently debugging the program state as it was
when the tracepoint occurred.  Any requests for data that are not in
the buffer will fail.

@menu
* tfind::                       How to select a trace snapshot
* tdump::                       How to display all data for a snapshot
* save tracepoints::            How to save tracepoints for a future run
@end menu

@node tfind
@subsection @code{tfind @var{n}}

@kindex tfind
@cindex select trace snapshot
@cindex find trace snapshot
The basic command for selecting a trace snapshot from the buffer is
@code{tfind @var{n}}, which finds trace snapshot number @var{n},
counting from zero.  If no argument @var{n} is given, the next
snapshot is selected.

Here are the various forms of using the @code{tfind} command.

@table @code
@item tfind start
Find the first snapshot in the buffer.  This is a synonym for
@code{tfind 0} (since 0 is the number of the first snapshot).

@item tfind none
Stop debugging trace snapshots, resume @emph{live} debugging.

@item tfind end
Same as @samp{tfind none}.

@item tfind
No argument means find the next trace snapshot.

@item tfind -
Find the previous trace snapshot before the current one.  This permits
retracing earlier steps.

@item tfind tracepoint @var{num}
Find the next snapshot associated with tracepoint @var{num}.  Search
proceeds forward from the last examined trace snapshot.  If no
argument @var{num} is given, it means find the next snapshot collected
for the same tracepoint as the current snapshot.

@item tfind pc @var{addr}
Find the next snapshot associated with the value @var{addr} of the
program counter.  Search proceeds forward from the last examined trace
snapshot.  If no argument @var{addr} is given, it means find the next
snapshot with the same value of PC as the current snapshot.

@item tfind outside @var{addr1}, @var{addr2}
Find the next snapshot whose PC is outside the given range of
addresses (exclusive).

@item tfind range @var{addr1}, @var{addr2}
Find the next snapshot whose PC is between @var{addr1} and
@var{addr2} (inclusive).

@item tfind line @r{[}@var{file}:@r{]}@var{n}
Find the next snapshot associated with the source line @var{n}.  If
the optional argument @var{file} is given, refer to line @var{n} in
that source file.  Search proceeds forward from the last examined
trace snapshot.  If no argument @var{n} is given, it means find the
next line other than the one currently being examined; thus saying
@code{tfind line} repeatedly can appear to have the same effect as
stepping from line to line in a @emph{live} debugging session.
@end table

The default arguments for the @code{tfind} commands are specifically
designed to make it easy to scan through the trace buffer.  For
instance, @code{tfind} with no argument selects the next trace
snapshot, and @code{tfind -} with no argument selects the previous
trace snapshot.  So, by giving one @code{tfind} command, and then
simply hitting @key{RET} repeatedly you can examine all the trace
snapshots in order.  Or, by saying @code{tfind -} and then hitting
@key{RET} repeatedly you can examine the snapshots in reverse order.
The @code{tfind line} command with no argument selects the snapshot
for the next source line executed.  The @code{tfind pc} command with
no argument selects the next snapshot with the same program counter
(PC) as the current frame.  The @code{tfind tracepoint} command with
no argument selects the next trace snapshot collected by the same
tracepoint as the current one.

In addition to letting you scan through the trace buffer manually,
these commands make it easy to construct @value{GDBN} scripts that
scan through the trace buffer and print out whatever collected data
you are interested in.  Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

@smallexample
(@value{GDBP}) @b{tfind start}
(@value{GDBP}) @b{while ($trace_frame != -1)}
> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
          $trace_frame, $pc, $sp, $fp
> tfind
> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
@end smallexample

Or, if we want to examine the variable @code{X} at each source line in
the buffer:

@smallexample
(@value{GDBP}) @b{tfind start}
(@value{GDBP}) @b{while ($trace_frame != -1)}
> printf "Frame %d, X == %d\n", $trace_frame, X
> tfind line
> end

Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255
@end smallexample

@node tdump
@subsection @code{tdump}
@kindex tdump
@cindex dump all data collected at tracepoint
@cindex tracepoint data, display

This command takes no arguments.  It prints all the data collected at
the current trace snapshot.

@smallexample
(@value{GDBP}) @b{trace 444}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end

(@value{GDBP}) @b{tstart}

(@value{GDBP}) @b{tfind line 444}
#0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
at gdb_test.c:444
444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )

(@value{GDBP}) @b{tdump}
Data collected at tracepoint 2, trace frame 1:
d0             0xc4aa0085       -995491707
d1             0x18     24
d2             0x80     128
d3             0x33     51
d4             0x71aea3d        119204413
d5             0x22     34
d6             0xe0     224
d7             0x380035 3670069
a0             0x19e24a 1696330
a1             0x3000668        50333288
a2             0x100    256
a3             0x322000 3284992
a4             0x3000698        50333336
a5             0x1ad3cc 1758156
fp             0x30bf3c 0x30bf3c
sp             0x30bf34 0x30bf34
ps             0x0      0
pc             0x20b2c8 0x20b2c8
fpcontrol      0x0      0
fpstatus       0x0      0
fpiaddr        0x0      0
p = 0x20e5b4 "gdb-test"
p1 = (void *) 0x11
p2 = (void *) 0x22
p3 = (void *) 0x33
p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66
gdb_long_test = 17 '\021'

(@value{GDBP})
@end smallexample

@code{tdump} works by scanning the tracepoint's current collection
actions and printing the value of each expression listed.  So
@code{tdump} can fail, if after a run, you change the tracepoint's
actions to mention variables that were not collected during the run.

Also, for tracepoints with @code{while-stepping} loops, @code{tdump}
uses the collected value of @code{$pc} to distinguish between trace
frames that were collected at the tracepoint hit, and frames that were
collected while stepping.  This allows it to correctly choose whether
to display the basic list of collections, or the collections from the
body of the while-stepping loop.  However, if @code{$pc} was not collected,
then @code{tdump} will always attempt to dump using the basic collection
list, and may fail if a while-stepping frame does not include all the
same data that is collected at the tracepoint hit.
@c This is getting pretty arcane, example would be good.

@node save tracepoints
@subsection @code{save tracepoints @var{filename}}
@kindex save tracepoints
@kindex save-tracepoints
@cindex save tracepoints for future sessions

This command saves all current tracepoint definitions together with
their actions and passcounts, into a file @file{@var{filename}}
suitable for use in a later debugging session.  To read the saved
tracepoint definitions, use the @code{source} command (@pxref{Command
Files}).  The @w{@code{save-tracepoints}} command is a deprecated
alias for @w{@code{save tracepoints}}

@node Tracepoint Variables
@section Convenience Variables for Tracepoints
@cindex tracepoint variables
@cindex convenience variables for tracepoints

@table @code
@vindex $trace_frame
@item (int) $trace_frame
The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
snapshot is selected.

@vindex $tracepoint
@item (int) $tracepoint
The tracepoint for the current trace snapshot.

@vindex $trace_line
@item (int) $trace_line
The line number for the current trace snapshot.

@vindex $trace_file
@item (char []) $trace_file
The source file for the current trace snapshot.

@vindex $trace_func
@item (char []) $trace_func
The name of the function containing @code{$tracepoint}.
@end table

Note: @code{$trace_file} is not suitable for use in @code{printf},
use @code{output} instead.

Here's a simple example of using these convenience variables for
stepping through all the trace snapshots and printing some of their
data.  Note that these are not the same as trace state variables,
which are managed by the target.

@smallexample
(@value{GDBP}) @b{tfind start}

(@value{GDBP}) @b{while $trace_frame != -1}
> output $trace_file
> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
> tfind
> end
@end smallexample

@node Trace Files
@section Using Trace Files
@cindex trace files

In some situations, the target running a trace experiment may no
longer be available; perhaps it crashed, or the hardware was needed
for a different activity.  To handle these cases, you can arrange to
dump the trace data into a file, and later use that file as a source
of trace data, via the @code{target tfile} command.

@table @code

@kindex tsave
@item tsave [ -r ] @var{filename}
@itemx tsave [-ctf] @var{dirname}
Save the trace data to @var{filename}.  By default, this command
assumes that @var{filename} refers to the host filesystem, so if
necessary @value{GDBN} will copy raw trace data up from the target and
then save it.  If the target supports it, you can also supply the
optional argument @code{-r} (``remote'') to direct the target to save
the data directly into @var{filename} in its own filesystem, which may be
more efficient if the trace buffer is very large.  (Note, however, that
@code{target tfile} can only read from files accessible to the host.)
By default, this command will save trace frame in tfile format.
You can supply the optional argument @code{-ctf} to save date in CTF
format.  The @dfn{Common Trace Format} (CTF) is proposed as a trace format
that can be shared by multiple debugging and tracing tools.  Please go to
@indicateurl{http://www.efficios.com/ctf} to get more information.

@kindex target tfile
@kindex tfile
@kindex target ctf
@kindex ctf
@item target tfile @var{filename}
@itemx target ctf @var{dirname}
Use the file named @var{filename} or directory named @var{dirname} as
a source of trace data.  Commands that examine data work as they do with
a live target, but it is not possible to run any new trace experiments.
@code{tstatus} will report the state of the trace run at the moment
the data was saved, as well as the current trace frame you are examining.
@var{filename} or @var{dirname} must be on a filesystem accessible to
the host.

@smallexample
(@value{GDBP}) target ctf ctf.ctf
(@value{GDBP}) tfind
Found trace frame 0, tracepoint 2
39            ++a;  /* set tracepoint 1 here */
(@value{GDBP}) tdump
Data collected at tracepoint 2, trace frame 0:
i = 0
a = 0
b = 1 '\001'
c = @{"123", "456", "789", "123", "456", "789"@}
d = @{@{@{a = 1, b = 2@}, @{a = 3, b = 4@}@}, @{@{a = 5, b = 6@}, @{a = 7, b = 8@}@}@}
(@value{GDBP}) p b
$1 = 1
@end smallexample

@end table

@node Overlays
@chapter Debugging Programs That Use Overlays
@cindex overlays

If your program is too large to fit completely in your target system's
memory, you can sometimes use @dfn{overlays} to work around this
problem.  @value{GDBN} provides some support for debugging programs that
use overlays.

@menu
* How Overlays Work::              A general explanation of overlays.
* Overlay Commands::               Managing overlays in @value{GDBN}.
* Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
                                   mapped by asking the inferior.
* Overlay Sample Program::         A sample program using overlays.
@end menu

@node How Overlays Work
@section How Overlays Work
@cindex mapped overlays
@cindex unmapped overlays
@cindex load address, overlay's
@cindex mapped address
@cindex overlay area

Suppose you have a computer whose instruction address space is only 64
kilobytes long, but which has much more memory which can be accessed by
other means: special instructions, segment registers, or memory
management hardware, for example.  Suppose further that you want to
adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively
independent, and need not call each other directly; call these modules
@dfn{overlays}.  Separate the overlays from the main program, and place
their machine code in the larger memory.  Place your main program in
instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that
overlay's machine code from the large memory into the space set aside
for it in the instruction memory, and then jump to its entry point
there.

@c NB:  In the below the mapped area's size is greater or equal to the
@c size of all overlays.  This is intentional to remind the developer
@c that overlays don't necessarily need to be the same size.

@smallexample
@group
    Data             Instruction            Larger
Address Space       Address Space        Address Space
+-----------+       +-----------+        +-----------+
|           |       |           |        |           |
+-----------+       +-----------+        +-----------+<-- overlay 1
| program   |       |   main    |   .----| overlay 1 | load address
| variables |       |  program  |   |    +-----------+
| and heap  |       |           |   |    |           |
+-----------+       |           |   |    +-----------+<-- overlay 2
|           |       +-----------+   |    |           | load address
+-----------+       |           |   |  .-| overlay 2 |
                    |           |   |  | |           |
         mapped --->+-----------+   |  | +-----------+
         address    |           |   |  | |           |
                    |  overlay  | <-'  | |           |
                    |   area    |  <---' +-----------+<-- overlay 3
                    |           | <---.  |           | load address
                    +-----------+     `--| overlay 3 |
                    |           |        |           |
                    +-----------+        |           |
                                         +-----------+
                                         |           |
                                         +-----------+

                    @anchor{A code overlay}A code overlay
@end group
@end smallexample

The diagram (@pxref{A code overlay}) shows a system with separate data
and instruction address spaces.  To map an overlay, the program copies
its code from the larger address space to the instruction address space.
Since the overlays shown here all use the same mapped address, only one
may be mapped at a time.  For a system with a single address space for
data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main
program and the overlay area.

An overlay loaded into instruction memory and ready for use is called a
@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
instruction memory.  An overlay not present (or only partially present)
in instruction memory is called @dfn{unmapped}; its @dfn{load address}
is its address in the larger memory.  The mapped address is also called
the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
called the @dfn{load memory address}, or @dfn{LMA}.

Unfortunately, overlays are not a completely transparent way to adapt a
program to limited instruction memory.  They introduce a new set of
global constraints you must keep in mind as you design your program:

@itemize @bullet

@item
Before calling or returning to a function in an overlay, your program
must make sure that overlay is actually mapped.  Otherwise, the call or
return will transfer control to the right address, but in the wrong
overlay, and your program will probably crash.

@item
If the process of mapping an overlay is expensive on your system, you
will need to choose your overlays carefully to minimize their effect on
your program's performance.

@item
The executable file you load onto your system must contain each
overlay's instructions, appearing at the overlay's load address, not its
mapped address.  However, each overlay's instructions must be relocated
and its symbols defined as if the overlay were at its mapped address.
You can use GNU linker scripts to specify different load and relocation
addresses for pieces of your program; see @ref{Overlay Description,,,
ld.info, Using ld: the GNU linker}.

@item
The procedure for loading executable files onto your system must be able
to load their contents into the larger address space as well as the
instruction and data spaces.

@end itemize

The overlay system described above is rather simple, and could be
improved in many ways:

@itemize @bullet

@item
If your system has suitable bank switch registers or memory management
hardware, you could use those facilities to make an overlay's load area
contents simply appear at their mapped address in instruction space.
This would probably be faster than copying the overlay to its mapped
area in the usual way.

@item
If your overlays are small enough, you could set aside more than one
overlay area, and have more than one overlay mapped at a time.

@item
You can use overlays to manage data, as well as instructions.  In
general, data overlays are even less transparent to your design than
code overlays: whereas code overlays only require care when you call or
return to functions, data overlays require care every time you access
the data.  Also, if you change the contents of a data overlay, you
must copy its contents back out to its load address before you can copy a
different data overlay into the same mapped area.

@end itemize


@node Overlay Commands
@section Overlay Commands

To use @value{GDBN}'s overlay support, each overlay in your program must
correspond to a separate section of the executable file.  The section's
virtual memory address and load memory address must be the overlay's
mapped and load addresses.  Identifying overlays with sections allows
@value{GDBN} to determine the appropriate address of a function or
variable, depending on whether the overlay is mapped or not.

@value{GDBN}'s overlay commands all start with the word @code{overlay};
you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:

@table @code
@item overlay off
@kindex overlay
Disable @value{GDBN}'s overlay support.  When overlay support is
disabled, @value{GDBN} assumes that all functions and variables are
always present at their mapped addresses.  By default, @value{GDBN}'s
overlay support is disabled.

@item overlay manual
@cindex manual overlay debugging
Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
relies on you to tell it which overlays are mapped, and which are not,
using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
commands described below.

@item overlay map-overlay @var{overlay}
@itemx overlay map @var{overlay}
@cindex map an overlay
Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
be the name of the object file section containing the overlay.  When an
overlay is mapped, @value{GDBN} assumes it can find the overlay's
functions and variables at their mapped addresses.  @value{GDBN} assumes
that any other overlays whose mapped ranges overlap that of
@var{overlay} are now unmapped.

@item overlay unmap-overlay @var{overlay}
@itemx overlay unmap @var{overlay}
@cindex unmap an overlay
Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
must be the name of the object file section containing the overlay.
When an overlay is unmapped, @value{GDBN} assumes it can find the
overlay's functions and variables at their load addresses.

@item overlay auto
Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
consults a data structure the overlay manager maintains in the inferior
to see which overlays are mapped.  For details, see @ref{Automatic
Overlay Debugging}.

@item overlay load-target
@itemx overlay load
@cindex reloading the overlay table
Re-read the overlay table from the inferior.  Normally, @value{GDBN}
re-reads the table @value{GDBN} automatically each time the inferior
stops, so this command should only be necessary if you have changed the
overlay mapping yourself using @value{GDBN}.  This command is only
useful when using automatic overlay debugging.

@item overlay list-overlays
@itemx overlay list
@cindex listing mapped overlays
Display a list of the overlays currently mapped, along with their mapped
addresses, load addresses, and sizes.

@end table

Normally, when @value{GDBN} prints a code address, it includes the name
of the function the address falls in:

@smallexample
(@value{GDBP}) print main
$3 = @{int ()@} 0x11a0 <main>
@end smallexample
@noindent
When overlay debugging is enabled, @value{GDBN} recognizes code in
unmapped overlays, and prints the names of unmapped functions with
asterisks around them.  For example, if @code{foo} is a function in an
unmapped overlay, @value{GDBN} prints it this way:

@smallexample
(@value{GDBP}) overlay list
No sections are mapped.
(@value{GDBP}) print foo
$5 = @{int (int)@} 0x100000 <*foo*>
@end smallexample
@noindent
When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
name normally:

@smallexample
(@value{GDBP}) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
        mapped at 0x1016 - 0x104a
(@value{GDBP}) print foo
$6 = @{int (int)@} 0x1016 <foo>
@end smallexample

When overlay debugging is enabled, @value{GDBN} can find the correct
address for functions and variables in an overlay, whether or not the
overlay is mapped.  This allows most @value{GDBN} commands, like
@code{break} and @code{disassemble}, to work normally, even on unmapped
code.  However, @value{GDBN}'s breakpoint support has some limitations:

@itemize @bullet
@item
@cindex breakpoints in overlays
@cindex overlays, setting breakpoints in
You can set breakpoints in functions in unmapped overlays, as long as
@value{GDBN} can write to the overlay at its load address.
@item
@value{GDBN} can not set hardware or simulator-based breakpoints in
unmapped overlays.  However, if you set a breakpoint at the end of your
overlay manager (and tell @value{GDBN} which overlays are now mapped, if
you are using manual overlay management), @value{GDBN} will re-set its
breakpoints properly.
@end itemize


@node Automatic Overlay Debugging
@section Automatic Overlay Debugging
@cindex automatic overlay debugging

@value{GDBN} can automatically track which overlays are mapped and which
are not, given some simple co-operation from the overlay manager in the
inferior.  If you enable automatic overlay debugging with the
@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
looks in the inferior's memory for certain variables describing the
current state of the overlays.

Here are the variables your overlay manager must define to support
@value{GDBN}'s automatic overlay debugging:

@table @asis

@item @code{_ovly_table}:
This variable must be an array of the following structures:

@smallexample
struct
@{
  /* The overlay's mapped address.  */
  unsigned long vma;

  /* The size of the overlay, in bytes.  */
  unsigned long size;

  /* The overlay's load address.  */
  unsigned long lma;

  /* Non-zero if the overlay is currently mapped;
     zero otherwise.  */
  unsigned long mapped;
@}
@end smallexample

@item @code{_novlys}:
This variable must be a four-byte signed integer, holding the total
number of elements in @code{_ovly_table}.

@end table

To decide whether a particular overlay is mapped or not, @value{GDBN}
looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
@code{lma} members equal the VMA and LMA of the overlay's section in the
executable file.  When @value{GDBN} finds a matching entry, it consults
the entry's @code{mapped} member to determine whether the overlay is
currently mapped.

In addition, your overlay manager may define a function called
@code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
will silently set a breakpoint there.  If the overlay manager then
calls this function whenever it has changed the overlay table, this
will enable @value{GDBN} to accurately keep track of which overlays
are in program memory, and update any breakpoints that may be set
in overlays.  This will allow breakpoints to work even if the
overlays are kept in ROM or other non-writable memory while they
are not being executed.

@node Overlay Sample Program
@section Overlay Sample Program
@cindex overlay example program

When linking a program which uses overlays, you must place the overlays
at their load addresses, while relocating them to run at their mapped
addresses.  To do this, you must write a linker script (@pxref{Overlay
Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
since linker scripts are specific to a particular host system, target
architecture, and target memory layout, this manual cannot provide
portable sample code demonstrating @value{GDBN}'s overlay support.

However, the @value{GDBN} source distribution does contain an overlaid
program, with linker scripts for a few systems, as part of its test
suite.  The program consists of the following files from
@file{gdb/testsuite/gdb.base}:

@table @file
@item overlays.c
The main program file.
@item ovlymgr.c
A simple overlay manager, used by @file{overlays.c}.
@item foo.c
@itemx bar.c
@itemx baz.c
@itemx grbx.c
Overlay modules, loaded and used by @file{overlays.c}.
@item d10v.ld
@itemx m32r.ld
Linker scripts for linking the test program on the @code{d10v-elf}
and @code{m32r-elf} targets.
@end table

You can build the test program using the @code{d10v-elf} GCC
cross-compiler like this:

@smallexample
$ d10v-elf-gcc -g -c overlays.c
$ d10v-elf-gcc -g -c ovlymgr.c
$ d10v-elf-gcc -g -c foo.c
$ d10v-elf-gcc -g -c bar.c
$ d10v-elf-gcc -g -c baz.c
$ d10v-elf-gcc -g -c grbx.c
$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
                  baz.o grbx.o -Wl,-Td10v.ld -o overlays
@end smallexample

The build process is identical for any other architecture, except that
you must substitute the appropriate compiler and linker script for the
target system for @code{d10v-elf-gcc} and @code{d10v.ld}.


@node Languages
@chapter Using @value{GDBN} with Different Languages
@cindex languages

Although programming languages generally have common aspects, they are
rarely expressed in the same manner.  For instance, in ANSI C,
dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
Modula-2, it is accomplished by @code{p^}.  Values can also be
represented (and displayed) differently.  Hex numbers in C appear as
@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.

@cindex working language
Language-specific information is built into @value{GDBN} for some languages,
allowing you to express operations like the above in your program's
native language, and allowing @value{GDBN} to output values in a manner
consistent with the syntax of your program's native language.  The
language you use to build expressions is called the @dfn{working
language}.

@menu
* Setting::                     Switching between source languages
* Show::                        Displaying the language
* Checks::                      Type and range checks
* Supported Languages::         Supported languages
* Unsupported Languages::       Unsupported languages
@end menu

@node Setting
@section Switching Between Source Languages

There are two ways to control the working language---either have @value{GDBN}
set it automatically, or select it manually yourself.  You can use the
@code{set language} command for either purpose.  On startup, @value{GDBN}
defaults to setting the language automatically.  The working language is
used to determine how expressions you type are interpreted, how values
are printed, etc.

In addition to the working language, every source file that
@value{GDBN} knows about has its own working language.  For some object
file formats, the compiler might indicate which language a particular
source file is in.  However, most of the time @value{GDBN} infers the
language from the name of the file.  The language of a source file
controls whether C@t{++} names are demangled---this way @code{backtrace} can
show each frame appropriately for its own language.  There is no way to
set the language of a source file from within @value{GDBN}, but you can
set the language associated with a filename extension.  @xref{Show, ,
Displaying the Language}.

This is most commonly a problem when you use a program, such
as @code{cfront} or @code{f2c}, that generates C but is written in
another language.  In that case, make the
program use @code{#line} directives in its C output; that way
@value{GDBN} will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

@menu
* Filenames::                   Filename extensions and languages.
* Manually::                    Setting the working language manually
* Automatically::               Having @value{GDBN} infer the source language
@end menu

@node Filenames
@subsection List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then
@value{GDBN} infers that its language is the one indicated.

@table @file
@item .ada
@itemx .ads
@itemx .adb
@itemx .a
Ada source file.

@item .c
C source file

@item .C
@itemx .cc
@itemx .cp
@itemx .cpp
@itemx .cxx
@itemx .c++
C@t{++} source file

@item .d
D source file

@item .m
Objective-C source file

@item .f
@itemx .F
Fortran source file

@item .mod
Modula-2 source file

@item .s
@itemx .S
Assembler source file.  This actually behaves almost like C, but
@value{GDBN} does not skip over function prologues when stepping.
@end table

In addition, you may set the language associated with a filename
extension.  @xref{Show, , Displaying the Language}.

@node Manually
@subsection Setting the Working Language

If you allow @value{GDBN} to set the language automatically,
expressions are interpreted the same way in your debugging session and
your program.

@kindex set language
If you wish, you may set the language manually.  To do this, issue the
command @samp{set language @var{lang}}, where @var{lang} is the name of
a language, such as
@code{c} or @code{modula-2}.
For a list of the supported languages, type @samp{set language}.

Setting the language manually prevents @value{GDBN} from updating the working
language automatically.  This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both
languages---but means different things.  For instance, if the current
source file were written in C, and @value{GDBN} was parsing Modula-2, a
command such as:

@smallexample
print a = b + c
@end smallexample

@noindent
might not have the effect you intended.  In C, this means to add
@code{b} and @code{c} and place the result in @code{a}.  The result
printed would be the value of @code{a}.  In Modula-2, this means to compare
@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.

@node Automatically
@subsection Having @value{GDBN} Infer the Source Language

To have @value{GDBN} set the working language automatically, use
@samp{set language local} or @samp{set language auto}.  @value{GDBN}
then infers the working language.  That is, when your program stops in a
frame (usually by encountering a breakpoint), @value{GDBN} sets the
working language to the language recorded for the function in that
frame.  If the language for a frame is unknown (that is, if the function
or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is
not changed, and @value{GDBN} issues a warning.

This may not seem necessary for most programs, which are written
entirely in one source language.  However, program modules and libraries
written in one source language can be used by a main program written in
a different source language.  Using @samp{set language auto} in this
case frees you from having to set the working language manually.

@node Show
@section Displaying the Language

The following commands help you find out which language is the
working language, and also what language source files were written in.

@table @code
@item show language
@anchor{show language}
@kindex show language
Display the current working language.  This is the
language you can use with commands such as @code{print} to
build and compute expressions that may involve variables in your program.

@item info frame
@kindex info frame@r{, show the source language}
Display the source language for this frame.  This language becomes the
working language if you use an identifier from this frame.
@xref{Frame Info, ,Information about a Frame}, to identify the other
information listed here.

@item info source
@kindex info source@r{, show the source language}
Display the source language of this source file.
@xref{Symbols, ,Examining the Symbol Table}, to identify the other
information listed here.
@end table

In unusual circumstances, you may have source files with extensions
not in the standard list.  You can then set the extension associated
with a language explicitly:

@table @code
@item set extension-language @var{ext} @var{language}
@kindex set extension-language
Tell @value{GDBN} that source files with extension @var{ext} are to be
assumed as written in the source language @var{language}.

@item info extensions
@kindex info extensions
List all the filename extensions and the associated languages.
@end table

@node Checks
@section Type and Range Checking

Some languages are designed to guard you against making seemingly common
errors through a series of compile- and run-time checks.  These include
checking the type of arguments to functions and operators and making
sure mathematical overflows are caught at run time.  Checks such as
these help to ensure a program's correctness once it has been compiled
by eliminating type mismatches and providing active checks for range
errors when your program is running.

By default @value{GDBN} checks for these errors according to the
rules of the current source language.  Although @value{GDBN} does not check
the statements in your program, it can check expressions entered directly
into @value{GDBN} for evaluation via the @code{print} command, for example.

@menu
* Type Checking::               An overview of type checking
* Range Checking::              An overview of range checking
@end menu

@cindex type checking
@cindex checks, type
@node Type Checking
@subsection An Overview of Type Checking

Some languages, such as C and C@t{++}, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs.  These checks prevent type mismatch
errors from ever causing any run-time problems.  For example,

@smallexample
int klass::my_method(char *b) @{ return  b ? 1 : 2; @}

(@value{GDBP}) print obj.my_method (0)
$1 = 2
@exdent but
(@value{GDBP}) print obj.my_method (0x1234)
Cannot resolve method klass::my_method to any overloaded instance
@end smallexample

The second example fails because in C@t{++} the integer constant
@samp{0x1234} is not type-compatible with the pointer parameter type.

For the expressions you use in @value{GDBN} commands, you can tell
@value{GDBN} to not enforce strict type checking or
to treat any mismatches as errors and abandon the expression;
When type checking is disabled, @value{GDBN} successfully evaluates
expressions like the second example above.

Even if type checking is off, there may be other reasons
related to type that prevent @value{GDBN} from evaluating an expression.
For instance, @value{GDBN} does not know how to add an @code{int} and
a @code{struct foo}.  These particular type errors have nothing to do
with the language in use and usually arise from expressions which make
little sense to evaluate anyway.

@value{GDBN} provides some additional commands for controlling type checking:

@kindex set check type
@kindex show check type
@table @code
@item set check type on
@itemx set check type off
Set strict type checking on or off.  If any type mismatches occur in
evaluating an expression while type checking is on, @value{GDBN} prints a
message and aborts evaluation of the expression.

@item show check type
Show the current setting of type checking and whether @value{GDBN}
is enforcing strict type checking rules.
@end table

@cindex range checking
@cindex checks, range
@node Range Checking
@subsection An Overview of Range Checking

In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks.  Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.

For expressions you use in @value{GDBN} commands, you can tell
@value{GDBN} to treat range errors in one of three ways: ignore them,
always treat them as errors and abandon the expression, or issue
warnings but evaluate the expression anyway.

A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member
of any type.  Some languages, however, do not treat overflows as an
error.  In many implementations of C, mathematical overflow causes the
result to ``wrap around'' to lower values---for example, if @var{m} is
the largest integer value, and @var{s} is the smallest, then

@smallexample
@var{m} + 1 @result{} @var{s}
@end smallexample

This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines.  @xref{Supported Languages, ,
Supported Languages}, for further details on specific languages.

@value{GDBN} provides some additional commands for controlling the range checker:

@kindex set check range
@kindex show check range
@table @code
@item set check range auto
Set range checking on or off based on the current working language.
@xref{Supported Languages, ,Supported Languages}, for the default settings for
each language.

@item set check range on
@itemx set check range off
Set range checking on or off, overriding the default setting for the
current working language.  A warning is issued if the setting does not
match the language default.  If a range error occurs and range checking is on,
then a message is printed and evaluation of the expression is aborted.

@item set check range warn
Output messages when the @value{GDBN} range checker detects a range error,
but attempt to evaluate the expression anyway.  Evaluating the
expression may still be impossible for other reasons, such as accessing
memory that the process does not own (a typical example from many Unix
systems).

@item show range
Show the current setting of the range checker, and whether or not it is
being set automatically by @value{GDBN}.
@end table

@node Supported Languages
@section Supported Languages

@value{GDBN} supports C, C@t{++}, D, Go, Objective-C, Fortran, Java,
OpenCL C, Pascal, assembly, Modula-2, and Ada.
@c This is false ...
Some @value{GDBN} features may be used in expressions regardless of the
language you use: the @value{GDBN} @code{@@} and @code{::} operators,
and the @samp{@{type@}addr} construct (@pxref{Expressions,
,Expressions}) can be used with the constructs of any supported
language.

The following sections detail to what degree each source language is
supported by @value{GDBN}.  These sections are not meant to be language
tutorials or references, but serve only as a reference guide to what the
@value{GDBN} expression parser accepts, and what input and output
formats should look like for different languages.  There are many good
books written on each of these languages; please look to these for a
language reference or tutorial.

@menu
* C::                           C and C@t{++}
* D::                           D
* Go::                          Go
* Objective-C::                 Objective-C
* OpenCL C::                    OpenCL C
* Fortran::                     Fortran
* Pascal::                      Pascal
* Modula-2::                    Modula-2
* Ada::                         Ada
@end menu

@node C
@subsection C and C@t{++}

@cindex C and C@t{++}
@cindex expressions in C or C@t{++}

Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
to both languages.  Whenever this is the case, we discuss those languages
together.

@cindex C@t{++}
@cindex @code{g++}, @sc{gnu} C@t{++} compiler
@cindex @sc{gnu} C@t{++}
The C@t{++} debugging facilities are jointly implemented by the C@t{++}
compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
effectively, you must compile your C@t{++} programs with a supported
C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
compiler (@code{aCC}).

@menu
* C Operators::                 C and C@t{++} operators
* C Constants::                 C and C@t{++} constants
* C Plus Plus Expressions::     C@t{++} expressions
* C Defaults::                  Default settings for C and C@t{++}
* C Checks::                    C and C@t{++} type and range checks
* Debugging C::                 @value{GDBN} and C
* Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
* Decimal Floating Point::      Numbers in Decimal Floating Point format
@end menu

@node C Operators
@subsubsection C and C@t{++} Operators

@cindex C and C@t{++} operators

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on structures.  Operators are
often defined on groups of types.

For the purposes of C and C@t{++}, the following definitions hold:

@itemize @bullet

@item
@emph{Integral types} include @code{int} with any of its storage-class
specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.

@item
@emph{Floating-point types} include @code{float}, @code{double}, and
@code{long double} (if supported by the target platform).

@item
@emph{Pointer types} include all types defined as @code{(@var{type} *)}.

@item
@emph{Scalar types} include all of the above.

@end itemize

@noindent
The following operators are supported.  They are listed here
in order of increasing precedence:

@table @code
@item ,
The comma or sequencing operator.  Expressions in a comma-separated list
are evaluated from left to right, with the result of the entire
expression being the last expression evaluated.

@item =
Assignment.  The value of an assignment expression is the value
assigned.  Defined on scalar types.

@item @var{op}=
Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
and translated to @w{@code{@var{a} = @var{a op b}}}.
@w{@code{@var{op}=}} and @code{=} have the same precedence.
@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.

@item ?:
The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
of as:  if @var{a} then @var{b} else @var{c}.  @var{a} should be of an
integral type.

@item ||
Logical @sc{or}.  Defined on integral types.

@item &&
Logical @sc{and}.  Defined on integral types.

@item |
Bitwise @sc{or}.  Defined on integral types.

@item ^
Bitwise exclusive-@sc{or}.  Defined on integral types.

@item &
Bitwise @sc{and}.  Defined on integral types.

@item ==@r{, }!=
Equality and inequality.  Defined on scalar types.  The value of these
expressions is 0 for false and non-zero for true.

@item <@r{, }>@r{, }<=@r{, }>=
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types.  The value of these expressions is 0 for false
and non-zero for true.

@item <<@r{, }>>
left shift, and right shift.  Defined on integral types.

@item @@
The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).

@item +@r{, }-
Addition and subtraction.  Defined on integral types, floating-point types and
pointer types.

@item *@r{, }/@r{, }%
Multiplication, division, and modulus.  Multiplication and division are
defined on integral and floating-point types.  Modulus is defined on
integral types.

@item ++@r{, }--
Increment and decrement.  When appearing before a variable, the
operation is performed before the variable is used in an expression;
when appearing after it, the variable's value is used before the
operation takes place.

@item *
Pointer dereferencing.  Defined on pointer types.  Same precedence as
@code{++}.

@item &
Address operator.  Defined on variables.  Same precedence as @code{++}.

For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
to examine the address
where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
stored.

@item -
Negative.  Defined on integral and floating-point types.  Same
precedence as @code{++}.

@item !
Logical negation.  Defined on integral types.  Same precedence as
@code{++}.

@item ~
Bitwise complement operator.  Defined on integral types.  Same precedence as
@code{++}.


@item .@r{, }->
Structure member, and pointer-to-structure member.  For convenience,
@value{GDBN} regards the two as equivalent, choosing whether to dereference a
pointer based on the stored type information.
Defined on @code{struct} and @code{union} data.

@item .*@r{, }->*
Dereferences of pointers to members.

@item []
Array indexing.  @code{@var{a}[@var{i}]} is defined as
@code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.

@item ()
Function parameter list.  Same precedence as @code{->}.

@item ::
C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
and @code{class} types.

@item ::
Doubled colons also represent the @value{GDBN} scope operator
(@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
above.
@end table

If an operator is redefined in the user code, @value{GDBN} usually
attempts to invoke the redefined version instead of using the operator's
predefined meaning.

@node C Constants
@subsubsection C and C@t{++} Constants

@cindex C and C@t{++} constants

@value{GDBN} allows you to express the constants of C and C@t{++} in the
following ways:

@itemize @bullet
@item
Integer constants are a sequence of digits.  Octal constants are
specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
@samp{l}, specifying that the constant should be treated as a
@code{long} value.

@item
Floating point constants are a sequence of digits, followed by a decimal
point, followed by a sequence of digits, and optionally followed by an
exponent.  An exponent is of the form:
@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
sequence of digits.  The @samp{+} is optional for positive exponents.
A floating-point constant may also end with a letter @samp{f} or
@samp{F}, specifying that the constant should be treated as being of
the @code{float} (as opposed to the default @code{double}) type; or with
a letter @samp{l} or @samp{L}, which specifies a @code{long double}
constant.

@item
Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

@item
Character constants are a single character surrounded by single quotes
(@code{'}), or a number---the ordinal value of the corresponding character
(usually its @sc{ascii} value).  Within quotes, the single character may
be represented by a letter or by @dfn{escape sequences}, which are of
the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
of the character's ordinal value; or of the form @samp{\@var{x}}, where
@samp{@var{x}} is a predefined special character---for example,
@samp{\n} for newline.

Wide character constants can be written by prefixing a character
constant with @samp{L}, as in C.  For example, @samp{L'x'} is the wide
form of @samp{x}.  The target wide character set is used when
computing the value of this constant (@pxref{Character Sets}).

@item
String constants are a sequence of character constants surrounded by
double quotes (@code{"}).  Any valid character constant (as described
above) may appear.  Double quotes within the string must be preceded by
a backslash, so for instance @samp{"a\"b'c"} is a string of five
characters.

Wide string constants can be written by prefixing a string constant
with @samp{L}, as in C.  The target wide character set is used when
computing the value of this constant (@pxref{Character Sets}).

@item
Pointer constants are an integral value.  You can also write pointers
to constants using the C operator @samp{&}.

@item
Array constants are comma-separated lists surrounded by braces @samp{@{}
and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
@end itemize

@node C Plus Plus Expressions
@subsubsection C@t{++} Expressions

@cindex expressions in C@t{++}
@value{GDBN} expression handling can interpret most C@t{++} expressions.

@cindex debugging C@t{++} programs
@cindex C@t{++} compilers
@cindex debug formats and C@t{++}
@cindex @value{NGCC} and C@t{++}
@quotation
@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use
the proper compiler and the proper debug format.  Currently,
@value{GDBN} works best when debugging C@t{++} code that is compiled
with the most recent version of @value{NGCC} possible.  The DWARF
debugging format is preferred; @value{NGCC} defaults to this on most
popular platforms.  Other compilers and/or debug formats are likely to
work badly or not at all when using @value{GDBN} to debug C@t{++}
code.  @xref{Compilation}.
@end quotation

@enumerate

@cindex member functions
@item
Member function calls are allowed; you can use expressions like

@smallexample
count = aml->GetOriginal(x, y)
@end smallexample

@vindex this@r{, inside C@t{++} member functions}
@cindex namespace in C@t{++}
@item
While a member function is active (in the selected stack frame), your
expressions have the same namespace available as the member function;
that is, @value{GDBN} allows implicit references to the class instance
pointer @code{this} following the same rules as C@t{++}.  @code{using}
declarations in the current scope are also respected by @value{GDBN}.

@cindex call overloaded functions
@cindex overloaded functions, calling
@cindex type conversions in C@t{++}
@item
You can call overloaded functions; @value{GDBN} resolves the function
call to the right definition, with some restrictions.  @value{GDBN} does not
perform overload resolution involving user-defined type conversions,
calls to constructors, or instantiations of templates that do not exist
in the program.  It also cannot handle ellipsis argument lists or
default arguments.

It does perform integral conversions and promotions, floating-point
promotions, arithmetic conversions, pointer conversions, conversions of
class objects to base classes, and standard conversions such as those of
functions or arrays to pointers; it requires an exact match on the
number of function arguments.

Overload resolution is always performed, unless you have specified
@code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
,@value{GDBN} Features for C@t{++}}.

You must specify @code{set overload-resolution off} in order to use an
explicit function signature to call an overloaded function, as in
@smallexample
p 'foo(char,int)'('x', 13)
@end smallexample

The @value{GDBN} command-completion facility can simplify this;
see @ref{Completion, ,Command Completion}.

@cindex reference declarations
@item
@value{GDBN} understands variables declared as C@t{++} references; you can use
them in expressions just as you do in C@t{++} source---they are automatically
dereferenced.

In the parameter list shown when @value{GDBN} displays a frame, the values of
reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The @emph{address} of a reference variable is always shown, unless
you have specified @samp{set print address off}.

@item
@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
expressions can use it just as expressions in your program do.  Since
one scope may be defined in another, you can use @code{::} repeatedly if
necessary, for example in an expression like
@samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
resolving name scope by reference to source files, in both C and C@t{++}
debugging (@pxref{Variables, ,Program Variables}).

@item
@value{GDBN} performs argument-dependent lookup, following the C@t{++}
specification.
@end enumerate

@node C Defaults
@subsubsection C and C@t{++} Defaults

@cindex C and C@t{++} defaults

If you allow @value{GDBN} to set range checking automatically, it
defaults to @code{off} whenever the working language changes to
C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
selects the working language.

If you allow @value{GDBN} to set the language automatically, it
recognizes source files whose names end with @file{.c}, @file{.C}, or
@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
these files, it sets the working language to C or C@t{++}.
@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
for further details.

@node C Checks
@subsubsection C and C@t{++} Type and Range Checks

@cindex C and C@t{++} checks

By default, when @value{GDBN} parses C or C@t{++} expressions, strict type
checking is used.  However, if you turn type checking off, @value{GDBN}
will allow certain non-standard conversions, such as promoting integer
constants to pointers.

Range checking, if turned on, is done on mathematical operations.  Array
indices are not checked, since they are often used to index a pointer
that is not itself an array.

@node Debugging C
@subsubsection @value{GDBN} and C

The @code{set print union} and @code{show print union} commands apply to
the @code{union} type.  When set to @samp{on}, any @code{union} that is
inside a @code{struct} or @code{class} is also printed.  Otherwise, it
appears as @samp{@{...@}}.

The @code{@@} operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function.  @xref{Expressions,
,Expressions}.

@node Debugging C Plus Plus
@subsubsection @value{GDBN} Features for C@t{++}

@cindex commands for C@t{++}

Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
designed specifically for use with C@t{++}.  Here is a summary:

@table @code
@cindex break in overloaded functions
@item @r{breakpoint menus}
When you want a breakpoint in a function whose name is overloaded,
@value{GDBN} has the capability to display a menu of possible breakpoint
locations to help you specify which function definition you want.
@xref{Ambiguous Expressions,,Ambiguous Expressions}.

@cindex overloading in C@t{++}
@item rbreak @var{regex}
Setting breakpoints using regular expressions is helpful for setting
breakpoints on overloaded functions that are not members of any special
classes.
@xref{Set Breaks, ,Setting Breakpoints}.

@cindex C@t{++} exception handling
@item catch throw
@itemx catch rethrow
@itemx catch catch
Debug C@t{++} exception handling using these commands.  @xref{Set
Catchpoints, , Setting Catchpoints}.

@cindex inheritance
@item ptype @var{typename}
Print inheritance relationships as well as other information for type
@var{typename}.
@xref{Symbols, ,Examining the Symbol Table}.

@item info vtbl @var{expression}.
The @code{info vtbl} command can be used to display the virtual
method tables of the object computed by @var{expression}.  This shows
one entry per virtual table; there may be multiple virtual tables when
multiple inheritance is in use.

@cindex C@t{++} symbol display
@item set print demangle
@itemx show print demangle
@itemx set print asm-demangle
@itemx show print asm-demangle
Control whether C@t{++} symbols display in their source form, both when
displaying code as C@t{++} source and when displaying disassemblies.
@xref{Print Settings, ,Print Settings}.

@item set print object
@itemx show print object
Choose whether to print derived (actual) or declared types of objects.
@xref{Print Settings, ,Print Settings}.

@item set print vtbl
@itemx show print vtbl
Control the format for printing virtual function tables.
@xref{Print Settings, ,Print Settings}.
(The @code{vtbl} commands do not work on programs compiled with the HP
ANSI C@t{++} compiler (@code{aCC}).)

@kindex set overload-resolution
@cindex overloaded functions, overload resolution
@item set overload-resolution on
Enable overload resolution for C@t{++} expression evaluation.  The default
is on.  For overloaded functions, @value{GDBN} evaluates the arguments
and searches for a function whose signature matches the argument types,
using the standard C@t{++} conversion rules (see @ref{C Plus Plus
Expressions, ,C@t{++} Expressions}, for details).
If it cannot find a match, it emits a message.

@item set overload-resolution off
Disable overload resolution for C@t{++} expression evaluation.  For
overloaded functions that are not class member functions, @value{GDBN}
chooses the first function of the specified name that it finds in the
symbol table, whether or not its arguments are of the correct type.  For
overloaded functions that are class member functions, @value{GDBN}
searches for a function whose signature @emph{exactly} matches the
argument types.

@kindex show overload-resolution
@item show overload-resolution
Show the current setting of overload resolution.

@item @r{Overloaded symbol names}
You can specify a particular definition of an overloaded symbol, using
the same notation that is used to declare such symbols in C@t{++}: type
@code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
also use the @value{GDBN} command-line word completion facilities to list the
available choices, or to finish the type list for you.
@xref{Completion,, Command Completion}, for details on how to do this.
@end table

@node Decimal Floating Point
@subsubsection Decimal Floating Point format
@cindex decimal floating point format

@value{GDBN} can examine, set and perform computations with numbers in
decimal floating point format, which in the C language correspond to the
@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
specified by the extension to support decimal floating-point arithmetic.

There are two encodings in use, depending on the architecture: BID (Binary
Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
PowerPC and S/390.  @value{GDBN} will use the appropriate encoding for the
configured target.

Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
to manipulate decimal floating point numbers, it is not possible to convert
(using a cast, for example) integers wider than 32-bit to decimal float.

In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
point computations, error checking in decimal float operations ignores
underflow, overflow and divide by zero exceptions.

In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
to inspect @code{_Decimal128} values stored in floating point registers.
See @ref{PowerPC,,PowerPC} for more details.

@node D
@subsection D

@cindex D
@value{GDBN} can be used to debug programs written in D and compiled with
GDC, LDC or DMD compilers. Currently @value{GDBN} supports only one D
specific feature --- dynamic arrays.

@node Go
@subsection Go

@cindex Go (programming language)
@value{GDBN} can be used to debug programs written in Go and compiled with
@file{gccgo} or @file{6g} compilers.

Here is a summary of the Go-specific features and restrictions:

@table @code
@cindex current Go package
@item The current Go package
The name of the current package does not need to be specified when
specifying global variables and functions.

For example, given the program:

@example
package main
var myglob = "Shall we?"
func main () @{
  // ...
@}
@end example

When stopped inside @code{main} either of these work:

@example
(gdb) p myglob
(gdb) p main.myglob
@end example

@cindex builtin Go types
@item Builtin Go types
The @code{string} type is recognized by @value{GDBN} and is printed
as a string.

@cindex builtin Go functions
@item Builtin Go functions
The @value{GDBN} expression parser recognizes the @code{unsafe.Sizeof}
function and handles it internally.

@cindex restrictions on Go expressions
@item Restrictions on Go expressions
All Go operators are supported except @code{&^}.
The Go @code{_} ``blank identifier'' is not supported.
Automatic dereferencing of pointers is not supported.
@end table

@node Objective-C
@subsection Objective-C

@cindex Objective-C
This section provides information about some commands and command
options that are useful for debugging Objective-C code.  See also
@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
few more commands specific to Objective-C support.

@menu
* Method Names in Commands::
* The Print Command with Objective-C::
@end menu

@node Method Names in Commands
@subsubsection Method Names in Commands

The following commands have been extended to accept Objective-C method
names as line specifications:

@kindex clear@r{, and Objective-C}
@kindex break@r{, and Objective-C}
@kindex info line@r{, and Objective-C}
@kindex jump@r{, and Objective-C}
@kindex list@r{, and Objective-C}
@itemize
@item @code{clear}
@item @code{break}
@item @code{info line}
@item @code{jump}
@item @code{list}
@end itemize

A fully qualified Objective-C method name is specified as

@smallexample
-[@var{Class} @var{methodName}]
@end smallexample

where the minus sign is used to indicate an instance method and a
plus sign (not shown) is used to indicate a class method.  The class
name @var{Class} and method name @var{methodName} are enclosed in
brackets, similar to the way messages are specified in Objective-C
source code.  For example, to set a breakpoint at the @code{create}
instance method of class @code{Fruit} in the program currently being
debugged, enter:

@smallexample
break -[Fruit create]
@end smallexample

To list ten program lines around the @code{initialize} class method,
enter:

@smallexample
list +[NSText initialize]
@end smallexample

In the current version of @value{GDBN}, the plus or minus sign is
required.  In future versions of @value{GDBN}, the plus or minus
sign will be optional, but you can use it to narrow the search.  It
is also possible to specify just a method name:

@smallexample
break create
@end smallexample

You must specify the complete method name, including any colons.  If
your program's source files contain more than one @code{create} method,
you'll be presented with a numbered list of classes that implement that
method.  Indicate your choice by number, or type @samp{0} to exit if
none apply.

As another example, to clear a breakpoint established at the
@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:

@smallexample
clear -[NSWindow makeKeyAndOrderFront:]
@end smallexample

@node The Print Command with Objective-C
@subsubsection The Print Command With Objective-C
@cindex Objective-C, print objects
@kindex print-object
@kindex po @r{(@code{print-object})}

The print command has also been extended to accept methods.  For example:

@smallexample
print -[@var{object} hash]
@end smallexample

@cindex print an Objective-C object description
@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
@noindent
will tell @value{GDBN} to send the @code{hash} message to @var{object}
and print the result.  Also, an additional command has been added,
@code{print-object} or @code{po} for short, which is meant to print
the description of an object.  However, this command may only work
with certain Objective-C libraries that have a particular hook
function, @code{_NSPrintForDebugger}, defined.

@node OpenCL C
@subsection OpenCL C

@cindex OpenCL C
This section provides information about @value{GDBN}s OpenCL C support.

@menu
* OpenCL C Datatypes::
* OpenCL C Expressions::
* OpenCL C Operators::
@end menu

@node OpenCL C Datatypes
@subsubsection OpenCL C Datatypes

@cindex OpenCL C Datatypes
@value{GDBN} supports the builtin scalar and vector datatypes specified
by OpenCL 1.1.  In addition the half- and double-precision floating point
data types of the @code{cl_khr_fp16} and @code{cl_khr_fp64} OpenCL
extensions are also known to @value{GDBN}.

@node OpenCL C Expressions
@subsubsection OpenCL C Expressions

@cindex OpenCL C Expressions
@value{GDBN} supports accesses to vector components including the access as
lvalue where possible.  Since OpenCL C is based on C99 most C expressions
supported by @value{GDBN} can be used as well.

@node OpenCL C Operators
@subsubsection OpenCL C Operators

@cindex OpenCL C Operators
@value{GDBN} supports the operators specified by OpenCL 1.1 for scalar and
vector data types.

@node Fortran
@subsection Fortran
@cindex Fortran-specific support in @value{GDBN}

@value{GDBN} can be used to debug programs written in Fortran, but it
currently supports only the features of Fortran 77 language.

@cindex trailing underscore, in Fortran symbols
Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
among them) append an underscore to the names of variables and
functions.  When you debug programs compiled by those compilers, you
will need to refer to variables and functions with a trailing
underscore.

@menu
* Fortran Operators::           Fortran operators and expressions
* Fortran Defaults::            Default settings for Fortran
* Special Fortran Commands::    Special @value{GDBN} commands for Fortran
@end menu

@node Fortran Operators
@subsubsection Fortran Operators and Expressions

@cindex Fortran operators and expressions

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on characters or other non-
arithmetic types.  Operators are often defined on groups of types.

@table @code
@item **
The exponentiation operator.  It raises the first operand to the power
of the second one.

@item :
The range operator.  Normally used in the form of array(low:high) to
represent a section of array.

@item %
The access component operator.  Normally used to access elements in derived
types.  Also suitable for unions.  As unions aren't part of regular Fortran,
this can only happen when accessing a register that uses a gdbarch-defined
union type.
@end table

@node Fortran Defaults
@subsubsection Fortran Defaults

@cindex Fortran Defaults

Fortran symbols are usually case-insensitive, so @value{GDBN} by
default uses case-insensitive matches for Fortran symbols.  You can
change that with the @samp{set case-insensitive} command, see
@ref{Symbols}, for the details.

@node Special Fortran Commands
@subsubsection Special Fortran Commands

@cindex Special Fortran commands

@value{GDBN} has some commands to support Fortran-specific features,
such as displaying common blocks.

@table @code
@cindex @code{COMMON} blocks, Fortran
@kindex info common
@item info common @r{[}@var{common-name}@r{]}
This command prints the values contained in the Fortran @code{COMMON}
block whose name is @var{common-name}.  With no argument, the names of
all @code{COMMON} blocks visible at the current program location are
printed.
@end table

@node Pascal
@subsection Pascal

@cindex Pascal support in @value{GDBN}, limitations
Debugging Pascal programs which use sets, subranges, file variables, or
nested functions does not currently work.  @value{GDBN} does not support
entering expressions, printing values, or similar features using Pascal
syntax.

The Pascal-specific command @code{set print pascal_static-members}
controls whether static members of Pascal objects are displayed.
@xref{Print Settings, pascal_static-members}.

@node Modula-2
@subsection Modula-2

@cindex Modula-2, @value{GDBN} support

The extensions made to @value{GDBN} to support Modula-2 only support
output from the @sc{gnu} Modula-2 compiler (which is currently being
developed).  Other Modula-2 compilers are not currently supported, and
attempting to debug executables produced by them is most likely
to give an error as @value{GDBN} reads in the executable's symbol
table.

@cindex expressions in Modula-2
@menu
* M2 Operators::                Built-in operators
* Built-In Func/Proc::          Built-in functions and procedures
* M2 Constants::                Modula-2 constants
* M2 Types::                    Modula-2 types
* M2 Defaults::                 Default settings for Modula-2
* Deviations::                  Deviations from standard Modula-2
* M2 Checks::                   Modula-2 type and range checks
* M2 Scope::                    The scope operators @code{::} and @code{.}
* GDB/M2::                      @value{GDBN} and Modula-2
@end menu

@node M2 Operators
@subsubsection Operators
@cindex Modula-2 operators

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on structures.  Operators are
often defined on groups of types.  For the purposes of Modula-2, the
following definitions hold:

@itemize @bullet

@item
@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
their subranges.

@item
@emph{Character types} consist of @code{CHAR} and its subranges.

@item
@emph{Floating-point types} consist of @code{REAL}.

@item
@emph{Pointer types} consist of anything declared as @code{POINTER TO
@var{type}}.

@item
@emph{Scalar types} consist of all of the above.

@item
@emph{Set types} consist of @code{SET} and @code{BITSET} types.

@item
@emph{Boolean types} consist of @code{BOOLEAN}.
@end itemize

@noindent
The following operators are supported, and appear in order of
increasing precedence:

@table @code
@item ,
Function argument or array index separator.

@item :=
Assignment.  The value of @var{var} @code{:=} @var{value} is
@var{value}.

@item <@r{, }>
Less than, greater than on integral, floating-point, or enumerated
types.

@item <=@r{, }>=
Less than or equal to, greater than or equal to
on integral, floating-point and enumerated types, or set inclusion on
set types.  Same precedence as @code{<}.

@item =@r{, }<>@r{, }#
Equality and two ways of expressing inequality, valid on scalar types.
Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
available for inequality, since @code{#} conflicts with the script
comment character.

@item IN
Set membership.  Defined on set types and the types of their members.
Same precedence as @code{<}.

@item OR
Boolean disjunction.  Defined on boolean types.

@item AND@r{, }&
Boolean conjunction.  Defined on boolean types.

@item @@
The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).

@item +@r{, }-
Addition and subtraction on integral and floating-point types, or union
and difference on set types.

@item *
Multiplication on integral and floating-point types, or set intersection
on set types.

@item /
Division on floating-point types, or symmetric set difference on set
types.  Same precedence as @code{*}.

@item DIV@r{, }MOD
Integer division and remainder.  Defined on integral types.  Same
precedence as @code{*}.

@item -
Negative.  Defined on @code{INTEGER} and @code{REAL} data.

@item ^
Pointer dereferencing.  Defined on pointer types.

@item NOT
Boolean negation.  Defined on boolean types.  Same precedence as
@code{^}.

@item .
@code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
precedence as @code{^}.

@item []
Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.

@item ()
Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
as @code{^}.

@item ::@r{, }.
@value{GDBN} and Modula-2 scope operators.
@end table

@quotation
@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
treats the use of the operator @code{IN}, or the use of operators
@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
@code{<=}, and @code{>=} on sets as an error.
@end quotation


@node Built-In Func/Proc
@subsubsection Built-in Functions and Procedures
@cindex Modula-2 built-ins

Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:

@table @var

@item a
represents an @code{ARRAY} variable.

@item c
represents a @code{CHAR} constant or variable.

@item i
represents a variable or constant of integral type.

@item m
represents an identifier that belongs to a set.  Generally used in the
same function with the metavariable @var{s}.  The type of @var{s} should
be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).

@item n
represents a variable or constant of integral or floating-point type.

@item r
represents a variable or constant of floating-point type.

@item t
represents a type.

@item v
represents a variable.

@item x
represents a variable or constant of one of many types.  See the
explanation of the function for details.
@end table

All Modula-2 built-in procedures also return a result, described below.

@table @code
@item ABS(@var{n})
Returns the absolute value of @var{n}.

@item CAP(@var{c})
If @var{c} is a lower case letter, it returns its upper case
equivalent, otherwise it returns its argument.

@item CHR(@var{i})
Returns the character whose ordinal value is @var{i}.

@item DEC(@var{v})
Decrements the value in the variable @var{v} by one.  Returns the new value.

@item DEC(@var{v},@var{i})
Decrements the value in the variable @var{v} by @var{i}.  Returns the
new value.

@item EXCL(@var{m},@var{s})
Removes the element @var{m} from the set @var{s}.  Returns the new
set.

@item FLOAT(@var{i})
Returns the floating point equivalent of the integer @var{i}.

@item HIGH(@var{a})
Returns the index of the last member of @var{a}.

@item INC(@var{v})
Increments the value in the variable @var{v} by one.  Returns the new value.

@item INC(@var{v},@var{i})
Increments the value in the variable @var{v} by @var{i}.  Returns the
new value.

@item INCL(@var{m},@var{s})
Adds the element @var{m} to the set @var{s} if it is not already
there.  Returns the new set.

@item MAX(@var{t})
Returns the maximum value of the type @var{t}.

@item MIN(@var{t})
Returns the minimum value of the type @var{t}.

@item ODD(@var{i})
Returns boolean TRUE if @var{i} is an odd number.

@item ORD(@var{x})
Returns the ordinal value of its argument.  For example, the ordinal
value of a character is its @sc{ascii} value (on machines supporting the
@sc{ascii} character set).  @var{x} must be of an ordered type, which include
integral, character and enumerated types.

@item SIZE(@var{x})
Returns the size of its argument.  @var{x} can be a variable or a type.

@item TRUNC(@var{r})
Returns the integral part of @var{r}.

@item TSIZE(@var{x})
Returns the size of its argument.  @var{x} can be a variable or a type.

@item VAL(@var{t},@var{i})
Returns the member of the type @var{t} whose ordinal value is @var{i}.
@end table

@quotation
@emph{Warning:}  Sets and their operations are not yet supported, so
@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
an error.
@end quotation

@cindex Modula-2 constants
@node M2 Constants
@subsubsection Constants

@value{GDBN} allows you to express the constants of Modula-2 in the following
ways:

@itemize @bullet

@item
Integer constants are simply a sequence of digits.  When used in an
expression, a constant is interpreted to be type-compatible with the
rest of the expression.  Hexadecimal integers are specified by a
trailing @samp{H}, and octal integers by a trailing @samp{B}.

@item
Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits.  An optional exponent can
then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
digits of the floating point constant must be valid decimal (base 10)
digits.

@item
Character constants consist of a single character enclosed by a pair of
like quotes, either single (@code{'}) or double (@code{"}).  They may
also be expressed by their ordinal value (their @sc{ascii} value, usually)
followed by a @samp{C}.

@item
String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (@code{'}) or double (@code{"}).
Escape sequences in the style of C are also allowed.  @xref{C
Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
sequences.

@item
Enumerated constants consist of an enumerated identifier.

@item
Boolean constants consist of the identifiers @code{TRUE} and
@code{FALSE}.

@item
Pointer constants consist of integral values only.

@item
Set constants are not yet supported.
@end itemize

@node M2 Types
@subsubsection Modula-2 Types
@cindex Modula-2 types

Currently @value{GDBN} can print the following data types in Modula-2
syntax: array types, record types, set types, pointer types, procedure
types, enumerated types, subrange types and base types.  You can also
print the contents of variables declared using these type.
This section gives a number of simple source code examples together with
sample @value{GDBN} sessions.

The first example contains the following section of code:

@smallexample
VAR
   s: SET OF CHAR ;
   r: [20..40] ;
@end smallexample

@noindent
and you can request @value{GDBN} to interrogate the type and value of
@code{r} and @code{s}.

@smallexample
(@value{GDBP}) print s
@{'A'..'C', 'Z'@}
(@value{GDBP}) ptype s
SET OF CHAR
(@value{GDBP}) print r
21
(@value{GDBP}) ptype r
[20..40]
@end smallexample

@noindent
Likewise if your source code declares @code{s} as:

@smallexample
VAR
   s: SET ['A'..'Z'] ;
@end smallexample

@noindent
then you may query the type of @code{s} by:

@smallexample
(@value{GDBP}) ptype s
type = SET ['A'..'Z']
@end smallexample

@noindent
Note that at present you cannot interactively manipulate set
expressions using the debugger.

The following example shows how you might declare an array in Modula-2
and how you can interact with @value{GDBN} to print its type and contents:

@smallexample
VAR
   s: ARRAY [-10..10] OF CHAR ;
@end smallexample

@smallexample
(@value{GDBP}) ptype s
ARRAY [-10..10] OF CHAR
@end smallexample

Note that the array handling is not yet complete and although the type
is printed correctly, expression handling still assumes that all
arrays have a lower bound of zero and not @code{-10} as in the example
above.

Here are some more type related Modula-2 examples:

@smallexample
TYPE
   colour = (blue, red, yellow, green) ;
   t = [blue..yellow] ;
VAR
   s: t ;
BEGIN
   s := blue ;
@end smallexample

@noindent
The @value{GDBN} interaction shows how you can query the data type
and value of a variable.

@smallexample
(@value{GDBP}) print s
$1 = blue
(@value{GDBP}) ptype t
type = [blue..yellow]
@end smallexample

@noindent
In this example a Modula-2 array is declared and its contents
displayed.  Observe that the contents are written in the same way as
their @code{C} counterparts.

@smallexample
VAR
   s: ARRAY [1..5] OF CARDINAL ;
BEGIN
   s[1] := 1 ;
@end smallexample

@smallexample
(@value{GDBP}) print s
$1 = @{1, 0, 0, 0, 0@}
(@value{GDBP}) ptype s
type = ARRAY [1..5] OF CARDINAL
@end smallexample

The Modula-2 language interface to @value{GDBN} also understands
pointer types as shown in this example:

@smallexample
VAR
   s: POINTER TO ARRAY [1..5] OF CARDINAL ;
BEGIN
   NEW(s) ;
   s^[1] := 1 ;
@end smallexample

@noindent
and you can request that @value{GDBN} describes the type of @code{s}.

@smallexample
(@value{GDBP}) ptype s
type = POINTER TO ARRAY [1..5] OF CARDINAL
@end smallexample

@value{GDBN} handles compound types as we can see in this example.
Here we combine array types, record types, pointer types and subrange
types:

@smallexample
TYPE
   foo = RECORD
            f1: CARDINAL ;
            f2: CHAR ;
            f3: myarray ;
         END ;

   myarray = ARRAY myrange OF CARDINAL ;
   myrange = [-2..2] ;
VAR
   s: POINTER TO ARRAY myrange OF foo ;
@end smallexample

@noindent
and you can ask @value{GDBN} to describe the type of @code{s} as shown
below.

@smallexample
(@value{GDBP}) ptype s
type = POINTER TO ARRAY [-2..2] OF foo = RECORD
    f1 : CARDINAL;
    f2 : CHAR;
    f3 : ARRAY [-2..2] OF CARDINAL;
END 
@end smallexample

@node M2 Defaults
@subsubsection Modula-2 Defaults
@cindex Modula-2 defaults

If type and range checking are set automatically by @value{GDBN}, they
both default to @code{on} whenever the working language changes to
Modula-2.  This happens regardless of whether you or @value{GDBN}
selected the working language.

If you allow @value{GDBN} to set the language automatically, then entering
code compiled from a file whose name ends with @file{.mod} sets the
working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
Infer the Source Language}, for further details.

@node Deviations
@subsubsection Deviations from Standard Modula-2
@cindex Modula-2, deviations from

A few changes have been made to make Modula-2 programs easier to debug.
This is done primarily via loosening its type strictness:

@itemize @bullet
@item
Unlike in standard Modula-2, pointer constants can be formed by
integers.  This allows you to modify pointer variables during
debugging.  (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that
returned a pointer.)

@item
C escape sequences can be used in strings and characters to represent
non-printable characters.  @value{GDBN} prints out strings with these
escape sequences embedded.  Single non-printable characters are
printed using the @samp{CHR(@var{nnn})} format.

@item
The assignment operator (@code{:=}) returns the value of its right-hand
argument.

@item
All built-in procedures both modify @emph{and} return their argument.
@end itemize

@node M2 Checks
@subsubsection Modula-2 Type and Range Checks
@cindex Modula-2 checks

@quotation
@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
range checking.
@end quotation
@c FIXME remove warning when type/range checks added

@value{GDBN} considers two Modula-2 variables type equivalent if:

@itemize @bullet
@item
They are of types that have been declared equivalent via a @code{TYPE
@var{t1} = @var{t2}} statement

@item
They have been declared on the same line.  (Note:  This is true of the
@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
@end itemize

As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.

Range checking is done on all mathematical operations, assignment, array
index bounds, and all built-in functions and procedures.

@node M2 Scope
@subsubsection The Scope Operators @code{::} and @code{.}
@cindex scope
@cindex @code{.}, Modula-2 scope operator
@cindex colon, doubled as scope operator
@ifinfo
@vindex colon-colon@r{, in Modula-2}
@c Info cannot handle :: but TeX can.
@end ifinfo
@ifnotinfo
@vindex ::@r{, in Modula-2}
@end ifnotinfo

There are a few subtle differences between the Modula-2 scope operator
(@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
similar syntax:

@smallexample

@var{module} . @var{id}
@var{scope} :: @var{id}
@end smallexample

@noindent
where @var{scope} is the name of a module or a procedure,
@var{module} the name of a module, and @var{id} is any declared
identifier within your program, except another module.

Using the @code{::} operator makes @value{GDBN} search the scope
specified by @var{scope} for the identifier @var{id}.  If it is not
found in the specified scope, then @value{GDBN} searches all scopes
enclosing the one specified by @var{scope}.

Using the @code{.} operator makes @value{GDBN} search the current scope for
the identifier specified by @var{id} that was imported from the
definition module specified by @var{module}.  With this operator, it is
an error if the identifier @var{id} was not imported from definition
module @var{module}, or if @var{id} is not an identifier in
@var{module}.

@node GDB/M2
@subsubsection @value{GDBN} and Modula-2

Some @value{GDBN} commands have little use when debugging Modula-2 programs.
Five subcommands of @code{set print} and @code{show print} apply
specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
@samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
apply to C@t{++}, and the last to the C @code{union} type, which has no direct
analogue in Modula-2.

The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
with any language, is not useful with Modula-2.  Its
intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
created in Modula-2 as they can in C or C@t{++}.  However, because an
address can be specified by an integral constant, the construct
@samp{@{@var{type}@}@var{adrexp}} is still useful.

@cindex @code{#} in Modula-2
In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
interpreted as the beginning of a comment.  Use @code{<>} instead.

@node Ada
@subsection Ada
@cindex Ada

The extensions made to @value{GDBN} for Ada only support
output from the @sc{gnu} Ada (GNAT) compiler.
Other Ada compilers are not currently supported, and
attempting to debug executables produced by them is most likely
to be difficult.


@cindex expressions in Ada
@menu
* Ada Mode Intro::              General remarks on the Ada syntax 
                                   and semantics supported by Ada mode 
                                   in @value{GDBN}.
* Omissions from Ada::          Restrictions on the Ada expression syntax.
* Additions to Ada::            Extensions of the Ada expression syntax.
* Stopping Before Main Program:: Debugging the program during elaboration.
* Ada Exceptions::              Ada Exceptions
* Ada Tasks::                   Listing and setting breakpoints in tasks.
* Ada Tasks and Core Files::    Tasking Support when Debugging Core Files
* Ravenscar Profile::           Tasking Support when using the Ravenscar
                                   Profile
* Ada Glitches::                Known peculiarities of Ada mode.
@end menu

@node Ada Mode Intro
@subsubsection Introduction
@cindex Ada mode, general

The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
syntax, with some extensions.
The philosophy behind the design of this subset is 

@itemize @bullet
@item
That @value{GDBN} should provide basic literals and access to operations for 
arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
leaving more sophisticated computations to subprograms written into the
program (which therefore may be called from @value{GDBN}).

@item 
That type safety and strict adherence to Ada language restrictions
are not particularly important to the @value{GDBN} user.

@item 
That brevity is important to the @value{GDBN} user.
@end itemize

Thus, for brevity, the debugger acts as if all names declared in
user-written packages are directly visible, even if they are not visible
according to Ada rules, thus making it unnecessary to fully qualify most
names with their packages, regardless of context.  Where this causes
ambiguity, @value{GDBN} asks the user's intent.

The debugger will start in Ada mode if it detects an Ada main program. 
As for other languages, it will enter Ada mode when stopped in a program that
was translated from an Ada source file.

While in Ada mode, you may use `@t{--}' for comments.  This is useful 
mostly for documenting command files.  The standard @value{GDBN} comment 
(@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
middle (to allow based literals).

The debugger supports limited overloading.  Given a subprogram call in which
the function symbol has multiple definitions, it will use the number of 
actual parameters and some information about their types to attempt to narrow
the set of definitions.  It also makes very limited use of context, preferring
procedures to functions in the context of the @code{call} command, and
functions to procedures elsewhere. 

@node Omissions from Ada
@subsubsection Omissions from Ada
@cindex Ada, omissions from

Here are the notable omissions from the subset:

@itemize @bullet
@item
Only a subset of the attributes are supported:

@itemize @minus
@item
@t{'First}, @t{'Last}, and @t{'Length}
 on array objects (not on types and subtypes).

@item
@t{'Min} and @t{'Max}.  

@item 
@t{'Pos} and @t{'Val}. 

@item
@t{'Tag}.

@item
@t{'Range} on array objects (not subtypes), but only as the right
operand of the membership (@code{in}) operator.

@item 
@t{'Access}, @t{'Unchecked_Access}, and 
@t{'Unrestricted_Access} (a GNAT extension).

@item
@t{'Address}.
@end itemize

@item
The names in
@code{Characters.Latin_1} are not available and
concatenation is not implemented.  Thus, escape characters in strings are 
not currently available.

@item
Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
equality of representations.  They will generally work correctly
for strings and arrays whose elements have integer or enumeration types.
They may not work correctly for arrays whose element
types have user-defined equality, for arrays of real values 
(in particular, IEEE-conformant floating point, because of negative
zeroes and NaNs), and for arrays whose elements contain unused bits with
indeterminate values.  

@item
The other component-by-component array operations (@code{and}, @code{or}, 
@code{xor}, @code{not}, and relational tests other than equality)
are not implemented. 

@item 
@cindex array aggregates (Ada)
@cindex record aggregates (Ada)
@cindex aggregates (Ada) 
There is limited support for array and record aggregates.  They are
permitted only on the right sides of assignments, as in these examples:

@smallexample
(@value{GDBP}) set An_Array := (1, 2, 3, 4, 5, 6)
(@value{GDBP}) set An_Array := (1, others => 0)
(@value{GDBP}) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
(@value{GDBP}) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
(@value{GDBP}) set A_Record := (1, "Peter", True);
(@value{GDBP}) set A_Record := (Name => "Peter", Id => 1, Alive => True)
@end smallexample

Changing a
discriminant's value by assigning an aggregate has an
undefined effect if that discriminant is used within the record.
However, you can first modify discriminants by directly assigning to
them (which normally would not be allowed in Ada), and then performing an
aggregate assignment.  For example, given a variable @code{A_Rec} 
declared to have a type such as:

@smallexample
type Rec (Len : Small_Integer := 0) is record
    Id : Integer;
    Vals : IntArray (1 .. Len);
end record;
@end smallexample

you can assign a value with a different size of @code{Vals} with two
assignments:

@smallexample
(@value{GDBP}) set A_Rec.Len := 4
(@value{GDBP}) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
@end smallexample

As this example also illustrates, @value{GDBN} is very loose about the usual
rules concerning aggregates.  You may leave out some of the
components of an array or record aggregate (such as the @code{Len} 
component in the assignment to @code{A_Rec} above); they will retain their
original values upon assignment.  You may freely use dynamic values as
indices in component associations.  You may even use overlapping or
redundant component associations, although which component values are
assigned in such cases is not defined.

@item
Calls to dispatching subprograms are not implemented.

@item
The overloading algorithm is much more limited (i.e., less selective)
than that of real Ada.  It makes only limited use of the context in
which a subexpression appears to resolve its meaning, and it is much
looser in its rules for allowing type matches.  As a result, some
function calls will be ambiguous, and the user will be asked to choose
the proper resolution.

@item
The @code{new} operator is not implemented.

@item
Entry calls are not implemented.

@item 
Aside from printing, arithmetic operations on the native VAX floating-point 
formats are not supported.

@item
It is not possible to slice a packed array.

@item
The names @code{True} and @code{False}, when not part of a qualified name, 
are interpreted as if implicitly prefixed by @code{Standard}, regardless of 
context.
Should your program
redefine these names in a package or procedure (at best a dubious practice),
you will have to use fully qualified names to access their new definitions.
@end itemize

@node Additions to Ada
@subsubsection Additions to Ada
@cindex Ada, deviations from 

As it does for other languages, @value{GDBN} makes certain generic
extensions to Ada (@pxref{Expressions}):

@itemize @bullet
@item
If the expression @var{E} is a variable residing in memory (typically
a local variable or array element) and @var{N} is a positive integer,
then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
@var{N}-1 adjacent variables following it in memory as an array.  In
Ada, this operator is generally not necessary, since its prime use is
in displaying parts of an array, and slicing will usually do this in
Ada.  However, there are occasional uses when debugging programs in
which certain debugging information has been optimized away.

@item
@code{@var{B}::@var{var}} means ``the variable named @var{var} that
appears in function or file @var{B}.''  When @var{B} is a file name,
you must typically surround it in single quotes.

@item 
The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
@var{type} that appears at address @var{addr}.''

@item
A name starting with @samp{$} is a convenience variable 
(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
@end itemize

In addition, @value{GDBN} provides a few other shortcuts and outright
additions specific to Ada:

@itemize @bullet
@item 
The assignment statement is allowed as an expression, returning
its right-hand operand as its value.  Thus, you may enter

@smallexample
(@value{GDBP}) set x := y + 3
(@value{GDBP}) print A(tmp := y + 1)
@end smallexample

@item 
The semicolon is allowed as an ``operator,''  returning as its value 
the value of its right-hand operand.
This allows, for example,
complex conditional breaks:

@smallexample
(@value{GDBP}) break f
(@value{GDBP}) condition 1 (report(i); k += 1; A(k) > 100)
@end smallexample

@item 
Rather than use catenation and symbolic character names to introduce special 
characters into strings, one may instead use a special bracket notation, 
which is also used to print strings.  A sequence of characters of the form 
@samp{["@var{XX}"]} within a string or character literal denotes the 
(single) character whose numeric encoding is @var{XX} in hexadecimal.  The
sequence of characters @samp{["""]} also denotes a single quotation mark 
in strings.   For example,
@smallexample
   "One line.["0a"]Next line.["0a"]"
@end smallexample
@noindent
contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
after each period.

@item
The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
@t{'Max} is optional (and is ignored in any case).  For example, it is valid
to write

@smallexample
(@value{GDBP}) print 'max(x, y)
@end smallexample

@item
When printing arrays, @value{GDBN} uses positional notation when the 
array has a lower bound of 1, and uses a modified named notation otherwise.
For example, a one-dimensional array of three integers with a lower bound
of 3 might print as

@smallexample
(3 => 10, 17, 1)
@end smallexample

@noindent
That is, in contrast to valid Ada, only the first component has a @code{=>} 
clause.

@item
You may abbreviate attributes in expressions with any unique,
multi-character subsequence of 
their names (an exact match gets preference).
For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
in place of  @t{a'length}.

@item
@cindex quoting Ada internal identifiers
Since Ada is case-insensitive, the debugger normally maps identifiers you type 
to lower case.  The GNAT compiler uses upper-case characters for 
some of its internal identifiers, which are normally of no interest to users.
For the rare occasions when you actually have to look at them,
enclose them in angle brackets to avoid the lower-case mapping. 
For example,
@smallexample
(@value{GDBP}) print <JMPBUF_SAVE>[0]
@end smallexample

@item
Printing an object of class-wide type or dereferencing an 
access-to-class-wide value will display all the components of the object's
specific type (as indicated by its run-time tag).  Likewise, component
selection on such a value will operate on the specific type of the
object.

@end itemize

@node Stopping Before Main Program
@subsubsection Stopping at the Very Beginning

@cindex breakpointing Ada elaboration code
It is sometimes necessary to debug the program during elaboration, and
before reaching the main procedure.
As defined in the Ada Reference
Manual, the elaboration code is invoked from a procedure called
@code{adainit}.  To run your program up to the beginning of
elaboration, simply use the following two commands:
@code{tbreak adainit} and @code{run}.

@node Ada Exceptions
@subsubsection Ada Exceptions

A command is provided to list all Ada exceptions:

@table @code
@kindex info exceptions
@item info exceptions
@itemx info exceptions @var{regexp}
The @code{info exceptions} command allows you to list all Ada exceptions
defined within the program being debugged, as well as their addresses.
With a regular expression, @var{regexp}, as argument, only those exceptions
whose names match @var{regexp} are listed.
@end table

Below is a small example, showing how the command can be used, first
without argument, and next with a regular expression passed as an
argument.

@smallexample
(@value{GDBP}) info exceptions
All defined Ada exceptions:
constraint_error: 0x613da0
program_error: 0x613d20
storage_error: 0x613ce0
tasking_error: 0x613ca0
const.aint_global_e: 0x613b00
(@value{GDBP}) info exceptions const.aint
All Ada exceptions matching regular expression "const.aint":
constraint_error: 0x613da0
const.aint_global_e: 0x613b00
@end smallexample

It is also possible to ask @value{GDBN} to stop your program's execution
when an exception is raised.  For more details, see @ref{Set Catchpoints}.

@node Ada Tasks
@subsubsection Extensions for Ada Tasks
@cindex Ada, tasking

Support for Ada tasks is analogous to that for threads (@pxref{Threads}).
@value{GDBN} provides the following task-related commands:

@table @code
@kindex info tasks
@item info tasks
This command shows a list of current Ada tasks, as in the following example:


@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1   8088000   0   15 Child Activation Wait main_task
   2   80a4000   1   15 Accept Statement      b
   3   809a800   1   15 Child Activation Wait a
*  4   80ae800   3   15 Runnable              c

@end smallexample

@noindent
In this listing, the asterisk before the last task indicates it to be the
task currently being inspected.

@table @asis
@item ID
Represents @value{GDBN}'s internal task number.

@item TID
The Ada task ID.

@item P-ID
The parent's task ID (@value{GDBN}'s internal task number).

@item Pri
The base priority of the task.

@item State
Current state of the task.

@table @code
@item Unactivated
The task has been created but has not been activated.  It cannot be
executing.

@item Runnable
The task is not blocked for any reason known to Ada.  (It may be waiting
for a mutex, though.) It is conceptually "executing" in normal mode.

@item Terminated
The task is terminated, in the sense of ARM 9.3 (5).  Any dependents
that were waiting on terminate alternatives have been awakened and have
terminated themselves.

@item Child Activation Wait
The task is waiting for created tasks to complete activation.

@item Accept Statement
The task is waiting on an accept or selective wait statement.

@item Waiting on entry call
The task is waiting on an entry call.

@item Async Select Wait
The task is waiting to start the abortable part of an asynchronous
select statement.

@item Delay Sleep
The task is waiting on a select statement with only a delay
alternative open.

@item Child Termination Wait
The task is sleeping having completed a master within itself, and is
waiting for the tasks dependent on that master to become terminated or
waiting on a terminate Phase.

@item Wait Child in Term Alt
The task is sleeping waiting for tasks on terminate alternatives to
finish terminating.

@item Accepting RV with @var{taskno}
The task is accepting a rendez-vous with the task @var{taskno}.
@end table

@item Name
Name of the task in the program.

@end table

@kindex info task @var{taskno}
@item info task @var{taskno}
This command shows detailled informations on the specified task, as in
the following example:
@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077880    0  15 Child Activation Wait  main_task
*  2   807c468    1  15 Runnable               task_1
(@value{GDBP}) info task 2
Ada Task: 0x807c468
Name: task_1
Thread: 0x807f378
Parent: 1 (main_task)
Base Priority: 15
State: Runnable
@end smallexample

@item task
@kindex task@r{ (Ada)}
@cindex current Ada task ID
This command prints the ID of the current task.

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077870    0  15 Child Activation Wait  main_task
*  2   807c458    1  15 Runnable               t
(@value{GDBP}) task
[Current task is 2]
@end smallexample

@item task @var{taskno}
@cindex Ada task switching
This command is like the @code{thread @var{threadno}}
command (@pxref{Threads}).  It switches the context of debugging
from the current task to the given task.

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077870    0  15 Child Activation Wait  main_task
*  2   807c458    1  15 Runnable               t
(@value{GDBP}) task 1
[Switching to task 1]
#0  0x8067726 in pthread_cond_wait ()
(@value{GDBP}) bt
#0  0x8067726 in pthread_cond_wait ()
#1  0x8056714 in system.os_interface.pthread_cond_wait ()
#2  0x805cb63 in system.task_primitives.operations.sleep ()
#3  0x806153e in system.tasking.stages.activate_tasks ()
#4  0x804aacc in un () at un.adb:5
@end smallexample

@item break @var{linespec} task @var{taskno}
@itemx break @var{linespec} task @var{taskno} if @dots{}
@cindex breakpoints and tasks, in Ada
@cindex task breakpoints, in Ada
@kindex break @dots{} task @var{taskno}@r{ (Ada)}
These commands are like the @code{break @dots{} thread @dots{}}
command (@pxref{Thread Stops}).
@var{linespec} specifies source lines, as described
in @ref{Specify Location}.

Use the qualifier @samp{task @var{taskno}} with a breakpoint command
to specify that you only want @value{GDBN} to stop the program when a
particular Ada task reaches this breakpoint.  @var{taskno} is one of the
numeric task identifiers assigned by @value{GDBN}, shown in the first
column of the @samp{info tasks} display.

If you do not specify @samp{task @var{taskno}} when you set a
breakpoint, the breakpoint applies to @emph{all} tasks of your
program.

You can use the @code{task} qualifier on conditional breakpoints as
well; in this case, place @samp{task @var{taskno}} before the
breakpoint condition (before the @code{if}).

For example,

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1 140022020   0   15 Child Activation Wait main_task
   2 140045060   1   15 Accept/Select Wait    t2
   3 140044840   1   15 Runnable              t1
*  4 140056040   1   15 Runnable              t3
(@value{GDBP}) b 15 task 2
Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.
(@value{GDBP}) cont
Continuing.
task # 1 running
task # 2 running

Breakpoint 5, test_task_debug () at test_task_debug.adb:15
15               flush;
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1 140022020   0   15 Child Activation Wait main_task
*  2 140045060   1   15 Runnable              t2
   3 140044840   1   15 Runnable              t1
   4 140056040   1   15 Delay Sleep           t3
@end smallexample
@end table

@node Ada Tasks and Core Files
@subsubsection Tasking Support when Debugging Core Files
@cindex Ada tasking and core file debugging

When inspecting a core file, as opposed to debugging a live program,
tasking support may be limited or even unavailable, depending on
the platform being used.
For instance, on x86-linux, the list of tasks is available, but task
switching is not supported.  On Tru64, however, task switching will work
as usual.

On certain platforms, including Tru64, the debugger needs to perform some
memory writes in order to provide Ada tasking support.  When inspecting
a core file, this means that the core file must be opened with read-write
privileges, using the command @samp{"set write on"} (@pxref{Patching}).
Under these circumstances, you should make a backup copy of the core
file before inspecting it with @value{GDBN}.

@node Ravenscar Profile
@subsubsection Tasking Support when using the Ravenscar Profile
@cindex Ravenscar Profile

The @dfn{Ravenscar Profile} is a subset of the Ada tasking features,
specifically designed for systems with safety-critical real-time
requirements.

@table @code
@kindex set ravenscar task-switching on
@cindex task switching with program using Ravenscar Profile
@item set ravenscar task-switching on
Allows task switching when debugging a program that uses the Ravenscar
Profile.  This is the default.

@kindex set ravenscar task-switching off
@item set ravenscar task-switching off
Turn off task switching when debugging a program that uses the Ravenscar
Profile.  This is mostly intended to disable the code that adds support
for the Ravenscar Profile, in case a bug in either @value{GDBN} or in
the Ravenscar runtime is preventing @value{GDBN} from working properly.
To be effective, this command should be run before the program is started.

@kindex show ravenscar task-switching
@item show ravenscar task-switching
Show whether it is possible to switch from task to task in a program
using the Ravenscar Profile.

@end table

@node Ada Glitches
@subsubsection Known Peculiarities of Ada Mode
@cindex Ada, problems

Besides the omissions listed previously (@pxref{Omissions from Ada}),
we know of several problems with and limitations of Ada mode in
@value{GDBN},
some of which will be fixed with planned future releases of the debugger 
and the GNU Ada compiler.

@itemize @bullet
@item 
Static constants that the compiler chooses not to materialize as objects in 
storage are invisible to the debugger.

@item
Named parameter associations in function argument lists are ignored (the
argument lists are treated as positional).

@item
Many useful library packages are currently invisible to the debugger.

@item
Fixed-point arithmetic, conversions, input, and output is carried out using 
floating-point arithmetic, and may give results that only approximate those on 
the host machine.

@item
The GNAT compiler never generates the prefix @code{Standard} for any of 
the standard symbols defined by the Ada language.  @value{GDBN} knows about 
this: it will strip the prefix from names when you use it, and will never
look for a name you have so qualified among local symbols, nor match against
symbols in other packages or subprograms.  If you have 
defined entities anywhere in your program other than parameters and 
local variables whose simple names match names in @code{Standard}, 
GNAT's lack of qualification here can cause confusion.  When this happens,
you can usually resolve the confusion 
by qualifying the problematic names with package
@code{Standard} explicitly.  
@end itemize

Older versions of the compiler sometimes generate erroneous debugging
information, resulting in the debugger incorrectly printing the value
of affected entities.  In some cases, the debugger is able to work
around an issue automatically. In other cases, the debugger is able
to work around the issue, but the work-around has to be specifically
enabled.

@kindex set ada trust-PAD-over-XVS
@kindex show ada trust-PAD-over-XVS
@table @code

@item set ada trust-PAD-over-XVS on
Configure GDB to strictly follow the GNAT encoding when computing the
value of Ada entities, particularly when @code{PAD} and @code{PAD___XVS}
types are involved (see @code{ada/exp_dbug.ads} in the GCC sources for
a complete description of the encoding used by the GNAT compiler).
This is the default.

@item set ada trust-PAD-over-XVS off
This is related to the encoding using by the GNAT compiler.  If @value{GDBN}
sometimes prints the wrong value for certain entities, changing @code{ada
trust-PAD-over-XVS} to @code{off} activates a work-around which may fix
the issue.  It is always safe to set @code{ada trust-PAD-over-XVS} to
@code{off}, but this incurs a slight performance penalty, so it is
recommended to leave this setting to @code{on} unless necessary.

@end table

@node Unsupported Languages
@section Unsupported Languages

@cindex unsupported languages
@cindex minimal language
In addition to the other fully-supported programming languages,
@value{GDBN} also provides a pseudo-language, called @code{minimal}.
It does not represent a real programming language, but provides a set
of capabilities close to what the C or assembly languages provide.
This should allow most simple operations to be performed while debugging
an application that uses a language currently not supported by @value{GDBN}.

If the language is set to @code{auto}, @value{GDBN} will automatically
select this language if the current frame corresponds to an unsupported
language.

@node Symbols
@chapter Examining the Symbol Table

The commands described in this chapter allow you to inquire about the
symbols (names of variables, functions and types) defined in your
program.  This information is inherent in the text of your program and
does not change as your program executes.  @value{GDBN} finds it in your
program's symbol table, in the file indicated when you started @value{GDBN}
(@pxref{File Options, ,Choosing Files}), or by one of the
file-management commands (@pxref{Files, ,Commands to Specify Files}).

@cindex symbol names
@cindex names of symbols
@cindex quoting names
Occasionally, you may need to refer to symbols that contain unusual
characters, which @value{GDBN} ordinarily treats as word delimiters.  The
most frequent case is in referring to static variables in other
source files (@pxref{Variables,,Program Variables}).  File names
are recorded in object files as debugging symbols, but @value{GDBN} would
ordinarily parse a typical file name, like @file{foo.c}, as the three words
@samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
@samp{foo.c} as a single symbol, enclose it in single quotes; for example,

@smallexample
p 'foo.c'::x
@end smallexample

@noindent
looks up the value of @code{x} in the scope of the file @file{foo.c}.

@table @code
@cindex case-insensitive symbol names
@cindex case sensitivity in symbol names
@kindex set case-sensitive
@item set case-sensitive on
@itemx set case-sensitive off
@itemx set case-sensitive auto
Normally, when @value{GDBN} looks up symbols, it matches their names
with case sensitivity determined by the current source language.
Occasionally, you may wish to control that.  The command @code{set
case-sensitive} lets you do that by specifying @code{on} for
case-sensitive matches or @code{off} for case-insensitive ones.  If
you specify @code{auto}, case sensitivity is reset to the default
suitable for the source language.  The default is case-sensitive
matches for all languages except for Fortran, for which the default is
case-insensitive matches.

@kindex show case-sensitive
@item show case-sensitive
This command shows the current setting of case sensitivity for symbols
lookups.

@kindex set print type methods
@item set print type methods
@itemx set print type methods on
@itemx set print type methods off
Normally, when @value{GDBN} prints a class, it displays any methods
declared in that class.  You can control this behavior either by
passing the appropriate flag to @code{ptype}, or using @command{set
print type methods}.  Specifying @code{on} will cause @value{GDBN} to
display the methods; this is the default.  Specifying @code{off} will
cause @value{GDBN} to omit the methods.

@kindex show print type methods
@item show print type methods
This command shows the current setting of method display when printing
classes.

@kindex set print type typedefs
@item set print type typedefs
@itemx set print type typedefs on
@itemx set print type typedefs off

Normally, when @value{GDBN} prints a class, it displays any typedefs
defined in that class.  You can control this behavior either by
passing the appropriate flag to @code{ptype}, or using @command{set
print type typedefs}.  Specifying @code{on} will cause @value{GDBN} to
display the typedef definitions; this is the default.  Specifying
@code{off} will cause @value{GDBN} to omit the typedef definitions.
Note that this controls whether the typedef definition itself is
printed, not whether typedef names are substituted when printing other
types.

@kindex show print type typedefs
@item show print type typedefs
This command shows the current setting of typedef display when
printing classes.

@kindex info address
@cindex address of a symbol
@item info address @var{symbol}
Describe where the data for @var{symbol} is stored.  For a register
variable, this says which register it is kept in.  For a non-register
local variable, this prints the stack-frame offset at which the variable
is always stored.

Note the contrast with @samp{print &@var{symbol}}, which does not work
at all for a register variable, and for a stack local variable prints
the exact address of the current instantiation of the variable.

@kindex info symbol
@cindex symbol from address
@cindex closest symbol and offset for an address
@item info symbol @var{addr}
Print the name of a symbol which is stored at the address @var{addr}.
If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
nearest symbol and an offset from it:

@smallexample
(@value{GDBP}) info symbol 0x54320
_initialize_vx + 396 in section .text
@end smallexample

@noindent
This is the opposite of the @code{info address} command.  You can use
it to find out the name of a variable or a function given its address.

For dynamically linked executables, the name of executable or shared
library containing the symbol is also printed:

@smallexample
(@value{GDBP}) info symbol 0x400225
_start + 5 in section .text of /tmp/a.out
(@value{GDBP}) info symbol 0x2aaaac2811cf
__read_nocancel + 6 in section .text of /usr/lib64/libc.so.6
@end smallexample

@kindex whatis
@item whatis[/@var{flags}] [@var{arg}]
Print the data type of @var{arg}, which can be either an expression
or a name of a data type.  With no argument, print the data type of
@code{$}, the last value in the value history.

If @var{arg} is an expression (@pxref{Expressions, ,Expressions}), it
is not actually evaluated, and any side-effecting operations (such as
assignments or function calls) inside it do not take place.

If @var{arg} is a variable or an expression, @code{whatis} prints its
literal type as it is used in the source code.  If the type was
defined using a @code{typedef}, @code{whatis} will @emph{not} print
the data type underlying the @code{typedef}.  If the type of the
variable or the expression is a compound data type, such as
@code{struct} or  @code{class}, @code{whatis} never prints their
fields or methods.  It just prints the @code{struct}/@code{class}
name (a.k.a.@: its @dfn{tag}).  If you want to see the members of
such a compound data type, use @code{ptype}.

If @var{arg} is a type name that was defined using @code{typedef},
@code{whatis} @dfn{unrolls} only one level of that @code{typedef}.
Unrolling means that @code{whatis} will show the underlying type used
in the @code{typedef} declaration of @var{arg}.  However, if that
underlying type is also a @code{typedef}, @code{whatis} will not
unroll it.

For C code, the type names may also have the form @samp{class
@var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
@var{union-tag}} or @samp{enum @var{enum-tag}}.

@var{flags} can be used to modify how the type is displayed.
Available flags are:

@table @code
@item r
Display in ``raw'' form.  Normally, @value{GDBN} substitutes template
parameters and typedefs defined in a class when printing the class'
members.  The @code{/r} flag disables this.

@item m
Do not print methods defined in the class.

@item M
Print methods defined in the class.  This is the default, but the flag
exists in case you change the default with @command{set print type methods}.

@item t
Do not print typedefs defined in the class.  Note that this controls
whether the typedef definition itself is printed, not whether typedef
names are substituted when printing other types.

@item T
Print typedefs defined in the class.  This is the default, but the flag
exists in case you change the default with @command{set print type typedefs}.
@end table

@kindex ptype
@item ptype[/@var{flags}] [@var{arg}]
@code{ptype} accepts the same arguments as @code{whatis}, but prints a
detailed description of the type, instead of just the name of the type.
@xref{Expressions, ,Expressions}.

Contrary to @code{whatis}, @code{ptype} always unrolls any
@code{typedef}s in its argument declaration, whether the argument is
a variable, expression, or a data type.  This means that @code{ptype}
of a variable or an expression will not print literally its type as
present in the source code---use @code{whatis} for that.  @code{typedef}s at
the pointer or reference targets are also unrolled.  Only @code{typedef}s of
fields, methods and inner @code{class typedef}s of @code{struct}s,
@code{class}es and @code{union}s are not unrolled even with @code{ptype}.

For example, for this variable declaration:

@smallexample
typedef double real_t;
struct complex @{ real_t real; double imag; @};
typedef struct complex complex_t;
complex_t var;
real_t *real_pointer_var;
@end smallexample

@noindent
the two commands give this output:

@smallexample
@group
(@value{GDBP}) whatis var
type = complex_t
(@value{GDBP}) ptype var
type = struct complex @{
    real_t real;
    double imag;
@}
(@value{GDBP}) whatis complex_t
type = struct complex
(@value{GDBP}) whatis struct complex
type = struct complex
(@value{GDBP}) ptype struct complex
type = struct complex @{
    real_t real;
    double imag;
@}
(@value{GDBP}) whatis real_pointer_var
type = real_t *
(@value{GDBP}) ptype real_pointer_var
type = double *
@end group
@end smallexample

@noindent
As with @code{whatis}, using @code{ptype} without an argument refers to
the type of @code{$}, the last value in the value history.

@cindex incomplete type
Sometimes, programs use opaque data types or incomplete specifications
of complex data structure.  If the debug information included in the
program does not allow @value{GDBN} to display a full declaration of
the data type, it will say @samp{<incomplete type>}.  For example,
given these declarations:

@smallexample
    struct foo;
    struct foo *fooptr;
@end smallexample

@noindent
but no definition for @code{struct foo} itself, @value{GDBN} will say:

@smallexample
  (@value{GDBP}) ptype foo
  $1 = <incomplete type>
@end smallexample

@noindent
``Incomplete type'' is C terminology for data types that are not
completely specified.

@kindex info types
@item info types @var{regexp}
@itemx info types
Print a brief description of all types whose names match the regular
expression @var{regexp} (or all types in your program, if you supply
no argument).  Each complete typename is matched as though it were a
complete line; thus, @samp{i type value} gives information on all
types in your program whose names include the string @code{value}, but
@samp{i type ^value$} gives information only on types whose complete
name is @code{value}.

This command differs from @code{ptype} in two ways: first, like
@code{whatis}, it does not print a detailed description; second, it
lists all source files where a type is defined.

@kindex info type-printers
@item info type-printers
Versions of @value{GDBN} that ship with Python scripting enabled may
have ``type printers'' available.  When using @command{ptype} or
@command{whatis}, these printers are consulted when the name of a type
is needed.  @xref{Type Printing API}, for more information on writing
type printers.

@code{info type-printers} displays all the available type printers.

@kindex enable type-printer
@kindex disable type-printer
@item enable type-printer @var{name}@dots{}
@item disable type-printer @var{name}@dots{}
These commands can be used to enable or disable type printers.

@kindex info scope
@cindex local variables
@item info scope @var{location}
List all the variables local to a particular scope.  This command
accepts a @var{location} argument---a function name, a source line, or
an address preceded by a @samp{*}, and prints all the variables local
to the scope defined by that location.  (@xref{Specify Location}, for
details about supported forms of @var{location}.)  For example:

@smallexample
(@value{GDBP}) @b{info scope command_line_handler}
Scope for command_line_handler:
Symbol rl is an argument at stack/frame offset 8, length 4.
Symbol linebuffer is in static storage at address 0x150a18, length 4.
Symbol linelength is in static storage at address 0x150a1c, length 4.
Symbol p is a local variable in register $esi, length 4.
Symbol p1 is a local variable in register $ebx, length 4.
Symbol nline is a local variable in register $edx, length 4.
Symbol repeat is a local variable at frame offset -8, length 4.
@end smallexample

@noindent
This command is especially useful for determining what data to collect
during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
collect}.

@kindex info source
@item info source
Show information about the current source file---that is, the source file for
the function containing the current point of execution:
@itemize @bullet
@item
the name of the source file, and the directory containing it,
@item
the directory it was compiled in,
@item
its length, in lines,
@item
which programming language it is written in,
@item
whether the executable includes debugging information for that file, and
if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
@item
whether the debugging information includes information about
preprocessor macros.
@end itemize


@kindex info sources
@item info sources
Print the names of all source files in your program for which there is
debugging information, organized into two lists: files whose symbols
have already been read, and files whose symbols will be read when needed.

@kindex info functions
@item info functions
Print the names and data types of all defined functions.

@item info functions @var{regexp}
Print the names and data types of all defined functions
whose names contain a match for regular expression @var{regexp}.
Thus, @samp{info fun step} finds all functions whose names
include @code{step}; @samp{info fun ^step} finds those whose names
start with @code{step}.  If a function name contains characters
that conflict with the regular expression language (e.g.@:
@samp{operator*()}), they may be quoted with a backslash.

@kindex info variables
@item info variables
Print the names and data types of all variables that are defined
outside of functions (i.e.@: excluding local variables).

@item info variables @var{regexp}
Print the names and data types of all variables (except for local
variables) whose names contain a match for regular expression
@var{regexp}.

@kindex info classes
@cindex Objective-C, classes and selectors
@item info classes
@itemx info classes @var{regexp}
Display all Objective-C classes in your program, or
(with the @var{regexp} argument) all those matching a particular regular
expression.

@kindex info selectors
@item info selectors
@itemx info selectors @var{regexp}
Display all Objective-C selectors in your program, or
(with the @var{regexp} argument) all those matching a particular regular
expression.

@ignore
This was never implemented.
@kindex info methods
@item info methods
@itemx info methods @var{regexp}
The @code{info methods} command permits the user to examine all defined
methods within C@t{++} program, or (with the @var{regexp} argument) a
specific set of methods found in the various C@t{++} classes.  Many
C@t{++} classes provide a large number of methods.  Thus, the output
from the @code{ptype} command can be overwhelming and hard to use.  The
@code{info-methods} command filters the methods, printing only those
which match the regular-expression @var{regexp}.
@end ignore

@cindex opaque data types
@kindex set opaque-type-resolution
@item set opaque-type-resolution on
Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
declared as a pointer to a @code{struct}, @code{class}, or
@code{union}---for example, @code{struct MyType *}---that is used in one
source file although the full declaration of @code{struct MyType} is in
another source file.  The default is on.

A change in the setting of this subcommand will not take effect until
the next time symbols for a file are loaded.

@item set opaque-type-resolution off
Tell @value{GDBN} not to resolve opaque types.  In this case, the type
is printed as follows:
@smallexample
@{<no data fields>@}
@end smallexample

@kindex show opaque-type-resolution
@item show opaque-type-resolution
Show whether opaque types are resolved or not.

@kindex maint print symbols
@cindex symbol dump
@kindex maint print psymbols
@cindex partial symbol dump
@kindex maint print msymbols
@cindex minimal symbol dump
@item maint print symbols @var{filename}
@itemx maint print psymbols @var{filename}
@itemx maint print msymbols @var{filename}
Write a dump of debugging symbol data into the file @var{filename}.
These commands are used to debug the @value{GDBN} symbol-reading code.  Only
symbols with debugging data are included.  If you use @samp{maint print
symbols}, @value{GDBN} includes all the symbols for which it has already
collected full details: that is, @var{filename} reflects symbols for
only those files whose symbols @value{GDBN} has read.  You can use the
command @code{info sources} to find out which files these are.  If you
use @samp{maint print psymbols} instead, the dump shows information about
symbols that @value{GDBN} only knows partially---that is, symbols defined in
files that @value{GDBN} has skimmed, but not yet read completely.  Finally,
@samp{maint print msymbols} dumps just the minimal symbol information
required for each object file from which @value{GDBN} has read some symbols.
@xref{Files, ,Commands to Specify Files}, for a discussion of how
@value{GDBN} reads symbols (in the description of @code{symbol-file}).

@kindex maint info symtabs
@kindex maint info psymtabs
@cindex listing @value{GDBN}'s internal symbol tables
@cindex symbol tables, listing @value{GDBN}'s internal
@cindex full symbol tables, listing @value{GDBN}'s internal
@cindex partial symbol tables, listing @value{GDBN}'s internal
@item maint info symtabs @r{[} @var{regexp} @r{]}
@itemx maint info psymtabs @r{[} @var{regexp} @r{]}

List the @code{struct symtab} or @code{struct partial_symtab}
structures whose names match @var{regexp}.  If @var{regexp} is not
given, list them all.  The output includes expressions which you can
copy into a @value{GDBN} debugging this one to examine a particular
structure in more detail.  For example:

@smallexample
(@value{GDBP}) maint info psymtabs dwarf2read
@{ objfile /home/gnu/build/gdb/gdb
  ((struct objfile *) 0x82e69d0)
  @{ psymtab /home/gnu/src/gdb/dwarf2read.c
    ((struct partial_symtab *) 0x8474b10)
    readin no
    fullname (null)
    text addresses 0x814d3c8 -- 0x8158074
    globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
    statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
    dependencies (none)
  @}
@}
(@value{GDBP}) maint info symtabs
(@value{GDBP})
@end smallexample
@noindent
We see that there is one partial symbol table whose filename contains
the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
and we see that @value{GDBN} has not read in any symtabs yet at all.
If we set a breakpoint on a function, that will cause @value{GDBN} to
read the symtab for the compilation unit containing that function:

@smallexample
(@value{GDBP}) break dwarf2_psymtab_to_symtab
Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
line 1574.
(@value{GDBP}) maint info symtabs
@{ objfile /home/gnu/build/gdb/gdb
  ((struct objfile *) 0x82e69d0)
  @{ symtab /home/gnu/src/gdb/dwarf2read.c
    ((struct symtab *) 0x86c1f38)
    dirname (null)
    fullname (null)
    blockvector ((struct blockvector *) 0x86c1bd0) (primary)
    linetable ((struct linetable *) 0x8370fa0)
    debugformat DWARF 2
  @}
@}
(@value{GDBP})
@end smallexample
@end table


@node Altering
@chapter Altering Execution

Once you think you have found an error in your program, you might want to
find out for certain whether correcting the apparent error would lead to
correct results in the rest of the run.  You can find the answer by
experiment, using the @value{GDBN} features for altering execution of the
program.

For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different
address, or even return prematurely from a function.

@menu
* Assignment::                  Assignment to variables
* Jumping::                     Continuing at a different address
* Signaling::                   Giving your program a signal
* Returning::                   Returning from a function
* Calling::                     Calling your program's functions
* Patching::                    Patching your program
@end menu

@node Assignment
@section Assignment to Variables

@cindex assignment
@cindex setting variables
To alter the value of a variable, evaluate an assignment expression.
@xref{Expressions, ,Expressions}.  For example,

@smallexample
print x=4
@end smallexample

@noindent
stores the value 4 into the variable @code{x}, and then prints the
value of the assignment expression (which is 4).
@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
information on operators in supported languages.

@kindex set variable
@cindex variables, setting
If you are not interested in seeing the value of the assignment, use the
@code{set} command instead of the @code{print} command.  @code{set} is
really the same as @code{print} except that the expression's value is
not printed and is not put in the value history (@pxref{Value History,
,Value History}).  The expression is evaluated only for its effects.

If the beginning of the argument string of the @code{set} command
appears identical to a @code{set} subcommand, use the @code{set
variable} command instead of just @code{set}.  This command is identical
to @code{set} except for its lack of subcommands.  For example, if your
program has a variable @code{width}, you get an error if you try to set
a new value with just @samp{set width=13}, because @value{GDBN} has the
command @code{set width}:

@smallexample
(@value{GDBP}) whatis width
type = double
(@value{GDBP}) p width
$4 = 13
(@value{GDBP}) set width=47
Invalid syntax in expression.
@end smallexample

@noindent
The invalid expression, of course, is @samp{=47}.  In
order to actually set the program's variable @code{width}, use

@smallexample
(@value{GDBP}) set var width=47
@end smallexample

Because the @code{set} command has many subcommands that can conflict
with the names of program variables, it is a good idea to use the
@code{set variable} command instead of just @code{set}.  For example, if
your program has a variable @code{g}, you run into problems if you try
to set a new value with just @samp{set g=4}, because @value{GDBN} has
the command @code{set gnutarget}, abbreviated @code{set g}:

@smallexample
@group
(@value{GDBP}) whatis g
type = double
(@value{GDBP}) p g
$1 = 1
(@value{GDBP}) set g=4
(@value{GDBP}) p g
$2 = 1
(@value{GDBP}) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/smith/cc_progs/a.out
"/home/smith/cc_progs/a.out": can't open to read symbols:
                                 Invalid bfd target.
(@value{GDBP}) show g
The current BFD target is "=4".
@end group
@end smallexample

@noindent
The program variable @code{g} did not change, and you silently set the
@code{gnutarget} to an invalid value.  In order to set the variable
@code{g}, use

@smallexample
(@value{GDBP}) set var g=4
@end smallexample

@value{GDBN} allows more implicit conversions in assignments than C; you can
freely store an integer value into a pointer variable or vice versa,
and you can convert any structure to any other structure that is the
same length or shorter.
@comment FIXME: how do structs align/pad in these conversions?
@comment        /doc@cygnus.com 18dec1990

To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
construct to generate a value of specified type at a specified address
(@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
to memory location @code{0x83040} as an integer (which implies a certain size
and representation in memory), and

@smallexample
set @{int@}0x83040 = 4
@end smallexample

@noindent
stores the value 4 into that memory location.

@node Jumping
@section Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where
it stopped, with the @code{continue} command.  You can instead continue at
an address of your own choosing, with the following commands:

@table @code
@kindex jump
@kindex j @r{(@code{jump})}
@item jump @var{linespec}
@itemx j @var{linespec}
@itemx jump @var{location}
@itemx j @var{location}
Resume execution at line @var{linespec} or at address given by
@var{location}.  Execution stops again immediately if there is a
breakpoint there.  @xref{Specify Location}, for a description of the
different forms of @var{linespec} and @var{location}.  It is common
practice to use the @code{tbreak} command in conjunction with
@code{jump}.  @xref{Set Breaks, ,Setting Breakpoints}.

The @code{jump} command does not change the current stack frame, or
the stack pointer, or the contents of any memory location or any
register other than the program counter.  If line @var{linespec} is in
a different function from the one currently executing, the results may
be bizarre if the two functions expect different patterns of arguments or
of local variables.  For this reason, the @code{jump} command requests
confirmation if the specified line is not in the function currently
executing.  However, even bizarre results are predictable if you are
well acquainted with the machine-language code of your program.
@end table

@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
On many systems, you can get much the same effect as the @code{jump}
command by storing a new value into the register @code{$pc}.  The
difference is that this does not start your program running; it only
changes the address of where it @emph{will} run when you continue.  For
example,

@smallexample
set $pc = 0x485
@end smallexample

@noindent
makes the next @code{continue} command or stepping command execute at
address @code{0x485}, rather than at the address where your program stopped.
@xref{Continuing and Stepping, ,Continuing and Stepping}.

The most common occasion to use the @code{jump} command is to back
up---perhaps with more breakpoints set---over a portion of a program
that has already executed, in order to examine its execution in more
detail.

@c @group
@node Signaling
@section Giving your Program a Signal
@cindex deliver a signal to a program

@table @code
@kindex signal
@item signal @var{signal}
Resume execution where your program stopped, but immediately give it the
signal @var{signal}.  @var{signal} can be the name or the number of a
signal.  For example, on many systems @code{signal 2} and @code{signal
SIGINT} are both ways of sending an interrupt signal.

Alternatively, if @var{signal} is zero, continue execution without
giving a signal.  This is useful when your program stopped on account of
a signal and would ordinarily see the signal when resumed with the
@code{continue} command; @samp{signal 0} causes it to resume without a
signal.

@code{signal} does not repeat when you press @key{RET} a second time
after executing the command.
@end table
@c @end group

Invoking the @code{signal} command is not the same as invoking the
@code{kill} utility from the shell.  Sending a signal with @code{kill}
causes @value{GDBN} to decide what to do with the signal depending on
the signal handling tables (@pxref{Signals}).  The @code{signal} command
passes the signal directly to your program.


@node Returning
@section Returning from a Function

@table @code
@cindex returning from a function
@kindex return
@item return
@itemx return @var{expression}
You can cancel execution of a function call with the @code{return}
command.  If you give an
@var{expression} argument, its value is used as the function's return
value.
@end table

When you use @code{return}, @value{GDBN} discards the selected stack frame
(and all frames within it).  You can think of this as making the
discarded frame return prematurely.  If you wish to specify a value to
be returned, give that value as the argument to @code{return}.

This pops the selected stack frame (@pxref{Selection, ,Selecting a
Frame}), and any other frames inside of it, leaving its caller as the
innermost remaining frame.  That frame becomes selected.  The
specified value is stored in the registers used for returning values
of functions.

The @code{return} command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned.  In contrast, the @code{finish} command (@pxref{Continuing
and Stepping, ,Continuing and Stepping}) resumes execution until the
selected stack frame returns naturally.

@value{GDBN} needs to know how the @var{expression} argument should be set for
the inferior.  The concrete registers assignment depends on the OS ABI and the
type being returned by the selected stack frame.  For example it is common for
OS ABI to return floating point values in FPU registers while integer values in
CPU registers.  Still some ABIs return even floating point values in CPU
registers.  Larger integer widths (such as @code{long long int}) also have
specific placement rules.  @value{GDBN} already knows the OS ABI from its
current target so it needs to find out also the type being returned to make the
assignment into the right register(s).

Normally, the selected stack frame has debug info.  @value{GDBN} will always
use the debug info instead of the implicit type of @var{expression} when the
debug info is available.  For example, if you type @kbd{return -1}, and the
function in the current stack frame is declared to return a @code{long long
int}, @value{GDBN} transparently converts the implicit @code{int} value of -1
into a @code{long long int}:

@smallexample
Breakpoint 1, func () at gdb.base/return-nodebug.c:29
29        return 31;
(@value{GDBP}) return -1
Make func return now? (y or n) y
#0  0x004004f6 in main () at gdb.base/return-nodebug.c:43
43        printf ("result=%lld\n", func ());
(@value{GDBP})
@end smallexample

However, if the selected stack frame does not have a debug info, e.g., if the
function was compiled without debug info, @value{GDBN} has to find out the type
to return from user.  Specifying a different type by mistake may set the value
in different inferior registers than the caller code expects.  For example,
typing @kbd{return -1} with its implicit type @code{int} would set only a part
of a @code{long long int} result for a debug info less function (on 32-bit
architectures).  Therefore the user is required to specify the return type by
an appropriate cast explicitly:

@smallexample
Breakpoint 2, 0x0040050b in func ()
(@value{GDBP}) return -1
Return value type not available for selected stack frame.
Please use an explicit cast of the value to return.
(@value{GDBP}) return (long long int) -1
Make selected stack frame return now? (y or n) y
#0  0x00400526 in main ()
(@value{GDBP})
@end smallexample

@node Calling
@section Calling Program Functions

@table @code
@cindex calling functions
@cindex inferior functions, calling
@item print @var{expr}
Evaluate the expression @var{expr} and display the resulting value.
@var{expr} may include calls to functions in the program being
debugged.

@kindex call
@item call @var{expr}
Evaluate the expression @var{expr} without displaying @code{void}
returned values.

You can use this variant of the @code{print} command if you want to
execute a function from your program that does not return anything
(a.k.a.@: @dfn{a void function}), but without cluttering the output
with @code{void} returned values that @value{GDBN} will otherwise
print.  If the result is not void, it is printed and saved in the
value history.
@end table

It is possible for the function you call via the @code{print} or
@code{call} command to generate a signal (e.g., if there's a bug in
the function, or if you passed it incorrect arguments).  What happens
in that case is controlled by the @code{set unwindonsignal} command.

Similarly, with a C@t{++} program it is possible for the function you
call via the @code{print} or @code{call} command to generate an
exception that is not handled due to the constraints of the dummy
frame.  In this case, any exception that is raised in the frame, but has
an out-of-frame exception handler will not be found.  GDB builds a
dummy-frame for the inferior function call, and the unwinder cannot
seek for exception handlers outside of this dummy-frame.  What happens
in that case is controlled by the
@code{set unwind-on-terminating-exception} command.

@table @code
@item set unwindonsignal
@kindex set unwindonsignal
@cindex unwind stack in called functions
@cindex call dummy stack unwinding
Set unwinding of the stack if a signal is received while in a function
that @value{GDBN} called in the program being debugged.  If set to on,
@value{GDBN} unwinds the stack it created for the call and restores
the context to what it was before the call.  If set to off (the
default), @value{GDBN} stops in the frame where the signal was
received.

@item show unwindonsignal
@kindex show unwindonsignal
Show the current setting of stack unwinding in the functions called by
@value{GDBN}.

@item set unwind-on-terminating-exception
@kindex set unwind-on-terminating-exception
@cindex unwind stack in called functions with unhandled exceptions
@cindex call dummy stack unwinding on unhandled exception.
Set unwinding of the stack if a C@t{++} exception is raised, but left
unhandled while in a function that @value{GDBN} called in the program being
debugged.  If set to on (the default), @value{GDBN} unwinds the stack
it created for the call and restores the context to what it was before
the call.  If set to off, @value{GDBN} the exception is delivered to
the default C@t{++} exception handler and the inferior terminated.

@item show unwind-on-terminating-exception
@kindex show unwind-on-terminating-exception
Show the current setting of stack unwinding in the functions called by
@value{GDBN}.

@end table

@cindex weak alias functions
Sometimes, a function you wish to call is actually a @dfn{weak alias}
for another function.  In such case, @value{GDBN} might not pick up
the type information, including the types of the function arguments,
which causes @value{GDBN} to call the inferior function incorrectly.
As a result, the called function will function erroneously and may
even crash.  A solution to that is to use the name of the aliased
function instead.

@node Patching
@section Patching Programs

@cindex patching binaries
@cindex writing into executables
@cindex writing into corefiles

By default, @value{GDBN} opens the file containing your program's
executable code (or the corefile) read-only.  This prevents accidental
alterations to machine code; but it also prevents you from intentionally
patching your program's binary.

If you'd like to be able to patch the binary, you can specify that
explicitly with the @code{set write} command.  For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.

@table @code
@kindex set write
@item set write on
@itemx set write off
If you specify @samp{set write on}, @value{GDBN} opens executable and
core files for both reading and writing; if you specify @kbd{set write
off} (the default), @value{GDBN} opens them read-only.

If you have already loaded a file, you must load it again (using the
@code{exec-file} or @code{core-file} command) after changing @code{set
write}, for your new setting to take effect.

@item show write
@kindex show write
Display whether executable files and core files are opened for writing
as well as reading.
@end table

@node GDB Files
@chapter @value{GDBN} Files

@value{GDBN} needs to know the file name of the program to be debugged,
both in order to read its symbol table and in order to start your
program.  To debug a core dump of a previous run, you must also tell
@value{GDBN} the name of the core dump file.

@menu
* Files::                       Commands to specify files
* Separate Debug Files::        Debugging information in separate files
* MiniDebugInfo::               Debugging information in a special section
* Index Files::                 Index files speed up GDB
* Symbol Errors::               Errors reading symbol files
* Data Files::                  GDB data files
@end menu

@node Files
@section Commands to Specify Files

@cindex symbol table
@cindex core dump file

You may want to specify executable and core dump file names.  The usual
way to do this is at start-up time, using the arguments to
@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
Out of @value{GDBN}}).

Occasionally it is necessary to change to a different file during a
@value{GDBN} session.  Or you may run @value{GDBN} and forget to
specify a file you want to use.  Or you are debugging a remote target
via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
Program}).  In these situations the @value{GDBN} commands to specify
new files are useful.

@table @code
@cindex executable file
@kindex file
@item file @var{filename}
Use @var{filename} as the program to be debugged.  It is read for its
symbols and for the contents of pure memory.  It is also the program
executed when you use the @code{run} command.  If you do not specify a
directory and the file is not found in the @value{GDBN} working directory,
@value{GDBN} uses the environment variable @code{PATH} as a list of
directories to search, just as the shell does when looking for a program
to run.  You can change the value of this variable, for both @value{GDBN}
and your program, using the @code{path} command.

@cindex unlinked object files
@cindex patching object files
You can load unlinked object @file{.o} files into @value{GDBN} using
the @code{file} command.  You will not be able to ``run'' an object
file, but you can disassemble functions and inspect variables.  Also,
if the underlying BFD functionality supports it, you could use
@kbd{gdb -write} to patch object files using this technique.  Note
that @value{GDBN} can neither interpret nor modify relocations in this
case, so branches and some initialized variables will appear to go to
the wrong place.  But this feature is still handy from time to time.

@item file
@code{file} with no argument makes @value{GDBN} discard any information it
has on both executable file and the symbol table.

@kindex exec-file
@item exec-file @r{[} @var{filename} @r{]}
Specify that the program to be run (but not the symbol table) is found
in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
if necessary to locate your program.  Omitting @var{filename} means to
discard information on the executable file.

@kindex symbol-file
@item symbol-file @r{[} @var{filename} @r{]}
Read symbol table information from file @var{filename}.  @code{PATH} is
searched when necessary.  Use the @code{file} command to get both symbol
table and program to run from the same file.

@code{symbol-file} with no argument clears out @value{GDBN} information on your
program's symbol table.

The @code{symbol-file} command causes @value{GDBN} to forget the contents of
some breakpoints and auto-display expressions.  This is because they may
contain pointers to the internal data recording symbols and data types,
which are part of the old symbol table data being discarded inside
@value{GDBN}.

@code{symbol-file} does not repeat if you press @key{RET} again after
executing it once.

When @value{GDBN} is configured for a particular environment, it
understands debugging information in whatever format is the standard
generated for that environment; you may use either a @sc{gnu} compiler, or
other compilers that adhere to the local conventions.
Best results are usually obtained from @sc{gnu} compilers; for example,
using @code{@value{NGCC}} you can generate debugging information for
optimized code.

For most kinds of object files, with the exception of old SVR3 systems
using COFF, the @code{symbol-file} command does not normally read the
symbol table in full right away.  Instead, it scans the symbol table
quickly to find which source files and which symbols are present.  The
details are read later, one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make @value{GDBN}
start up faster.  For the most part, it is invisible except for
occasional pauses while the symbol table details for a particular source
file are being read.  (The @code{set verbose} command can turn these
pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
Warnings and Messages}.)

We have not implemented the two-stage strategy for COFF yet.  When the
symbol table is stored in COFF format, @code{symbol-file} reads the
symbol table data in full right away.  Note that ``stabs-in-COFF''
still does the two-stage strategy, since the debug info is actually
in stabs format.

@kindex readnow
@cindex reading symbols immediately
@cindex symbols, reading immediately
@item symbol-file @r{[} -readnow @r{]} @var{filename}
@itemx file @r{[} -readnow @r{]} @var{filename}
You can override the @value{GDBN} two-stage strategy for reading symbol
tables by using the @samp{-readnow} option with any of the commands that
load symbol table information, if you want to be sure @value{GDBN} has the
entire symbol table available.

@c FIXME: for now no mention of directories, since this seems to be in
@c flux.  13mar1992 status is that in theory GDB would look either in
@c current dir or in same dir as myprog; but issues like competing
@c GDB's, or clutter in system dirs, mean that in practice right now
@c only current dir is used.  FFish says maybe a special GDB hierarchy
@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
@c files.

@kindex core-file
@item core-file @r{[}@var{filename}@r{]}
@itemx core
Specify the whereabouts of a core dump file to be used as the ``contents
of memory''.  Traditionally, core files contain only some parts of the
address space of the process that generated them; @value{GDBN} can access the
executable file itself for other parts.

@code{core-file} with no argument specifies that no core file is
to be used.

Note that the core file is ignored when your program is actually running
under @value{GDBN}.  So, if you have been running your program and you
wish to debug a core file instead, you must kill the subprocess in which
the program is running.  To do this, use the @code{kill} command
(@pxref{Kill Process, ,Killing the Child Process}).

@kindex add-symbol-file
@cindex dynamic linking
@item add-symbol-file @var{filename} @var{address}
@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
@itemx add-symbol-file @var{filename} @var{address} -s @var{section} @var{address} @dots{}
The @code{add-symbol-file} command reads additional symbol table
information from the file @var{filename}.  You would use this command
when @var{filename} has been dynamically loaded (by some other means)
into the program that is running.  @var{address} should be the memory
address at which the file has been loaded; @value{GDBN} cannot figure
this out for itself.  You can additionally specify an arbitrary number
of @samp{-s @var{section} @var{address}} pairs, to give an explicit
section name and base address for that section.  You can specify any
@var{address} as an expression.

The symbol table of the file @var{filename} is added to the symbol table
originally read with the @code{symbol-file} command.  You can use the
@code{add-symbol-file} command any number of times; the new symbol data
thus read is kept in addition to the old.

Changes can be reverted using the command @code{remove-symbol-file}.

@cindex relocatable object files, reading symbols from
@cindex object files, relocatable, reading symbols from
@cindex reading symbols from relocatable object files
@cindex symbols, reading from relocatable object files
@cindex @file{.o} files, reading symbols from
Although @var{filename} is typically a shared library file, an
executable file, or some other object file which has been fully
relocated for loading into a process, you can also load symbolic
information from relocatable @file{.o} files, as long as:

@itemize @bullet
@item
the file's symbolic information refers only to linker symbols defined in
that file, not to symbols defined by other object files,
@item
every section the file's symbolic information refers to has actually
been loaded into the inferior, as it appears in the file, and
@item
you can determine the address at which every section was loaded, and
provide these to the @code{add-symbol-file} command.
@end itemize

@noindent
Some embedded operating systems, like Sun Chorus and VxWorks, can load
relocatable files into an already running program; such systems
typically make the requirements above easy to meet.  However, it's
important to recognize that many native systems use complex link
procedures (@code{.linkonce} section factoring and C@t{++} constructor table
assembly, for example) that make the requirements difficult to meet.  In
general, one cannot assume that using @code{add-symbol-file} to read a
relocatable object file's symbolic information will have the same effect
as linking the relocatable object file into the program in the normal
way.

@code{add-symbol-file} does not repeat if you press @key{RET} after using it.

@kindex remove-symbol-file
@item remove-symbol-file @var{filename}
@item remove-symbol-file -a @var{address}
Remove a symbol file added via the @code{add-symbol-file} command.  The
file to remove can be identified by its @var{filename} or by an @var{address}
that lies within the boundaries of this symbol file in memory.  Example:

@smallexample
(gdb) add-symbol-file /home/user/gdb/mylib.so 0x7ffff7ff9480
add symbol table from file "/home/user/gdb/mylib.so" at
    .text_addr = 0x7ffff7ff9480
(y or n) y
Reading symbols from /home/user/gdb/mylib.so...done.
(gdb) remove-symbol-file -a 0x7ffff7ff9480
Remove symbol table from file "/home/user/gdb/mylib.so"? (y or n) y
(gdb)
@end smallexample


@code{remove-symbol-file} does not repeat if you press @key{RET} after using it.

@kindex add-symbol-file-from-memory
@cindex @code{syscall DSO}
@cindex load symbols from memory
@item add-symbol-file-from-memory @var{address}
Load symbols from the given @var{address} in a dynamically loaded
object file whose image is mapped directly into the inferior's memory.
For example, the Linux kernel maps a @code{syscall DSO} into each
process's address space; this DSO provides kernel-specific code for
some system calls.  The argument can be any expression whose
evaluation yields the address of the file's shared object file header.
For this command to work, you must have used @code{symbol-file} or
@code{exec-file} commands in advance.

@kindex add-shared-symbol-files
@kindex assf
@item add-shared-symbol-files @var{library-file}
@itemx assf @var{library-file}
The @code{add-shared-symbol-files} command can currently be used only
in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
@value{GDBN} automatically looks for shared libraries, however if
@value{GDBN} does not find yours, you can invoke
@code{add-shared-symbol-files}.  It takes one argument: the shared
library's file name.  @code{assf} is a shorthand alias for
@code{add-shared-symbol-files}.

@kindex section
@item section @var{section} @var{addr}
The @code{section} command changes the base address of the named
@var{section} of the exec file to @var{addr}.  This can be used if the
exec file does not contain section addresses, (such as in the
@code{a.out} format), or when the addresses specified in the file
itself are wrong.  Each section must be changed separately.  The
@code{info files} command, described below, lists all the sections and
their addresses.

@kindex info files
@kindex info target
@item info files
@itemx info target
@code{info files} and @code{info target} are synonymous; both print the
current target (@pxref{Targets, ,Specifying a Debugging Target}),
including the names of the executable and core dump files currently in
use by @value{GDBN}, and the files from which symbols were loaded.  The
command @code{help target} lists all possible targets rather than
current ones.

@kindex maint info sections
@item maint info sections
Another command that can give you extra information about program sections
is @code{maint info sections}.  In addition to the section information
displayed by @code{info files}, this command displays the flags and file
offset of each section in the executable and core dump files.  In addition,
@code{maint info sections} provides the following command options (which
may be arbitrarily combined):

@table @code
@item ALLOBJ
Display sections for all loaded object files, including shared libraries.
@item @var{sections}
Display info only for named @var{sections}.
@item @var{section-flags}
Display info only for sections for which @var{section-flags} are true.
The section flags that @value{GDBN} currently knows about are:
@table @code
@item ALLOC
Section will have space allocated in the process when loaded.
Set for all sections except those containing debug information.
@item LOAD
Section will be loaded from the file into the child process memory.
Set for pre-initialized code and data, clear for @code{.bss} sections.
@item RELOC
Section needs to be relocated before loading.
@item READONLY
Section cannot be modified by the child process.
@item CODE
Section contains executable code only.
@item DATA
Section contains data only (no executable code).
@item ROM
Section will reside in ROM.
@item CONSTRUCTOR
Section contains data for constructor/destructor lists.
@item HAS_CONTENTS
Section is not empty.
@item NEVER_LOAD
An instruction to the linker to not output the section.
@item COFF_SHARED_LIBRARY
A notification to the linker that the section contains
COFF shared library information.
@item IS_COMMON
Section contains common symbols.
@end table
@end table
@kindex set trust-readonly-sections
@cindex read-only sections
@item set trust-readonly-sections on
Tell @value{GDBN} that readonly sections in your object file
really are read-only (i.e.@: that their contents will not change).
In that case, @value{GDBN} can fetch values from these sections
out of the object file, rather than from the target program.
For some targets (notably embedded ones), this can be a significant
enhancement to debugging performance.

The default is off.

@item set trust-readonly-sections off
Tell @value{GDBN} not to trust readonly sections.  This means that
the contents of the section might change while the program is running,
and must therefore be fetched from the target when needed.

@item show trust-readonly-sections
Show the current setting of trusting readonly sections.
@end table

All file-specifying commands allow both absolute and relative file names
as arguments.  @value{GDBN} always converts the file name to an absolute file
name and remembers it that way.

@cindex shared libraries
@anchor{Shared Libraries}
@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
and IBM RS/6000 AIX shared libraries.

On MS-Windows @value{GDBN} must be linked with the Expat library to support
shared libraries.  @xref{Expat}.

@value{GDBN} automatically loads symbol definitions from shared libraries
when you use the @code{run} command, or when you examine a core file.
(Before you issue the @code{run} command, @value{GDBN} does not understand
references to a function in a shared library, however---unless you are
debugging a core file).

On HP-UX, if the program loads a library explicitly, @value{GDBN}
automatically loads the symbols at the time of the @code{shl_load} call.

@c FIXME: some @value{GDBN} release may permit some refs to undef
@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
@c FIXME...lib; check this from time to time when updating manual

There are times, however, when you may wish to not automatically load
symbol definitions from shared libraries, such as when they are
particularly large or there are many of them.

To control the automatic loading of shared library symbols, use the
commands:

@table @code
@kindex set auto-solib-add
@item set auto-solib-add @var{mode}
If @var{mode} is @code{on}, symbols from all shared object libraries
will be loaded automatically when the inferior begins execution, you
attach to an independently started inferior, or when the dynamic linker
informs @value{GDBN} that a new library has been loaded.  If @var{mode}
is @code{off}, symbols must be loaded manually, using the
@code{sharedlibrary} command.  The default value is @code{on}.

@cindex memory used for symbol tables
If your program uses lots of shared libraries with debug info that
takes large amounts of memory, you can decrease the @value{GDBN}
memory footprint by preventing it from automatically loading the
symbols from shared libraries.  To that end, type @kbd{set
auto-solib-add off} before running the inferior, then load each
library whose debug symbols you do need with @kbd{sharedlibrary
@var{regexp}}, where @var{regexp} is a regular expression that matches
the libraries whose symbols you want to be loaded.

@kindex show auto-solib-add
@item show auto-solib-add
Display the current autoloading mode.
@end table

@cindex load shared library
To explicitly load shared library symbols, use the @code{sharedlibrary}
command:

@table @code
@kindex info sharedlibrary
@kindex info share
@item info share @var{regex}
@itemx info sharedlibrary @var{regex}
Print the names of the shared libraries which are currently loaded
that match @var{regex}.  If @var{regex} is omitted then print
all shared libraries that are loaded.

@kindex sharedlibrary
@kindex share
@item sharedlibrary @var{regex}
@itemx share @var{regex}
Load shared object library symbols for files matching a
Unix regular expression.
As with files loaded automatically, it only loads shared libraries
required by your program for a core file or after typing @code{run}.  If
@var{regex} is omitted all shared libraries required by your program are
loaded.

@item nosharedlibrary
@kindex nosharedlibrary
@cindex unload symbols from shared libraries
Unload all shared object library symbols.  This discards all symbols
that have been loaded from all shared libraries.  Symbols from shared
libraries that were loaded by explicit user requests are not
discarded.
@end table

Sometimes you may wish that @value{GDBN} stops and gives you control
when any of shared library events happen.  The best way to do this is
to use @code{catch load} and @code{catch unload} (@pxref{Set
Catchpoints}).

@value{GDBN} also supports the the @code{set stop-on-solib-events}
command for this.  This command exists for historical reasons.  It is
less useful than setting a catchpoint, because it does not allow for
conditions or commands as a catchpoint does.

@table @code
@item set stop-on-solib-events
@kindex set stop-on-solib-events
This command controls whether @value{GDBN} should give you control
when the dynamic linker notifies it about some shared library event.
The most common event of interest is loading or unloading of a new
shared library.

@item show stop-on-solib-events
@kindex show stop-on-solib-events
Show whether @value{GDBN} stops and gives you control when shared
library events happen.
@end table

Shared libraries are also supported in many cross or remote debugging
configurations.  @value{GDBN} needs to have access to the target's libraries;
this can be accomplished either by providing copies of the libraries
on the host system, or by asking @value{GDBN} to automatically retrieve the
libraries from the target.  If copies of the target libraries are
provided, they need to be the same as the target libraries, although the
copies on the target can be stripped as long as the copies on the host are
not.

@cindex where to look for shared libraries
For remote debugging, you need to tell @value{GDBN} where the target
libraries are, so that it can load the correct copies---otherwise, it
may try to load the host's libraries.  @value{GDBN} has two variables
to specify the search directories for target libraries.

@table @code
@cindex prefix for shared library file names
@cindex system root, alternate
@kindex set solib-absolute-prefix
@kindex set sysroot
@item set sysroot @var{path}
Use @var{path} as the system root for the program being debugged.  Any
absolute shared library paths will be prefixed with @var{path}; many
runtime loaders store the absolute paths to the shared library in the
target program's memory.  If you use @code{set sysroot} to find shared
libraries, they need to be laid out in the same way that they are on
the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
under @var{path}.

If @var{path} starts with the sequence @file{remote:}, @value{GDBN} will 
retrieve the target libraries from the remote system.  This is only
supported when using a remote target that supports the @code{remote get}
command (@pxref{File Transfer,,Sending files to a remote system}).
The part of @var{path} following the initial @file{remote:}
(if present) is used as system root prefix on the remote file system.
@footnote{If you want to specify a local system root using a directory
that happens to be named @file{remote:}, you need to use some equivalent
variant of the name like @file{./remote:}.}

For targets with an MS-DOS based filesystem, such as MS-Windows and
SymbianOS, @value{GDBN} tries prefixing a few variants of the target
absolute file name with @var{path}.  But first, on Unix hosts,
@value{GDBN} converts all backslash directory separators into forward
slashes, because the backslash is not a directory separator on Unix:

@smallexample
  c:\foo\bar.dll @result{} c:/foo/bar.dll
@end smallexample

Then, @value{GDBN} attempts prefixing the target file name with
@var{path}, and looks for the resulting file name in the host file
system:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/c:/foo/bar.dll
@end smallexample

If that does not find the shared library, @value{GDBN} tries removing
the @samp{:} character from the drive spec, both for convenience, and,
for the case of the host file system not supporting file names with
colons:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/c/foo/bar.dll
@end smallexample

This makes it possible to have a system root that mirrors a target
with more than one drive.  E.g., you may want to setup your local
copies of the target system shared libraries like so (note @samp{c} vs
@samp{z}):

@smallexample
 @file{/path/to/sysroot/c/sys/bin/foo.dll}
 @file{/path/to/sysroot/c/sys/bin/bar.dll}
 @file{/path/to/sysroot/z/sys/bin/bar.dll}
@end smallexample

@noindent
and point the system root at @file{/path/to/sysroot}, so that
@value{GDBN} can find the correct copies of both
@file{c:\sys\bin\foo.dll}, and @file{z:\sys\bin\bar.dll}.

If that still does not find the shared library, @value{GDBN} tries
removing the whole drive spec from the target file name:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/foo/bar.dll
@end smallexample

This last lookup makes it possible to not care about the drive name,
if you don't want or need to.

The @code{set solib-absolute-prefix} command is an alias for @code{set
sysroot}.

@cindex default system root
@cindex @samp{--with-sysroot}
You can set the default system root by using the configure-time
@samp{--with-sysroot} option.  If the system root is inside
@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
@samp{--exec-prefix}), then the default system root will be updated
automatically if the installed @value{GDBN} is moved to a new
location.

@kindex show sysroot
@item show sysroot
Display the current shared library prefix.

@kindex set solib-search-path
@item set solib-search-path @var{path}
If this variable is set, @var{path} is a colon-separated list of
directories to search for shared libraries.  @samp{solib-search-path}
is used after @samp{sysroot} fails to locate the library, or if the
path to the library is relative instead of absolute.  If you want to
use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
finding your host's libraries.  @samp{sysroot} is preferred; setting
it to a nonexistent directory may interfere with automatic loading
of shared library symbols.

@kindex show solib-search-path
@item show solib-search-path
Display the current shared library search path.

@cindex DOS file-name semantics of file names.
@kindex set target-file-system-kind (unix|dos-based|auto)
@kindex show target-file-system-kind
@item set target-file-system-kind @var{kind}
Set assumed file system kind for target reported file names.

Shared library file names as reported by the target system may not
make sense as is on the system @value{GDBN} is running on.  For
example, when remote debugging a target that has MS-DOS based file
system semantics, from a Unix host, the target may be reporting to
@value{GDBN} a list of loaded shared libraries with file names such as
@file{c:\Windows\kernel32.dll}.  On Unix hosts, there's no concept of
drive letters, so the @samp{c:\} prefix is not normally understood as
indicating an absolute file name, and neither is the backslash
normally considered a directory separator character.  In that case,
the native file system would interpret this whole absolute file name
as a relative file name with no directory components.  This would make
it impossible to point @value{GDBN} at a copy of the remote target's
shared libraries on the host using @code{set sysroot}, and impractical
with @code{set solib-search-path}.  Setting
@code{target-file-system-kind} to @code{dos-based} tells @value{GDBN}
to interpret such file names similarly to how the target would, and to
map them to file names valid on @value{GDBN}'s native file system
semantics.  The value of @var{kind} can be @code{"auto"}, in addition
to one of the supported file system kinds.  In that case, @value{GDBN}
tries to determine the appropriate file system variant based on the
current target's operating system (@pxref{ABI, ,Configuring the
Current ABI}).  The supported file system settings are:

@table @code
@item unix
Instruct @value{GDBN} to assume the target file system is of Unix
kind.  Only file names starting the forward slash (@samp{/}) character
are considered absolute, and the directory separator character is also
the forward slash.

@item dos-based
Instruct @value{GDBN} to assume the target file system is DOS based.
File names starting with either a forward slash, or a drive letter
followed by a colon (e.g., @samp{c:}), are considered absolute, and
both the slash (@samp{/}) and the backslash (@samp{\\}) characters are
considered directory separators.

@item auto
Instruct @value{GDBN} to use the file system kind associated with the
target operating system (@pxref{ABI, ,Configuring the Current ABI}).
This is the default.
@end table
@end table

@cindex file name canonicalization
@cindex base name differences
When processing file names provided by the user, @value{GDBN}
frequently needs to compare them to the file names recorded in the
program's debug info.  Normally, @value{GDBN} compares just the
@dfn{base names} of the files as strings, which is reasonably fast
even for very large programs.  (The base name of a file is the last
portion of its name, after stripping all the leading directories.)
This shortcut in comparison is based upon the assumption that files
cannot have more than one base name.  This is usually true, but
references to files that use symlinks or similar filesystem
facilities violate that assumption.  If your program records files
using such facilities, or if you provide file names to @value{GDBN}
using symlinks etc., you can set @code{basenames-may-differ} to
@code{true} to instruct @value{GDBN} to completely canonicalize each
pair of file names it needs to compare.  This will make file-name
comparisons accurate, but at a price of a significant slowdown.

@table @code
@item set basenames-may-differ
@kindex set basenames-may-differ
Set whether a source file may have multiple base names.

@item show basenames-may-differ
@kindex show basenames-may-differ
Show whether a source file may have multiple base names.
@end table

@node Separate Debug Files
@section Debugging Information in Separate Files
@cindex separate debugging information files
@cindex debugging information in separate files
@cindex @file{.debug} subdirectories
@cindex debugging information directory, global
@cindex global debugging information directories
@cindex build ID, and separate debugging files
@cindex @file{.build-id} directory

@value{GDBN} allows you to put a program's debugging information in a
file separate from the executable itself, in a way that allows
@value{GDBN} to find and load the debugging information automatically.
Since debugging information can be very large---sometimes larger
than the executable code itself---some systems distribute debugging
information for their executables in separate files, which users can
install only when they need to debug a problem.

@value{GDBN} supports two ways of specifying the separate debug info
file:

@itemize @bullet
@item
The executable contains a @dfn{debug link} that specifies the name of
the separate debug info file.  The separate debug file's name is
usually @file{@var{executable}.debug}, where @var{executable} is the
name of the corresponding executable file without leading directories
(e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
debug link specifies a 32-bit @dfn{Cyclic Redundancy Check} (CRC)
checksum for the debug file, which @value{GDBN} uses to validate that
the executable and the debug file came from the same build.

@item
The executable contains a @dfn{build ID}, a unique bit string that is
also present in the corresponding debug info file.  (This is supported
only on some operating systems, notably those which use the ELF format
for binary files and the @sc{gnu} Binutils.)  For more details about
this feature, see the description of the @option{--build-id}
command-line option in @ref{Options, , Command Line Options, ld.info,
The GNU Linker}.  The debug info file's name is not specified
explicitly by the build ID, but can be computed from the build ID, see
below.
@end itemize

Depending on the way the debug info file is specified, @value{GDBN}
uses two different methods of looking for the debug file:

@itemize @bullet
@item
For the ``debug link'' method, @value{GDBN} looks up the named file in
the directory of the executable file, then in a subdirectory of that
directory named @file{.debug}, and finally under each one of the global debug
directories, in a subdirectory whose name is identical to the leading
directories of the executable's absolute file name.

@item
For the ``build ID'' method, @value{GDBN} looks in the
@file{.build-id} subdirectory of each one of the global debug directories for
a file named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
are the rest of the bit string.  (Real build ID strings are 32 or more
hex characters, not 10.)
@end itemize

So, for example, suppose you ask @value{GDBN} to debug
@file{/usr/bin/ls}, which has a debug link that specifies the
file @file{ls.debug}, and a build ID whose value in hex is
@code{abcdef1234}.  If the list of the global debug directories includes
@file{/usr/lib/debug}, then @value{GDBN} will look for the following
debug information files, in the indicated order:

@itemize @minus
@item
@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
@item
@file{/usr/bin/ls.debug}
@item
@file{/usr/bin/.debug/ls.debug}
@item
@file{/usr/lib/debug/usr/bin/ls.debug}.
@end itemize

@anchor{debug-file-directory}
Global debugging info directories default to what is set by @value{GDBN}
configure option @option{--with-separate-debug-dir}.  During @value{GDBN} run
you can also set the global debugging info directories, and view the list
@value{GDBN} is currently using.

@table @code

@kindex set debug-file-directory
@item set debug-file-directory @var{directories}
Set the directories which @value{GDBN} searches for separate debugging
information files to @var{directory}.  Multiple path components can be set
concatenating them by a path separator.

@kindex show debug-file-directory
@item show debug-file-directory
Show the directories @value{GDBN} searches for separate debugging
information files.

@end table

@cindex @code{.gnu_debuglink} sections
@cindex debug link sections
A debug link is a special section of the executable file named
@code{.gnu_debuglink}.  The section must contain:

@itemize
@item
A filename, with any leading directory components removed, followed by
a zero byte,
@item
zero to three bytes of padding, as needed to reach the next four-byte
boundary within the section, and
@item
a four-byte CRC checksum, stored in the same endianness used for the
executable file itself.  The checksum is computed on the debugging
information file's full contents by the function given below, passing
zero as the @var{crc} argument.
@end itemize

Any executable file format can carry a debug link, as long as it can
contain a section named @code{.gnu_debuglink} with the contents
described above.

@cindex @code{.note.gnu.build-id} sections
@cindex build ID sections
The build ID is a special section in the executable file (and in other
ELF binary files that @value{GDBN} may consider).  This section is
often named @code{.note.gnu.build-id}, but that name is not mandatory.
It contains unique identification for the built files---the ID remains
the same across multiple builds of the same build tree.  The default
algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
content for the build ID string.  The same section with an identical
value is present in the original built binary with symbols, in its
stripped variant, and in the separate debugging information file.

The debugging information file itself should be an ordinary
executable, containing a full set of linker symbols, sections, and
debugging information.  The sections of the debugging information file
should have the same names, addresses, and sizes as the original file,
but they need not contain any data---much like a @code{.bss} section
in an ordinary executable.

The @sc{gnu} binary utilities (Binutils) package includes the
@samp{objcopy} utility that can produce
the separated executable / debugging information file pairs using the
following commands:

@smallexample
@kbd{objcopy --only-keep-debug foo foo.debug}
@kbd{strip -g foo}
@end smallexample

@noindent
These commands remove the debugging
information from the executable file @file{foo} and place it in the file
@file{foo.debug}.  You can use the first, second or both methods to link the
two files:

@itemize @bullet
@item
The debug link method needs the following additional command to also leave
behind a debug link in @file{foo}:

@smallexample
@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
@end smallexample

Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
a version of the @code{strip} command such that the command @kbd{strip foo -f
foo.debug} has the same functionality as the two @code{objcopy} commands and
the @code{ln -s} command above, together.

@item
Build ID gets embedded into the main executable using @code{ld --build-id} or
the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
compatibility fixes for debug files separation are present in @sc{gnu} binary
utilities (Binutils) package since version 2.18.
@end itemize

@noindent

@cindex CRC algorithm definition
The CRC used in @code{.gnu_debuglink} is the CRC-32 defined in
IEEE 802.3 using the polynomial:

@c TexInfo requires naked braces for multi-digit exponents for Tex
@c output, but this causes HTML output to barf. HTML has to be set using
@c raw commands. So we end up having to specify this equation in 2
@c different ways!
@ifhtml
@display
@html
 <em>x</em><sup>32</sup> + <em>x</em><sup>26</sup> + <em>x</em><sup>23</sup> + <em>x</em><sup>22</sup> + <em>x</em><sup>16</sup> + <em>x</em><sup>12</sup> + <em>x</em><sup>11</sup>
 + <em>x</em><sup>10</sup> + <em>x</em><sup>8</sup> + <em>x</em><sup>7</sup> + <em>x</em><sup>5</sup> + <em>x</em><sup>4</sup> + <em>x</em><sup>2</sup> + <em>x</em> + 1
@end html
@end display
@end ifhtml
@ifnothtml
@display
 @math{x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}}
 @math{+ x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1}
@end display
@end ifnothtml

The function is computed byte at a time, taking the least
significant bit of each byte first.  The initial pattern
@code{0xffffffff} is used, to ensure leading zeros affect the CRC and
the final result is inverted to ensure trailing zeros also affect the
CRC.

@emph{Note:} This is the same CRC polynomial as used in handling the
@dfn{Remote Serial Protocol} @code{qCRC} packet (@pxref{Remote Protocol,
, @value{GDBN} Remote Serial Protocol}).  However in the
case of the Remote Serial Protocol, the CRC is computed @emph{most}
significant bit first, and the result is not inverted, so trailing
zeros have no effect on the CRC value.

To complete the description, we show below the code of the function
which produces the CRC used in @code{.gnu_debuglink}.  Inverting the
initially supplied @code{crc} argument means that an initial call to
this function passing in zero will start computing the CRC using
@code{0xffffffff}.

@kindex gnu_debuglink_crc32
@smallexample
unsigned long
gnu_debuglink_crc32 (unsigned long crc,
                     unsigned char *buf, size_t len)
@{
  static const unsigned long crc32_table[256] =
    @{
      0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
      0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
      0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
      0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
      0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
      0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
      0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
      0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
      0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
      0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
      0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
      0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
      0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
      0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
      0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
      0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
      0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
      0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
      0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
      0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
      0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
      0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
      0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
      0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
      0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
      0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
      0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
      0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
      0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
      0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
      0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
      0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
      0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
      0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
      0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
      0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
      0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
      0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
      0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
      0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
      0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
      0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
      0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
      0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
      0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
      0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
      0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
      0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
      0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
      0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
      0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
      0x2d02ef8d
    @};
  unsigned char *end;

  crc = ~crc & 0xffffffff;
  for (end = buf + len; buf < end; ++buf)
    crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
  return ~crc & 0xffffffff;
@}
@end smallexample

@noindent
This computation does not apply to the ``build ID'' method.

@node MiniDebugInfo
@section Debugging information in a special section
@cindex separate debug sections
@cindex @samp{.gnu_debugdata} section

Some systems ship pre-built executables and libraries that have a
special @samp{.gnu_debugdata} section.  This feature is called
@dfn{MiniDebugInfo}.  This section holds an LZMA-compressed object and
is used to supply extra symbols for backtraces.

The intent of this section is to provide extra minimal debugging
information for use in simple backtraces.  It is not intended to be a
replacement for full separate debugging information (@pxref{Separate
Debug Files}).  The example below shows the intended use; however,
@value{GDBN} does not currently put restrictions on what sort of
debugging information might be included in the section.

@value{GDBN} has support for this extension.  If the section exists,
then it is used provided that no other source of debugging information
can be found, and that @value{GDBN} was configured with LZMA support.

This section can be easily created using @command{objcopy} and other
standard utilities:

@smallexample
# Extract the dynamic symbols from the main binary, there is no need
# to also have these in the normal symbol table.
nm -D @var{binary} --format=posix --defined-only \
  | awk '@{ print $1 @}' | sort > dynsyms

# Extract all the text (i.e. function) symbols from the debuginfo.
# (Note that we actually also accept "D" symbols, for the benefit
# of platforms like PowerPC64 that use function descriptors.)
nm @var{binary} --format=posix --defined-only \
  | awk '@{ if ($2 == "T" || $2 == "t" || $2 == "D") print $1 @}' \
  | sort > funcsyms

# Keep all the function symbols not already in the dynamic symbol
# table.
comm -13 dynsyms funcsyms > keep_symbols

# Separate full debug info into debug binary.
objcopy --only-keep-debug @var{binary} debug

# Copy the full debuginfo, keeping only a minimal set of symbols and
# removing some unnecessary sections.
objcopy -S --remove-section .gdb_index --remove-section .comment \
  --keep-symbols=keep_symbols debug mini_debuginfo

# Drop the full debug info from the original binary.
strip --strip-all -R .comment @var{binary}

# Inject the compressed data into the .gnu_debugdata section of the
# original binary.
xz mini_debuginfo
objcopy --add-section .gnu_debugdata=mini_debuginfo.xz @var{binary}
@end smallexample

@node Index Files
@section Index Files Speed Up @value{GDBN}
@cindex index files
@cindex @samp{.gdb_index} section

When @value{GDBN} finds a symbol file, it scans the symbols in the
file in order to construct an internal symbol table.  This lets most
@value{GDBN} operations work quickly---at the cost of a delay early
on.  For large programs, this delay can be quite lengthy, so
@value{GDBN} provides a way to build an index, which speeds up
startup.

The index is stored as a section in the symbol file.  @value{GDBN} can
write the index to a file, then you can put it into the symbol file
using @command{objcopy}.

To create an index file, use the @code{save gdb-index} command:

@table @code
@item save gdb-index @var{directory}
@kindex save gdb-index
Create an index file for each symbol file currently known by
@value{GDBN}.  Each file is named after its corresponding symbol file,
with @samp{.gdb-index} appended, and is written into the given
@var{directory}.
@end table

Once you have created an index file you can merge it into your symbol
file, here named @file{symfile}, using @command{objcopy}:

@smallexample
$ objcopy --add-section .gdb_index=symfile.gdb-index \
    --set-section-flags .gdb_index=readonly symfile symfile
@end smallexample

@value{GDBN} will normally ignore older versions of @file{.gdb_index}
sections that have been deprecated.  Usually they are deprecated because
they are missing a new feature or have performance issues.
To tell @value{GDBN} to use a deprecated index section anyway
specify @code{set use-deprecated-index-sections on}.
The default is @code{off}.
This can speed up startup, but may result in some functionality being lost.
@xref{Index Section Format}.

@emph{Warning:} Setting @code{use-deprecated-index-sections} to @code{on}
must be done before gdb reads the file.  The following will not work:

@smallexample
$ gdb -ex "set use-deprecated-index-sections on" <program>
@end smallexample

Instead you must do, for example,

@smallexample
$ gdb -iex "set use-deprecated-index-sections on" <program>
@end smallexample

There are currently some limitation on indices.  They only work when
for DWARF debugging information, not stabs.  And, they do not
currently work for programs using Ada.

@node Symbol Errors
@section Errors Reading Symbol Files

While reading a symbol file, @value{GDBN} occasionally encounters problems,
such as symbol types it does not recognize, or known bugs in compiler
output.  By default, @value{GDBN} does not notify you of such problems, since
they are relatively common and primarily of interest to people
debugging compilers.  If you are interested in seeing information
about ill-constructed symbol tables, you can either ask @value{GDBN} to print
only one message about each such type of problem, no matter how many
times the problem occurs; or you can ask @value{GDBN} to print more messages,
to see how many times the problems occur, with the @code{set
complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
Messages}).

The messages currently printed, and their meanings, include:

@table @code
@item inner block not inside outer block in @var{symbol}

The symbol information shows where symbol scopes begin and end
(such as at the start of a function or a block of statements).  This
error indicates that an inner scope block is not fully contained
in its outer scope blocks.

@value{GDBN} circumvents the problem by treating the inner block as if it had
the same scope as the outer block.  In the error message, @var{symbol}
may be shown as ``@code{(don't know)}'' if the outer block is not a
function.

@item block at @var{address} out of order

The symbol information for symbol scope blocks should occur in
order of increasing addresses.  This error indicates that it does not
do so.

@value{GDBN} does not circumvent this problem, and has trouble
locating symbols in the source file whose symbols it is reading.  (You
can often determine what source file is affected by specifying
@code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
Messages}.)

@item bad block start address patched

The symbol information for a symbol scope block has a start address
smaller than the address of the preceding source line.  This is known
to occur in the SunOS 4.1.1 (and earlier) C compiler.

@value{GDBN} circumvents the problem by treating the symbol scope block as
starting on the previous source line.

@item bad string table offset in symbol @var{n}

@cindex foo
Symbol number @var{n} contains a pointer into the string table which is
larger than the size of the string table.

@value{GDBN} circumvents the problem by considering the symbol to have the
name @code{foo}, which may cause other problems if many symbols end up
with this name.

@item unknown symbol type @code{0x@var{nn}}

The symbol information contains new data types that @value{GDBN} does
not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
uncomprehended information, in hexadecimal.

@value{GDBN} circumvents the error by ignoring this symbol information.
This usually allows you to debug your program, though certain symbols
are not accessible.  If you encounter such a problem and feel like
debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
on @code{complain}, then go up to the function @code{read_dbx_symtab}
and examine @code{*bufp} to see the symbol.

@item stub type has NULL name

@value{GDBN} could not find the full definition for a struct or class.

@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
The symbol information for a C@t{++} member function is missing some
information that recent versions of the compiler should have output for
it.

@item info mismatch between compiler and debugger

@value{GDBN} could not parse a type specification output by the compiler.

@end table

@node Data Files
@section GDB Data Files

@cindex prefix for data files
@value{GDBN} will sometimes read an auxiliary data file.  These files
are kept in a directory known as the @dfn{data directory}.

You can set the data directory's name, and view the name @value{GDBN}
is currently using.

@table @code
@kindex set data-directory
@item set data-directory @var{directory}
Set the directory which @value{GDBN} searches for auxiliary data files
to @var{directory}.

@kindex show data-directory
@item show data-directory
Show the directory @value{GDBN} searches for auxiliary data files.
@end table

@cindex default data directory
@cindex @samp{--with-gdb-datadir}
You can set the default data directory by using the configure-time
@samp{--with-gdb-datadir} option.  If the data directory is inside
@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
@samp{--exec-prefix}), then the default data directory will be updated
automatically if the installed @value{GDBN} is moved to a new
location.

The data directory may also be specified with the
@code{--data-directory} command line option.
@xref{Mode Options}.

@node Targets
@chapter Specifying a Debugging Target

@cindex debugging target
A @dfn{target} is the execution environment occupied by your program.

Often, @value{GDBN} runs in the same host environment as your program;
in that case, the debugging target is specified as a side effect when
you use the @code{file} or @code{core} commands.  When you need more
flexibility---for example, running @value{GDBN} on a physically separate
host, or controlling a standalone system over a serial port or a
realtime system over a TCP/IP connection---you can use the @code{target}
command to specify one of the target types configured for @value{GDBN}
(@pxref{Target Commands, ,Commands for Managing Targets}).

@cindex target architecture
It is possible to build @value{GDBN} for several different @dfn{target
architectures}.  When @value{GDBN} is built like that, you can choose
one of the available architectures with the @kbd{set architecture}
command.

@table @code
@kindex set architecture
@kindex show architecture
@item set architecture @var{arch}
This command sets the current target architecture to @var{arch}.  The
value of @var{arch} can be @code{"auto"}, in addition to one of the
supported architectures.

@item show architecture
Show the current target architecture.

@item set processor
@itemx processor
@kindex set processor
@kindex show processor
These are alias commands for, respectively, @code{set architecture}
and @code{show architecture}.
@end table

@menu
* Active Targets::              Active targets
* Target Commands::             Commands for managing targets
* Byte Order::                  Choosing target byte order
@end menu

@node Active Targets
@section Active Targets

@cindex stacking targets
@cindex active targets
@cindex multiple targets

There are multiple classes of targets such as: processes, executable files or
recording sessions.  Core files belong to the process class, making core file
and process mutually exclusive.  Otherwise, @value{GDBN} can work concurrently
on multiple active targets, one in each class.  This allows you to (for
example) start a process and inspect its activity, while still having access to
the executable file after the process finishes.  Or if you start process
recording (@pxref{Reverse Execution}) and @code{reverse-step} there, you are
presented a virtual layer of the recording target, while the process target
remains stopped at the chronologically last point of the process execution.

Use the @code{core-file} and @code{exec-file} commands to select a new core
file or executable target (@pxref{Files, ,Commands to Specify Files}).  To
specify as a target a process that is already running, use the @code{attach}
command (@pxref{Attach, ,Debugging an Already-running Process}).

@node Target Commands
@section Commands for Managing Targets

@table @code
@item target @var{type} @var{parameters}
Connects the @value{GDBN} host environment to a target machine or
process.  A target is typically a protocol for talking to debugging
facilities.  You use the argument @var{type} to specify the type or
protocol of the target machine.

Further @var{parameters} are interpreted by the target protocol, but
typically include things like device names or host names to connect
with, process numbers, and baud rates.

The @code{target} command does not repeat if you press @key{RET} again
after executing the command.

@kindex help target
@item help target
Displays the names of all targets available.  To display targets
currently selected, use either @code{info target} or @code{info files}
(@pxref{Files, ,Commands to Specify Files}).

@item help target @var{name}
Describe a particular target, including any parameters necessary to
select it.

@kindex set gnutarget
@item set gnutarget @var{args}
@value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
knows whether it is reading an @dfn{executable},
a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
with the @code{set gnutarget} command.  Unlike most @code{target} commands,
with @code{gnutarget} the @code{target} refers to a program, not a machine.

@quotation
@emph{Warning:} To specify a file format with @code{set gnutarget},
you must know the actual BFD name.
@end quotation

@noindent
@xref{Files, , Commands to Specify Files}.

@kindex show gnutarget
@item show gnutarget
Use the @code{show gnutarget} command to display what file format
@code{gnutarget} is set to read.  If you have not set @code{gnutarget},
@value{GDBN} will determine the file format for each file automatically,
and @code{show gnutarget} displays @samp{The current BFD target is "auto"}.
@end table

@cindex common targets
Here are some common targets (available, or not, depending on the GDB
configuration):

@table @code
@kindex target
@item target exec @var{program}
@cindex executable file target
An executable file.  @samp{target exec @var{program}} is the same as
@samp{exec-file @var{program}}.

@item target core @var{filename}
@cindex core dump file target
A core dump file.  @samp{target core @var{filename}} is the same as
@samp{core-file @var{filename}}.

@item target remote @var{medium}
@cindex remote target
A remote system connected to @value{GDBN} via a serial line or network
connection.  This command tells @value{GDBN} to use its own remote
protocol over @var{medium} for debugging.  @xref{Remote Debugging}.

For example, if you have a board connected to @file{/dev/ttya} on the
machine running @value{GDBN}, you could say:

@smallexample
target remote /dev/ttya
@end smallexample

@code{target remote} supports the @code{load} command.  This is only
useful if you have some other way of getting the stub to the target
system, and you can put it somewhere in memory where it won't get
clobbered by the download.

@item target sim @r{[}@var{simargs}@r{]} @dots{}
@cindex built-in simulator target
Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
In general,
@smallexample
        target sim
        load
        run
@end smallexample
@noindent
works; however, you cannot assume that a specific memory map, device
drivers, or even basic I/O is available, although some simulators do
provide these.  For info about any processor-specific simulator details,
see the appropriate section in @ref{Embedded Processors, ,Embedded
Processors}.

@end table

Different targets are available on different configurations of @value{GDBN};
your configuration may have more or fewer targets.

Many remote targets require you to download the executable's code once
you've successfully established a connection.  You may wish to control
various aspects of this process.

@table @code

@item set hash
@kindex set hash@r{, for remote monitors}
@cindex hash mark while downloading
This command controls whether a hash mark @samp{#} is displayed while
downloading a file to the remote monitor.  If on, a hash mark is
displayed after each S-record is successfully downloaded to the
monitor.

@item show hash
@kindex show hash@r{, for remote monitors}
Show the current status of displaying the hash mark.

@item set debug monitor
@kindex set debug monitor
@cindex display remote monitor communications
Enable or disable display of communications messages between
@value{GDBN} and the remote monitor.

@item show debug monitor
@kindex show debug monitor
Show the current status of displaying communications between
@value{GDBN} and the remote monitor.
@end table

@table @code

@kindex load @var{filename}
@item load @var{filename}
@anchor{load}
Depending on what remote debugging facilities are configured into
@value{GDBN}, the @code{load} command may be available.  Where it exists, it
is meant to make @var{filename} (an executable) available for debugging
on the remote system---by downloading, or dynamic linking, for example.
@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
the @code{add-symbol-file} command.

If your @value{GDBN} does not have a @code{load} command, attempting to
execute it gets the error message ``@code{You can't do that when your
target is @dots{}}''

The file is loaded at whatever address is specified in the executable.
For some object file formats, you can specify the load address when you
link the program; for other formats, like a.out, the object file format
specifies a fixed address.
@c FIXME! This would be a good place for an xref to the GNU linker doc.

Depending on the remote side capabilities, @value{GDBN} may be able to
load programs into flash memory.

@code{load} does not repeat if you press @key{RET} again after using it.
@end table

@node Byte Order
@section Choosing Target Byte Order

@cindex choosing target byte order
@cindex target byte order

Some types of processors, such as the @acronym{MIPS}, PowerPC, and Renesas SH,
offer the ability to run either big-endian or little-endian byte
orders.  Usually the executable or symbol will include a bit to
designate the endian-ness, and you will not need to worry about
which to use.  However, you may still find it useful to adjust
@value{GDBN}'s idea of processor endian-ness manually.

@table @code
@kindex set endian
@item set endian big
Instruct @value{GDBN} to assume the target is big-endian.

@item set endian little
Instruct @value{GDBN} to assume the target is little-endian.

@item set endian auto
Instruct @value{GDBN} to use the byte order associated with the
executable.

@item show endian
Display @value{GDBN}'s current idea of the target byte order.

@end table

Note that these commands merely adjust interpretation of symbolic
data on the host, and that they have absolutely no effect on the
target system.


@node Remote Debugging
@chapter Debugging Remote Programs
@cindex remote debugging

If you are trying to debug a program running on a machine that cannot run
@value{GDBN} in the usual way, it is often useful to use remote debugging.
For example, you might use remote debugging on an operating system kernel,
or on a small system which does not have a general purpose operating system
powerful enough to run a full-featured debugger.

Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
to make this work with particular debugging targets.  In addition,
@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
but not specific to any particular target system) which you can use if you
write the remote stubs---the code that runs on the remote system to
communicate with @value{GDBN}.

Other remote targets may be available in your
configuration of @value{GDBN}; use @code{help target} to list them.

@menu
* Connecting::                  Connecting to a remote target
* File Transfer::               Sending files to a remote system
* Server::	                Using the gdbserver program
* Remote Configuration::        Remote configuration
* Remote Stub::                 Implementing a remote stub
@end menu

@node Connecting
@section Connecting to a Remote Target

On the @value{GDBN} host machine, you will need an unstripped copy of
your program, since @value{GDBN} needs symbol and debugging information.
Start up @value{GDBN} as usual, using the name of the local copy of your
program as the first argument.

@cindex @code{target remote}
@value{GDBN} can communicate with the target over a serial line, or
over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
each case, @value{GDBN} uses the same protocol for debugging your
program; only the medium carrying the debugging packets varies.  The
@code{target remote} command establishes a connection to the target.
Its arguments indicate which medium to use:

@table @code

@item target remote @var{serial-device}
@cindex serial line, @code{target remote}
Use @var{serial-device} to communicate with the target.  For example,
to use a serial line connected to the device named @file{/dev/ttyb}:

@smallexample
target remote /dev/ttyb
@end smallexample

If you're using a serial line, you may want to give @value{GDBN} the
@samp{--baud} option, or use the @code{set serial baud} command
(@pxref{Remote Configuration, set serial baud}) before the
@code{target} command.

@item target remote @code{@var{host}:@var{port}}
@itemx target remote @code{tcp:@var{host}:@var{port}}
@cindex @acronym{TCP} port, @code{target remote}
Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
The @var{host} may be either a host name or a numeric @acronym{IP}
address; @var{port} must be a decimal number.  The @var{host} could be
the target machine itself, if it is directly connected to the net, or
it might be a terminal server which in turn has a serial line to the
target.

For example, to connect to port 2828 on a terminal server named
@code{manyfarms}:

@smallexample
target remote manyfarms:2828
@end smallexample

If your remote target is actually running on the same machine as your
debugger session (e.g.@: a simulator for your target running on the
same host), you can omit the hostname.  For example, to connect to
port 1234 on your local machine:

@smallexample
target remote :1234
@end smallexample
@noindent

Note that the colon is still required here.

@item target remote @code{udp:@var{host}:@var{port}}
@cindex @acronym{UDP} port, @code{target remote}
Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:

@smallexample
target remote udp:manyfarms:2828
@end smallexample

When using a @acronym{UDP} connection for remote debugging, you should
keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
can silently drop packets on busy or unreliable networks, which will
cause havoc with your debugging session.

@item target remote | @var{command}
@cindex pipe, @code{target remote} to
Run @var{command} in the background and communicate with it using a
pipe.  The @var{command} is a shell command, to be parsed and expanded
by the system's command shell, @code{/bin/sh}; it should expect remote
protocol packets on its standard input, and send replies on its
standard output.  You could use this to run a stand-alone simulator
that speaks the remote debugging protocol, to make net connections
using programs like @code{ssh}, or for other similar tricks.

If @var{command} closes its standard output (perhaps by exiting),
@value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
program has already exited, this will have no effect.)

@end table

Once the connection has been established, you can use all the usual
commands to examine and change data.  The remote program is already
running; you can use @kbd{step} and @kbd{continue}, and you do not
need to use @kbd{run}.

@cindex interrupting remote programs
@cindex remote programs, interrupting
Whenever @value{GDBN} is waiting for the remote program, if you type the
interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
program.  This may or may not succeed, depending in part on the hardware
and the serial drivers the remote system uses.  If you type the
interrupt character once again, @value{GDBN} displays this prompt:

@smallexample
Interrupted while waiting for the program.
Give up (and stop debugging it)?  (y or n)
@end smallexample

If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
(If you decide you want to try again later, you can use @samp{target
remote} again to connect once more.)  If you type @kbd{n}, @value{GDBN}
goes back to waiting.

@table @code
@kindex detach (remote)
@item detach
When you have finished debugging the remote program, you can use the
@code{detach} command to release it from @value{GDBN} control.
Detaching from the target normally resumes its execution, but the results
will depend on your particular remote stub.  After the @code{detach}
command, @value{GDBN} is free to connect to another target.

@kindex disconnect
@item disconnect
The @code{disconnect} command behaves like @code{detach}, except that
the target is generally not resumed.  It will wait for @value{GDBN}
(this instance or another one) to connect and continue debugging.  After
the @code{disconnect} command, @value{GDBN} is again free to connect to
another target.

@cindex send command to remote monitor
@cindex extend @value{GDBN} for remote targets
@cindex add new commands for external monitor
@kindex monitor
@item monitor @var{cmd}
This command allows you to send arbitrary commands directly to the
remote monitor.  Since @value{GDBN} doesn't care about the commands it
sends like this, this command is the way to extend @value{GDBN}---you
can add new commands that only the external monitor will understand
and implement.
@end table

@node File Transfer
@section Sending files to a remote system
@cindex remote target, file transfer
@cindex file transfer
@cindex sending files to remote systems

Some remote targets offer the ability to transfer files over the same
connection used to communicate with @value{GDBN}.  This is convenient
for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
running @code{gdbserver} over a network interface.  For other targets,
e.g.@: embedded devices with only a single serial port, this may be
the only way to upload or download files.

Not all remote targets support these commands.

@table @code
@kindex remote put
@item remote put @var{hostfile} @var{targetfile}
Copy file @var{hostfile} from the host system (the machine running
@value{GDBN}) to @var{targetfile} on the target system.

@kindex remote get
@item remote get @var{targetfile} @var{hostfile}
Copy file @var{targetfile} from the target system to @var{hostfile}
on the host system.

@kindex remote delete
@item remote delete @var{targetfile}
Delete @var{targetfile} from the target system.

@end table

@node Server
@section Using the @code{gdbserver} Program

@kindex gdbserver
@cindex remote connection without stubs
@code{gdbserver} is a control program for Unix-like systems, which
allows you to connect your program with a remote @value{GDBN} via
@code{target remote}---but without linking in the usual debugging stub.

@code{gdbserver} is not a complete replacement for the debugging stubs,
because it requires essentially the same operating-system facilities
that @value{GDBN} itself does.  In fact, a system that can run
@code{gdbserver} to connect to a remote @value{GDBN} could also run
@value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
because it is a much smaller program than @value{GDBN} itself.  It is
also easier to port than all of @value{GDBN}, so you may be able to get
started more quickly on a new system by using @code{gdbserver}.
Finally, if you develop code for real-time systems, you may find that
the tradeoffs involved in real-time operation make it more convenient to
do as much development work as possible on another system, for example
by cross-compiling.  You can use @code{gdbserver} to make a similar
choice for debugging.

@value{GDBN} and @code{gdbserver} communicate via either a serial line
or a TCP connection, using the standard @value{GDBN} remote serial
protocol.

@quotation
@emph{Warning:} @code{gdbserver} does not have any built-in security.
Do not run @code{gdbserver} connected to any public network; a
@value{GDBN} connection to @code{gdbserver} provides access to the
target system with the same privileges as the user running
@code{gdbserver}.
@end quotation

@subsection Running @code{gdbserver}
@cindex arguments, to @code{gdbserver}
@cindex @code{gdbserver}, command-line arguments

Run @code{gdbserver} on the target system.  You need a copy of the
program you want to debug, including any libraries it requires.
@code{gdbserver} does not need your program's symbol table, so you can
strip the program if necessary to save space.  @value{GDBN} on the host
system does all the symbol handling.

To use the server, you must tell it how to communicate with @value{GDBN};
the name of your program; and the arguments for your program.  The usual
syntax is:

@smallexample
target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
@end smallexample

@var{comm} is either a device name (to use a serial line), or a TCP
hostname and portnumber, or @code{-} or @code{stdio} to use
stdin/stdout of @code{gdbserver}.
For example, to debug Emacs with the argument
@samp{foo.txt} and communicate with @value{GDBN} over the serial port
@file{/dev/com1}:

@smallexample
target> gdbserver /dev/com1 emacs foo.txt
@end smallexample

@code{gdbserver} waits passively for the host @value{GDBN} to communicate
with it.

To use a TCP connection instead of a serial line:

@smallexample
target> gdbserver host:2345 emacs foo.txt
@end smallexample

The only difference from the previous example is the first argument,
specifying that you are communicating with the host @value{GDBN} via
TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
expect a TCP connection from machine @samp{host} to local TCP port 2345.
(Currently, the @samp{host} part is ignored.)  You can choose any number
you want for the port number as long as it does not conflict with any
TCP ports already in use on the target system (for example, @code{23} is
reserved for @code{telnet}).@footnote{If you choose a port number that
conflicts with another service, @code{gdbserver} prints an error message
and exits.}  You must use the same port number with the host @value{GDBN}
@code{target remote} command.

The @code{stdio} connection is useful when starting @code{gdbserver}
with ssh:

@smallexample
(gdb) target remote | ssh -T hostname gdbserver - hello
@end smallexample

The @samp{-T} option to ssh is provided because we don't need a remote pty,
and we don't want escape-character handling.  Ssh does this by default when
a command is provided, the flag is provided to make it explicit.
You could elide it if you want to.

Programs started with stdio-connected gdbserver have @file{/dev/null} for
@code{stdin}, and @code{stdout},@code{stderr} are sent back to gdb for
display through a pipe connected to gdbserver.
Both @code{stdout} and @code{stderr} use the same pipe.

@subsubsection Attaching to a Running Program
@cindex attach to a program, @code{gdbserver}
@cindex @option{--attach}, @code{gdbserver} option

On some targets, @code{gdbserver} can also attach to running programs.
This is accomplished via the @code{--attach} argument.  The syntax is:

@smallexample
target> gdbserver --attach @var{comm} @var{pid}
@end smallexample

@var{pid} is the process ID of a currently running process.  It isn't necessary
to point @code{gdbserver} at a binary for the running process.

@pindex pidof
You can debug processes by name instead of process ID if your target has the
@code{pidof} utility:

@smallexample
target> gdbserver --attach @var{comm} `pidof @var{program}`
@end smallexample

In case more than one copy of @var{program} is running, or @var{program}
has multiple threads, most versions of @code{pidof} support the
@code{-s} option to only return the first process ID.

@subsubsection Multi-Process Mode for @code{gdbserver}
@cindex @code{gdbserver}, multiple processes
@cindex multiple processes with @code{gdbserver}

When you connect to @code{gdbserver} using @code{target remote},
@code{gdbserver} debugs the specified program only once.  When the
program exits, or you detach from it, @value{GDBN} closes the connection
and @code{gdbserver} exits.

If you connect using @kbd{target extended-remote}, @code{gdbserver}
enters multi-process mode.  When the debugged program exits, or you
detach from it, @value{GDBN} stays connected to @code{gdbserver} even
though no program is running.  The @code{run} and @code{attach}
commands instruct @code{gdbserver} to run or attach to a new program.
The @code{run} command uses @code{set remote exec-file} (@pxref{set
remote exec-file}) to select the program to run.  Command line
arguments are supported, except for wildcard expansion and I/O
redirection (@pxref{Arguments}).

@cindex @option{--multi}, @code{gdbserver} option
To start @code{gdbserver} without supplying an initial command to run
or process ID to attach, use the @option{--multi} command line option.
Then you can connect using @kbd{target extended-remote} and start
the program you want to debug.

In multi-process mode @code{gdbserver} does not automatically exit unless you
use the option @option{--once}.  You can terminate it by using
@code{monitor exit} (@pxref{Monitor Commands for gdbserver}).  Note that the
conditions under which @code{gdbserver} terminates depend on how @value{GDBN}
connects to it (@kbd{target remote} or @kbd{target extended-remote}).  The
@option{--multi} option to @code{gdbserver} has no influence on that.

@subsubsection TCP port allocation lifecycle of @code{gdbserver}

This section applies only when @code{gdbserver} is run to listen on a TCP port.

@code{gdbserver} normally terminates after all of its debugged processes have
terminated in @kbd{target remote} mode.  On the other hand, for @kbd{target
extended-remote}, @code{gdbserver} stays running even with no processes left.
@value{GDBN} normally terminates the spawned debugged process on its exit,
which normally also terminates @code{gdbserver} in the @kbd{target remote}
mode.  Therefore, when the connection drops unexpectedly, and @value{GDBN}
cannot ask @code{gdbserver} to kill its debugged processes, @code{gdbserver}
stays running even in the @kbd{target remote} mode.

When @code{gdbserver} stays running, @value{GDBN} can connect to it again later.
Such reconnecting is useful for features like @ref{disconnected tracing}.  For
completeness, at most one @value{GDBN} can be connected at a time.

@cindex @option{--once}, @code{gdbserver} option
By default, @code{gdbserver} keeps the listening TCP port open, so that
subsequent connections are possible.  However, if you start @code{gdbserver}
with the @option{--once} option, it will stop listening for any further
connection attempts after connecting to the first @value{GDBN} session.  This
means no further connections to @code{gdbserver} will be possible after the
first one.  It also means @code{gdbserver} will terminate after the first
connection with remote @value{GDBN} has closed, even for unexpectedly closed
connections and even in the @kbd{target extended-remote} mode.  The
@option{--once} option allows reusing the same port number for connecting to
multiple instances of @code{gdbserver} running on the same host, since each
instance closes its port after the first connection.

@subsubsection Other Command-Line Arguments for @code{gdbserver}

@cindex @option{--debug}, @code{gdbserver} option
The @option{--debug} option tells @code{gdbserver} to display extra
status information about the debugging process.
@cindex @option{--remote-debug}, @code{gdbserver} option
The @option{--remote-debug} option tells @code{gdbserver} to display
remote protocol debug output.  These options are intended for
@code{gdbserver} development and for bug reports to the developers.

@cindex @option{--wrapper}, @code{gdbserver} option
The @option{--wrapper} option specifies a wrapper to launch programs
for debugging.  The option should be followed by the name of the
wrapper, then any command-line arguments to pass to the wrapper, then
@kbd{--} indicating the end of the wrapper arguments.

@code{gdbserver} runs the specified wrapper program with a combined
command line including the wrapper arguments, then the name of the
program to debug, then any arguments to the program.  The wrapper
runs until it executes your program, and then @value{GDBN} gains control.

You can use any program that eventually calls @code{execve} with
its arguments as a wrapper.  Several standard Unix utilities do
this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
with @code{exec "$@@"} will also work.

For example, you can use @code{env} to pass an environment variable to
the debugged program, without setting the variable in @code{gdbserver}'s
environment:

@smallexample
$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
@end smallexample

@subsection Connecting to @code{gdbserver}

Run @value{GDBN} on the host system.

First make sure you have the necessary symbol files.  Load symbols for
your application using the @code{file} command before you connect.  Use
@code{set sysroot} to locate target libraries (unless your @value{GDBN}
was compiled with the correct sysroot using @code{--with-sysroot}).

The symbol file and target libraries must exactly match the executable
and libraries on the target, with one exception: the files on the host
system should not be stripped, even if the files on the target system
are.  Mismatched or missing files will lead to confusing results
during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
files may also prevent @code{gdbserver} from debugging multi-threaded
programs.

Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
For TCP connections, you must start up @code{gdbserver} prior to using
the @code{target remote} command.  Otherwise you may get an error whose
text depends on the host system, but which usually looks something like
@samp{Connection refused}.  Don't use the @code{load}
command in @value{GDBN} when using @code{gdbserver}, since the program is
already on the target.

@subsection Monitor Commands for @code{gdbserver}
@cindex monitor commands, for @code{gdbserver}
@anchor{Monitor Commands for gdbserver}

During a @value{GDBN} session using @code{gdbserver}, you can use the
@code{monitor} command to send special requests to @code{gdbserver}.
Here are the available commands.

@table @code
@item monitor help
List the available monitor commands.

@item monitor set debug 0
@itemx monitor set debug 1
Disable or enable general debugging messages.

@item monitor set remote-debug 0
@itemx monitor set remote-debug 1
Disable or enable specific debugging messages associated with the remote
protocol (@pxref{Remote Protocol}).

@item monitor set libthread-db-search-path [PATH]
@cindex gdbserver, search path for @code{libthread_db}
When this command is issued, @var{path} is a colon-separated list of
directories to search for @code{libthread_db} (@pxref{Threads,,set
libthread-db-search-path}).  If you omit @var{path},
@samp{libthread-db-search-path} will be reset to its default value.

The special entry @samp{$pdir} for @samp{libthread-db-search-path} is
not supported in @code{gdbserver}.

@item monitor exit
Tell gdbserver to exit immediately.  This command should be followed by
@code{disconnect} to close the debugging session.  @code{gdbserver} will
detach from any attached processes and kill any processes it created.
Use @code{monitor exit} to terminate @code{gdbserver} at the end
of a multi-process mode debug session.

@end table

@subsection Tracepoints support in @code{gdbserver}
@cindex tracepoints support in @code{gdbserver}

On some targets, @code{gdbserver} supports tracepoints, fast
tracepoints and static tracepoints.

For fast or static tracepoints to work, a special library called the
@dfn{in-process agent} (IPA), must be loaded in the inferior process.
This library is built and distributed as an integral part of
@code{gdbserver}.  In addition, support for static tracepoints
requires building the in-process agent library with static tracepoints
support.  At present, the UST (LTTng Userspace Tracer,
@url{http://lttng.org/ust}) tracing engine is supported.  This support
is automatically available if UST development headers are found in the
standard include path when @code{gdbserver} is built, or if
@code{gdbserver} was explicitly configured using @option{--with-ust}
to point at such headers.  You can explicitly disable the support
using @option{--with-ust=no}.

There are several ways to load the in-process agent in your program:

@table @code
@item Specifying it as dependency at link time

You can link your program dynamically with the in-process agent
library.  On most systems, this is accomplished by adding
@code{-linproctrace} to the link command.

@item Using the system's preloading mechanisms

You can force loading the in-process agent at startup time by using
your system's support for preloading shared libraries.  Many Unixes
support the concept of preloading user defined libraries.  In most
cases, you do that by specifying @code{LD_PRELOAD=libinproctrace.so}
in the environment.  See also the description of @code{gdbserver}'s
@option{--wrapper} command line option.

@item Using @value{GDBN} to force loading the agent at run time

On some systems, you can force the inferior to load a shared library,
by calling a dynamic loader function in the inferior that takes care
of dynamically looking up and loading a shared library.  On most Unix
systems, the function is @code{dlopen}.  You'll use the @code{call}
command for that.  For example:

@smallexample
(@value{GDBP}) call dlopen ("libinproctrace.so", ...)
@end smallexample

Note that on most Unix systems, for the @code{dlopen} function to be
available, the program needs to be linked with @code{-ldl}.
@end table

On systems that have a userspace dynamic loader, like most Unix
systems, when you connect to @code{gdbserver} using @code{target
remote}, you'll find that the program is stopped at the dynamic
loader's entry point, and no shared library has been loaded in the
program's address space yet, including the in-process agent.  In that
case, before being able to use any of the fast or static tracepoints
features, you need to let the loader run and load the shared
libraries.  The simplest way to do that is to run the program to the
main procedure.  E.g., if debugging a C or C@t{++} program, start
@code{gdbserver} like so:

@smallexample
$ gdbserver :9999 myprogram
@end smallexample

Start GDB and connect to @code{gdbserver} like so, and run to main:

@smallexample
$ gdb myprogram
(@value{GDBP}) target remote myhost:9999
0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2
(@value{GDBP}) b main
(@value{GDBP}) continue
@end smallexample

The in-process tracing agent library should now be loaded into the
process; you can confirm it with the @code{info sharedlibrary}
command, which will list @file{libinproctrace.so} as loaded in the
process.  You are now ready to install fast tracepoints, list static
tracepoint markers, probe static tracepoints markers, and start
tracing.

@node Remote Configuration
@section Remote Configuration

@kindex set remote
@kindex show remote
This section documents the configuration options available when
debugging remote programs.  For the options related to the File I/O
extensions of the remote protocol, see @ref{system,
system-call-allowed}.

@table @code
@item set remoteaddresssize @var{bits}
@cindex address size for remote targets
@cindex bits in remote address
Set the maximum size of address in a memory packet to the specified
number of bits.  @value{GDBN} will mask off the address bits above
that number, when it passes addresses to the remote target.  The
default value is the number of bits in the target's address.

@item show remoteaddresssize
Show the current value of remote address size in bits.

@item set serial baud @var{n}
@cindex baud rate for remote targets
Set the baud rate for the remote serial I/O to @var{n} baud.  The
value is used to set the speed of the serial port used for debugging
remote targets.

@item show serial baud
Show the current speed of the remote connection.

@item set remotebreak
@cindex interrupt remote programs
@cindex BREAK signal instead of Ctrl-C
@anchor{set remotebreak}
If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
when you type @kbd{Ctrl-c} to interrupt the program running
on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
character instead.  The default is off, since most remote systems
expect to see @samp{Ctrl-C} as the interrupt signal.

@item show remotebreak
Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
interrupt the remote program.

@item set remoteflow on
@itemx set remoteflow off
@kindex set remoteflow
Enable or disable hardware flow control (@code{RTS}/@code{CTS})
on the serial port used to communicate to the remote target.

@item show remoteflow
@kindex show remoteflow
Show the current setting of hardware flow control.

@item set remotelogbase @var{base}
Set the base (a.k.a.@: radix) of logging serial protocol
communications to @var{base}.  Supported values of @var{base} are:
@code{ascii}, @code{octal}, and @code{hex}.  The default is
@code{ascii}.

@item show remotelogbase
Show the current setting of the radix for logging remote serial
protocol.

@item set remotelogfile @var{file}
@cindex record serial communications on file
Record remote serial communications on the named @var{file}.  The
default is not to record at all.

@item show remotelogfile.
Show the current setting  of the file name on which to record the
serial communications.

@item set remotetimeout @var{num}
@cindex timeout for serial communications
@cindex remote timeout
Set the timeout limit to wait for the remote target to respond to
@var{num} seconds.  The default is 2 seconds.

@item show remotetimeout
Show the current number of seconds to wait for the remote target
responses.

@cindex limit hardware breakpoints and watchpoints
@cindex remote target, limit break- and watchpoints
@anchor{set remote hardware-watchpoint-limit}
@anchor{set remote hardware-breakpoint-limit}
@item set remote hardware-watchpoint-limit @var{limit}
@itemx set remote hardware-breakpoint-limit @var{limit}
Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
watchpoints.  A limit of -1, the default, is treated as unlimited.

@cindex limit hardware watchpoints length
@cindex remote target, limit watchpoints length
@anchor{set remote hardware-watchpoint-length-limit}
@item set remote hardware-watchpoint-length-limit @var{limit}
Restrict @value{GDBN} to using @var{limit} bytes for the maximum length of
a remote hardware watchpoint.  A limit of -1, the default, is treated
as unlimited.

@item show remote hardware-watchpoint-length-limit
Show the current limit (in bytes) of the maximum length of
a remote hardware watchpoint.

@item set remote exec-file @var{filename}
@itemx show remote exec-file
@anchor{set remote exec-file}
@cindex executable file, for remote target
Select the file used for @code{run} with @code{target
extended-remote}.  This should be set to a filename valid on the
target system.  If it is not set, the target will use a default
filename (e.g.@: the last program run).

@item set remote interrupt-sequence
@cindex interrupt remote programs
@cindex select Ctrl-C, BREAK or BREAK-g
Allow the user to select one of @samp{Ctrl-C}, a @code{BREAK} or
@samp{BREAK-g} as the
sequence to the remote target in order to interrupt the execution.
@samp{Ctrl-C} is a default.  Some system prefers @code{BREAK} which
is high level of serial line for some certain time.
Linux kernel prefers @samp{BREAK-g}, a.k.a Magic SysRq g.
It is @code{BREAK} signal followed by character @code{g}.

@item show interrupt-sequence
Show which of @samp{Ctrl-C}, @code{BREAK} or @code{BREAK-g}
is sent by @value{GDBN} to interrupt the remote program.
@code{BREAK-g} is BREAK signal followed by @code{g} and
also known as Magic SysRq g.

@item set remote interrupt-on-connect
@cindex send interrupt-sequence on start
Specify whether interrupt-sequence is sent to remote target when
@value{GDBN} connects to it.  This is mostly needed when you debug
Linux kernel.  Linux kernel expects @code{BREAK} followed by @code{g}
which is known as Magic SysRq g in order to connect @value{GDBN}.

@item show interrupt-on-connect
Show whether interrupt-sequence is sent
to remote target when @value{GDBN} connects to it.

@kindex set tcp
@kindex show tcp
@item set tcp auto-retry on
@cindex auto-retry, for remote TCP target
Enable auto-retry for remote TCP connections.  This is useful if the remote
debugging agent is launched in parallel with @value{GDBN}; there is a race
condition because the agent may not become ready to accept the connection
before @value{GDBN} attempts to connect.  When auto-retry is
enabled, if the initial attempt to connect fails, @value{GDBN} reattempts
to establish the connection using the timeout specified by 
@code{set tcp connect-timeout}.

@item set tcp auto-retry off
Do not auto-retry failed TCP connections.

@item show tcp auto-retry
Show the current auto-retry setting.

@item set tcp connect-timeout @var{seconds}
@itemx set tcp connect-timeout unlimited
@cindex connection timeout, for remote TCP target
@cindex timeout, for remote target connection
Set the timeout for establishing a TCP connection to the remote target to
@var{seconds}.  The timeout affects both polling to retry failed connections 
(enabled by @code{set tcp auto-retry on}) and waiting for connections
that are merely slow to complete, and represents an approximate cumulative
value.  If @var{seconds} is @code{unlimited}, there is no timeout and
@value{GDBN} will keep attempting to establish a connection forever,
unless interrupted with @kbd{Ctrl-c}.  The default is 15 seconds.

@item show tcp connect-timeout
Show the current connection timeout setting.
@end table

@cindex remote packets, enabling and disabling
The @value{GDBN} remote protocol autodetects the packets supported by
your debugging stub.  If you need to override the autodetection, you
can use these commands to enable or disable individual packets.  Each
packet can be set to @samp{on} (the remote target supports this
packet), @samp{off} (the remote target does not support this packet),
or @samp{auto} (detect remote target support for this packet).  They
all default to @samp{auto}.  For more information about each packet,
see @ref{Remote Protocol}.

During normal use, you should not have to use any of these commands.
If you do, that may be a bug in your remote debugging stub, or a bug
in @value{GDBN}.  You may want to report the problem to the
@value{GDBN} developers.

For each packet @var{name}, the command to enable or disable the
packet is @code{set remote @var{name}-packet}.  The available settings
are:

@multitable @columnfractions 0.28 0.32 0.25
@item Command Name
@tab Remote Packet
@tab Related Features

@item @code{fetch-register}
@tab @code{p}
@tab @code{info registers}

@item @code{set-register}
@tab @code{P}
@tab @code{set}

@item @code{binary-download}
@tab @code{X}
@tab @code{load}, @code{set}

@item @code{read-aux-vector}
@tab @code{qXfer:auxv:read}
@tab @code{info auxv}

@item @code{symbol-lookup}
@tab @code{qSymbol}
@tab Detecting multiple threads

@item @code{attach}
@tab @code{vAttach}
@tab @code{attach}

@item @code{verbose-resume}
@tab @code{vCont}
@tab Stepping or resuming multiple threads

@item @code{run}
@tab @code{vRun}
@tab @code{run}

@item @code{software-breakpoint}
@tab @code{Z0}
@tab @code{break}

@item @code{hardware-breakpoint}
@tab @code{Z1}
@tab @code{hbreak}

@item @code{write-watchpoint}
@tab @code{Z2}
@tab @code{watch}

@item @code{read-watchpoint}
@tab @code{Z3}
@tab @code{rwatch}

@item @code{access-watchpoint}
@tab @code{Z4}
@tab @code{awatch}

@item @code{target-features}
@tab @code{qXfer:features:read}
@tab @code{set architecture}

@item @code{library-info}
@tab @code{qXfer:libraries:read}
@tab @code{info sharedlibrary}

@item @code{memory-map}
@tab @code{qXfer:memory-map:read}
@tab @code{info mem}

@item @code{read-sdata-object}
@tab @code{qXfer:sdata:read}
@tab @code{print $_sdata}

@item @code{read-spu-object}
@tab @code{qXfer:spu:read}
@tab @code{info spu}

@item @code{write-spu-object}
@tab @code{qXfer:spu:write}
@tab @code{info spu}

@item @code{read-siginfo-object}
@tab @code{qXfer:siginfo:read}
@tab @code{print $_siginfo}

@item @code{write-siginfo-object}
@tab @code{qXfer:siginfo:write}
@tab @code{set $_siginfo}

@item @code{threads}
@tab @code{qXfer:threads:read}
@tab @code{info threads}

@item @code{get-thread-local-@*storage-address}
@tab @code{qGetTLSAddr}
@tab Displaying @code{__thread} variables

@item @code{get-thread-information-block-address}
@tab @code{qGetTIBAddr}
@tab Display MS-Windows Thread Information Block.

@item @code{search-memory}
@tab @code{qSearch:memory}
@tab @code{find}

@item @code{supported-packets}
@tab @code{qSupported}
@tab Remote communications parameters

@item @code{pass-signals}
@tab @code{QPassSignals}
@tab @code{handle @var{signal}}

@item @code{program-signals}
@tab @code{QProgramSignals}
@tab @code{handle @var{signal}}

@item @code{hostio-close-packet}
@tab @code{vFile:close}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-open-packet}
@tab @code{vFile:open}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-pread-packet}
@tab @code{vFile:pread}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-pwrite-packet}
@tab @code{vFile:pwrite}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-unlink-packet}
@tab @code{vFile:unlink}
@tab @code{remote delete}

@item @code{hostio-readlink-packet}
@tab @code{vFile:readlink}
@tab Host I/O

@item @code{noack-packet}
@tab @code{QStartNoAckMode}
@tab Packet acknowledgment

@item @code{osdata}
@tab @code{qXfer:osdata:read}
@tab @code{info os}

@item @code{query-attached}
@tab @code{qAttached}
@tab Querying remote process attach state.

@item @code{trace-buffer-size}
@tab @code{QTBuffer:size}
@tab @code{set trace-buffer-size}

@item @code{trace-status}
@tab @code{qTStatus}
@tab @code{tstatus}

@item @code{traceframe-info}
@tab @code{qXfer:traceframe-info:read}
@tab Traceframe info

@item @code{install-in-trace}
@tab @code{InstallInTrace}
@tab Install tracepoint in tracing

@item @code{disable-randomization}
@tab @code{QDisableRandomization}
@tab @code{set disable-randomization}

@item @code{conditional-breakpoints-packet}
@tab @code{Z0 and Z1}
@tab @code{Support for target-side breakpoint condition evaluation}
@end multitable

@node Remote Stub
@section Implementing a Remote Stub

@cindex debugging stub, example
@cindex remote stub, example
@cindex stub example, remote debugging
The stub files provided with @value{GDBN} implement the target side of the
communication protocol, and the @value{GDBN} side is implemented in the
@value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
these subroutines to communicate, and ignore the details.  (If you're
implementing your own stub file, you can still ignore the details: start
with one of the existing stub files.  @file{sparc-stub.c} is the best
organized, and therefore the easiest to read.)

@cindex remote serial debugging, overview
To debug a program running on another machine (the debugging
@dfn{target} machine), you must first arrange for all the usual
prerequisites for the program to run by itself.  For example, for a C
program, you need:

@enumerate
@item
A startup routine to set up the C runtime environment; these usually
have a name like @file{crt0}.  The startup routine may be supplied by
your hardware supplier, or you may have to write your own.

@item
A C subroutine library to support your program's
subroutine calls, notably managing input and output.

@item
A way of getting your program to the other machine---for example, a
download program.  These are often supplied by the hardware
manufacturer, but you may have to write your own from hardware
documentation.
@end enumerate

The next step is to arrange for your program to use a serial port to
communicate with the machine where @value{GDBN} is running (the @dfn{host}
machine).  In general terms, the scheme looks like this:

@table @emph
@item On the host,
@value{GDBN} already understands how to use this protocol; when everything
else is set up, you can simply use the @samp{target remote} command
(@pxref{Targets,,Specifying a Debugging Target}).

@item On the target,
you must link with your program a few special-purpose subroutines that
implement the @value{GDBN} remote serial protocol.  The file containing these
subroutines is called  a @dfn{debugging stub}.

On certain remote targets, you can use an auxiliary program
@code{gdbserver} instead of linking a stub into your program.
@xref{Server,,Using the @code{gdbserver} Program}, for details.
@end table

The debugging stub is specific to the architecture of the remote
machine; for example, use @file{sparc-stub.c} to debug programs on
@sc{sparc} boards.

@cindex remote serial stub list
These working remote stubs are distributed with @value{GDBN}:

@table @code

@item i386-stub.c
@cindex @file{i386-stub.c}
@cindex Intel
@cindex i386
For Intel 386 and compatible architectures.

@item m68k-stub.c
@cindex @file{m68k-stub.c}
@cindex Motorola 680x0
@cindex m680x0
For Motorola 680x0 architectures.

@item sh-stub.c
@cindex @file{sh-stub.c}
@cindex Renesas
@cindex SH
For Renesas SH architectures.

@item sparc-stub.c
@cindex @file{sparc-stub.c}
@cindex Sparc
For @sc{sparc} architectures.

@item sparcl-stub.c
@cindex @file{sparcl-stub.c}
@cindex Fujitsu
@cindex SparcLite
For Fujitsu @sc{sparclite} architectures.

@end table

The @file{README} file in the @value{GDBN} distribution may list other
recently added stubs.

@menu
* Stub Contents::       What the stub can do for you
* Bootstrapping::       What you must do for the stub
* Debug Session::       Putting it all together
@end menu

@node Stub Contents
@subsection What the Stub Can Do for You

@cindex remote serial stub
The debugging stub for your architecture supplies these three
subroutines:

@table @code
@item set_debug_traps
@findex set_debug_traps
@cindex remote serial stub, initialization
This routine arranges for @code{handle_exception} to run when your
program stops.  You must call this subroutine explicitly in your
program's startup code.

@item handle_exception
@findex handle_exception
@cindex remote serial stub, main routine
This is the central workhorse, but your program never calls it
explicitly---the setup code arranges for @code{handle_exception} to
run when a trap is triggered.

@code{handle_exception} takes control when your program stops during
execution (for example, on a breakpoint), and mediates communications
with @value{GDBN} on the host machine.  This is where the communications
protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
representative on the target machine.  It begins by sending summary
information on the state of your program, then continues to execute,
retrieving and transmitting any information @value{GDBN} needs, until you
execute a @value{GDBN} command that makes your program resume; at that point,
@code{handle_exception} returns control to your own code on the target
machine.

@item breakpoint
@cindex @code{breakpoint} subroutine, remote
Use this auxiliary subroutine to make your program contain a
breakpoint.  Depending on the particular situation, this may be the only
way for @value{GDBN} to get control.  For instance, if your target
machine has some sort of interrupt button, you won't need to call this;
pressing the interrupt button transfers control to
@code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
simply receiving characters on the serial port may also trigger a trap;
again, in that situation, you don't need to call @code{breakpoint} from
your own program---simply running @samp{target remote} from the host
@value{GDBN} session gets control.

Call @code{breakpoint} if none of these is true, or if you simply want
to make certain your program stops at a predetermined point for the
start of your debugging session.
@end table

@node Bootstrapping
@subsection What You Must Do for the Stub

@cindex remote stub, support routines
The debugging stubs that come with @value{GDBN} are set up for a particular
chip architecture, but they have no information about the rest of your
debugging target machine.

First of all you need to tell the stub how to communicate with the
serial port.

@table @code
@item int getDebugChar()
@findex getDebugChar
Write this subroutine to read a single character from the serial port.
It may be identical to @code{getchar} for your target system; a
different name is used to allow you to distinguish the two if you wish.

@item void putDebugChar(int)
@findex putDebugChar
Write this subroutine to write a single character to the serial port.
It may be identical to @code{putchar} for your target system; a
different name is used to allow you to distinguish the two if you wish.
@end table

@cindex control C, and remote debugging
@cindex interrupting remote targets
If you want @value{GDBN} to be able to stop your program while it is
running, you need to use an interrupt-driven serial driver, and arrange
for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
character).  That is the character which @value{GDBN} uses to tell the
remote system to stop.

Getting the debugging target to return the proper status to @value{GDBN}
probably requires changes to the standard stub; one quick and dirty way
is to just execute a breakpoint instruction (the ``dirty'' part is that
@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).

Other routines you need to supply are:

@table @code
@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
@findex exceptionHandler
Write this function to install @var{exception_address} in the exception
handling tables.  You need to do this because the stub does not have any
way of knowing what the exception handling tables on your target system
are like (for example, the processor's table might be in @sc{rom},
containing entries which point to a table in @sc{ram}).
@var{exception_number} is the exception number which should be changed;
its meaning is architecture-dependent (for example, different numbers
might represent divide by zero, misaligned access, etc).  When this
exception occurs, control should be transferred directly to
@var{exception_address}, and the processor state (stack, registers,
and so on) should be just as it is when a processor exception occurs.  So if
you want to use a jump instruction to reach @var{exception_address}, it
should be a simple jump, not a jump to subroutine.

For the 386, @var{exception_address} should be installed as an interrupt
gate so that interrupts are masked while the handler runs.  The gate
should be at privilege level 0 (the most privileged level).  The
@sc{sparc} and 68k stubs are able to mask interrupts themselves without
help from @code{exceptionHandler}.

@item void flush_i_cache()
@findex flush_i_cache
On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
instruction cache, if any, on your target machine.  If there is no
instruction cache, this subroutine may be a no-op.

On target machines that have instruction caches, @value{GDBN} requires this
function to make certain that the state of your program is stable.
@end table

@noindent
You must also make sure this library routine is available:

@table @code
@item void *memset(void *, int, int)
@findex memset
This is the standard library function @code{memset} that sets an area of
memory to a known value.  If you have one of the free versions of
@code{libc.a}, @code{memset} can be found there; otherwise, you must
either obtain it from your hardware manufacturer, or write your own.
@end table

If you do not use the GNU C compiler, you may need other standard
library subroutines as well; this varies from one stub to another,
but in general the stubs are likely to use any of the common library
subroutines which @code{@value{NGCC}} generates as inline code.


@node Debug Session
@subsection Putting it All Together

@cindex remote serial debugging summary
In summary, when your program is ready to debug, you must follow these
steps.

@enumerate
@item
Make sure you have defined the supporting low-level routines
(@pxref{Bootstrapping,,What You Must Do for the Stub}):
@display
@code{getDebugChar}, @code{putDebugChar},
@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
@end display

@item
Insert these lines in your program's startup code, before the main
procedure is called:

@smallexample
set_debug_traps();
breakpoint();
@end smallexample

On some machines, when a breakpoint trap is raised, the hardware
automatically makes the PC point to the instruction after the
breakpoint.  If your machine doesn't do that, you may need to adjust
@code{handle_exception} to arrange for it to return to the instruction
after the breakpoint on this first invocation, so that your program
doesn't keep hitting the initial breakpoint instead of making
progress.

@item
For the 680x0 stub only, you need to provide a variable called
@code{exceptionHook}.  Normally you just use:

@smallexample
void (*exceptionHook)() = 0;
@end smallexample

@noindent
but if before calling @code{set_debug_traps}, you set it to point to a
function in your program, that function is called when
@code{@value{GDBN}} continues after stopping on a trap (for example, bus
error).  The function indicated by @code{exceptionHook} is called with
one parameter: an @code{int} which is the exception number.

@item
Compile and link together: your program, the @value{GDBN} debugging stub for
your target architecture, and the supporting subroutines.

@item
Make sure you have a serial connection between your target machine and
the @value{GDBN} host, and identify the serial port on the host.

@item
@c The "remote" target now provides a `load' command, so we should
@c document that.  FIXME.
Download your program to your target machine (or get it there by
whatever means the manufacturer provides), and start it.

@item
Start @value{GDBN} on the host, and connect to the target
(@pxref{Connecting,,Connecting to a Remote Target}).

@end enumerate

@node Configurations
@chapter Configuration-Specific Information

While nearly all @value{GDBN} commands are available for all native and
cross versions of the debugger, there are some exceptions.  This chapter
describes things that are only available in certain configurations.

There are three major categories of configurations: native
configurations, where the host and target are the same, embedded
operating system configurations, which are usually the same for several
different processor architectures, and bare embedded processors, which
are quite different from each other.

@menu
* Native::
* Embedded OS::
* Embedded Processors::
* Architectures::
@end menu

@node Native
@section Native

This section describes details specific to particular native
configurations.

@menu
* HP-UX::                       HP-UX
* BSD libkvm Interface::	Debugging BSD kernel memory images
* SVR4 Process Information::    SVR4 process information
* DJGPP Native::                Features specific to the DJGPP port
* Cygwin Native::		Features specific to the Cygwin port
* Hurd Native::                 Features specific to @sc{gnu} Hurd
* Darwin::			Features specific to Darwin
@end menu

@node HP-UX
@subsection HP-UX

On HP-UX systems, if you refer to a function or variable name that
begins with a dollar sign, @value{GDBN} searches for a user or system
name first, before it searches for a convenience variable.


@node BSD libkvm Interface
@subsection BSD libkvm Interface

@cindex libkvm
@cindex kernel memory image
@cindex kernel crash dump

BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
interface that provides a uniform interface for accessing kernel virtual
memory images, including live systems and crash dumps.  @value{GDBN}
uses this interface to allow you to debug live kernels and kernel crash
dumps on many native BSD configurations.  This is implemented as a
special @code{kvm} debugging target.  For debugging a live system, load
the currently running kernel into @value{GDBN} and connect to the
@code{kvm} target:

@smallexample
(@value{GDBP}) @b{target kvm}
@end smallexample

For debugging crash dumps, provide the file name of the crash dump as an
argument:

@smallexample
(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
@end smallexample

Once connected to the @code{kvm} target, the following commands are
available:

@table @code
@kindex kvm
@item kvm pcb
Set current context from the @dfn{Process Control Block} (PCB) address.

@item kvm proc
Set current context from proc address.  This command isn't available on
modern FreeBSD systems.
@end table

@node SVR4 Process Information
@subsection SVR4 Process Information
@cindex /proc
@cindex examine process image
@cindex process info via @file{/proc}

Many versions of SVR4 and compatible systems provide a facility called
@samp{/proc} that can be used to examine the image of a running
process using file-system subroutines.

If @value{GDBN} is configured for an operating system with this
facility, the command @code{info proc} is available to report
information about the process running your program, or about any
process running on your system.  This includes, as of this writing,
@sc{gnu}/Linux, OSF/1 (Digital Unix), Solaris, and Irix, but
not HP-UX, for example.

This command may also work on core files that were created on a system
that has the @samp{/proc} facility.

@table @code
@kindex info proc
@cindex process ID
@item info proc
@itemx info proc @var{process-id}
Summarize available information about any running process.  If a
process ID is specified by @var{process-id}, display information about
that process; otherwise display information about the program being
debugged.  The summary includes the debugged process ID, the command
line used to invoke it, its current working directory, and its
executable file's absolute file name.

On some systems, @var{process-id} can be of the form
@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
within a process.  If the optional @var{pid} part is missing, it means
a thread from the process being debugged (the leading @samp{/} still
needs to be present, or else @value{GDBN} will interpret the number as
a process ID rather than a thread ID).

@item info proc cmdline
@cindex info proc cmdline
Show the original command line of the process.  This command is
specific to @sc{gnu}/Linux.

@item info proc cwd
@cindex info proc cwd
Show the current working directory of the process.  This command is
specific to @sc{gnu}/Linux.

@item info proc exe
@cindex info proc exe
Show the name of executable of the process.  This command is specific
to @sc{gnu}/Linux.

@item info proc mappings
@cindex memory address space mappings
Report the memory address space ranges accessible in the program, with
information on whether the process has read, write, or execute access
rights to each range.  On @sc{gnu}/Linux systems, each memory range
includes the object file which is mapped to that range, instead of the
memory access rights to that range.

@item info proc stat
@itemx info proc status
@cindex process detailed status information
These subcommands are specific to @sc{gnu}/Linux systems.  They show
the process-related information, including the user ID and group ID;
how many threads are there in the process; its virtual memory usage;
the signals that are pending, blocked, and ignored; its TTY; its
consumption of system and user time; its stack size; its @samp{nice}
value; etc.  For more information, see the @samp{proc} man page
(type @kbd{man 5 proc} from your shell prompt).

@item info proc all
Show all the information about the process described under all of the
above @code{info proc} subcommands.

@ignore
@comment These sub-options of 'info proc' were not included when
@comment procfs.c was re-written.  Keep their descriptions around
@comment against the day when someone finds the time to put them back in.
@kindex info proc times
@item info proc times
Starting time, user CPU time, and system CPU time for your program and
its children.

@kindex info proc id
@item info proc id
Report on the process IDs related to your program: its own process ID,
the ID of its parent, the process group ID, and the session ID.
@end ignore

@item set procfs-trace
@kindex set procfs-trace
@cindex @code{procfs} API calls
This command enables and disables tracing of @code{procfs} API calls.

@item show procfs-trace
@kindex show procfs-trace
Show the current state of @code{procfs} API call tracing.

@item set procfs-file @var{file}
@kindex set procfs-file
Tell @value{GDBN} to write @code{procfs} API trace to the named
@var{file}.  @value{GDBN} appends the trace info to the previous
contents of the file.  The default is to display the trace on the
standard output.

@item show procfs-file
@kindex show procfs-file
Show the file to which @code{procfs} API trace is written.

@item proc-trace-entry
@itemx proc-trace-exit
@itemx proc-untrace-entry
@itemx proc-untrace-exit
@kindex proc-trace-entry
@kindex proc-trace-exit
@kindex proc-untrace-entry
@kindex proc-untrace-exit
These commands enable and disable tracing of entries into and exits
from the @code{syscall} interface.

@item info pidlist
@kindex info pidlist
@cindex process list, QNX Neutrino
For QNX Neutrino only, this command displays the list of all the
processes and all the threads within each process.

@item info meminfo
@kindex info meminfo
@cindex mapinfo list, QNX Neutrino
For QNX Neutrino only, this command displays the list of all mapinfos.
@end table

@node DJGPP Native
@subsection Features for Debugging @sc{djgpp} Programs
@cindex @sc{djgpp} debugging
@cindex native @sc{djgpp} debugging
@cindex MS-DOS-specific commands

@cindex DPMI
@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
top of real-mode DOS systems and their emulations.

@value{GDBN} supports native debugging of @sc{djgpp} programs, and
defines a few commands specific to the @sc{djgpp} port.  This
subsection describes those commands.

@table @code
@kindex info dos
@item info dos
This is a prefix of @sc{djgpp}-specific commands which print
information about the target system and important OS structures.

@kindex sysinfo
@cindex MS-DOS system info
@cindex free memory information (MS-DOS)
@item info dos sysinfo
This command displays assorted information about the underlying
platform: the CPU type and features, the OS version and flavor, the
DPMI version, and the available conventional and DPMI memory.

@cindex GDT
@cindex LDT
@cindex IDT
@cindex segment descriptor tables
@cindex descriptor tables display
@item info dos gdt
@itemx info dos ldt
@itemx info dos idt
These 3 commands display entries from, respectively, Global, Local,
and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
tables are data structures which store a descriptor for each segment
that is currently in use.  The segment's selector is an index into a
descriptor table; the table entry for that index holds the
descriptor's base address and limit, and its attributes and access
rights.

A typical @sc{djgpp} program uses 3 segments: a code segment, a data
segment (used for both data and the stack), and a DOS segment (which
allows access to DOS/BIOS data structures and absolute addresses in
conventional memory).  However, the DPMI host will usually define
additional segments in order to support the DPMI environment.

@cindex garbled pointers
These commands allow to display entries from the descriptor tables.
Without an argument, all entries from the specified table are
displayed.  An argument, which should be an integer expression, means
display a single entry whose index is given by the argument.  For
example, here's a convenient way to display information about the
debugged program's data segment:

@smallexample
@exdent @code{(@value{GDBP}) info dos ldt $ds}
@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
@end smallexample

@noindent
This comes in handy when you want to see whether a pointer is outside
the data segment's limit (i.e.@: @dfn{garbled}).

@cindex page tables display (MS-DOS)
@item info dos pde
@itemx info dos pte
These two commands display entries from, respectively, the Page
Directory and the Page Tables.  Page Directories and Page Tables are
data structures which control how virtual memory addresses are mapped
into physical addresses.  A Page Table includes an entry for every
page of memory that is mapped into the program's address space; there
may be several Page Tables, each one holding up to 4096 entries.  A
Page Directory has up to 4096 entries, one each for every Page Table
that is currently in use.

Without an argument, @kbd{info dos pde} displays the entire Page
Directory, and @kbd{info dos pte} displays all the entries in all of
the Page Tables.  An argument, an integer expression, given to the
@kbd{info dos pde} command means display only that entry from the Page
Directory table.  An argument given to the @kbd{info dos pte} command
means display entries from a single Page Table, the one pointed to by
the specified entry in the Page Directory.

@cindex direct memory access (DMA) on MS-DOS
These commands are useful when your program uses @dfn{DMA} (Direct
Memory Access), which needs physical addresses to program the DMA
controller.

These commands are supported only with some DPMI servers.

@cindex physical address from linear address
@item info dos address-pte @var{addr}
This command displays the Page Table entry for a specified linear
address.  The argument @var{addr} is a linear address which should
already have the appropriate segment's base address added to it,
because this command accepts addresses which may belong to @emph{any}
segment.  For example, here's how to display the Page Table entry for
the page where a variable @code{i} is stored:

@smallexample
@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
@exdent @code{Page Table entry for address 0x11a00d30:}
@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
@end smallexample

@noindent
This says that @code{i} is stored at offset @code{0xd30} from the page
whose physical base address is @code{0x02698000}, and shows all the
attributes of that page.

Note that you must cast the addresses of variables to a @code{char *},
since otherwise the value of @code{__djgpp_base_address}, the base
address of all variables and functions in a @sc{djgpp} program, will
be added using the rules of C pointer arithmetics: if @code{i} is
declared an @code{int}, @value{GDBN} will add 4 times the value of
@code{__djgpp_base_address} to the address of @code{i}.

Here's another example, it displays the Page Table entry for the
transfer buffer:

@smallexample
@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
@exdent @code{Page Table entry for address 0x29110:}
@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
@end smallexample

@noindent
(The @code{+ 3} offset is because the transfer buffer's address is the
3rd member of the @code{_go32_info_block} structure.)  The output
clearly shows that this DPMI server maps the addresses in conventional
memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
linear (@code{0x29110}) addresses are identical.

This command is supported only with some DPMI servers.
@end table

@cindex DOS serial data link, remote debugging
In addition to native debugging, the DJGPP port supports remote
debugging via a serial data link.  The following commands are specific
to remote serial debugging in the DJGPP port of @value{GDBN}.

@table @code
@kindex set com1base
@kindex set com1irq
@kindex set com2base
@kindex set com2irq
@kindex set com3base
@kindex set com3irq
@kindex set com4base
@kindex set com4irq
@item set com1base @var{addr}
This command sets the base I/O port address of the @file{COM1} serial
port.

@item set com1irq @var{irq}
This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
for the @file{COM1} serial port.

There are similar commands @samp{set com2base}, @samp{set com3irq},
etc.@: for setting the port address and the @code{IRQ} lines for the
other 3 COM ports.

@kindex show com1base
@kindex show com1irq
@kindex show com2base
@kindex show com2irq
@kindex show com3base
@kindex show com3irq
@kindex show com4base
@kindex show com4irq
The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
display the current settings of the base address and the @code{IRQ}
lines used by the COM ports.

@item info serial
@kindex info serial
@cindex DOS serial port status
This command prints the status of the 4 DOS serial ports.  For each
port, it prints whether it's active or not, its I/O base address and
IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
counts of various errors encountered so far.
@end table


@node Cygwin Native
@subsection Features for Debugging MS Windows PE Executables
@cindex MS Windows debugging
@cindex native Cygwin debugging
@cindex Cygwin-specific commands

@value{GDBN} supports native debugging of MS Windows programs, including
DLLs with and without symbolic debugging information.

@cindex Ctrl-BREAK, MS-Windows
@cindex interrupt debuggee on MS-Windows
MS-Windows programs that call @code{SetConsoleMode} to switch off the
special meaning of the @samp{Ctrl-C} keystroke cannot be interrupted
by typing @kbd{C-c}.  For this reason, @value{GDBN} on MS-Windows
supports @kbd{C-@key{BREAK}} as an alternative interrupt key
sequence, which can be used to interrupt the debuggee even if it
ignores @kbd{C-c}.

There are various additional Cygwin-specific commands, described in
this section.  Working with DLLs that have no debugging symbols is
described in @ref{Non-debug DLL Symbols}.

@table @code
@kindex info w32
@item info w32
This is a prefix of MS Windows-specific commands which print
information about the target system and important OS structures.

@item info w32 selector
This command displays information returned by
the Win32 API @code{GetThreadSelectorEntry} function.
It takes an optional argument that is evaluated to
a long value to give the information about this given selector.
Without argument, this command displays information
about the six segment registers.

@item info w32 thread-information-block
This command displays thread specific information stored in the
Thread Information Block (readable on the X86 CPU family using @code{$fs}
selector for 32-bit programs and @code{$gs} for 64-bit programs).

@kindex info dll
@item info dll
This is a Cygwin-specific alias of @code{info shared}.

@kindex dll-symbols
@item dll-symbols
This command loads symbols from a dll similarly to
add-sym command but without the need to specify a base address.

@kindex set cygwin-exceptions
@cindex debugging the Cygwin DLL
@cindex Cygwin DLL, debugging
@item set cygwin-exceptions @var{mode}
If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
happen inside the Cygwin DLL.  If @var{mode} is @code{off},
@value{GDBN} will delay recognition of exceptions, and may ignore some
exceptions which seem to be caused by internal Cygwin DLL
``bookkeeping''.  This option is meant primarily for debugging the
Cygwin DLL itself; the default value is @code{off} to avoid annoying
@value{GDBN} users with false @code{SIGSEGV} signals.

@kindex show cygwin-exceptions
@item show cygwin-exceptions
Displays whether @value{GDBN} will break on exceptions that happen
inside the Cygwin DLL itself.

@kindex set new-console
@item set new-console @var{mode}
If @var{mode} is @code{on} the debuggee will
be started in a new console on next start.
If @var{mode} is @code{off}, the debuggee will
be started in the same console as the debugger.

@kindex show new-console
@item show new-console
Displays whether a new console is used
when the debuggee is started.

@kindex set new-group
@item set new-group @var{mode}
This boolean value controls whether the debuggee should
start a new group or stay in the same group as the debugger.
This affects the way the Windows OS handles
@samp{Ctrl-C}.

@kindex show new-group
@item show new-group
Displays current value of new-group boolean.

@kindex set debugevents
@item set debugevents
This boolean value adds debug output concerning kernel events related
to the debuggee seen by the debugger.  This includes events that
signal thread and process creation and exit, DLL loading and
unloading, console interrupts, and debugging messages produced by the
Windows @code{OutputDebugString} API call.

@kindex set debugexec
@item set debugexec
This boolean value adds debug output concerning execute events
(such as resume thread) seen by the debugger.

@kindex set debugexceptions
@item set debugexceptions
This boolean value adds debug output concerning exceptions in the
debuggee seen by the debugger.

@kindex set debugmemory
@item set debugmemory
This boolean value adds debug output concerning debuggee memory reads
and writes by the debugger.

@kindex set shell
@item set shell
This boolean values specifies whether the debuggee is called
via a shell or directly (default value is on).

@kindex show shell
@item show shell
Displays if the debuggee will be started with a shell.

@end table

@menu
* Non-debug DLL Symbols::  Support for DLLs without debugging symbols
@end menu

@node Non-debug DLL Symbols
@subsubsection Support for DLLs without Debugging Symbols
@cindex DLLs with no debugging symbols
@cindex Minimal symbols and DLLs

Very often on windows, some of the DLLs that your program relies on do
not include symbolic debugging information (for example,
@file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
symbols in a DLL, it relies on the minimal amount of symbolic
information contained in the DLL's export table.  This section
describes working with such symbols, known internally to @value{GDBN} as
``minimal symbols''.

Note that before the debugged program has started execution, no DLLs
will have been loaded.  The easiest way around this problem is simply to
start the program --- either by setting a breakpoint or letting the
program run once to completion.  It is also possible to force
@value{GDBN} to load a particular DLL before starting the executable ---
see the shared library information in @ref{Files}, or the
@code{dll-symbols} command in @ref{Cygwin Native}.  Currently,
explicitly loading symbols from a DLL with no debugging information will
cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
which may adversely affect symbol lookup performance.

@subsubsection DLL Name Prefixes

In keeping with the naming conventions used by the Microsoft debugging
tools, DLL export symbols are made available with a prefix based on the
DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
also entered into the symbol table, so @code{CreateFileA} is often
sufficient.  In some cases there will be name clashes within a program
(particularly if the executable itself includes full debugging symbols)
necessitating the use of the fully qualified name when referring to the
contents of the DLL.  Use single-quotes around the name to avoid the
exclamation mark (``!'')  being interpreted as a language operator.

Note that the internal name of the DLL may be all upper-case, even
though the file name of the DLL is lower-case, or vice-versa.  Since
symbols within @value{GDBN} are @emph{case-sensitive} this may cause
some confusion. If in doubt, try the @code{info functions} and
@code{info variables} commands or even @code{maint print msymbols}
(@pxref{Symbols}). Here's an example:

@smallexample
(@value{GDBP}) info function CreateFileA
All functions matching regular expression "CreateFileA":

Non-debugging symbols:
0x77e885f4  CreateFileA
0x77e885f4  KERNEL32!CreateFileA
@end smallexample

@smallexample
(@value{GDBP}) info function !
All functions matching regular expression "!":

Non-debugging symbols:
0x6100114c  cygwin1!__assert
0x61004034  cygwin1!_dll_crt0@@0
0x61004240  cygwin1!dll_crt0(per_process *)
[etc...]
@end smallexample

@subsubsection Working with Minimal Symbols

Symbols extracted from a DLL's export table do not contain very much
type information. All that @value{GDBN} can do is guess whether a symbol
refers to a function or variable depending on the linker section that
contains the symbol. Also note that the actual contents of the memory
contained in a DLL are not available unless the program is running. This
means that you cannot examine the contents of a variable or disassemble
a function within a DLL without a running program.

Variables are generally treated as pointers and dereferenced
automatically. For this reason, it is often necessary to prefix a
variable name with the address-of operator (``&'') and provide explicit
type information in the command. Here's an example of the type of
problem:

@smallexample
(@value{GDBP}) print 'cygwin1!__argv'
$1 = 268572168
@end smallexample

@smallexample
(@value{GDBP}) x 'cygwin1!__argv'
0x10021610:      "\230y\""
@end smallexample

And two possible solutions:

@smallexample
(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
@end smallexample

@smallexample
(@value{GDBP}) x/2x &'cygwin1!__argv'
0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
(@value{GDBP}) x/x 0x10021608
0x10021608:     0x0022fd98
(@value{GDBP}) x/s 0x0022fd98
0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
@end smallexample

Setting a break point within a DLL is possible even before the program
starts execution. However, under these circumstances, @value{GDBN} can't
examine the initial instructions of the function in order to skip the
function's frame set-up code. You can work around this by using ``*&''
to set the breakpoint at a raw memory address:

@smallexample
(@value{GDBP}) break *&'python22!PyOS_Readline'
Breakpoint 1 at 0x1e04eff0
@end smallexample

The author of these extensions is not entirely convinced that setting a
break point within a shared DLL like @file{kernel32.dll} is completely
safe.

@node Hurd Native
@subsection Commands Specific to @sc{gnu} Hurd Systems
@cindex @sc{gnu} Hurd debugging

This subsection describes @value{GDBN} commands specific to the
@sc{gnu} Hurd native debugging.

@table @code
@item set signals
@itemx set sigs
@kindex set signals@r{, Hurd command}
@kindex set sigs@r{, Hurd command}
This command toggles the state of inferior signal interception by
@value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
affected by this command.  @code{sigs} is a shorthand alias for
@code{signals}.

@item show signals
@itemx show sigs
@kindex show signals@r{, Hurd command}
@kindex show sigs@r{, Hurd command}
Show the current state of intercepting inferior's signals.

@item set signal-thread
@itemx set sigthread
@kindex set signal-thread
@kindex set sigthread
This command tells @value{GDBN} which thread is the @code{libc} signal
thread.  That thread is run when a signal is delivered to a running
process.  @code{set sigthread} is the shorthand alias of @code{set
signal-thread}.

@item show signal-thread
@itemx show sigthread
@kindex show signal-thread
@kindex show sigthread
These two commands show which thread will run when the inferior is
delivered a signal.

@item set stopped
@kindex set stopped@r{, Hurd command}
This commands tells @value{GDBN} that the inferior process is stopped,
as with the @code{SIGSTOP} signal.  The stopped process can be
continued by delivering a signal to it.

@item show stopped
@kindex show stopped@r{, Hurd command}
This command shows whether @value{GDBN} thinks the debuggee is
stopped.

@item set exceptions
@kindex set exceptions@r{, Hurd command}
Use this command to turn off trapping of exceptions in the inferior.
When exception trapping is off, neither breakpoints nor
single-stepping will work.  To restore the default, set exception
trapping on.

@item show exceptions
@kindex show exceptions@r{, Hurd command}
Show the current state of trapping exceptions in the inferior.

@item set task pause
@kindex set task@r{, Hurd commands}
@cindex task attributes (@sc{gnu} Hurd)
@cindex pause current task (@sc{gnu} Hurd)
This command toggles task suspension when @value{GDBN} has control.
Setting it to on takes effect immediately, and the task is suspended
whenever @value{GDBN} gets control.  Setting it to off will take
effect the next time the inferior is continued.  If this option is set
to off, you can use @code{set thread default pause on} or @code{set
thread pause on} (see below) to pause individual threads.

@item show task pause
@kindex show task@r{, Hurd commands}
Show the current state of task suspension.

@item set task detach-suspend-count
@cindex task suspend count
@cindex detach from task, @sc{gnu} Hurd
This command sets the suspend count the task will be left with when
@value{GDBN} detaches from it.

@item show task detach-suspend-count
Show the suspend count the task will be left with when detaching.

@item set task exception-port
@itemx set task excp
@cindex task exception port, @sc{gnu} Hurd
This command sets the task exception port to which @value{GDBN} will
forward exceptions.  The argument should be the value of the @dfn{send
rights} of the task.  @code{set task excp} is a shorthand alias.

@item set noninvasive
@cindex noninvasive task options
This command switches @value{GDBN} to a mode that is the least
invasive as far as interfering with the inferior is concerned.  This
is the same as using @code{set task pause}, @code{set exceptions}, and
@code{set signals} to values opposite to the defaults.

@item info send-rights
@itemx info receive-rights
@itemx info port-rights
@itemx info port-sets
@itemx info dead-names
@itemx info ports
@itemx info psets
@cindex send rights, @sc{gnu} Hurd
@cindex receive rights, @sc{gnu} Hurd
@cindex port rights, @sc{gnu} Hurd
@cindex port sets, @sc{gnu} Hurd
@cindex dead names, @sc{gnu} Hurd
These commands display information about, respectively, send rights,
receive rights, port rights, port sets, and dead names of a task.
There are also shorthand aliases: @code{info ports} for @code{info
port-rights} and @code{info psets} for @code{info port-sets}.

@item set thread pause
@kindex set thread@r{, Hurd command}
@cindex thread properties, @sc{gnu} Hurd
@cindex pause current thread (@sc{gnu} Hurd)
This command toggles current thread suspension when @value{GDBN} has
control.  Setting it to on takes effect immediately, and the current
thread is suspended whenever @value{GDBN} gets control.  Setting it to
off will take effect the next time the inferior is continued.
Normally, this command has no effect, since when @value{GDBN} has
control, the whole task is suspended.  However, if you used @code{set
task pause off} (see above), this command comes in handy to suspend
only the current thread.

@item show thread pause
@kindex show thread@r{, Hurd command}
This command shows the state of current thread suspension.

@item set thread run
This command sets whether the current thread is allowed to run.

@item show thread run
Show whether the current thread is allowed to run.

@item set thread detach-suspend-count
@cindex thread suspend count, @sc{gnu} Hurd
@cindex detach from thread, @sc{gnu} Hurd
This command sets the suspend count @value{GDBN} will leave on a
thread when detaching.  This number is relative to the suspend count
found by @value{GDBN} when it notices the thread; use @code{set thread
takeover-suspend-count} to force it to an absolute value.

@item show thread detach-suspend-count
Show the suspend count @value{GDBN} will leave on the thread when
detaching.

@item set thread exception-port
@itemx set thread excp
Set the thread exception port to which to forward exceptions.  This
overrides the port set by @code{set task exception-port} (see above).
@code{set thread excp} is the shorthand alias.

@item set thread takeover-suspend-count
Normally, @value{GDBN}'s thread suspend counts are relative to the
value @value{GDBN} finds when it notices each thread.  This command
changes the suspend counts to be absolute instead.

@item set thread default
@itemx show thread default
@cindex thread default settings, @sc{gnu} Hurd
Each of the above @code{set thread} commands has a @code{set thread
default} counterpart (e.g., @code{set thread default pause}, @code{set
thread default exception-port}, etc.).  The @code{thread default}
variety of commands sets the default thread properties for all
threads; you can then change the properties of individual threads with
the non-default commands.
@end table

@node Darwin
@subsection Darwin
@cindex Darwin

@value{GDBN} provides the following commands specific to the Darwin target:

@table @code
@item set debug darwin @var{num}
@kindex set debug darwin
When set to a non zero value, enables debugging messages specific to
the Darwin support.  Higher values produce more verbose output.

@item show debug darwin
@kindex show debug darwin
Show the current state of Darwin messages.

@item set debug mach-o @var{num}
@kindex set debug mach-o
When set to a non zero value, enables debugging messages while
@value{GDBN} is reading Darwin object files.  (@dfn{Mach-O} is the
file format used on Darwin for object and executable files.)  Higher
values produce more verbose output.  This is a command to diagnose
problems internal to @value{GDBN} and should not be needed in normal
usage.

@item show debug mach-o
@kindex show debug mach-o
Show the current state of Mach-O file messages.

@item set mach-exceptions on
@itemx set mach-exceptions off
@kindex set mach-exceptions
On Darwin, faults are first reported as a Mach exception and are then
mapped to a Posix signal.  Use this command to turn on trapping of
Mach exceptions in the inferior.  This might be sometimes useful to
better understand the cause of a fault.  The default is off.

@item show mach-exceptions
@kindex show mach-exceptions
Show the current state of exceptions trapping.
@end table


@node Embedded OS
@section Embedded Operating Systems

This section describes configurations involving the debugging of
embedded operating systems that are available for several different
architectures.

@menu
* VxWorks::                     Using @value{GDBN} with VxWorks
@end menu

@value{GDBN} includes the ability to debug programs running on
various real-time operating systems.

@node VxWorks
@subsection Using @value{GDBN} with VxWorks

@cindex VxWorks

@table @code

@kindex target vxworks
@item target vxworks @var{machinename}
A VxWorks system, attached via TCP/IP.  The argument @var{machinename}
is the target system's machine name or IP address.

@end table

On VxWorks, @code{load} links @var{filename} dynamically on the
current target system as well as adding its symbols in @value{GDBN}.

@value{GDBN} enables developers to spawn and debug tasks running on networked
VxWorks targets from a Unix host.  Already-running tasks spawned from
the VxWorks shell can also be debugged.  @value{GDBN} uses code that runs on
both the Unix host and on the VxWorks target.  The program
@code{@value{GDBP}} is installed and executed on the Unix host.  (It may be
installed with the name @code{vxgdb}, to distinguish it from a
@value{GDBN} for debugging programs on the host itself.)

@table @code
@item VxWorks-timeout @var{args}
@kindex vxworks-timeout
All VxWorks-based targets now support the option @code{vxworks-timeout}.
This option is set by the user, and  @var{args} represents the number of
seconds @value{GDBN} waits for responses to rpc's.  You might use this if
your VxWorks target is a slow software simulator or is on the far side
of a thin network line.
@end table

The following information on connecting to VxWorks was current when
this manual was produced; newer releases of VxWorks may use revised
procedures.

@findex INCLUDE_RDB
To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
to include the remote debugging interface routines in the VxWorks
library @file{rdb.a}.  To do this, define @code{INCLUDE_RDB} in the
VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
kernel.  The resulting kernel contains @file{rdb.a}, and spawns the
source debugging task @code{tRdbTask} when VxWorks is booted.  For more
information on configuring and remaking VxWorks, see the manufacturer's
manual.
@c VxWorks, see the @cite{VxWorks Programmer's Guide}.

Once you have included @file{rdb.a} in your VxWorks system image and set
your Unix execution search path to find @value{GDBN}, you are ready to
run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
@code{vxgdb}, depending on your installation).

@value{GDBN} comes up showing the prompt:

@smallexample
(vxgdb)
@end smallexample

@menu
* VxWorks Connection::          Connecting to VxWorks
* VxWorks Download::            VxWorks download
* VxWorks Attach::              Running tasks
@end menu

@node VxWorks Connection
@subsubsection Connecting to VxWorks

The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
network.  To connect to a target whose host name is ``@code{tt}'', type:

@smallexample
(vxgdb) target vxworks tt
@end smallexample

@need 750
@value{GDBN} displays messages like these:

@smallexample
Attaching remote machine across net...
Connected to tt.
@end smallexample

@need 1000
@value{GDBN} then attempts to read the symbol tables of any object modules
loaded into the VxWorks target since it was last booted.  @value{GDBN} locates
these files by searching the directories listed in the command search
path (@pxref{Environment, ,Your Program's Environment}); if it fails
to find an object file, it displays a message such as:

@smallexample
prog.o: No such file or directory.
@end smallexample

When this happens, add the appropriate directory to the search path with
the @value{GDBN} command @code{path}, and execute the @code{target}
command again.

@node VxWorks Download
@subsubsection VxWorks Download

@cindex download to VxWorks
If you have connected to the VxWorks target and you want to debug an
object that has not yet been loaded, you can use the @value{GDBN}
@code{load} command to download a file from Unix to VxWorks
incrementally.  The object file given as an argument to the @code{load}
command is actually opened twice: first by the VxWorks target in order
to download the code, then by @value{GDBN} in order to read the symbol
table.  This can lead to problems if the current working directories on
the two systems differ.  If both systems have NFS mounted the same
filesystems, you can avoid these problems by using absolute paths.
Otherwise, it is simplest to set the working directory on both systems
to the directory in which the object file resides, and then to reference
the file by its name, without any path.  For instance, a program
@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
program, type this on VxWorks:

@smallexample
-> cd "@var{vxpath}/vw/demo/rdb"
@end smallexample

@noindent
Then, in @value{GDBN}, type:

@smallexample
(vxgdb) cd @var{hostpath}/vw/demo/rdb
(vxgdb) load prog.o
@end smallexample

@value{GDBN} displays a response similar to this:

@smallexample
Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
@end smallexample

You can also use the @code{load} command to reload an object module
after editing and recompiling the corresponding source file.  Note that
this makes @value{GDBN} delete all currently-defined breakpoints,
auto-displays, and convenience variables, and to clear the value
history.  (This is necessary in order to preserve the integrity of
debugger's data structures that reference the target system's symbol
table.)

@node VxWorks Attach
@subsubsection Running Tasks

@cindex running VxWorks tasks
You can also attach to an existing task using the @code{attach} command as
follows:

@smallexample
(vxgdb) attach @var{task}
@end smallexample

@noindent
where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
or suspended when you attach to it.  Running tasks are suspended at
the time of attachment.

@node Embedded Processors
@section Embedded Processors

This section goes into details specific to particular embedded
configurations.

@cindex send command to simulator
Whenever a specific embedded processor has a simulator, @value{GDBN}
allows to send an arbitrary command to the simulator.

@table @code
@item sim @var{command}
@kindex sim@r{, a command}
Send an arbitrary @var{command} string to the simulator.  Consult the
documentation for the specific simulator in use for information about
acceptable commands.
@end table


@menu
* ARM::                         ARM RDI
* M32R/D::                      Renesas M32R/D
* M68K::                        Motorola M68K
* MicroBlaze::			Xilinx MicroBlaze
* MIPS Embedded::               MIPS Embedded
* PowerPC Embedded::            PowerPC Embedded
* PA::                          HP PA Embedded
* Sparclet::                    Tsqware Sparclet
* Sparclite::                   Fujitsu Sparclite
* Z8000::                       Zilog Z8000
* AVR::                         Atmel AVR
* CRIS::                        CRIS
* Super-H::                     Renesas Super-H
@end menu

@node ARM
@subsection ARM
@cindex ARM RDI

@table @code
@kindex target rdi
@item target rdi @var{dev}
ARM Angel monitor, via RDI library interface to ADP protocol.  You may
use this target to communicate with both boards running the Angel
monitor, or with the EmbeddedICE JTAG debug device.

@kindex target rdp
@item target rdp @var{dev}
ARM Demon monitor.

@end table

@value{GDBN} provides the following ARM-specific commands:

@table @code
@item set arm disassembler
@kindex set arm
This commands selects from a list of disassembly styles.  The
@code{"std"} style is the standard style.

@item show arm disassembler
@kindex show arm
Show the current disassembly style.

@item set arm apcs32
@cindex ARM 32-bit mode
This command toggles ARM operation mode between 32-bit and 26-bit.

@item show arm apcs32
Display the current usage of the ARM 32-bit mode.

@item set arm fpu @var{fputype}
This command sets the ARM floating-point unit (FPU) type.  The
argument @var{fputype} can be one of these:

@table @code
@item auto
Determine the FPU type by querying the OS ABI.
@item softfpa
Software FPU, with mixed-endian doubles on little-endian ARM
processors.
@item fpa
GCC-compiled FPA co-processor.
@item softvfp
Software FPU with pure-endian doubles.
@item vfp
VFP co-processor.
@end table

@item show arm fpu
Show the current type of the FPU.

@item set arm abi
This command forces @value{GDBN} to use the specified ABI.

@item show arm abi
Show the currently used ABI.

@item set arm fallback-mode (arm|thumb|auto)
@value{GDBN} uses the symbol table, when available, to determine
whether instructions are ARM or Thumb.  This command controls
@value{GDBN}'s default behavior when the symbol table is not
available.  The default is @samp{auto}, which causes @value{GDBN} to
use the current execution mode (from the @code{T} bit in the @code{CPSR}
register).

@item show arm fallback-mode
Show the current fallback instruction mode.

@item set arm force-mode (arm|thumb|auto)
This command overrides use of the symbol table to determine whether
instructions are ARM or Thumb.  The default is @samp{auto}, which
causes @value{GDBN} to use the symbol table and then the setting
of @samp{set arm fallback-mode}.

@item show arm force-mode
Show the current forced instruction mode.

@item set debug arm
Toggle whether to display ARM-specific debugging messages from the ARM
target support subsystem.

@item show debug arm
Show whether ARM-specific debugging messages are enabled.
@end table

The following commands are available when an ARM target is debugged
using the RDI interface:

@table @code
@item rdilogfile @r{[}@var{file}@r{]}
@kindex rdilogfile
@cindex ADP (Angel Debugger Protocol) logging
Set the filename for the ADP (Angel Debugger Protocol) packet log.
With an argument, sets the log file to the specified @var{file}.  With
no argument, show the current log file name.  The default log file is
@file{rdi.log}.

@item rdilogenable @r{[}@var{arg}@r{]}
@kindex rdilogenable
Control logging of ADP packets.  With an argument of 1 or @code{"yes"}
enables logging, with an argument 0 or @code{"no"} disables it.  With
no arguments displays the current setting.  When logging is enabled,
ADP packets exchanged between @value{GDBN} and the RDI target device
are logged to a file.

@item set rdiromatzero
@kindex set rdiromatzero
@cindex ROM at zero address, RDI
Tell @value{GDBN} whether the target has ROM at address 0.  If on,
vector catching is disabled, so that zero address can be used.  If off
(the default), vector catching is enabled.  For this command to take
effect, it needs to be invoked prior to the @code{target rdi} command.

@item show rdiromatzero
@kindex show rdiromatzero
Show the current setting of ROM at zero address.

@item set rdiheartbeat
@kindex set rdiheartbeat
@cindex RDI heartbeat
Enable or disable RDI heartbeat packets.  It is not recommended to
turn on this option, since it confuses ARM and EPI JTAG interface, as
well as the Angel monitor.

@item show rdiheartbeat
@kindex show rdiheartbeat
Show the setting of RDI heartbeat packets.
@end table

@table @code
@item target sim @r{[}@var{simargs}@r{]} @dots{} 
The @value{GDBN} ARM simulator accepts the following optional arguments.

@table @code
@item --swi-support=@var{type}
Tell the simulator which SWI interfaces to support.
@var{type} may be a comma separated list of the following values.
The default value is @code{all}.

@table @code
@item none
@item demon
@item angel
@item redboot
@item all
@end table
@end table
@end table

@node M32R/D
@subsection Renesas M32R/D and M32R/SDI

@table @code
@kindex target m32r
@item target m32r @var{dev}
Renesas M32R/D ROM monitor.

@kindex target m32rsdi
@item target m32rsdi @var{dev}
Renesas M32R SDI server, connected via parallel port to the board.
@end table

The following @value{GDBN} commands are specific to the M32R monitor:

@table @code
@item set download-path @var{path}
@kindex set download-path
@cindex find downloadable @sc{srec} files (M32R)
Set the default path for finding downloadable @sc{srec} files.

@item show download-path
@kindex show download-path
Show the default path for downloadable @sc{srec} files.

@item set board-address @var{addr}
@kindex set board-address
@cindex M32-EVA target board address
Set the IP address for the M32R-EVA target board.

@item show board-address
@kindex show board-address
Show the current IP address of the target board.

@item set server-address @var{addr}
@kindex set server-address
@cindex download server address (M32R)
Set the IP address for the download server, which is the @value{GDBN}'s
host machine.

@item show server-address
@kindex show server-address
Display the IP address of the download server.

@item upload @r{[}@var{file}@r{]}
@kindex upload@r{, M32R}
Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
upload capability.  If no @var{file} argument is given, the current
executable file is uploaded.

@item tload @r{[}@var{file}@r{]}
@kindex tload@r{, M32R}
Test the @code{upload} command.
@end table

The following commands are available for M32R/SDI:

@table @code
@item sdireset
@kindex sdireset
@cindex reset SDI connection, M32R
This command resets the SDI connection.

@item sdistatus
@kindex sdistatus
This command shows the SDI connection status.

@item debug_chaos
@kindex debug_chaos
@cindex M32R/Chaos debugging
Instructs the remote that M32R/Chaos debugging is to be used.

@item use_debug_dma
@kindex use_debug_dma
Instructs the remote to use the DEBUG_DMA method of accessing memory.

@item use_mon_code
@kindex use_mon_code
Instructs the remote to use the MON_CODE method of accessing memory.

@item use_ib_break
@kindex use_ib_break
Instructs the remote to set breakpoints by IB break.

@item use_dbt_break
@kindex use_dbt_break
Instructs the remote to set breakpoints by DBT.
@end table

@node M68K
@subsection M68k

The Motorola m68k configuration includes ColdFire support, and a
target command for the following ROM monitor.

@table @code

@kindex target dbug
@item target dbug @var{dev}
dBUG ROM monitor for Motorola ColdFire.

@end table

@node MicroBlaze
@subsection MicroBlaze
@cindex Xilinx MicroBlaze
@cindex XMD, Xilinx Microprocessor Debugger

The MicroBlaze is a soft-core processor supported on various Xilinx
FPGAs, such as Spartan or Virtex series.  Boards with these processors
usually have JTAG ports which connect to a host system running the Xilinx
Embedded Development Kit (EDK) or Software Development Kit (SDK).
This host system is used to download the configuration bitstream to
the target FPGA.  The Xilinx Microprocessor Debugger (XMD) program
communicates with the target board using the JTAG interface and
presents a @code{gdbserver} interface to the board.  By default
@code{xmd} uses port @code{1234}.  (While it is possible to change 
this default port, it requires the use of undocumented @code{xmd} 
commands.  Contact Xilinx support if you need to do this.)

Use these GDB commands to connect to the MicroBlaze target processor.

@table @code
@item target remote :1234
Use this command to connect to the target if you are running @value{GDBN}
on the same system as @code{xmd}.

@item target remote @var{xmd-host}:1234
Use this command to connect to the target if it is connected to @code{xmd}
running on a different system named @var{xmd-host}.

@item load
Use this command to download a program to the MicroBlaze target.

@item set debug microblaze @var{n}
Enable MicroBlaze-specific debugging messages if non-zero.

@item show debug microblaze @var{n}
Show MicroBlaze-specific debugging level.
@end table

@node MIPS Embedded
@subsection @acronym{MIPS} Embedded

@cindex @acronym{MIPS} boards
@value{GDBN} can use the @acronym{MIPS} remote debugging protocol to talk to a
@acronym{MIPS} board attached to a serial line.  This is available when
you configure @value{GDBN} with @samp{--target=mips-elf}.

@need 1000
Use these @value{GDBN} commands to specify the connection to your target board:

@table @code
@item target mips @var{port}
@kindex target mips @var{port}
To run a program on the board, start up @code{@value{GDBP}} with the
name of your program as the argument.  To connect to the board, use the
command @samp{target mips @var{port}}, where @var{port} is the name of
the serial port connected to the board.  If the program has not already
been downloaded to the board, you may use the @code{load} command to
download it.  You can then use all the usual @value{GDBN} commands.

For example, this sequence connects to the target board through a serial
port, and loads and runs a program called @var{prog} through the
debugger:

@smallexample
host$ @value{GDBP} @var{prog}
@value{GDBN} is free software and @dots{}
(@value{GDBP}) target mips /dev/ttyb
(@value{GDBP}) load @var{prog}
(@value{GDBP}) run
@end smallexample

@item target mips @var{hostname}:@var{portnumber}
On some @value{GDBN} host configurations, you can specify a TCP
connection (for instance, to a serial line managed by a terminal
concentrator) instead of a serial port, using the syntax
@samp{@var{hostname}:@var{portnumber}}.

@item target pmon @var{port}
@kindex target pmon @var{port}
PMON ROM monitor.

@item target ddb @var{port}
@kindex target ddb @var{port}
NEC's DDB variant of PMON for Vr4300.

@item target lsi @var{port}
@kindex target lsi @var{port}
LSI variant of PMON.

@kindex target r3900
@item target r3900 @var{dev}
Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.

@kindex target array
@item target array @var{dev}
Array Tech LSI33K RAID controller board.

@end table


@noindent
@value{GDBN} also supports these special commands for @acronym{MIPS} targets:

@table @code
@item set mipsfpu double
@itemx set mipsfpu single
@itemx set mipsfpu none
@itemx set mipsfpu auto
@itemx show mipsfpu
@kindex set mipsfpu
@kindex show mipsfpu
@cindex @acronym{MIPS} remote floating point
@cindex floating point, @acronym{MIPS} remote
If your target board does not support the @acronym{MIPS} floating point
coprocessor, you should use the command @samp{set mipsfpu none} (if you
need this, you may wish to put the command in your @value{GDBN} init
file).  This tells @value{GDBN} how to find the return value of
functions which return floating point values.  It also allows
@value{GDBN} to avoid saving the floating point registers when calling
functions on the board.  If you are using a floating point coprocessor
with only single precision floating point support, as on the @sc{r4650}
processor, use the command @samp{set mipsfpu single}.  The default
double precision floating point coprocessor may be selected using
@samp{set mipsfpu double}.

In previous versions the only choices were double precision or no
floating point, so @samp{set mipsfpu on} will select double precision
and @samp{set mipsfpu off} will select no floating point.

As usual, you can inquire about the @code{mipsfpu} variable with
@samp{show mipsfpu}.

@item set timeout @var{seconds}
@itemx set retransmit-timeout @var{seconds}
@itemx show timeout
@itemx show retransmit-timeout
@cindex @code{timeout}, @acronym{MIPS} protocol
@cindex @code{retransmit-timeout}, @acronym{MIPS} protocol
@kindex set timeout
@kindex show timeout
@kindex set retransmit-timeout
@kindex show retransmit-timeout
You can control the timeout used while waiting for a packet, in the @acronym{MIPS}
remote protocol, with the @code{set timeout @var{seconds}} command.  The
default is 5 seconds.  Similarly, you can control the timeout used while
waiting for an acknowledgment of a packet with the @code{set
retransmit-timeout @var{seconds}} command.  The default is 3 seconds.
You can inspect both values with @code{show timeout} and @code{show
retransmit-timeout}.  (These commands are @emph{only} available when
@value{GDBN} is configured for @samp{--target=mips-elf}.)

The timeout set by @code{set timeout} does not apply when @value{GDBN}
is waiting for your program to stop.  In that case, @value{GDBN} waits
forever because it has no way of knowing how long the program is going
to run before stopping.

@item set syn-garbage-limit @var{num}
@kindex set syn-garbage-limit@r{, @acronym{MIPS} remote}
@cindex synchronize with remote @acronym{MIPS} target
Limit the maximum number of characters @value{GDBN} should ignore when
it tries to synchronize with the remote target.  The default is 10
characters.  Setting the limit to -1 means there's no limit.

@item show syn-garbage-limit
@kindex show syn-garbage-limit@r{, @acronym{MIPS} remote}
Show the current limit on the number of characters to ignore when
trying to synchronize with the remote system.

@item set monitor-prompt @var{prompt}
@kindex set monitor-prompt@r{, @acronym{MIPS} remote}
@cindex remote monitor prompt
Tell @value{GDBN} to expect the specified @var{prompt} string from the
remote monitor.  The default depends on the target:
@table @asis
@item pmon target
@samp{PMON}
@item ddb target
@samp{NEC010}
@item lsi target
@samp{PMON>}
@end table

@item show monitor-prompt
@kindex show monitor-prompt@r{, @acronym{MIPS} remote}
Show the current strings @value{GDBN} expects as the prompt from the
remote monitor.

@item set monitor-warnings
@kindex set monitor-warnings@r{, @acronym{MIPS} remote}
Enable or disable monitor warnings about hardware breakpoints.  This
has effect only for the @code{lsi} target.  When on, @value{GDBN} will
display warning messages whose codes are returned by the @code{lsi}
PMON monitor for breakpoint commands.

@item show monitor-warnings
@kindex show monitor-warnings@r{, @acronym{MIPS} remote}
Show the current setting of printing monitor warnings.

@item pmon @var{command}
@kindex pmon@r{, @acronym{MIPS} remote}
@cindex send PMON command
This command allows sending an arbitrary @var{command} string to the
monitor.  The monitor must be in debug mode for this to work.
@end table

@node PowerPC Embedded
@subsection PowerPC Embedded

@cindex DVC register
@value{GDBN} supports using the DVC (Data Value Compare) register to
implement in hardware simple hardware watchpoint conditions of the form:

@smallexample
(@value{GDBP}) watch @var{ADDRESS|VARIABLE} \
  if  @var{ADDRESS|VARIABLE} == @var{CONSTANT EXPRESSION}
@end smallexample

The DVC register will be automatically used when @value{GDBN} detects
such pattern in a condition expression, and the created watchpoint uses one
debug register (either the @code{exact-watchpoints} option is on and the
variable is scalar, or the variable has a length of one byte).  This feature
is available in native @value{GDBN} running on a Linux kernel version 2.6.34
or newer.

When running on PowerPC embedded processors, @value{GDBN} automatically uses
ranged hardware watchpoints, unless the @code{exact-watchpoints} option is on,
in which case watchpoints using only one debug register are created when
watching variables of scalar types.

You can create an artificial array to watch an arbitrary memory
region using one of the following commands (@pxref{Expressions}):

@smallexample
(@value{GDBP}) watch *((char *) @var{address})@@@var{length}
(@value{GDBP}) watch @{char[@var{length}]@} @var{address}
@end smallexample

PowerPC embedded processors support masked watchpoints.  See the discussion
about the @code{mask} argument in @ref{Set Watchpoints}.

@cindex ranged breakpoint
PowerPC embedded processors support hardware accelerated
@dfn{ranged breakpoints}.  A ranged breakpoint stops execution of
the inferior whenever it executes an instruction at any address within
the range it specifies.  To set a ranged breakpoint in @value{GDBN},
use the @code{break-range} command.

@value{GDBN} provides the following PowerPC-specific commands:

@table @code
@kindex break-range
@item break-range @var{start-location}, @var{end-location}
Set a breakpoint for an address range.
@var{start-location} and @var{end-location} can specify a function name,
a line number, an offset of lines from the current line or from the start
location, or an address of an instruction (see @ref{Specify Location},
for a list of all the possible ways to specify a @var{location}.)
The breakpoint will stop execution of the inferior whenever it
executes an instruction at any address within the specified range,
(including @var{start-location} and @var{end-location}.)

@kindex set powerpc
@item set powerpc soft-float
@itemx show powerpc soft-float
Force @value{GDBN} to use (or not use) a software floating point calling
convention.  By default, @value{GDBN} selects the calling convention based
on the selected architecture and the provided executable file.

@item set powerpc vector-abi
@itemx show powerpc vector-abi
Force @value{GDBN} to use the specified calling convention for vector
arguments and return values.  The valid options are @samp{auto};
@samp{generic}, to avoid vector registers even if they are present;
@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
registers.  By default, @value{GDBN} selects the calling convention
based on the selected architecture and the provided executable file.

@item set powerpc exact-watchpoints
@itemx show powerpc exact-watchpoints
Allow @value{GDBN} to use only one debug register when watching a variable
of scalar type, thus assuming that the variable is accessed through the
address of its first byte.

@kindex target dink32
@item target dink32 @var{dev}
DINK32 ROM monitor.

@kindex target ppcbug
@item target ppcbug @var{dev}
@kindex target ppcbug1
@item target ppcbug1 @var{dev}
PPCBUG ROM monitor for PowerPC.

@kindex target sds
@item target sds @var{dev}
SDS monitor, running on a PowerPC board (such as Motorola's ADS).
@end table

@cindex SDS protocol
The following commands specific to the SDS protocol are supported
by @value{GDBN}:

@table @code
@item set sdstimeout @var{nsec}
@kindex set sdstimeout
Set the timeout for SDS protocol reads to be @var{nsec} seconds.  The
default is 2 seconds.

@item show sdstimeout
@kindex show sdstimeout
Show the current value of the SDS timeout.

@item sds @var{command}
@kindex sds@r{, a command}
Send the specified @var{command} string to the SDS monitor.
@end table


@node PA
@subsection HP PA Embedded

@table @code

@kindex target op50n
@item target op50n @var{dev}
OP50N monitor, running on an OKI HPPA board.

@kindex target w89k
@item target w89k @var{dev}
W89K monitor, running on a Winbond HPPA board.

@end table

@node Sparclet
@subsection Tsqware Sparclet

@cindex Sparclet

@value{GDBN} enables developers to debug tasks running on
Sparclet targets from a Unix host.
@value{GDBN} uses code that runs on
both the Unix host and on the Sparclet target.  The program
@code{@value{GDBP}} is installed and executed on the Unix host.

@table @code
@item remotetimeout @var{args}
@kindex remotetimeout
@value{GDBN} supports the option @code{remotetimeout}.
This option is set by the user, and  @var{args} represents the number of
seconds @value{GDBN} waits for responses.
@end table

@cindex compiling, on Sparclet
When compiling for debugging, include the options @samp{-g} to get debug
information and @samp{-Ttext} to relocate the program to where you wish to
load it on the target.  You may also want to add the options @samp{-n} or
@samp{-N} in order to reduce the size of the sections.  Example:

@smallexample
sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
@end smallexample

You can use @code{objdump} to verify that the addresses are what you intended:

@smallexample
sparclet-aout-objdump --headers --syms prog
@end smallexample

@cindex running, on Sparclet
Once you have set
your Unix execution search path to find @value{GDBN}, you are ready to
run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
(or @code{sparclet-aout-gdb}, depending on your installation).

@value{GDBN} comes up showing the prompt:

@smallexample
(gdbslet)
@end smallexample

@menu
* Sparclet File::                Setting the file to debug
* Sparclet Connection::          Connecting to Sparclet
* Sparclet Download::            Sparclet download
* Sparclet Execution::           Running and debugging
@end menu

@node Sparclet File
@subsubsection Setting File to Debug

The @value{GDBN} command @code{file} lets you choose with program to debug.

@smallexample
(gdbslet) file prog
@end smallexample

@need 1000
@value{GDBN} then attempts to read the symbol table of @file{prog}.
@value{GDBN} locates
the file by searching the directories listed in the command search
path.
If the file was compiled with debug information (option @samp{-g}), source
files will be searched as well.
@value{GDBN} locates
the source files by searching the directories listed in the directory search
path (@pxref{Environment, ,Your Program's Environment}).
If it fails
to find a file, it displays a message such as:

@smallexample
prog: No such file or directory.
@end smallexample

When this happens, add the appropriate directories to the search paths with
the @value{GDBN} commands @code{path} and @code{dir}, and execute the
@code{target} command again.

@node Sparclet Connection
@subsubsection Connecting to Sparclet

The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
To connect to a target on serial port ``@code{ttya}'', type:

@smallexample
(gdbslet) target sparclet /dev/ttya
Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3
@end smallexample

@need 750
@value{GDBN} displays messages like these:

@smallexample
Connected to ttya.
@end smallexample

@node Sparclet Download
@subsubsection Sparclet Download

@cindex download to Sparclet
Once connected to the Sparclet target,
you can use the @value{GDBN}
@code{load} command to download the file from the host to the target.
The file name and load offset should be given as arguments to the @code{load}
command.
Since the file format is aout, the program must be loaded to the starting
address.  You can use @code{objdump} to find out what this value is.  The load
offset is an offset which is added to the VMA (virtual memory address)
of each of the file's sections.
For instance, if the program
@file{prog} was linked to text address 0x1201000, with data at 0x12010160
and bss at 0x12010170, in @value{GDBN}, type:

@smallexample
(gdbslet) load prog 0x12010000
Loading section .text, size 0xdb0 vma 0x12010000
@end smallexample

If the code is loaded at a different address then what the program was linked
to, you may need to use the @code{section} and @code{add-symbol-file} commands
to tell @value{GDBN} where to map the symbol table.

@node Sparclet Execution
@subsubsection Running and Debugging

@cindex running and debugging Sparclet programs
You can now begin debugging the task using @value{GDBN}'s execution control
commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
manual for the list of commands.

@smallexample
(gdbslet) b main
Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run
Starting program: prog
Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
3        char *symarg = 0;
(gdbslet) step
4        char *execarg = "hello!";
(gdbslet)
@end smallexample

@node Sparclite
@subsection Fujitsu Sparclite

@table @code

@kindex target sparclite
@item target sparclite @var{dev}
Fujitsu sparclite boards, used only for the purpose of loading.
You must use an additional command to debug the program.
For example: target remote @var{dev} using @value{GDBN} standard
remote protocol.

@end table

@node Z8000
@subsection Zilog Z8000

@cindex Z8000
@cindex simulator, Z8000
@cindex Zilog Z8000 simulator

When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
a Z8000 simulator.

For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
unsegmented variant of the Z8000 architecture) or the Z8001 (the
segmented variant).  The simulator recognizes which architecture is
appropriate by inspecting the object code.

@table @code
@item target sim @var{args}
@kindex sim
@kindex target sim@r{, with Z8000}
Debug programs on a simulated CPU.  If the simulator supports setup
options, specify them via @var{args}.
@end table

@noindent
After specifying this target, you can debug programs for the simulated
CPU in the same style as programs for your host computer; use the
@code{file} command to load a new program image, the @code{run} command
to run your program, and so on.

As well as making available all the usual machine registers
(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
additional items of information as specially named registers:

@table @code

@item cycles
Counts clock-ticks in the simulator.

@item insts
Counts instructions run in the simulator.

@item time
Execution time in 60ths of a second.

@end table

You can refer to these values in @value{GDBN} expressions with the usual
conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
conditional breakpoint that suspends only after at least 5000
simulated clock ticks.

@node AVR
@subsection Atmel AVR
@cindex AVR

When configured for debugging the Atmel AVR, @value{GDBN} supports the
following AVR-specific commands:

@table @code
@item info io_registers
@kindex info io_registers@r{, AVR}
@cindex I/O registers (Atmel AVR)
This command displays information about the AVR I/O registers.  For
each register, @value{GDBN} prints its number and value.
@end table

@node CRIS
@subsection CRIS
@cindex CRIS

When configured for debugging CRIS, @value{GDBN} provides the
following CRIS-specific commands:

@table @code
@item set cris-version @var{ver}
@cindex CRIS version
Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
The CRIS version affects register names and sizes.  This command is useful in
case autodetection of the CRIS version fails.

@item show cris-version
Show the current CRIS version.

@item set cris-dwarf2-cfi
@cindex DWARF-2 CFI and CRIS
Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
Change to @samp{off} when using @code{gcc-cris} whose version is below 
@code{R59}.

@item show cris-dwarf2-cfi
Show the current state of using DWARF-2 CFI.

@item set cris-mode @var{mode}
@cindex CRIS mode
Set the current CRIS mode to @var{mode}.  It should only be changed when
debugging in guru mode, in which case it should be set to 
@samp{guru} (the default is @samp{normal}).

@item show cris-mode
Show the current CRIS mode.
@end table

@node Super-H
@subsection Renesas Super-H
@cindex Super-H

For the Renesas Super-H processor, @value{GDBN} provides these
commands:

@table @code
@item set sh calling-convention @var{convention}
@kindex set sh calling-convention
Set the calling-convention used when calling functions from @value{GDBN}.
Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
convention.  If the DWARF-2 information of the called function specifies
that the function follows the Renesas calling convention, the function
is called using the Renesas calling convention.  If the calling convention
is set to @samp{renesas}, the Renesas calling convention is always used,
regardless of the DWARF-2 information.  This can be used to override the
default of @samp{gcc} if debug information is missing, or the compiler
does not emit the DWARF-2 calling convention entry for a function.

@item show sh calling-convention
@kindex show sh calling-convention
Show the current calling convention setting.

@end table


@node Architectures
@section Architectures

This section describes characteristics of architectures that affect
all uses of @value{GDBN} with the architecture, both native and cross.

@menu
* AArch64::
* i386::
* Alpha::
* MIPS::
* HPPA::               HP PA architecture
* SPU::                Cell Broadband Engine SPU architecture
* PowerPC::
* Nios II::
@end menu

@node AArch64
@subsection AArch64
@cindex AArch64 support

When @value{GDBN} is debugging the AArch64 architecture, it provides the
following special commands:

@table @code
@item set debug aarch64
@kindex set debug aarch64
This command determines whether AArch64 architecture-specific debugging
messages are to be displayed.

@item show debug aarch64
Show whether AArch64 debugging messages are displayed.

@end table

@node i386
@subsection x86 Architecture-specific Issues

@table @code
@item set struct-convention @var{mode}
@kindex set struct-convention
@cindex struct return convention
@cindex struct/union returned in registers
Set the convention used by the inferior to return @code{struct}s and
@code{union}s from functions to @var{mode}.  Possible values of
@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
are returned on the stack, while @code{"reg"} means that a
@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
be returned in a register.

@item show struct-convention
@kindex show struct-convention
Show the current setting of the convention to return @code{struct}s
from functions.
@end table

@node Alpha
@subsection Alpha

See the following section.

@node MIPS
@subsection @acronym{MIPS}

@cindex stack on Alpha
@cindex stack on @acronym{MIPS}
@cindex Alpha stack
@cindex @acronym{MIPS} stack
Alpha- and @acronym{MIPS}-based computers use an unusual stack frame, which
sometimes requires @value{GDBN} to search backward in the object code to
find the beginning of a function.

@cindex response time, @acronym{MIPS} debugging
To improve response time (especially for embedded applications, where
@value{GDBN} may be restricted to a slow serial line for this search)
you may want to limit the size of this search, using one of these
commands:

@table @code
@cindex @code{heuristic-fence-post} (Alpha, @acronym{MIPS})
@item set heuristic-fence-post @var{limit}
Restrict @value{GDBN} to examining at most @var{limit} bytes in its
search for the beginning of a function.  A value of @var{0} (the
default) means there is no limit.  However, except for @var{0}, the
larger the limit the more bytes @code{heuristic-fence-post} must search
and therefore the longer it takes to run.  You should only need to use
this command when debugging a stripped executable.

@item show heuristic-fence-post
Display the current limit.
@end table

@noindent
These commands are available @emph{only} when @value{GDBN} is configured
for debugging programs on Alpha or @acronym{MIPS} processors.

Several @acronym{MIPS}-specific commands are available when debugging @acronym{MIPS}
programs:

@table @code
@item set mips abi @var{arg}
@kindex set mips abi
@cindex set ABI for @acronym{MIPS}
Tell @value{GDBN} which @acronym{MIPS} ABI is used by the inferior.  Possible
values of @var{arg} are:

@table @samp
@item auto
The default ABI associated with the current binary (this is the
default).
@item o32
@item o64
@item n32
@item n64
@item eabi32
@item eabi64
@end table

@item show mips abi
@kindex show mips abi
Show the @acronym{MIPS} ABI used by @value{GDBN} to debug the inferior.

@item set mips compression @var{arg}
@kindex set mips compression
@cindex code compression, @acronym{MIPS}
Tell @value{GDBN} which @acronym{MIPS} compressed
@acronym{ISA, Instruction Set Architecture} encoding is used by the
inferior.  @value{GDBN} uses this for code disassembly and other
internal interpretation purposes.  This setting is only referred to
when no executable has been associated with the debugging session or
the executable does not provide information about the encoding it uses.
Otherwise this setting is automatically updated from information
provided by the executable.

Possible values of @var{arg} are @samp{mips16} and @samp{micromips}.
The default compressed @acronym{ISA} encoding is @samp{mips16}, as
executables containing @acronym{MIPS16} code frequently are not
identified as such.

This setting is ``sticky''; that is, it retains its value across
debugging sessions until reset either explicitly with this command or
implicitly from an executable.

The compiler and/or assembler typically add symbol table annotations to
identify functions compiled for the @acronym{MIPS16} or
@acronym{microMIPS} @acronym{ISA}s.  If these function-scope annotations
are present, @value{GDBN} uses them in preference to the global
compressed @acronym{ISA} encoding setting.

@item show mips compression
@kindex show mips compression
Show the @acronym{MIPS} compressed @acronym{ISA} encoding used by
@value{GDBN} to debug the inferior.

@item set mipsfpu
@itemx show mipsfpu
@xref{MIPS Embedded, set mipsfpu}.

@item set mips mask-address @var{arg}
@kindex set mips mask-address
@cindex @acronym{MIPS} addresses, masking
This command determines whether the most-significant 32 bits of 64-bit
@acronym{MIPS} addresses are masked off.  The argument @var{arg} can be
@samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
setting, which lets @value{GDBN} determine the correct value.

@item show mips mask-address
@kindex show mips mask-address
Show whether the upper 32 bits of @acronym{MIPS} addresses are masked off or
not.

@item set remote-mips64-transfers-32bit-regs
@kindex set remote-mips64-transfers-32bit-regs
This command controls compatibility with 64-bit @acronym{MIPS} targets that
transfer data in 32-bit quantities.  If you have an old @acronym{MIPS} 64 target
that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
and 64 bits for other registers, set this option to @samp{on}.

@item show remote-mips64-transfers-32bit-regs
@kindex show remote-mips64-transfers-32bit-regs
Show the current setting of compatibility with older @acronym{MIPS} 64 targets.

@item set debug mips
@kindex set debug mips
This command turns on and off debugging messages for the @acronym{MIPS}-specific
target code in @value{GDBN}.

@item show debug mips
@kindex show debug mips
Show the current setting of @acronym{MIPS} debugging messages.
@end table


@node HPPA
@subsection HPPA
@cindex HPPA support

When @value{GDBN} is debugging the HP PA architecture, it provides the
following special commands:

@table @code
@item set debug hppa
@kindex set debug hppa
This command determines whether HPPA architecture-specific debugging
messages are to be displayed.

@item show debug hppa
Show whether HPPA debugging messages are displayed.

@item maint print unwind @var{address}
@kindex maint print unwind@r{, HPPA}
This command displays the contents of the unwind table entry at the
given @var{address}.

@end table


@node SPU
@subsection Cell Broadband Engine SPU architecture
@cindex Cell Broadband Engine
@cindex SPU

When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
it provides the following special commands:

@table @code
@item info spu event
@kindex info spu
Display SPU event facility status.  Shows current event mask
and pending event status.

@item info spu signal
Display SPU signal notification facility status.  Shows pending
signal-control word and signal notification mode of both signal
notification channels.

@item info spu mailbox
Display SPU mailbox facility status.  Shows all pending entries,
in order of processing, in each of the SPU Write Outbound,
SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.

@item info spu dma
Display MFC DMA status.  Shows all pending commands in the MFC
DMA queue.  For each entry, opcode, tag, class IDs, effective
and local store addresses and transfer size are shown.

@item info spu proxydma
Display MFC Proxy-DMA status.  Shows all pending commands in the MFC
Proxy-DMA queue.  For each entry, opcode, tag, class IDs, effective
and local store addresses and transfer size are shown.

@end table
 
When @value{GDBN} is debugging a combined PowerPC/SPU application
on the Cell Broadband Engine, it provides in addition the following
special commands:

@table @code
@item set spu stop-on-load @var{arg}
@kindex set spu
Set whether to stop for new SPE threads.  When set to @code{on}, @value{GDBN}
will give control to the user when a new SPE thread enters its @code{main}
function.  The default is @code{off}.

@item show spu stop-on-load
@kindex show spu
Show whether to stop for new SPE threads.

@item set spu auto-flush-cache @var{arg}
Set whether to automatically flush the software-managed cache.  When set to
@code{on}, @value{GDBN} will automatically cause the SPE software-managed
cache to be flushed whenever SPE execution stops.  This provides a consistent
view of PowerPC memory that is accessed via the cache.  If an application
does not use the software-managed cache, this option has no effect.

@item show spu auto-flush-cache
Show whether to automatically flush the software-managed cache.

@end table

@node PowerPC
@subsection PowerPC
@cindex PowerPC architecture

When @value{GDBN} is debugging the PowerPC architecture, it provides a set of 
pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
numbers stored in the floating point registers. These values must be stored
in two consecutive registers, always starting at an even register like
@code{f0} or @code{f2}.

The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
@code{f2} and @code{f3} for @code{$dl1} and so on.

For POWER7 processors, @value{GDBN} provides a set of pseudo-registers, the 64-bit
wide Extended Floating Point Registers (@samp{f32} through @samp{f63}).

@node Nios II
@subsection Nios II
@cindex Nios II architecture

When @value{GDBN} is debugging the Nios II architecture,
it provides the following special commands:

@table @code

@item set debug nios2
@kindex set debug nios2
This command turns on and off debugging messages for the Nios II
target code in @value{GDBN}.

@item show debug nios2
@kindex show debug nios2
Show the current setting of Nios II debugging messages.
@end table

@node Controlling GDB
@chapter Controlling @value{GDBN}

You can alter the way @value{GDBN} interacts with you by using the
@code{set} command.  For commands controlling how @value{GDBN} displays
data, see @ref{Print Settings, ,Print Settings}.  Other settings are
described here.

@menu
* Prompt::                      Prompt
* Editing::                     Command editing
* Command History::             Command history
* Screen Size::                 Screen size
* Numbers::                     Numbers
* ABI::                         Configuring the current ABI
* Auto-loading::                Automatically loading associated files
* Messages/Warnings::           Optional warnings and messages
* Debugging Output::            Optional messages about internal happenings
* Other Misc Settings::         Other Miscellaneous Settings
@end menu

@node Prompt
@section Prompt

@cindex prompt

@value{GDBN} indicates its readiness to read a command by printing a string
called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
can change the prompt string with the @code{set prompt} command.  For
instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
the prompt in one of the @value{GDBN} sessions so that you can always tell
which one you are talking to.

@emph{Note:}  @code{set prompt} does not add a space for you after the
prompt you set.  This allows you to set a prompt which ends in a space
or a prompt that does not.

@table @code
@kindex set prompt
@item set prompt @var{newprompt}
Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.

@kindex show prompt
@item show prompt
Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
@end table

Versions of @value{GDBN} that ship with Python scripting enabled have
prompt extensions.  The commands for interacting with these extensions
are:

@table @code
@kindex set extended-prompt
@item set extended-prompt @var{prompt}
Set an extended prompt that allows for substitutions.
@xref{gdb.prompt}, for a list of escape sequences that can be used for
substitution.  Any escape sequences specified as part of the prompt
string are replaced with the corresponding strings each time the prompt
is displayed.

For example:

@smallexample
set extended-prompt Current working directory: \w (gdb)
@end smallexample

Note that when an extended-prompt is set, it takes control of the
@var{prompt_hook} hook.  @xref{prompt_hook}, for further information.

@kindex show extended-prompt
@item show extended-prompt
Prints the extended prompt.  Any escape sequences specified as part of
the prompt string with @code{set extended-prompt}, are replaced with the
corresponding strings each time the prompt is displayed.
@end table

@node Editing
@section Command Editing
@cindex readline
@cindex command line editing

@value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
@sc{gnu} library provides consistent behavior for programs which provide a
command line interface to the user.  Advantages are @sc{gnu} Emacs-style
or @dfn{vi}-style inline editing of commands, @code{csh}-like history
substitution, and a storage and recall of command history across
debugging sessions.

You may control the behavior of command line editing in @value{GDBN} with the
command @code{set}.

@table @code
@kindex set editing
@cindex editing
@item set editing
@itemx set editing on
Enable command line editing (enabled by default).

@item set editing off
Disable command line editing.

@kindex show editing
@item show editing
Show whether command line editing is enabled.
@end table

@ifset SYSTEM_READLINE
@xref{Command Line Editing, , , rluserman, GNU Readline Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Command Line Editing},
@end ifclear
for more details about the Readline
interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
encouraged to read that chapter.

@node Command History
@section Command History
@cindex command history

@value{GDBN} can keep track of the commands you type during your
debugging sessions, so that you can be certain of precisely what
happened.  Use these commands to manage the @value{GDBN} command
history facility.

@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
package, to provide the history facility.
@ifset SYSTEM_READLINE
@xref{Using History Interactively, , , history, GNU History Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Using History Interactively},
@end ifclear
for the detailed description of the History library.

To issue a command to @value{GDBN} without affecting certain aspects of
the state which is seen by users, prefix it with @samp{server }
(@pxref{Server Prefix}).  This
means that this command will not affect the command history, nor will it
affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
pressed on a line by itself.

@cindex @code{server}, command prefix
The server prefix does not affect the recording of values into the value
history; to print a value without recording it into the value history,
use the @code{output} command instead of the @code{print} command.

Here is the description of @value{GDBN} commands related to command
history.

@table @code
@cindex history substitution
@cindex history file
@kindex set history filename
@cindex @env{GDBHISTFILE}, environment variable
@item set history filename @var{fname}
Set the name of the @value{GDBN} command history file to @var{fname}.
This is the file where @value{GDBN} reads an initial command history
list, and where it writes the command history from this session when it
exits.  You can access this list through history expansion or through
the history command editing characters listed below.  This file defaults
to the value of the environment variable @code{GDBHISTFILE}, or to
@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
is not set.

@cindex save command history
@kindex set history save
@item set history save
@itemx set history save on
Record command history in a file, whose name may be specified with the
@code{set history filename} command.  By default, this option is disabled.

@item set history save off
Stop recording command history in a file.

@cindex history size
@kindex set history size
@cindex @env{HISTSIZE}, environment variable
@item set history size @var{size}
@itemx set history size unlimited
Set the number of commands which @value{GDBN} keeps in its history list.
This defaults to the value of the environment variable
@code{HISTSIZE}, or to 256 if this variable is not set.  If @var{size}
is @code{unlimited}, the number of commands @value{GDBN} keeps in the
history list is unlimited.
@end table

History expansion assigns special meaning to the character @kbd{!}.
@ifset SYSTEM_READLINE
@xref{Event Designators, , , history, GNU History Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Event Designators},
@end ifclear
for more details.

@cindex history expansion, turn on/off
Since @kbd{!} is also the logical not operator in C, history expansion
is off by default. If you decide to enable history expansion with the
@code{set history expansion on} command, you may sometimes need to
follow @kbd{!} (when it is used as logical not, in an expression) with
a space or a tab to prevent it from being expanded.  The readline
history facilities do not attempt substitution on the strings
@kbd{!=} and @kbd{!(}, even when history expansion is enabled.

The commands to control history expansion are:

@table @code
@item set history expansion on
@itemx set history expansion
@kindex set history expansion
Enable history expansion.  History expansion is off by default.

@item set history expansion off
Disable history expansion.

@c @group
@kindex show history
@item show history
@itemx show history filename
@itemx show history save
@itemx show history size
@itemx show history expansion
These commands display the state of the @value{GDBN} history parameters.
@code{show history} by itself displays all four states.
@c @end group
@end table

@table @code
@kindex show commands
@cindex show last commands
@cindex display command history
@item show commands
Display the last ten commands in the command history.

@item show commands @var{n}
Print ten commands centered on command number @var{n}.

@item show commands +
Print ten commands just after the commands last printed.
@end table

@node Screen Size
@section Screen Size
@cindex size of screen
@cindex pauses in output

Certain commands to @value{GDBN} may produce large amounts of
information output to the screen.  To help you read all of it,
@value{GDBN} pauses and asks you for input at the end of each page of
output.  Type @key{RET} when you want to continue the output, or @kbd{q}
to discard the remaining output.  Also, the screen width setting
determines when to wrap lines of output.  Depending on what is being
printed, @value{GDBN} tries to break the line at a readable place,
rather than simply letting it overflow onto the following line.

Normally @value{GDBN} knows the size of the screen from the terminal
driver software.  For example, on Unix @value{GDBN} uses the termcap data base
together with the value of the @code{TERM} environment variable and the
@code{stty rows} and @code{stty cols} settings.  If this is not correct,
you can override it with the @code{set height} and @code{set
width} commands:

@table @code
@kindex set height
@kindex set width
@kindex show width
@kindex show height
@item set height @var{lpp}
@itemx set height unlimited
@itemx show height
@itemx set width @var{cpl}
@itemx set width unlimited
@itemx show width
These @code{set} commands specify a screen height of @var{lpp} lines and
a screen width of @var{cpl} characters.  The associated @code{show}
commands display the current settings.

If you specify a height of either @code{unlimited} or zero lines,
@value{GDBN} does not pause during output no matter how long the
output is.  This is useful if output is to a file or to an editor
buffer.

Likewise, you can specify @samp{set width unlimited} or @samp{set
width 0} to prevent @value{GDBN} from wrapping its output.

@item set pagination on
@itemx set pagination off
@kindex set pagination
Turn the output pagination on or off; the default is on.  Turning
pagination off is the alternative to @code{set height unlimited}.  Note that
running @value{GDBN} with the @option{--batch} option (@pxref{Mode
Options, -batch}) also automatically disables pagination.

@item show pagination
@kindex show pagination
Show the current pagination mode.
@end table

@node Numbers
@section Numbers
@cindex number representation
@cindex entering numbers

You can always enter numbers in octal, decimal, or hexadecimal in
@value{GDBN} by the usual conventions: octal numbers begin with
@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
@samp{0x}, nor end with a @samp{.} are, by default, entered in base
10; likewise, the default display for numbers---when no particular
format is specified---is base 10.  You can change the default base for
both input and output with the commands described below.

@table @code
@kindex set input-radix
@item set input-radix @var{base}
Set the default base for numeric input.  Supported choices
for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
specified either unambiguously or using the current input radix; for
example, any of

@smallexample
set input-radix 012
set input-radix 10.
set input-radix 0xa
@end smallexample

@noindent
sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
leaves the input radix unchanged, no matter what it was, since
@samp{10}, being without any leading or trailing signs of its base, is
interpreted in the current radix.  Thus, if the current radix is 16,
@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
change the radix.

@kindex set output-radix
@item set output-radix @var{base}
Set the default base for numeric display.  Supported choices
for @var{base} are decimal 8, 10, or 16.  @var{base} must itself be
specified either unambiguously or using the current input radix.

@kindex show input-radix
@item show input-radix
Display the current default base for numeric input.

@kindex show output-radix
@item show output-radix
Display the current default base for numeric display.

@item set radix @r{[}@var{base}@r{]}
@itemx show radix
@kindex set radix
@kindex show radix
These commands set and show the default base for both input and output
of numbers.  @code{set radix} sets the radix of input and output to
the same base; without an argument, it resets the radix back to its
default value of 10.

@end table

@node ABI
@section Configuring the Current ABI

@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
application automatically.  However, sometimes you need to override its
conclusions.  Use these commands to manage @value{GDBN}'s view of the
current ABI.

@cindex OS ABI
@kindex set osabi
@kindex show osabi
@cindex Newlib OS ABI and its influence on the longjmp handling

One @value{GDBN} configuration can debug binaries for multiple operating
system targets, either via remote debugging or native emulation.
@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
but you can override its conclusion using the @code{set osabi} command.
One example where this is useful is in debugging of binaries which use
an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
not have the same identifying marks that the standard C library for your
platform provides.

When @value{GDBN} is debugging the AArch64 architecture, it provides a
``Newlib'' OS ABI.  This is useful for handling @code{setjmp} and
@code{longjmp} when debugging binaries that use the @sc{newlib} C library.
The ``Newlib'' OS ABI can be selected by @code{set osabi Newlib}.

@table @code
@item show osabi
Show the OS ABI currently in use.

@item set osabi
With no argument, show the list of registered available OS ABI's.

@item set osabi @var{abi}
Set the current OS ABI to @var{abi}.
@end table

@cindex float promotion

Generally, the way that an argument of type @code{float} is passed to a
function depends on whether the function is prototyped.  For a prototyped
(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
according to the architecture's convention for @code{float}.  For unprototyped
(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
@code{double} and then passed.

Unfortunately, some forms of debug information do not reliably indicate whether
a function is prototyped.  If @value{GDBN} calls a function that is not marked
as prototyped, it consults @kbd{set coerce-float-to-double}.

@table @code
@kindex set coerce-float-to-double
@item set coerce-float-to-double
@itemx set coerce-float-to-double on
Arguments of type @code{float} will be promoted to @code{double} when passed
to an unprototyped function.  This is the default setting.

@item set coerce-float-to-double off
Arguments of type @code{float} will be passed directly to unprototyped
functions.

@kindex show coerce-float-to-double
@item show coerce-float-to-double
Show the current setting of promoting @code{float} to @code{double}.
@end table

@kindex set cp-abi
@kindex show cp-abi
@value{GDBN} needs to know the ABI used for your program's C@t{++}
objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
used to build your application.  @value{GDBN} only fully supports
programs with a single C@t{++} ABI; if your program contains code using
multiple C@t{++} ABI's or if @value{GDBN} can not identify your
program's ABI correctly, you can tell @value{GDBN} which ABI to use.
Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
``auto''.

@table @code
@item show cp-abi
Show the C@t{++} ABI currently in use.

@item set cp-abi
With no argument, show the list of supported C@t{++} ABI's.

@item set cp-abi @var{abi}
@itemx set cp-abi auto
Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
@end table

@node Auto-loading
@section Automatically loading associated files
@cindex auto-loading

@value{GDBN} sometimes reads files with commands and settings automatically,
without being explicitly told so by the user.  We call this feature
@dfn{auto-loading}.  While auto-loading is useful for automatically adapting
@value{GDBN} to the needs of your project, it can sometimes produce unexpected
results or introduce security risks (e.g., if the file comes from untrusted
sources).

Note that loading of these associated files (including the local @file{.gdbinit}
file) requires accordingly configured @code{auto-load safe-path}
(@pxref{Auto-loading safe path}).

For these reasons, @value{GDBN} includes commands and options to let you
control when to auto-load files and which files should be auto-loaded.

@table @code
@anchor{set auto-load off}
@kindex set auto-load off
@item set auto-load off
Globally disable loading of all auto-loaded files.
You may want to use this command with the @samp{-iex} option
(@pxref{Option -init-eval-command}) such as:
@smallexample
$ @kbd{gdb -iex "set auto-load off" untrusted-executable corefile}
@end smallexample

Be aware that system init file (@pxref{System-wide configuration})
and init files from your home directory (@pxref{Home Directory Init File})
still get read (as they come from generally trusted directories).
To prevent @value{GDBN} from auto-loading even those init files, use the
@option{-nx} option (@pxref{Mode Options}), in addition to
@code{set auto-load no}.

@anchor{show auto-load}
@kindex show auto-load
@item show auto-load
Show whether auto-loading of each specific @samp{auto-load} file(s) is enabled
or disabled.

@smallexample
(gdb) show auto-load
gdb-scripts:  Auto-loading of canned sequences of commands scripts is on.
libthread-db:  Auto-loading of inferior specific libthread_db is on.
local-gdbinit:  Auto-loading of .gdbinit script from current directory
                is on.
python-scripts:  Auto-loading of Python scripts is on.
safe-path:  List of directories from which it is safe to auto-load files
            is $debugdir:$datadir/auto-load.
scripts-directory:  List of directories from which to load auto-loaded scripts
                    is $debugdir:$datadir/auto-load.
@end smallexample

@anchor{info auto-load}
@kindex info auto-load
@item info auto-load
Print whether each specific @samp{auto-load} file(s) have been auto-loaded or
not.

@smallexample
(gdb) info auto-load
gdb-scripts:
Loaded  Script
Yes     /home/user/gdb/gdb-gdb.gdb
libthread-db:  No auto-loaded libthread-db.
local-gdbinit:  Local .gdbinit file "/home/user/gdb/.gdbinit" has been
                loaded.
python-scripts:
Loaded  Script
Yes     /home/user/gdb/gdb-gdb.py
@end smallexample
@end table

These are various kinds of files @value{GDBN} can automatically load:

@itemize @bullet
@item
@xref{objfile-gdb.py file}, controlled by @ref{set auto-load python-scripts}.
@item
@xref{objfile-gdb.gdb file}, controlled by @ref{set auto-load gdb-scripts}.
@item
@xref{dotdebug_gdb_scripts section},
controlled by @ref{set auto-load python-scripts}.
@item
@xref{Init File in the Current Directory},
controlled by @ref{set auto-load local-gdbinit}.
@item
@xref{libthread_db.so.1 file}, controlled by @ref{set auto-load libthread-db}.
@end itemize

These are @value{GDBN} control commands for the auto-loading:

@multitable @columnfractions .5 .5
@item @xref{set auto-load off}.
@tab Disable auto-loading globally.
@item @xref{show auto-load}.
@tab Show setting of all kinds of files.
@item @xref{info auto-load}.
@tab Show state of all kinds of files.
@item @xref{set auto-load gdb-scripts}.
@tab Control for @value{GDBN} command scripts.
@item @xref{show auto-load gdb-scripts}.
@tab Show setting of @value{GDBN} command scripts.
@item @xref{info auto-load gdb-scripts}.
@tab Show state of @value{GDBN} command scripts.
@item @xref{set auto-load python-scripts}.
@tab Control for @value{GDBN} Python scripts.
@item @xref{show auto-load python-scripts}.
@tab Show setting of @value{GDBN} Python scripts.
@item @xref{info auto-load python-scripts}.
@tab Show state of @value{GDBN} Python scripts.
@item @xref{set auto-load scripts-directory}.
@tab Control for @value{GDBN} auto-loaded scripts location.
@item @xref{show auto-load scripts-directory}.
@tab Show @value{GDBN} auto-loaded scripts location.
@item @xref{set auto-load local-gdbinit}.
@tab Control for init file in the current directory.
@item @xref{show auto-load local-gdbinit}.
@tab Show setting of init file in the current directory.
@item @xref{info auto-load local-gdbinit}.
@tab Show state of init file in the current directory.
@item @xref{set auto-load libthread-db}.
@tab Control for thread debugging library.
@item @xref{show auto-load libthread-db}.
@tab Show setting of thread debugging library.
@item @xref{info auto-load libthread-db}.
@tab Show state of thread debugging library.
@item @xref{set auto-load safe-path}.
@tab Control directories trusted for automatic loading.
@item @xref{show auto-load safe-path}.
@tab Show directories trusted for automatic loading.
@item @xref{add-auto-load-safe-path}.
@tab Add directory trusted for automatic loading.
@end multitable

@menu
* Init File in the Current Directory:: @samp{set/show/info auto-load local-gdbinit}
* libthread_db.so.1 file::             @samp{set/show/info auto-load libthread-db}
* objfile-gdb.gdb file::               @samp{set/show/info auto-load gdb-script}
* Auto-loading safe path::             @samp{set/show/info auto-load safe-path}
* Auto-loading verbose mode::          @samp{set/show debug auto-load}
@xref{Python Auto-loading}.
@end menu

@node Init File in the Current Directory
@subsection Automatically loading init file in the current directory
@cindex auto-loading init file in the current directory

By default, @value{GDBN} reads and executes the canned sequences of commands
from init file (if any) in the current working directory,
see @ref{Init File in the Current Directory during Startup}.

Note that loading of this local @file{.gdbinit} file also requires accordingly
configured @code{auto-load safe-path} (@pxref{Auto-loading safe path}).

@table @code
@anchor{set auto-load local-gdbinit}
@kindex set auto-load local-gdbinit
@item set auto-load local-gdbinit [on|off]
Enable or disable the auto-loading of canned sequences of commands
(@pxref{Sequences}) found in init file in the current directory.

@anchor{show auto-load local-gdbinit}
@kindex show auto-load local-gdbinit
@item show auto-load local-gdbinit
Show whether auto-loading of canned sequences of commands from init file in the
current directory is enabled or disabled.

@anchor{info auto-load local-gdbinit}
@kindex info auto-load local-gdbinit
@item info auto-load local-gdbinit
Print whether canned sequences of commands from init file in the
current directory have been auto-loaded.
@end table

@node libthread_db.so.1 file
@subsection Automatically loading thread debugging library
@cindex auto-loading libthread_db.so.1

This feature is currently present only on @sc{gnu}/Linux native hosts.

@value{GDBN} reads in some cases thread debugging library from places specific
to the inferior (@pxref{set libthread-db-search-path}).

The special @samp{libthread-db-search-path} entry @samp{$sdir} is processed
without checking this @samp{set auto-load libthread-db} switch as system
libraries have to be trusted in general.  In all other cases of
@samp{libthread-db-search-path} entries @value{GDBN} checks first if @samp{set
auto-load libthread-db} is enabled before trying to open such thread debugging
library.

Note that loading of this debugging library also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

@table @code
@anchor{set auto-load libthread-db}
@kindex set auto-load libthread-db
@item set auto-load libthread-db [on|off]
Enable or disable the auto-loading of inferior specific thread debugging library.

@anchor{show auto-load libthread-db}
@kindex show auto-load libthread-db
@item show auto-load libthread-db
Show whether auto-loading of inferior specific thread debugging library is
enabled or disabled.

@anchor{info auto-load libthread-db}
@kindex info auto-load libthread-db
@item info auto-load libthread-db
Print the list of all loaded inferior specific thread debugging libraries and
for each such library print list of inferior @var{pid}s using it.
@end table

@node objfile-gdb.gdb file
@subsection The @file{@var{objfile}-gdb.gdb} file
@cindex auto-loading @file{@var{objfile}-gdb.gdb}

@value{GDBN} tries to load an @file{@var{objfile}-gdb.gdb} file containing
canned sequences of commands (@pxref{Sequences}), as long as @samp{set
auto-load gdb-scripts} is set to @samp{on}.

Note that loading of this script file also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

For more background refer to the similar Python scripts auto-loading
description (@pxref{objfile-gdb.py file}).

@table @code
@anchor{set auto-load gdb-scripts}
@kindex set auto-load gdb-scripts
@item set auto-load gdb-scripts [on|off]
Enable or disable the auto-loading of canned sequences of commands scripts.

@anchor{show auto-load gdb-scripts}
@kindex show auto-load gdb-scripts
@item show auto-load gdb-scripts
Show whether auto-loading of canned sequences of commands scripts is enabled or
disabled.

@anchor{info auto-load gdb-scripts}
@kindex info auto-load gdb-scripts
@cindex print list of auto-loaded canned sequences of commands scripts
@item info auto-load gdb-scripts [@var{regexp}]
Print the list of all canned sequences of commands scripts that @value{GDBN}
auto-loaded.
@end table

If @var{regexp} is supplied only canned sequences of commands scripts with
matching names are printed.

@node Auto-loading safe path
@subsection Security restriction for auto-loading
@cindex auto-loading safe-path

As the files of inferior can come from untrusted source (such as submitted by
an application user) @value{GDBN} does not always load any files automatically.
@value{GDBN} provides the @samp{set auto-load safe-path} setting to list
directories trusted for loading files not explicitly requested by user.
Each directory can also be a shell wildcard pattern.

If the path is not set properly you will see a warning and the file will not
get loaded:

@smallexample
$ ./gdb -q ./gdb
Reading symbols from /home/user/gdb/gdb...done.
warning: File "/home/user/gdb/gdb-gdb.gdb" auto-loading has been
         declined by your `auto-load safe-path' set
         to "$debugdir:$datadir/auto-load".
warning: File "/home/user/gdb/gdb-gdb.py" auto-loading has been
         declined by your `auto-load safe-path' set
         to "$debugdir:$datadir/auto-load".
@end smallexample

@noindent
To instruct @value{GDBN} to go ahead and use the init files anyway,
invoke @value{GDBN} like this:

@smallexample
$ gdb -q -iex "set auto-load safe-path /home/user/gdb" ./gdb
@end smallexample

The list of trusted directories is controlled by the following commands:

@table @code
@anchor{set auto-load safe-path}
@kindex set auto-load safe-path
@item set auto-load safe-path @r{[}@var{directories}@r{]}
Set the list of directories (and their subdirectories) trusted for automatic
loading and execution of scripts.  You can also enter a specific trusted file.
Each directory can also be a shell wildcard pattern; wildcards do not match
directory separator - see @code{FNM_PATHNAME} for system function @code{fnmatch}
(@pxref{Wildcard Matching, fnmatch, , libc, GNU C Library Reference Manual}).
If you omit @var{directories}, @samp{auto-load safe-path} will be reset to
its default value as specified during @value{GDBN} compilation.

The list of directories uses path separator (@samp{:} on GNU and Unix
systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
to the @env{PATH} environment variable.

@anchor{show auto-load safe-path}
@kindex show auto-load safe-path
@item show auto-load safe-path
Show the list of directories trusted for automatic loading and execution of
scripts.

@anchor{add-auto-load-safe-path}
@kindex add-auto-load-safe-path
@item add-auto-load-safe-path
Add an entry (or list of entries) the list of directories trusted for automatic
loading and execution of scripts.  Multiple entries may be delimited by the
host platform path separator in use.
@end table

This variable defaults to what @code{--with-auto-load-dir} has been configured
to (@pxref{with-auto-load-dir}).  @file{$debugdir} and @file{$datadir}
substitution applies the same as for @ref{set auto-load scripts-directory}.
The default @code{set auto-load safe-path} value can be also overriden by
@value{GDBN} configuration option @option{--with-auto-load-safe-path}.

Setting this variable to @file{/} disables this security protection,
corresponding @value{GDBN} configuration option is
@option{--without-auto-load-safe-path}.
This variable is supposed to be set to the system directories writable by the
system superuser only.  Users can add their source directories in init files in
their home directories (@pxref{Home Directory Init File}).  See also deprecated
init file in the current directory
(@pxref{Init File in the Current Directory during Startup}).

To force @value{GDBN} to load the files it declined to load in the previous
example, you could use one of the following ways:

@table @asis
@item @file{~/.gdbinit}: @samp{add-auto-load-safe-path ~/src/gdb}
Specify this trusted directory (or a file) as additional component of the list.
You have to specify also any existing directories displayed by
by @samp{show auto-load safe-path} (such as @samp{/usr:/bin} in this example).

@item @kbd{gdb -iex "set auto-load safe-path /usr:/bin:~/src/gdb" @dots{}}
Specify this directory as in the previous case but just for a single
@value{GDBN} session.

@item @kbd{gdb -iex "set auto-load safe-path /" @dots{}}
Disable auto-loading safety for a single @value{GDBN} session.
This assumes all the files you debug during this @value{GDBN} session will come
from trusted sources.

@item @kbd{./configure --without-auto-load-safe-path}
During compilation of @value{GDBN} you may disable any auto-loading safety.
This assumes all the files you will ever debug with this @value{GDBN} come from
trusted sources.
@end table

On the other hand you can also explicitly forbid automatic files loading which
also suppresses any such warning messages:

@table @asis
@item @kbd{gdb -iex "set auto-load no" @dots{}}
You can use @value{GDBN} command-line option for a single @value{GDBN} session.

@item @file{~/.gdbinit}: @samp{set auto-load no}
Disable auto-loading globally for the user
(@pxref{Home Directory Init File}).  While it is improbable, you could also
use system init file instead (@pxref{System-wide configuration}).
@end table

This setting applies to the file names as entered by user.  If no entry matches
@value{GDBN} tries as a last resort to also resolve all the file names into
their canonical form (typically resolving symbolic links) and compare the
entries again.  @value{GDBN} already canonicalizes most of the filenames on its
own before starting the comparison so a canonical form of directories is
recommended to be entered.

@node Auto-loading verbose mode
@subsection Displaying files tried for auto-load
@cindex auto-loading verbose mode

For better visibility of all the file locations where you can place scripts to
be auto-loaded with inferior --- or to protect yourself against accidental
execution of untrusted scripts --- @value{GDBN} provides a feature for printing
all the files attempted to be loaded.  Both existing and non-existing files may
be printed.

For example the list of directories from which it is safe to auto-load files
(@pxref{Auto-loading safe path}) applies also to canonicalized filenames which
may not be too obvious while setting it up.

@smallexample
(gdb) set debug auto-load on
(gdb) file ~/src/t/true
auto-load: Loading canned sequences of commands script "/tmp/true-gdb.gdb"
           for objfile "/tmp/true".
auto-load: Updating directories of "/usr:/opt".
auto-load: Using directory "/usr".
auto-load: Using directory "/opt".
warning: File "/tmp/true-gdb.gdb" auto-loading has been declined
         by your `auto-load safe-path' set to "/usr:/opt".
@end smallexample

@table @code
@anchor{set debug auto-load}
@kindex set debug auto-load
@item set debug auto-load [on|off]
Set whether to print the filenames attempted to be auto-loaded.

@anchor{show debug auto-load}
@kindex show debug auto-load
@item show debug auto-load
Show whether printing of the filenames attempted to be auto-loaded is turned
on or off.
@end table

@node Messages/Warnings
@section Optional Warnings and Messages

@cindex verbose operation
@cindex optional warnings
By default, @value{GDBN} is silent about its inner workings.  If you are
running on a slow machine, you may want to use the @code{set verbose}
command.  This makes @value{GDBN} tell you when it does a lengthy
internal operation, so you will not think it has crashed.

Currently, the messages controlled by @code{set verbose} are those
which announce that the symbol table for a source file is being read;
see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.

@table @code
@kindex set verbose
@item set verbose on
Enables @value{GDBN} output of certain informational messages.

@item set verbose off
Disables @value{GDBN} output of certain informational messages.

@kindex show verbose
@item show verbose
Displays whether @code{set verbose} is on or off.
@end table

By default, if @value{GDBN} encounters bugs in the symbol table of an
object file, it is silent; but if you are debugging a compiler, you may
find this information useful (@pxref{Symbol Errors, ,Errors Reading
Symbol Files}).

@table @code

@kindex set complaints
@item set complaints @var{limit}
Permits @value{GDBN} to output @var{limit} complaints about each type of
unusual symbols before becoming silent about the problem.  Set
@var{limit} to zero to suppress all complaints; set it to a large number
to prevent complaints from being suppressed.

@kindex show complaints
@item show complaints
Displays how many symbol complaints @value{GDBN} is permitted to produce.

@end table

@anchor{confirmation requests}
By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
lot of stupid questions to confirm certain commands.  For example, if
you try to run a program which is already running:

@smallexample
(@value{GDBP}) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
@end smallexample

If you are willing to unflinchingly face the consequences of your own
commands, you can disable this ``feature'':

@table @code

@kindex set confirm
@cindex flinching
@cindex confirmation
@cindex stupid questions
@item set confirm off
Disables confirmation requests.  Note that running @value{GDBN} with
the @option{--batch} option (@pxref{Mode Options, -batch}) also
automatically disables confirmation requests.

@item set confirm on
Enables confirmation requests (the default).

@kindex show confirm
@item show confirm
Displays state of confirmation requests.

@end table

@cindex command tracing
If you need to debug user-defined commands or sourced files you may find it
useful to enable @dfn{command tracing}.  In this mode each command will be
printed as it is executed, prefixed with one or more @samp{+} symbols, the
quantity denoting the call depth of each command.

@table @code
@kindex set trace-commands
@cindex command scripts, debugging
@item set trace-commands on
Enable command tracing.
@item set trace-commands off
Disable command tracing.
@item show trace-commands
Display the current state of command tracing.
@end table

@node Debugging Output
@section Optional Messages about Internal Happenings
@cindex optional debugging messages

@value{GDBN} has commands that enable optional debugging messages from
various @value{GDBN} subsystems; normally these commands are of
interest to @value{GDBN} maintainers, or when reporting a bug.  This
section documents those commands.

@table @code
@kindex set exec-done-display
@item set exec-done-display
Turns on or off the notification of asynchronous commands'
completion.  When on, @value{GDBN} will print a message when an
asynchronous command finishes its execution.  The default is off.
@kindex show exec-done-display
@item show exec-done-display
Displays the current setting of asynchronous command completion
notification.
@kindex set debug
@cindex ARM AArch64
@item set debug aarch64
Turns on or off display of debugging messages related to ARM AArch64.
The default is off.
@kindex show debug
@item show debug aarch64
Displays the current state of displaying debugging messages related to
ARM AArch64.
@cindex gdbarch debugging info
@cindex architecture debugging info
@item set debug arch
Turns on or off display of gdbarch debugging info.  The default is off
@item show debug arch
Displays the current state of displaying gdbarch debugging info.
@item set debug aix-solib
@cindex AIX shared library debugging
Control display of debugging messages from the AIX shared library
support module.  The default is off.
@item show debug aix-thread
Show the current state of displaying AIX shared library debugging messages.
@item set debug aix-thread
@cindex AIX threads
Display debugging messages about inner workings of the AIX thread
module.
@item show debug aix-thread
Show the current state of AIX thread debugging info display.
@item set debug check-physname
@cindex physname
Check the results of the ``physname'' computation.  When reading DWARF
debugging information for C@t{++}, @value{GDBN} attempts to compute
each entity's name.  @value{GDBN} can do this computation in two
different ways, depending on exactly what information is present.
When enabled, this setting causes @value{GDBN} to compute the names
both ways and display any discrepancies.
@item show debug check-physname
Show the current state of ``physname'' checking.
@item set debug coff-pe-read
@cindex COFF/PE exported symbols
Control display of debugging messages related to reading of COFF/PE
exported symbols.  The default is off.
@item show debug coff-pe-read
Displays the current state of displaying debugging messages related to
reading of COFF/PE exported symbols.
@item set debug dwarf2-die
@cindex DWARF2 DIEs
Dump DWARF2 DIEs after they are read in.
The value is the number of nesting levels to print.
A value of zero turns off the display.
@item show debug dwarf2-die
Show the current state of DWARF2 DIE debugging.
@item set debug dwarf2-read
@cindex DWARF2 Reading
Turns on or off display of debugging messages related to reading
DWARF debug info.  The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug dwarf2-read
Show the current state of DWARF2 reader debugging.
@item set debug displaced
@cindex displaced stepping debugging info
Turns on or off display of @value{GDBN} debugging info for the
displaced stepping support.  The default is off.
@item show debug displaced
Displays the current state of displaying @value{GDBN} debugging info
related to displaced stepping.
@item set debug event
@cindex event debugging info
Turns on or off display of @value{GDBN} event debugging info.  The
default is off.
@item show debug event
Displays the current state of displaying @value{GDBN} event debugging
info.
@item set debug expression
@cindex expression debugging info
Turns on or off display of debugging info about @value{GDBN}
expression parsing.  The default is off.
@item show debug expression
Displays the current state of displaying debugging info about
@value{GDBN} expression parsing.
@item set debug frame
@cindex frame debugging info
Turns on or off display of @value{GDBN} frame debugging info.  The
default is off.
@item show debug frame
Displays the current state of displaying @value{GDBN} frame debugging
info.
@item set debug gnu-nat
@cindex @sc{gnu}/Hurd debug messages
Turns on or off debugging messages from the @sc{gnu}/Hurd debug support.
@item show debug gnu-nat
Show the current state of @sc{gnu}/Hurd debugging messages.
@item set debug infrun
@cindex inferior debugging info
Turns on or off display of @value{GDBN} debugging info for running the inferior.
The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
for implementing operations such as single-stepping the inferior.
@item show debug infrun
Displays the current state of @value{GDBN} inferior debugging.
@item set debug jit
@cindex just-in-time compilation, debugging messages
Turns on or off debugging messages from JIT debug support.
@item show debug jit
Displays the current state of @value{GDBN} JIT debugging.
@item set debug lin-lwp
@cindex @sc{gnu}/Linux LWP debug messages
@cindex Linux lightweight processes
Turns on or off debugging messages from the Linux LWP debug support.
@item show debug lin-lwp
Show the current state of Linux LWP debugging messages.
@item set debug mach-o
@cindex Mach-O symbols processing
Control display of debugging messages related to Mach-O symbols
processing.  The default is off.
@item show debug mach-o
Displays the current state of displaying debugging messages related to
reading of COFF/PE exported symbols.
@item set debug notification
@cindex remote async notification debugging info
Turns on or off debugging messages about remote async notification.
The default is off.
@item show debug notification
Displays the current state of remote async notification debugging messages.
@item set debug observer
@cindex observer debugging info
Turns on or off display of @value{GDBN} observer debugging.  This
includes info such as the notification of observable events.
@item show debug observer
Displays the current state of observer debugging.
@item set debug overload
@cindex C@t{++} overload debugging info
Turns on or off display of @value{GDBN} C@t{++} overload debugging
info. This includes info such as ranking of functions, etc.  The default
is off.
@item show debug overload
Displays the current state of displaying @value{GDBN} C@t{++} overload
debugging info.
@cindex expression parser, debugging info
@cindex debug expression parser
@item set debug parser
Turns on or off the display of expression parser debugging output.
Internally, this sets the @code{yydebug} variable in the expression
parser.  @xref{Tracing, , Tracing Your Parser, bison, Bison}, for
details.  The default is off.
@item show debug parser
Show the current state of expression parser debugging.
@cindex packets, reporting on stdout
@cindex serial connections, debugging
@cindex debug remote protocol
@cindex remote protocol debugging
@cindex display remote packets
@item set debug remote
Turns on or off display of reports on all packets sent back and forth across
the serial line to the remote machine.  The info is printed on the
@value{GDBN} standard output stream. The default is off.
@item show debug remote
Displays the state of display of remote packets.
@item set debug serial
Turns on or off display of @value{GDBN} serial debugging info. The
default is off.
@item show debug serial
Displays the current state of displaying @value{GDBN} serial debugging
info.
@item set debug solib-frv
@cindex FR-V shared-library debugging
Turns on or off debugging messages for FR-V shared-library code.
@item show debug solib-frv
Display the current state of FR-V shared-library code debugging
messages.
@item set debug symfile
@cindex symbol file functions
Turns on or off display of debugging messages related to symbol file functions.
The default is off.  @xref{Files}.
@item show debug symfile
Show the current state of symbol file debugging messages.
@item set debug symtab-create
@cindex symbol table creation
Turns on or off display of debugging messages related to symbol table creation.
The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug symtab-create
Show the current state of symbol table creation debugging.
@item set debug target
@cindex target debugging info
Turns on or off display of @value{GDBN} target debugging info. This info
includes what is going on at the target level of GDB, as it happens. The
default is 0.  Set it to 1 to track events, and to 2 to also track the
value of large memory transfers.  Changes to this flag do not take effect
until the next time you connect to a target or use the @code{run} command.
@item show debug target
Displays the current state of displaying @value{GDBN} target debugging
info.
@item set debug timestamp
@cindex timestampping debugging info
Turns on or off display of timestamps with @value{GDBN} debugging info.
When enabled, seconds and microseconds are displayed before each debugging
message.
@item show debug timestamp
Displays the current state of displaying timestamps with @value{GDBN}
debugging info.
@item set debugvarobj
@cindex variable object debugging info
Turns on or off display of @value{GDBN} variable object debugging
info. The default is off.
@item show debugvarobj
Displays the current state of displaying @value{GDBN} variable object
debugging info.
@item set debug xml
@cindex XML parser debugging
Turns on or off debugging messages for built-in XML parsers.
@item show debug xml
Displays the current state of XML debugging messages.
@end table

@node Other Misc Settings
@section Other Miscellaneous Settings
@cindex miscellaneous settings

@table @code
@kindex set interactive-mode
@item set interactive-mode
If @code{on}, forces @value{GDBN} to assume that GDB was started
in a terminal.  In practice, this means that @value{GDBN} should wait
for the user to answer queries generated by commands entered at
the command prompt.  If @code{off}, forces @value{GDBN} to operate
in the opposite mode, and it uses the default answers to all queries.
If @code{auto} (the default), @value{GDBN} tries to determine whether
its standard input is a terminal, and works in interactive-mode if it
is, non-interactively otherwise.

In the vast majority of cases, the debugger should be able to guess
correctly which mode should be used.  But this setting can be useful
in certain specific cases, such as running a MinGW @value{GDBN}
inside a cygwin window.

@kindex show interactive-mode
@item show interactive-mode
Displays whether the debugger is operating in interactive mode or not.
@end table

@node Extending GDB
@chapter Extending @value{GDBN}
@cindex extending GDB

@value{GDBN} provides three mechanisms for extension.  The first is based
on composition of @value{GDBN} commands, the second is based on the
Python scripting language, and the third is for defining new aliases of
existing commands.

To facilitate the use of the first two extensions, @value{GDBN} is capable
of evaluating the contents of a file.  When doing so, @value{GDBN}
can recognize which scripting language is being used by looking at
the filename extension.  Files with an unrecognized filename extension
are always treated as a @value{GDBN} Command Files.
@xref{Command Files,, Command files}.

You can control how @value{GDBN} evaluates these files with the following
setting:

@table @code
@kindex set script-extension
@kindex show script-extension
@item set script-extension off
All scripts are always evaluated as @value{GDBN} Command Files.

@item set script-extension soft
The debugger determines the scripting language based on filename
extension.  If this scripting language is supported, @value{GDBN}
evaluates the script using that language.  Otherwise, it evaluates
the file as a @value{GDBN} Command File.

@item set script-extension strict
The debugger determines the scripting language based on filename
extension, and evaluates the script using that language.  If the
language is not supported, then the evaluation fails.

@item show script-extension
Display the current value of the @code{script-extension} option.

@end table

@menu
* Sequences::          Canned Sequences of Commands
* Python::             Scripting @value{GDBN} using Python
* Aliases::            Creating new spellings of existing commands
@end menu

@node Sequences
@section Canned Sequences of Commands

Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
Command Lists}), @value{GDBN} provides two ways to store sequences of
commands for execution as a unit: user-defined commands and command
files.

@menu
* Define::             How to define your own commands
* Hooks::              Hooks for user-defined commands
* Command Files::      How to write scripts of commands to be stored in a file
* Output::             Commands for controlled output
@end menu

@node Define
@subsection User-defined Commands

@cindex user-defined command
@cindex arguments, to user-defined commands
A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
which you assign a new name as a command.  This is done with the
@code{define} command.  User commands may accept up to 10 arguments
separated by whitespace.  Arguments are accessed within the user command
via @code{$arg0@dots{}$arg9}.  A trivial example:

@smallexample
define adder
  print $arg0 + $arg1 + $arg2
end
@end smallexample

@noindent
To execute the command use:

@smallexample
adder 1 2 3
@end smallexample

@noindent
This defines the command @code{adder}, which prints the sum of
its three arguments.  Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform inferior
functions calls.

@cindex argument count in user-defined commands
@cindex how many arguments (user-defined commands)
In addition, @code{$argc} may be used to find out how many arguments have
been passed.  This expands to a number in the range 0@dots{}10.

@smallexample
define adder
  if $argc == 2
    print $arg0 + $arg1
  end
  if $argc == 3
    print $arg0 + $arg1 + $arg2
  end
end
@end smallexample

@table @code

@kindex define
@item define @var{commandname}
Define a command named @var{commandname}.  If there is already a command
by that name, you are asked to confirm that you want to redefine it.
@var{commandname} may be a bare command name consisting of letters,
numbers, dashes, and underscores.  It may also start with any predefined
prefix command.  For example, @samp{define target my-target} creates
a user-defined @samp{target my-target} command.

The definition of the command is made up of other @value{GDBN} command lines,
which are given following the @code{define} command.  The end of these
commands is marked by a line containing @code{end}.

@kindex document
@kindex end@r{ (user-defined commands)}
@item document @var{commandname}
Document the user-defined command @var{commandname}, so that it can be
accessed by @code{help}.  The command @var{commandname} must already be
defined.  This command reads lines of documentation just as @code{define}
reads the lines of the command definition, ending with @code{end}.
After the @code{document} command is finished, @code{help} on command
@var{commandname} displays the documentation you have written.

You may use the @code{document} command again to change the
documentation of a command.  Redefining the command with @code{define}
does not change the documentation.

@kindex dont-repeat
@cindex don't repeat command
@item dont-repeat
Used inside a user-defined command, this tells @value{GDBN} that this
command should not be repeated when the user hits @key{RET}
(@pxref{Command Syntax, repeat last command}).

@kindex help user-defined
@item help user-defined
List all user-defined commands and all python commands defined in class
COMAND_USER.  The first line of the documentation or docstring is
included (if any).

@kindex show user
@item show user
@itemx show user @var{commandname}
Display the @value{GDBN} commands used to define @var{commandname} (but
not its documentation).  If no @var{commandname} is given, display the
definitions for all user-defined commands.
This does not work for user-defined python commands.

@cindex infinite recursion in user-defined commands
@kindex show max-user-call-depth
@kindex set max-user-call-depth
@item show max-user-call-depth
@itemx set max-user-call-depth
The value of @code{max-user-call-depth} controls how many recursion
levels are allowed in user-defined commands before @value{GDBN} suspects an
infinite recursion and aborts the command.
This does not apply to user-defined python commands.
@end table

In addition to the above commands, user-defined commands frequently
use control flow commands, described in @ref{Command Files}.

When user-defined commands are executed, the
commands of the definition are not printed.  An error in any command
stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed
without asking when used inside a user-defined command.  Many @value{GDBN}
commands that normally print messages to say what they are doing omit the
messages when used in a user-defined command.

@node Hooks
@subsection User-defined Command Hooks
@cindex command hooks
@cindex hooks, for commands
@cindex hooks, pre-command

@kindex hook
You may define @dfn{hooks}, which are a special kind of user-defined
command.  Whenever you run the command @samp{foo}, if the user-defined
command @samp{hook-foo} exists, it is executed (with no arguments)
before that command.

@cindex hooks, post-command
@kindex hookpost
A hook may also be defined which is run after the command you executed.
Whenever you run the command @samp{foo}, if the user-defined command
@samp{hookpost-foo} exists, it is executed (with no arguments) after
that command.  Post-execution hooks may exist simultaneously with
pre-execution hooks, for the same command.

It is valid for a hook to call the command which it hooks.  If this
occurs, the hook is not re-executed, thereby avoiding infinite recursion.

@c It would be nice if hookpost could be passed a parameter indicating
@c if the command it hooks executed properly or not.  FIXME!

@kindex stop@r{, a pseudo-command}
In addition, a pseudo-command, @samp{stop} exists.  Defining
(@samp{hook-stop}) makes the associated commands execute every time
execution stops in your program: before breakpoint commands are run,
displays are printed, or the stack frame is printed.

For example, to ignore @code{SIGALRM} signals while
single-stepping, but treat them normally during normal execution,
you could define:

@smallexample
define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGALRM pass
end
@end smallexample

As a further example, to hook at the beginning and end of the @code{echo}
command, and to add extra text to the beginning and end of the message,
you could define:

@smallexample
define hook-echo
echo <<<---
end

define hookpost-echo
echo --->>>\n
end

(@value{GDBP}) echo Hello World
<<<---Hello World--->>>
(@value{GDBP})

@end smallexample

You can define a hook for any single-word command in @value{GDBN}, but
not for command aliases; you should define a hook for the basic command
name, e.g.@:  @code{backtrace} rather than @code{bt}.
@c FIXME!  So how does Joe User discover whether a command is an alias
@c or not?
You can hook a multi-word command by adding @code{hook-} or
@code{hookpost-} to the last word of the command, e.g.@:
@samp{define target hook-remote} to add a hook to @samp{target remote}.

If an error occurs during the execution of your hook, execution of
@value{GDBN} commands stops and @value{GDBN} issues a prompt
(before the command that you actually typed had a chance to run).

If you try to define a hook which does not match any known command, you
get a warning from the @code{define} command.

@node Command Files
@subsection Command Files

@cindex command files
@cindex scripting commands
A command file for @value{GDBN} is a text file made of lines that are
@value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
also be included.  An empty line in a command file does nothing; it
does not mean to repeat the last command, as it would from the
terminal.

You can request the execution of a command file with the @code{source}
command.  Note that the @code{source} command is also used to evaluate
scripts that are not Command Files.  The exact behavior can be configured
using the @code{script-extension} setting.
@xref{Extending GDB,, Extending GDB}.

@table @code
@kindex source
@cindex execute commands from a file
@item source [-s] [-v] @var{filename}
Execute the command file @var{filename}.
@end table

The lines in a command file are generally executed sequentially,
unless the order of execution is changed by one of the
@emph{flow-control commands} described below.  The commands are not
printed as they are executed.  An error in any command terminates
execution of the command file and control is returned to the console.

@value{GDBN} first searches for @var{filename} in the current directory.
If the file is not found there, and @var{filename} does not specify a
directory, then @value{GDBN} also looks for the file on the source search path
(specified with the @samp{directory} command);
except that @file{$cdir} is not searched because the compilation directory
is not relevant to scripts.

If @code{-s} is specified, then @value{GDBN} searches for @var{filename}
on the search path even if @var{filename} specifies a directory.
The search is done by appending @var{filename} to each element of the
search path.  So, for example, if @var{filename} is @file{mylib/myscript}
and the search path contains @file{/home/user} then @value{GDBN} will
look for the script @file{/home/user/mylib/myscript}.
The search is also done if @var{filename} is an absolute path.
For example, if @var{filename} is @file{/tmp/myscript} and
the search path contains @file{/home/user} then @value{GDBN} will
look for the script @file{/home/user/tmp/myscript}.
For DOS-like systems, if @var{filename} contains a drive specification,
it is stripped before concatenation.  For example, if @var{filename} is
@file{d:myscript} and the search path contains @file{c:/tmp} then @value{GDBN}
will look for the script @file{c:/tmp/myscript}.

If @code{-v}, for verbose mode, is given then @value{GDBN} displays
each command as it is executed.  The option must be given before
@var{filename}, and is interpreted as part of the filename anywhere else.

Commands that would ask for confirmation if used interactively proceed
without asking when used in a command file.  Many @value{GDBN} commands that
normally print messages to say what they are doing omit the messages
when called from command files.

@value{GDBN} also accepts command input from standard input.  In this
mode, normal output goes to standard output and error output goes to
standard error.  Errors in a command file supplied on standard input do
not terminate execution of the command file---execution continues with
the next command.

@smallexample
gdb < cmds > log 2>&1
@end smallexample

(The syntax above will vary depending on the shell used.) This example
will execute commands from the file @file{cmds}. All output and errors
would be directed to @file{log}.

Since commands stored on command files tend to be more general than
commands typed interactively, they frequently need to deal with
complicated situations, such as different or unexpected values of
variables and symbols, changes in how the program being debugged is
built, etc.  @value{GDBN} provides a set of flow-control commands to
deal with these complexities.  Using these commands, you can write
complex scripts that loop over data structures, execute commands
conditionally, etc.

@table @code
@kindex if
@kindex else
@item if
@itemx else
This command allows to include in your script conditionally executed
commands. The @code{if} command takes a single argument, which is an
expression to evaluate.  It is followed by a series of commands that
are executed only if the expression is true (its value is nonzero).
There can then optionally be an @code{else} line, followed by a series
of commands that are only executed if the expression was false.  The
end of the list is marked by a line containing @code{end}.

@kindex while
@item while
This command allows to write loops.  Its syntax is similar to
@code{if}: the command takes a single argument, which is an expression
to evaluate, and must be followed by the commands to execute, one per
line, terminated by an @code{end}.  These commands are called the
@dfn{body} of the loop.  The commands in the body of @code{while} are
executed repeatedly as long as the expression evaluates to true.

@kindex loop_break
@item loop_break
This command exits the @code{while} loop in whose body it is included.
Execution of the script continues after that @code{while}s @code{end}
line.

@kindex loop_continue
@item loop_continue
This command skips the execution of the rest of the body of commands
in the @code{while} loop in whose body it is included.  Execution
branches to the beginning of the @code{while} loop, where it evaluates
the controlling expression.

@kindex end@r{ (if/else/while commands)}
@item end
Terminate the block of commands that are the body of @code{if},
@code{else}, or @code{while} flow-control commands.
@end table


@node Output
@subsection Commands for Controlled Output

During the execution of a command file or a user-defined command, normal
@value{GDBN} output is suppressed; the only output that appears is what is
explicitly printed by the commands in the definition.  This section
describes three commands useful for generating exactly the output you
want.

@table @code
@kindex echo
@item echo @var{text}
@c I do not consider backslash-space a standard C escape sequence
@c because it is not in ANSI.
Print @var{text}.  Nonprinting characters can be included in
@var{text} using C escape sequences, such as @samp{\n} to print a
newline.  @strong{No newline is printed unless you specify one.}
In addition to the standard C escape sequences, a backslash followed
by a space stands for a space.  This is useful for displaying a
string with spaces at the beginning or the end, since leading and
trailing spaces are otherwise trimmed from all arguments.
To print @samp{@w{ }and foo =@w{ }}, use the command
@samp{echo \@w{ }and foo = \@w{ }}.

A backslash at the end of @var{text} can be used, as in C, to continue
the command onto subsequent lines.  For example,

@smallexample
echo This is some text\n\
which is continued\n\
onto several lines.\n
@end smallexample

produces the same output as

@smallexample
echo This is some text\n
echo which is continued\n
echo onto several lines.\n
@end smallexample

@kindex output
@item output @var{expression}
Print the value of @var{expression} and nothing but that value: no
newlines, no @samp{$@var{nn} = }.  The value is not entered in the
value history either.  @xref{Expressions, ,Expressions}, for more information
on expressions.

@item output/@var{fmt} @var{expression}
Print the value of @var{expression} in format @var{fmt}.  You can use
the same formats as for @code{print}.  @xref{Output Formats,,Output
Formats}, for more information.

@kindex printf
@item printf @var{template}, @var{expressions}@dots{}
Print the values of one or more @var{expressions} under the control of
the string @var{template}.  To print several values, make
@var{expressions} be a comma-separated list of individual expressions,
which may be either numbers or pointers.  Their values are printed as
specified by @var{template}, exactly as a C program would do by
executing the code below:

@smallexample
printf (@var{template}, @var{expressions}@dots{});
@end smallexample

As in @code{C} @code{printf}, ordinary characters in @var{template}
are printed verbatim, while @dfn{conversion specification} introduced
by the @samp{%} character cause subsequent @var{expressions} to be
evaluated, their values converted and formatted according to type and
style information encoded in the conversion specifications, and then
printed.

For example, you can print two values in hex like this:

@smallexample
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
@end smallexample

@code{printf} supports all the standard @code{C} conversion
specifications, including the flags and modifiers between the @samp{%}
character and the conversion letter, with the following exceptions:

@itemize @bullet
@item
The argument-ordering modifiers, such as @samp{2$}, are not supported.

@item
The modifier @samp{*} is not supported for specifying precision or
width.

@item
The @samp{'} flag (for separation of digits into groups according to
@code{LC_NUMERIC'}) is not supported.

@item
The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
supported.

@item
The conversion letter @samp{n} (as in @samp{%n}) is not supported.

@item
The conversion letters @samp{a} and @samp{A} are not supported.
@end itemize

@noindent
Note that the @samp{ll} type modifier is supported only if the
underlying @code{C} implementation used to build @value{GDBN} supports
the @code{long long int} type, and the @samp{L} type modifier is
supported only if @code{long double} type is available.

As in @code{C}, @code{printf} supports simple backslash-escape
sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
@samp{\a}, and @samp{\f}, that consist of backslash followed by a
single character.  Octal and hexadecimal escape sequences are not
supported.

Additionally, @code{printf} supports conversion specifications for DFP
(@dfn{Decimal Floating Point}) types using the following length modifiers
together with a floating point specifier.
letters:

@itemize @bullet
@item
@samp{H} for printing @code{Decimal32} types.

@item
@samp{D} for printing @code{Decimal64} types.

@item
@samp{DD} for printing @code{Decimal128} types.
@end itemize

If the underlying @code{C} implementation used to build @value{GDBN} has
support for the three length modifiers for DFP types, other modifiers
such as width and precision will also be available for @value{GDBN} to use.

In case there is no such @code{C} support, no additional modifiers will be
available and the value will be printed in the standard way.

Here's an example of printing DFP types using the above conversion letters:
@smallexample
printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
@end smallexample

@kindex eval
@item eval @var{template}, @var{expressions}@dots{}
Convert the values of one or more @var{expressions} under the control of
the string @var{template} to a command line, and call it.

@end table

@node Python
@section Scripting @value{GDBN} using Python
@cindex python scripting
@cindex scripting with python

You can script @value{GDBN} using the @uref{http://www.python.org/,
Python programming language}.  This feature is available only if
@value{GDBN} was configured using @option{--with-python}.

@cindex python directory
Python scripts used by @value{GDBN} should be installed in
@file{@var{data-directory}/python}, where @var{data-directory} is
the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
This directory, known as the @dfn{python directory},
is automatically added to the Python Search Path in order to allow
the Python interpreter to locate all scripts installed at this location.

Additionally, @value{GDBN} commands and convenience functions which
are written in Python and are located in the
@file{@var{data-directory}/python/gdb/command} or
@file{@var{data-directory}/python/gdb/function} directories are
automatically imported when @value{GDBN} starts.

@menu
* Python Commands::             Accessing Python from @value{GDBN}.
* Python API::                  Accessing @value{GDBN} from Python.
* Python Auto-loading::         Automatically loading Python code.
* Python modules::              Python modules provided by @value{GDBN}.
@end menu

@node Python Commands
@subsection Python Commands
@cindex python commands
@cindex commands to access python

@value{GDBN} provides two commands for accessing the Python interpreter,
and one related setting:

@table @code
@kindex python-interactive
@kindex pi
@item python-interactive @r{[}@var{command}@r{]}
@itemx pi @r{[}@var{command}@r{]}
Without an argument, the @code{python-interactive} command can be used
to start an interactive Python prompt.  To return to @value{GDBN},
type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).

Alternatively, a single-line Python command can be given as an
argument and evaluated.  If the command is an expression, the result
will be printed; otherwise, nothing will be printed.  For example:

@smallexample
(@value{GDBP}) python-interactive 2 + 3
5
@end smallexample

@kindex python
@kindex py
@item python @r{[}@var{command}@r{]}
@itemx py @r{[}@var{command}@r{]}
The @code{python} command can be used to evaluate Python code.

If given an argument, the @code{python} command will evaluate the
argument as a Python command.  For example:

@smallexample
(@value{GDBP}) python print 23
23
@end smallexample

If you do not provide an argument to @code{python}, it will act as a
multi-line command, like @code{define}.  In this case, the Python
script is made up of subsequent command lines, given after the
@code{python} command.  This command list is terminated using a line
containing @code{end}.  For example:

@smallexample
(@value{GDBP}) python
Type python script
End with a line saying just "end".
>print 23
>end
23
@end smallexample

@kindex set python print-stack
@item set python print-stack
By default, @value{GDBN} will print only the message component of a
Python exception when an error occurs in a Python script.  This can be
controlled using @code{set python print-stack}: if @code{full}, then
full Python stack printing is enabled; if @code{none}, then Python stack
and message printing is disabled; if @code{message}, the default, only
the message component of the error is printed.
@end table

It is also possible to execute a Python script from the @value{GDBN}
interpreter:

@table @code
@item source @file{script-name}
The script name must end with @samp{.py} and @value{GDBN} must be configured
to recognize the script language based on filename extension using
the @code{script-extension} setting.  @xref{Extending GDB, ,Extending GDB}.

@item python execfile ("script-name")
This method is based on the @code{execfile} Python built-in function,
and thus is always available.
@end table

@node Python API
@subsection Python API
@cindex python api
@cindex programming in python

You can get quick online help for @value{GDBN}'s Python API by issuing
the command @w{@kbd{python help (gdb)}}.

Functions and methods which have two or more optional arguments allow
them to be specified using keyword syntax.  This allows passing some
optional arguments while skipping others.  Example:
@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.

@menu
* Basic Python::                Basic Python Functions.
* Exception Handling::          How Python exceptions are translated.
* Values From Inferior::        Python representation of values.
* Types In Python::             Python representation of types.
* Pretty Printing API::         Pretty-printing values.
* Selecting Pretty-Printers::   How GDB chooses a pretty-printer.
* Writing a Pretty-Printer::    Writing a Pretty-Printer.
* Type Printing API::		Pretty-printing types.
* Frame Filter API::            Filtering Frames.
* Frame Decorator API::         Decorating Frames.
* Writing a Frame Filter::      Writing a Frame Filter.
* Inferiors In Python::         Python representation of inferiors (processes)
* Events In Python::            Listening for events from @value{GDBN}.
* Threads In Python::           Accessing inferior threads from Python.
* Commands In Python::          Implementing new commands in Python.
* Parameters In Python::        Adding new @value{GDBN} parameters.
* Functions In Python::         Writing new convenience functions.
* Progspaces In Python::        Program spaces.
* Objfiles In Python::          Object files.
* Frames In Python::            Accessing inferior stack frames from Python.
* Blocks In Python::            Accessing blocks from Python.
* Symbols In Python::           Python representation of symbols.
* Symbol Tables In Python::     Python representation of symbol tables.
* Line Tables In Python::       Python representation of line tables.
* Breakpoints In Python::       Manipulating breakpoints using Python.
* Finish Breakpoints in Python:: Setting Breakpoints on function return
                                using Python.
* Lazy Strings In Python::      Python representation of lazy strings.
* Architectures In Python::     Python representation of architectures.
@end menu

@node Basic Python
@subsubsection Basic Python

@cindex python stdout
@cindex python pagination
At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
A Python program which outputs to one of these streams may have its
output interrupted by the user (@pxref{Screen Size}).  In this
situation, a Python @code{KeyboardInterrupt} exception is thrown.

Some care must be taken when writing Python code to run in
@value{GDBN}.  Two things worth noting in particular:

@itemize @bullet
@item
@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
Python code must not override these, or even change the options using
@code{sigaction}.  If your program changes the handling of these
signals, @value{GDBN} will most likely stop working correctly.  Note
that it is unfortunately common for GUI toolkits to install a
@code{SIGCHLD} handler.

@item
@value{GDBN} takes care to mark its internal file descriptors as
close-on-exec.  However, this cannot be done in a thread-safe way on
all platforms.  Your Python programs should be aware of this and
should both create new file descriptors with the close-on-exec flag
set and arrange to close unneeded file descriptors before starting a
child process.
@end itemize

@cindex python functions
@cindex python module
@cindex gdb module
@value{GDBN} introduces a new Python module, named @code{gdb}.  All
methods and classes added by @value{GDBN} are placed in this module.
@value{GDBN} automatically @code{import}s the @code{gdb} module for
use in all scripts evaluated by the @code{python} command.

@findex gdb.PYTHONDIR
@defvar gdb.PYTHONDIR
A string containing the python directory (@pxref{Python}).
@end defvar

@findex gdb.execute
@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
If a GDB exception happens while @var{command} runs, it is
translated as described in @ref{Exception Handling,,Exception Handling}.

@var{from_tty} specifies whether @value{GDBN} ought to consider this
command as having originated from the user invoking it interactively.
It must be a boolean value.  If omitted, it defaults to @code{False}.

By default, any output produced by @var{command} is sent to
@value{GDBN}'s standard output.  If the @var{to_string} parameter is
@code{True}, then output will be collected by @code{gdb.execute} and
returned as a string.  The default is @code{False}, in which case the
return value is @code{None}.  If @var{to_string} is @code{True}, the
@value{GDBN} virtual terminal will be temporarily set to unlimited width
and height, and its pagination will be disabled; @pxref{Screen Size}.
@end defun

@findex gdb.breakpoints
@defun gdb.breakpoints ()
Return a sequence holding all of @value{GDBN}'s breakpoints.
@xref{Breakpoints In Python}, for more information.
@end defun

@findex gdb.parameter
@defun gdb.parameter (parameter)
Return the value of a @value{GDBN} parameter.  @var{parameter} is a
string naming the parameter to look up; @var{parameter} may contain
spaces if the parameter has a multi-part name.  For example,
@samp{print object} is a valid parameter name.

If the named parameter does not exist, this function throws a
@code{gdb.error} (@pxref{Exception Handling}).  Otherwise, the
parameter's value is converted to a Python value of the appropriate
type, and returned.
@end defun

@findex gdb.history
@defun gdb.history (number)
Return a value from @value{GDBN}'s value history (@pxref{Value
History}).  @var{number} indicates which history element to return.
If @var{number} is negative, then @value{GDBN} will take its absolute value
and count backward from the last element (i.e., the most recent element) to
find the value to return.  If @var{number} is zero, then @value{GDBN} will
return the most recent element.  If the element specified by @var{number}
doesn't exist in the value history, a @code{gdb.error} exception will be
raised.

If no exception is raised, the return value is always an instance of
@code{gdb.Value} (@pxref{Values From Inferior}).
@end defun

@findex gdb.parse_and_eval
@defun gdb.parse_and_eval (expression)
Parse @var{expression} as an expression in the current language,
evaluate it, and return the result as a @code{gdb.Value}.
@var{expression} must be a string.

This function can be useful when implementing a new command
(@pxref{Commands In Python}), as it provides a way to parse the
command's argument as an expression.  It is also useful simply to
compute values, for example, it is the only way to get the value of a
convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
@end defun

@findex gdb.find_pc_line
@defun gdb.find_pc_line (pc)
Return the @code{gdb.Symtab_and_line} object corresponding to the
@var{pc} value.  @xref{Symbol Tables In Python}.  If an invalid
value of @var{pc} is passed as an argument, then the @code{symtab} and
@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
will be @code{None} and 0 respectively.
@end defun

@findex gdb.post_event
@defun gdb.post_event (event)
Put @var{event}, a callable object taking no arguments, into
@value{GDBN}'s internal event queue.  This callable will be invoked at
some later point, during @value{GDBN}'s event processing.  Events
posted using @code{post_event} will be run in the order in which they
were posted; however, there is no way to know when they will be
processed relative to other events inside @value{GDBN}.

@value{GDBN} is not thread-safe.  If your Python program uses multiple
threads, you must be careful to only call @value{GDBN}-specific
functions in the main @value{GDBN} thread.  @code{post_event} ensures
this.  For example:

@smallexample
(@value{GDBP}) python
>import threading
>
>class Writer():
> def __init__(self, message):
>        self.message = message;
> def __call__(self):
>        gdb.write(self.message)
>
>class MyThread1 (threading.Thread):
> def run (self):
>        gdb.post_event(Writer("Hello "))
>
>class MyThread2 (threading.Thread):
> def run (self):
>        gdb.post_event(Writer("World\n"))
>
>MyThread1().start()
>MyThread2().start()
>end
(@value{GDBP}) Hello World
@end smallexample
@end defun

@findex gdb.write 
@defun gdb.write (string @r{[}, stream{]})
Print a string to @value{GDBN}'s paginated output stream.  The
optional @var{stream} determines the stream to print to.  The default
stream is @value{GDBN}'s standard output stream.  Possible stream
values are:

@table @code
@findex STDOUT
@findex gdb.STDOUT
@item gdb.STDOUT
@value{GDBN}'s standard output stream.

@findex STDERR
@findex gdb.STDERR
@item gdb.STDERR
@value{GDBN}'s standard error stream.

@findex STDLOG
@findex gdb.STDLOG
@item gdb.STDLOG
@value{GDBN}'s log stream (@pxref{Logging Output}).
@end table

Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
call this function and will automatically direct the output to the
relevant stream.
@end defun

@findex gdb.flush
@defun gdb.flush ()
Flush the buffer of a @value{GDBN} paginated stream so that the
contents are displayed immediately.  @value{GDBN} will flush the
contents of a stream automatically when it encounters a newline in the
buffer.  The optional @var{stream} determines the stream to flush.  The
default stream is @value{GDBN}'s standard output stream.  Possible
stream values are: 

@table @code
@findex STDOUT
@findex gdb.STDOUT
@item gdb.STDOUT
@value{GDBN}'s standard output stream.

@findex STDERR
@findex gdb.STDERR
@item gdb.STDERR
@value{GDBN}'s standard error stream.

@findex STDLOG
@findex gdb.STDLOG
@item gdb.STDLOG
@value{GDBN}'s log stream (@pxref{Logging Output}).

@end table

Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
call this function for the relevant stream.
@end defun

@findex gdb.target_charset
@defun gdb.target_charset ()
Return the name of the current target character set (@pxref{Character
Sets}).  This differs from @code{gdb.parameter('target-charset')} in
that @samp{auto} is never returned.
@end defun

@findex gdb.target_wide_charset
@defun gdb.target_wide_charset ()
Return the name of the current target wide character set
(@pxref{Character Sets}).  This differs from
@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
never returned.
@end defun

@findex gdb.solib_name
@defun gdb.solib_name (address)
Return the name of the shared library holding the given @var{address}
as a string, or @code{None}.
@end defun

@findex gdb.decode_line 
@defun gdb.decode_line @r{[}expression@r{]}
Return locations of the line specified by @var{expression}, or of the
current line if no argument was given.  This function returns a Python
tuple containing two elements.  The first element contains a string
holding any unparsed section of @var{expression} (or @code{None} if
the expression has been fully parsed).  The second element contains
either @code{None} or another tuple that contains all the locations
that match the expression represented as @code{gdb.Symtab_and_line}
objects (@pxref{Symbol Tables In Python}).  If @var{expression} is
provided, it is decoded the way that @value{GDBN}'s inbuilt
@code{break} or @code{edit} commands do (@pxref{Specify Location}).
@end defun

@defun gdb.prompt_hook (current_prompt)
@anchor{prompt_hook}

If @var{prompt_hook} is callable, @value{GDBN} will call the method
assigned to this operation before a prompt is displayed by
@value{GDBN}.

The parameter @code{current_prompt} contains the current @value{GDBN} 
prompt.  This method must return a Python string, or @code{None}.  If
a string is returned, the @value{GDBN} prompt will be set to that
string.  If @code{None} is returned, @value{GDBN} will continue to use
the current prompt.

Some prompts cannot be substituted in @value{GDBN}.  Secondary prompts
such as those used by readline for command input, and annotation
related prompts are prohibited from being changed.
@end defun

@node Exception Handling
@subsubsection Exception Handling
@cindex python exceptions
@cindex exceptions, python

When executing the @code{python} command, Python exceptions
uncaught within the Python code are translated to calls to
@value{GDBN} error-reporting mechanism.  If the command that called
@code{python} does not handle the error, @value{GDBN} will
terminate it and print an error message containing the Python
exception name, the associated value, and the Python call stack
backtrace at the point where the exception was raised.  Example:

@smallexample
(@value{GDBP}) python print foo
Traceback (most recent call last):
  File "<string>", line 1, in <module>
NameError: name 'foo' is not defined
@end smallexample

@value{GDBN} errors that happen in @value{GDBN} commands invoked by
Python code are converted to Python exceptions.  The type of the
Python exception depends on the error.

@ftable @code
@item gdb.error
This is the base class for most exceptions generated by @value{GDBN}.
It is derived from @code{RuntimeError}, for compatibility with earlier
versions of @value{GDBN}.

If an error occurring in @value{GDBN} does not fit into some more
specific category, then the generated exception will have this type.

@item gdb.MemoryError
This is a subclass of @code{gdb.error} which is thrown when an
operation tried to access invalid memory in the inferior.

@item KeyboardInterrupt
User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
prompt) is translated to a Python @code{KeyboardInterrupt} exception.
@end ftable

In all cases, your exception handler will see the @value{GDBN} error
message as its value and the Python call stack backtrace at the Python
statement closest to where the @value{GDBN} error occured as the
traceback.

@findex gdb.GdbError
When implementing @value{GDBN} commands in Python via @code{gdb.Command},
it is useful to be able to throw an exception that doesn't cause a
traceback to be printed.  For example, the user may have invoked the
command incorrectly.  Use the @code{gdb.GdbError} exception
to handle this case.  Example:

@smallexample
(gdb) python
>class HelloWorld (gdb.Command):
>  """Greet the whole world."""
>  def __init__ (self):
>    super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
>  def invoke (self, args, from_tty):
>    argv = gdb.string_to_argv (args)
>    if len (argv) != 0:
>      raise gdb.GdbError ("hello-world takes no arguments")
>    print "Hello, World!"
>HelloWorld ()
>end
(gdb) hello-world 42
hello-world takes no arguments
@end smallexample

@node Values From Inferior
@subsubsection Values From Inferior
@cindex values from inferior, with Python
@cindex python, working with values from inferior

@cindex @code{gdb.Value}
@value{GDBN} provides values it obtains from the inferior program in
an object of type @code{gdb.Value}.  @value{GDBN} uses this object
for its internal bookkeeping of the inferior's values, and for
fetching values when necessary.

Inferior values that are simple scalars can be used directly in
Python expressions that are valid for the value's data type.  Here's
an example for an integer or floating-point value @code{some_val}:

@smallexample
bar = some_val + 2
@end smallexample

@noindent
As result of this, @code{bar} will also be a @code{gdb.Value} object
whose values are of the same type as those of @code{some_val}.

Inferior values that are structures or instances of some class can
be accessed using the Python @dfn{dictionary syntax}.  For example, if
@code{some_val} is a @code{gdb.Value} instance holding a structure, you
can access its @code{foo} element with:

@smallexample
bar = some_val['foo']
@end smallexample

Again, @code{bar} will also be a @code{gdb.Value} object.

A @code{gdb.Value} that represents a function can be executed via
inferior function call.  Any arguments provided to the call must match
the function's prototype, and must be provided in the order specified
by that prototype.

For example, @code{some_val} is a @code{gdb.Value} instance
representing a function that takes two integers as arguments.  To
execute this function, call it like so:

@smallexample
result = some_val (10,20)
@end smallexample

Any values returned from a function call will be stored as a
@code{gdb.Value}.

The following attributes are provided:

@defvar Value.address
If this object is addressable, this read-only attribute holds a
@code{gdb.Value} object representing the address.  Otherwise,
this attribute holds @code{None}.
@end defvar

@cindex optimized out value in Python
@defvar Value.is_optimized_out
This read-only boolean attribute is true if the compiler optimized out
this value, thus it is not available for fetching from the inferior.
@end defvar

@defvar Value.type
The type of this @code{gdb.Value}.  The value of this attribute is a
@code{gdb.Type} object (@pxref{Types In Python}).
@end defvar

@defvar Value.dynamic_type
The dynamic type of this @code{gdb.Value}.  This uses C@t{++} run-time
type information (@acronym{RTTI}) to determine the dynamic type of the
value.  If this value is of class type, it will return the class in
which the value is embedded, if any.  If this value is of pointer or
reference to a class type, it will compute the dynamic type of the
referenced object, and return a pointer or reference to that type,
respectively.  In all other cases, it will return the value's static
type.

Note that this feature will only work when debugging a C@t{++} program
that includes @acronym{RTTI} for the object in question.  Otherwise,
it will just return the static type of the value as in @kbd{ptype foo}
(@pxref{Symbols, ptype}).
@end defvar

@defvar Value.is_lazy
The value of this read-only boolean attribute is @code{True} if this
@code{gdb.Value} has not yet been fetched from the inferior.  
@value{GDBN} does not fetch values until necessary, for efficiency.  
For example:

@smallexample
myval = gdb.parse_and_eval ('somevar')
@end smallexample

The value of @code{somevar} is not fetched at this time.  It will be 
fetched when the value is needed, or when the @code{fetch_lazy}
method is invoked.  
@end defvar

The following methods are provided:

@defun Value.__init__ (@var{val})
Many Python values can be converted directly to a @code{gdb.Value} via
this object initializer.  Specifically:

@table @asis
@item Python boolean
A Python boolean is converted to the boolean type from the current
language.

@item Python integer
A Python integer is converted to the C @code{long} type for the
current architecture.

@item Python long
A Python long is converted to the C @code{long long} type for the
current architecture.

@item Python float
A Python float is converted to the C @code{double} type for the
current architecture.

@item Python string
A Python string is converted to a target string, using the current
target encoding.

@item @code{gdb.Value}
If @code{val} is a @code{gdb.Value}, then a copy of the value is made.

@item @code{gdb.LazyString}
If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
Python}), then the lazy string's @code{value} method is called, and
its result is used.
@end table
@end defun

@defun Value.cast (type)
Return a new instance of @code{gdb.Value} that is the result of
casting this instance to the type described by @var{type}, which must
be a @code{gdb.Type} object.  If the cast cannot be performed for some
reason, this method throws an exception.
@end defun

@defun Value.dereference ()
For pointer data types, this method returns a new @code{gdb.Value} object
whose contents is the object pointed to by the pointer.  For example, if
@code{foo} is a C pointer to an @code{int}, declared in your C program as

@smallexample
int *foo;
@end smallexample

@noindent
then you can use the corresponding @code{gdb.Value} to access what
@code{foo} points to like this:

@smallexample
bar = foo.dereference ()
@end smallexample

The result @code{bar} will be a @code{gdb.Value} object holding the
value pointed to by @code{foo}.

A similar function @code{Value.referenced_value} exists which also
returns @code{gdb.Value} objects corresonding to the values pointed to
by pointer values (and additionally, values referenced by reference
values).  However, the behavior of @code{Value.dereference}
differs from @code{Value.referenced_value} by the fact that the
behavior of @code{Value.dereference} is identical to applying the C
unary operator @code{*} on a given value.  For example, consider a
reference to a pointer @code{ptrref}, declared in your C@t{++} program
as

@smallexample
typedef int *intptr;
...
int val = 10;
intptr ptr = &val;
intptr &ptrref = ptr;
@end smallexample

Though @code{ptrref} is a reference value, one can apply the method
@code{Value.dereference} to the @code{gdb.Value} object corresponding
to it and obtain a @code{gdb.Value} which is identical to that
corresponding to @code{val}.  However, if you apply the method
@code{Value.referenced_value}, the result would be a @code{gdb.Value}
object identical to that corresponding to @code{ptr}.

@smallexample
py_ptrref = gdb.parse_and_eval ("ptrref")
py_val = py_ptrref.dereference ()
py_ptr = py_ptrref.referenced_value ()
@end smallexample

The @code{gdb.Value} object @code{py_val} is identical to that
corresponding to @code{val}, and @code{py_ptr} is identical to that
corresponding to @code{ptr}.  In general, @code{Value.dereference} can
be applied whenever the C unary operator @code{*} can be applied
to the corresponding C value.  For those cases where applying both
@code{Value.dereference} and @code{Value.referenced_value} is allowed,
the results obtained need not be identical (as we have seen in the above
example).  The results are however identical when applied on
@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
@end defun

@defun Value.referenced_value ()
For pointer or reference data types, this method returns a new
@code{gdb.Value} object corresponding to the value referenced by the
pointer/reference value.  For pointer data types,
@code{Value.dereference} and @code{Value.referenced_value} produce
identical results.  The difference between these methods is that
@code{Value.dereference} cannot get the values referenced by reference
values.  For example, consider a reference to an @code{int}, declared
in your C@t{++} program as

@smallexample
int val = 10;
int &ref = val;
@end smallexample

@noindent
then applying @code{Value.dereference} to the @code{gdb.Value} object
corresponding to @code{ref} will result in an error, while applying
@code{Value.referenced_value} will result in a @code{gdb.Value} object
identical to that corresponding to @code{val}.

@smallexample
py_ref = gdb.parse_and_eval ("ref")
er_ref = py_ref.dereference ()       # Results in error
py_val = py_ref.referenced_value ()  # Returns the referenced value
@end smallexample

The @code{gdb.Value} object @code{py_val} is identical to that
corresponding to @code{val}.
@end defun

@defun Value.dynamic_cast (type)
Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
operator were used.  Consult a C@t{++} reference for details.
@end defun

@defun Value.reinterpret_cast (type)
Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
operator were used.  Consult a C@t{++} reference for details.
@end defun

@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
If this @code{gdb.Value} represents a string, then this method
converts the contents to a Python string.  Otherwise, this method will
throw an exception.

Strings are recognized in a language-specific way; whether a given
@code{gdb.Value} represents a string is determined by the current
language.

For C-like languages, a value is a string if it is a pointer to or an
array of characters or ints.  The string is assumed to be terminated
by a zero of the appropriate width.  However if the optional length
argument is given, the string will be converted to that given length,
ignoring any embedded zeros that the string may contain.

If the optional @var{encoding} argument is given, it must be a string
naming the encoding of the string in the @code{gdb.Value}, such as
@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}.  It accepts
the same encodings as the corresponding argument to Python's
@code{string.decode} method, and the Python codec machinery will be used
to convert the string.  If @var{encoding} is not given, or if
@var{encoding} is the empty string, then either the @code{target-charset}
(@pxref{Character Sets}) will be used, or a language-specific encoding
will be used, if the current language is able to supply one.

The optional @var{errors} argument is the same as the corresponding
argument to Python's @code{string.decode} method.

If the optional @var{length} argument is given, the string will be
fetched and converted to the given length.
@end defun

@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
If this @code{gdb.Value} represents a string, then this method
converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
In Python}).  Otherwise, this method will throw an exception.

If the optional @var{encoding} argument is given, it must be a string
naming the encoding of the @code{gdb.LazyString}.  Some examples are:
@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}.  If the
@var{encoding} argument is an encoding that @value{GDBN} does
recognize, @value{GDBN} will raise an error.

When a lazy string is printed, the @value{GDBN} encoding machinery is
used to convert the string during printing.  If the optional
@var{encoding} argument is not provided, or is an empty string,
@value{GDBN} will automatically select the encoding most suitable for
the string type.  For further information on encoding in @value{GDBN}
please see @ref{Character Sets}.

If the optional @var{length} argument is given, the string will be
fetched and encoded to the length of characters specified.  If
the @var{length} argument is not provided, the string will be fetched
and encoded until a null of appropriate width is found.
@end defun

@defun Value.fetch_lazy ()
If the @code{gdb.Value} object is currently a lazy value 
(@code{gdb.Value.is_lazy} is @code{True}), then the value is
fetched from the inferior.  Any errors that occur in the process
will produce a Python exception.

If the @code{gdb.Value} object is not a lazy value, this method
has no effect.

This method does not return a value.
@end defun


@node Types In Python
@subsubsection Types In Python
@cindex types in Python
@cindex Python, working with types

@tindex gdb.Type
@value{GDBN} represents types from the inferior using the class
@code{gdb.Type}.

The following type-related functions are available in the @code{gdb}
module:

@findex gdb.lookup_type
@defun gdb.lookup_type (name @r{[}, block@r{]})
This function looks up a type by name.  @var{name} is the name of the
type to look up.  It must be a string.

If @var{block} is given, then @var{name} is looked up in that scope.
Otherwise, it is searched for globally.

Ordinarily, this function will return an instance of @code{gdb.Type}.
If the named type cannot be found, it will throw an exception.
@end defun

If the type is a structure or class type, or an enum type, the fields
of that type can be accessed using the Python @dfn{dictionary syntax}.
For example, if @code{some_type} is a @code{gdb.Type} instance holding
a structure type, you can access its @code{foo} field with:

@smallexample
bar = some_type['foo']
@end smallexample

@code{bar} will be a @code{gdb.Field} object; see below under the
description of the @code{Type.fields} method for a description of the
@code{gdb.Field} class.

An instance of @code{Type} has the following attributes:

@defvar Type.code
The type code for this type.  The type code will be one of the
@code{TYPE_CODE_} constants defined below.
@end defvar

@defvar Type.sizeof
The size of this type, in target @code{char} units.  Usually, a
target's @code{char} type will be an 8-bit byte.  However, on some
unusual platforms, this type may have a different size.
@end defvar

@defvar Type.tag
The tag name for this type.  The tag name is the name after
@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
languages have this concept.  If this type has no tag name, then
@code{None} is returned.
@end defvar

The following methods are provided:

@defun Type.fields ()
For structure and union types, this method returns the fields.  Range
types have two fields, the minimum and maximum values.  Enum types
have one field per enum constant.  Function and method types have one
field per parameter.  The base types of C@t{++} classes are also
represented as fields.  If the type has no fields, or does not fit
into one of these categories, an empty sequence will be returned.

Each field is a @code{gdb.Field} object, with some pre-defined attributes:
@table @code
@item bitpos
This attribute is not available for @code{static} fields (as in
C@t{++} or Java).  For non-@code{static} fields, the value is the bit
position of the field.  For @code{enum} fields, the value is the
enumeration member's integer representation.

@item name
The name of the field, or @code{None} for anonymous fields.

@item artificial
This is @code{True} if the field is artificial, usually meaning that
it was provided by the compiler and not the user.  This attribute is
always provided, and is @code{False} if the field is not artificial.

@item is_base_class
This is @code{True} if the field represents a base class of a C@t{++}
structure.  This attribute is always provided, and is @code{False}
if the field is not a base class of the type that is the argument of
@code{fields}, or if that type was not a C@t{++} class.

@item bitsize
If the field is packed, or is a bitfield, then this will have a
non-zero value, which is the size of the field in bits.  Otherwise,
this will be zero; in this case the field's size is given by its type.

@item type
The type of the field.  This is usually an instance of @code{Type},
but it can be @code{None} in some situations.
@end table
@end defun

@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
Return a new @code{gdb.Type} object which represents an array of this
type.  If one argument is given, it is the inclusive upper bound of
the array; in this case the lower bound is zero.  If two arguments are
given, the first argument is the lower bound of the array, and the
second argument is the upper bound of the array.  An array's length
must not be negative, but the bounds can be.
@end defun

@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
Return a new @code{gdb.Type} object which represents a vector of this
type.  If one argument is given, it is the inclusive upper bound of
the vector; in this case the lower bound is zero.  If two arguments are
given, the first argument is the lower bound of the vector, and the
second argument is the upper bound of the vector.  A vector's length
must not be negative, but the bounds can be.

The difference between an @code{array} and a @code{vector} is that
arrays behave like in C: when used in expressions they decay to a pointer
to the first element whereas vectors are treated as first class values.
@end defun

@defun Type.const ()
Return a new @code{gdb.Type} object which represents a
@code{const}-qualified variant of this type.
@end defun

@defun Type.volatile ()
Return a new @code{gdb.Type} object which represents a
@code{volatile}-qualified variant of this type.
@end defun

@defun Type.unqualified ()
Return a new @code{gdb.Type} object which represents an unqualified
variant of this type.  That is, the result is neither @code{const} nor
@code{volatile}.
@end defun

@defun Type.range ()
Return a Python @code{Tuple} object that contains two elements: the
low bound of the argument type and the high bound of that type.  If
the type does not have a range, @value{GDBN} will raise a
@code{gdb.error} exception (@pxref{Exception Handling}).
@end defun

@defun Type.reference ()
Return a new @code{gdb.Type} object which represents a reference to this
type.
@end defun

@defun Type.pointer ()
Return a new @code{gdb.Type} object which represents a pointer to this
type.
@end defun

@defun Type.strip_typedefs ()
Return a new @code{gdb.Type} that represents the real type,
after removing all layers of typedefs.
@end defun

@defun Type.target ()
Return a new @code{gdb.Type} object which represents the target type
of this type.

For a pointer type, the target type is the type of the pointed-to
object.  For an array type (meaning C-like arrays), the target type is
the type of the elements of the array.  For a function or method type,
the target type is the type of the return value.  For a complex type,
the target type is the type of the elements.  For a typedef, the
target type is the aliased type.

If the type does not have a target, this method will throw an
exception.
@end defun

@defun Type.template_argument (n @r{[}, block@r{]})
If this @code{gdb.Type} is an instantiation of a template, this will
return a new @code{gdb.Type} which represents the type of the
@var{n}th template argument.

If this @code{gdb.Type} is not a template type, this will throw an
exception.  Ordinarily, only C@t{++} code will have template types.

If @var{block} is given, then @var{name} is looked up in that scope.
Otherwise, it is searched for globally.
@end defun


Each type has a code, which indicates what category this type falls
into.  The available type categories are represented by constants
defined in the @code{gdb} module:

@table @code
@findex TYPE_CODE_PTR
@findex gdb.TYPE_CODE_PTR
@item gdb.TYPE_CODE_PTR
The type is a pointer.

@findex TYPE_CODE_ARRAY
@findex gdb.TYPE_CODE_ARRAY
@item gdb.TYPE_CODE_ARRAY
The type is an array.

@findex TYPE_CODE_STRUCT
@findex gdb.TYPE_CODE_STRUCT
@item gdb.TYPE_CODE_STRUCT
The type is a structure.

@findex TYPE_CODE_UNION
@findex gdb.TYPE_CODE_UNION
@item gdb.TYPE_CODE_UNION
The type is a union.

@findex TYPE_CODE_ENUM
@findex gdb.TYPE_CODE_ENUM
@item gdb.TYPE_CODE_ENUM
The type is an enum.

@findex TYPE_CODE_FLAGS
@findex gdb.TYPE_CODE_FLAGS
@item gdb.TYPE_CODE_FLAGS
A bit flags type, used for things such as status registers.

@findex TYPE_CODE_FUNC
@findex gdb.TYPE_CODE_FUNC
@item gdb.TYPE_CODE_FUNC
The type is a function.

@findex TYPE_CODE_INT
@findex gdb.TYPE_CODE_INT
@item gdb.TYPE_CODE_INT
The type is an integer type.

@findex TYPE_CODE_FLT
@findex gdb.TYPE_CODE_FLT
@item gdb.TYPE_CODE_FLT
A floating point type.

@findex TYPE_CODE_VOID
@findex gdb.TYPE_CODE_VOID
@item gdb.TYPE_CODE_VOID
The special type @code{void}.

@findex TYPE_CODE_SET
@findex gdb.TYPE_CODE_SET
@item gdb.TYPE_CODE_SET
A Pascal set type.

@findex TYPE_CODE_RANGE
@findex gdb.TYPE_CODE_RANGE
@item gdb.TYPE_CODE_RANGE
A range type, that is, an integer type with bounds.

@findex TYPE_CODE_STRING
@findex gdb.TYPE_CODE_STRING
@item gdb.TYPE_CODE_STRING
A string type.  Note that this is only used for certain languages with
language-defined string types; C strings are not represented this way.

@findex TYPE_CODE_BITSTRING
@findex gdb.TYPE_CODE_BITSTRING
@item gdb.TYPE_CODE_BITSTRING
A string of bits.  It is deprecated.

@findex TYPE_CODE_ERROR
@findex gdb.TYPE_CODE_ERROR
@item gdb.TYPE_CODE_ERROR
An unknown or erroneous type.

@findex TYPE_CODE_METHOD
@findex gdb.TYPE_CODE_METHOD
@item gdb.TYPE_CODE_METHOD
A method type, as found in C@t{++} or Java.

@findex TYPE_CODE_METHODPTR
@findex gdb.TYPE_CODE_METHODPTR
@item gdb.TYPE_CODE_METHODPTR
A pointer-to-member-function.

@findex TYPE_CODE_MEMBERPTR
@findex gdb.TYPE_CODE_MEMBERPTR
@item gdb.TYPE_CODE_MEMBERPTR
A pointer-to-member.

@findex TYPE_CODE_REF
@findex gdb.TYPE_CODE_REF
@item gdb.TYPE_CODE_REF
A reference type.

@findex TYPE_CODE_CHAR
@findex gdb.TYPE_CODE_CHAR
@item gdb.TYPE_CODE_CHAR
A character type.

@findex TYPE_CODE_BOOL
@findex gdb.TYPE_CODE_BOOL
@item gdb.TYPE_CODE_BOOL
A boolean type.

@findex TYPE_CODE_COMPLEX
@findex gdb.TYPE_CODE_COMPLEX
@item gdb.TYPE_CODE_COMPLEX
A complex float type.

@findex TYPE_CODE_TYPEDEF
@findex gdb.TYPE_CODE_TYPEDEF
@item gdb.TYPE_CODE_TYPEDEF
A typedef to some other type.

@findex TYPE_CODE_NAMESPACE
@findex gdb.TYPE_CODE_NAMESPACE
@item gdb.TYPE_CODE_NAMESPACE
A C@t{++} namespace.

@findex TYPE_CODE_DECFLOAT
@findex gdb.TYPE_CODE_DECFLOAT
@item gdb.TYPE_CODE_DECFLOAT
A decimal floating point type.

@findex TYPE_CODE_INTERNAL_FUNCTION
@findex gdb.TYPE_CODE_INTERNAL_FUNCTION
@item gdb.TYPE_CODE_INTERNAL_FUNCTION
A function internal to @value{GDBN}.  This is the type used to represent
convenience functions.
@end table

Further support for types is provided in the @code{gdb.types}
Python module (@pxref{gdb.types}).

@node Pretty Printing API
@subsubsection Pretty Printing API

An example output is provided (@pxref{Pretty Printing}).

A pretty-printer is just an object that holds a value and implements a
specific interface, defined here.

@defun pretty_printer.children (self)
@value{GDBN} will call this method on a pretty-printer to compute the
children of the pretty-printer's value.

This method must return an object conforming to the Python iterator
protocol.  Each item returned by the iterator must be a tuple holding
two elements.  The first element is the ``name'' of the child; the
second element is the child's value.  The value can be any Python
object which is convertible to a @value{GDBN} value.

This method is optional.  If it does not exist, @value{GDBN} will act
as though the value has no children.
@end defun

@defun pretty_printer.display_hint (self)
The CLI may call this method and use its result to change the
formatting of a value.  The result will also be supplied to an MI
consumer as a @samp{displayhint} attribute of the variable being
printed.

This method is optional.  If it does exist, this method must return a
string.

Some display hints are predefined by @value{GDBN}:

@table @samp
@item array
Indicate that the object being printed is ``array-like''.  The CLI
uses this to respect parameters such as @code{set print elements} and
@code{set print array}.

@item map
Indicate that the object being printed is ``map-like'', and that the
children of this value can be assumed to alternate between keys and
values.

@item string
Indicate that the object being printed is ``string-like''.  If the
printer's @code{to_string} method returns a Python string of some
kind, then @value{GDBN} will call its internal language-specific
string-printing function to format the string.  For the CLI this means
adding quotation marks, possibly escaping some characters, respecting
@code{set print elements}, and the like.
@end table
@end defun

@defun pretty_printer.to_string (self)
@value{GDBN} will call this method to display the string
representation of the value passed to the object's constructor.

When printing from the CLI, if the @code{to_string} method exists,
then @value{GDBN} will prepend its result to the values returned by
@code{children}.  Exactly how this formatting is done is dependent on
the display hint, and may change as more hints are added.  Also,
depending on the print settings (@pxref{Print Settings}), the CLI may
print just the result of @code{to_string} in a stack trace, omitting
the result of @code{children}.

If this method returns a string, it is printed verbatim.

Otherwise, if this method returns an instance of @code{gdb.Value},
then @value{GDBN} prints this value.  This may result in a call to
another pretty-printer.

If instead the method returns a Python value which is convertible to a
@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
the resulting value.  Again, this may result in a call to another
pretty-printer.  Python scalars (integers, floats, and booleans) and
strings are convertible to @code{gdb.Value}; other types are not.

Finally, if this method returns @code{None} then no further operations
are peformed in this method and nothing is printed.

If the result is not one of these types, an exception is raised.
@end defun

@value{GDBN} provides a function which can be used to look up the
default pretty-printer for a @code{gdb.Value}:

@findex gdb.default_visualizer
@defun gdb.default_visualizer (value)
This function takes a @code{gdb.Value} object as an argument.  If a
pretty-printer for this value exists, then it is returned.  If no such
printer exists, then this returns @code{None}.
@end defun

@node Selecting Pretty-Printers
@subsubsection Selecting Pretty-Printers

The Python list @code{gdb.pretty_printers} contains an array of
functions or callable objects that have been registered via addition
as a pretty-printer.  Printers in this list are called @code{global}
printers, they're available when debugging all inferiors.
Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
Each @code{gdb.Objfile} also contains a @code{pretty_printers}
attribute.

Each function on these lists is passed a single @code{gdb.Value}
argument and should return a pretty-printer object conforming to the
interface definition above (@pxref{Pretty Printing API}).  If a function
cannot create a pretty-printer for the value, it should return
@code{None}.

@value{GDBN} first checks the @code{pretty_printers} attribute of each
@code{gdb.Objfile} in the current program space and iteratively calls
each enabled lookup routine in the list for that @code{gdb.Objfile}
until it receives a pretty-printer object.
If no pretty-printer is found in the objfile lists, @value{GDBN} then
searches the pretty-printer list of the current program space,
calling each enabled function until an object is returned.
After these lists have been exhausted, it tries the global
@code{gdb.pretty_printers} list, again calling each enabled function until an
object is returned.

The order in which the objfiles are searched is not specified.  For a
given list, functions are always invoked from the head of the list,
and iterated over sequentially until the end of the list, or a printer
object is returned.

For various reasons a pretty-printer may not work.
For example, the underlying data structure may have changed and
the pretty-printer is out of date.

The consequences of a broken pretty-printer are severe enough that
@value{GDBN} provides support for enabling and disabling individual
printers.  For example, if @code{print frame-arguments} is on,
a backtrace can become highly illegible if any argument is printed
with a broken printer.

Pretty-printers are enabled and disabled by attaching an @code{enabled}
attribute to the registered function or callable object.  If this attribute
is present and its value is @code{False}, the printer is disabled, otherwise
the printer is enabled.

@node Writing a Pretty-Printer
@subsubsection Writing a Pretty-Printer
@cindex writing a pretty-printer

A pretty-printer consists of two parts: a lookup function to detect
if the type is supported, and the printer itself.

Here is an example showing how a @code{std::string} printer might be
written.  @xref{Pretty Printing API}, for details on the API this class
must provide.

@smallexample
class StdStringPrinter(object):
    "Print a std::string"

    def __init__(self, val):
        self.val = val

    def to_string(self):
        return self.val['_M_dataplus']['_M_p']

    def display_hint(self):
        return 'string'
@end smallexample

And here is an example showing how a lookup function for the printer
example above might be written.

@smallexample
def str_lookup_function(val):
    lookup_tag = val.type.tag
    if lookup_tag == None:
        return None
    regex = re.compile("^std::basic_string<char,.*>$")
    if regex.match(lookup_tag):
        return StdStringPrinter(val)
    return None
@end smallexample

The example lookup function extracts the value's type, and attempts to
match it to a type that it can pretty-print.  If it is a type the
printer can pretty-print, it will return a printer object.  If not, it
returns @code{None}.

We recommend that you put your core pretty-printers into a Python
package.  If your pretty-printers are for use with a library, we
further recommend embedding a version number into the package name.
This practice will enable @value{GDBN} to load multiple versions of
your pretty-printers at the same time, because they will have
different names.

You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
can be evaluated multiple times without changing its meaning.  An
ideal auto-load file will consist solely of @code{import}s of your
printer modules, followed by a call to a register pretty-printers with
the current objfile.

Taken as a whole, this approach will scale nicely to multiple
inferiors, each potentially using a different library version.
Embedding a version number in the Python package name will ensure that
@value{GDBN} is able to load both sets of printers simultaneously.
Then, because the search for pretty-printers is done by objfile, and
because your auto-loaded code took care to register your library's
printers with a specific objfile, @value{GDBN} will find the correct
printers for the specific version of the library used by each
inferior.

To continue the @code{std::string} example (@pxref{Pretty Printing API}),
this code might appear in @code{gdb.libstdcxx.v6}:

@smallexample
def register_printers(objfile):
    objfile.pretty_printers.append(str_lookup_function)
@end smallexample

@noindent
And then the corresponding contents of the auto-load file would be:

@smallexample
import gdb.libstdcxx.v6
gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
@end smallexample

The previous example illustrates a basic pretty-printer.
There are a few things that can be improved on.
The printer doesn't have a name, making it hard to identify in a
list of installed printers.  The lookup function has a name, but
lookup functions can have arbitrary, even identical, names.

Second, the printer only handles one type, whereas a library typically has
several types.  One could install a lookup function for each desired type
in the library, but one could also have a single lookup function recognize
several types.  The latter is the conventional way this is handled.
If a pretty-printer can handle multiple data types, then its
@dfn{subprinters} are the printers for the individual data types.

The @code{gdb.printing} module provides a formal way of solving these
problems (@pxref{gdb.printing}).
Here is another example that handles multiple types.

These are the types we are going to pretty-print:

@smallexample
struct foo @{ int a, b; @};
struct bar @{ struct foo x, y; @};
@end smallexample

Here are the printers:

@smallexample
class fooPrinter:
    """Print a foo object."""

    def __init__(self, val):
        self.val = val

    def to_string(self):
        return ("a=<" + str(self.val["a"]) +
                "> b=<" + str(self.val["b"]) + ">")

class barPrinter:
    """Print a bar object."""

    def __init__(self, val):
        self.val = val

    def to_string(self):
        return ("x=<" + str(self.val["x"]) +
                "> y=<" + str(self.val["y"]) + ">")
@end smallexample

This example doesn't need a lookup function, that is handled by the
@code{gdb.printing} module.  Instead a function is provided to build up
the object that handles the lookup.

@smallexample
import gdb.printing

def build_pretty_printer():
    pp = gdb.printing.RegexpCollectionPrettyPrinter(
        "my_library")
    pp.add_printer('foo', '^foo$', fooPrinter)
    pp.add_printer('bar', '^bar$', barPrinter)
    return pp
@end smallexample

And here is the autoload support:

@smallexample
import gdb.printing
import my_library
gdb.printing.register_pretty_printer(
    gdb.current_objfile(),
    my_library.build_pretty_printer())
@end smallexample

Finally, when this printer is loaded into @value{GDBN}, here is the
corresponding output of @samp{info pretty-printer}:

@smallexample
(gdb) info pretty-printer
my_library.so:
  my_library
    foo
    bar
@end smallexample

@node Type Printing API
@subsubsection Type Printing API
@cindex type printing API for Python

@value{GDBN} provides a way for Python code to customize type display.
This is mainly useful for substituting canonical typedef names for
types.

@cindex type printer
A @dfn{type printer} is just a Python object conforming to a certain
protocol.  A simple base class implementing the protocol is provided;
see @ref{gdb.types}.  A type printer must supply at least:

@defivar type_printer enabled
A boolean which is True if the printer is enabled, and False
otherwise.  This is manipulated by the @code{enable type-printer}
and @code{disable type-printer} commands.
@end defivar

@defivar type_printer name
The name of the type printer.  This must be a string.  This is used by
the @code{enable type-printer} and @code{disable type-printer}
commands.
@end defivar

@defmethod type_printer instantiate (self)
This is called by @value{GDBN} at the start of type-printing.  It is
only called if the type printer is enabled.  This method must return a
new object that supplies a @code{recognize} method, as described below.
@end defmethod


When displaying a type, say via the @code{ptype} command, @value{GDBN}
will compute a list of type recognizers.  This is done by iterating
first over the per-objfile type printers (@pxref{Objfiles In Python}),
followed by the per-progspace type printers (@pxref{Progspaces In
Python}), and finally the global type printers.

@value{GDBN} will call the @code{instantiate} method of each enabled
type printer.  If this method returns @code{None}, then the result is
ignored; otherwise, it is appended to the list of recognizers.

Then, when @value{GDBN} is going to display a type name, it iterates
over the list of recognizers.  For each one, it calls the recognition
function, stopping if the function returns a non-@code{None} value.
The recognition function is defined as:

@defmethod type_recognizer recognize (self, type)
If @var{type} is not recognized, return @code{None}.  Otherwise,
return a string which is to be printed as the name of @var{type}.
@var{type} will be an instance of @code{gdb.Type} (@pxref{Types In
Python}).
@end defmethod

@value{GDBN} uses this two-pass approach so that type printers can
efficiently cache information without holding on to it too long.  For
example, it can be convenient to look up type information in a type
printer and hold it for a recognizer's lifetime; if a single pass were
done then type printers would have to make use of the event system in
order to avoid holding information that could become stale as the
inferior changed.

@node Frame Filter API
@subsubsection Filtering Frames.
@cindex frame filters api

Frame filters are Python objects that manipulate the visibility of a
frame or frames when a backtrace (@pxref{Backtrace}) is printed by
@value{GDBN}.

Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
commands (@pxref{GDB/MI}), those that return a collection of frames
are affected.  The commands that work with frame filters are:

@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
@code{-stack-list-frames}
(@pxref{-stack-list-frames,, The -stack-list-frames command}),
@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
-stack-list-variables command}), @code{-stack-list-arguments}
@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
-stack-list-locals command}).

A frame filter works by taking an iterator as an argument, applying
actions to the contents of that iterator, and returning another
iterator (or, possibly, the same iterator it was provided in the case
where the filter does not perform any operations).  Typically, frame
filters utilize tools such as the Python's @code{itertools} module to
work with and create new iterators from the source iterator.
Regardless of how a filter chooses to apply actions, it must not alter
the underlying @value{GDBN} frame or frames, or attempt to alter the
call-stack within @value{GDBN}.  This preserves data integrity within
@value{GDBN}.  Frame filters are executed on a priority basis and care
should be taken that some frame filters may have been executed before,
and that some frame filters will be executed after.

An important consideration when designing frame filters, and well
worth reflecting upon, is that frame filters should avoid unwinding
the call stack if possible.  Some stacks can run very deep, into the
tens of thousands in some cases.  To search every frame when a frame
filter executes may be too expensive at that step.  The frame filter
cannot know how many frames it has to iterate over, and it may have to
iterate through them all.  This ends up duplicating effort as
@value{GDBN} performs this iteration when it prints the frames.  If
the filter can defer unwinding frames until frame decorators are
executed, after the last filter has executed, it should.  @xref{Frame
Decorator API}, for more information on decorators.  Also, there are
examples for both frame decorators and filters in later chapters.
@xref{Writing a Frame Filter}, for more information.

The Python dictionary @code{gdb.frame_filters} contains key/object
pairings that comprise a frame filter.  Frame filters in this
dictionary are called @code{global} frame filters, and they are
available when debugging all inferiors.  These frame filters must
register with the dictionary directly.  In addition to the
@code{global} dictionary, there are other dictionaries that are loaded
with different inferiors via auto-loading (@pxref{Python
Auto-loading}).  The two other areas where frame filter dictionaries
can be found are: @code{gdb.Progspace} which contains a
@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
object which also contains a @code{frame_filters} dictionary
attribute.

When a command is executed from @value{GDBN} that is compatible with
frame filters, @value{GDBN} combines the @code{global},
@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
loaded.  All of the @code{gdb.Objfile} dictionaries are combined, as
several frames, and thus several object files, might be in use.
@value{GDBN} then prunes any frame filter whose @code{enabled}
attribute is @code{False}.  This pruned list is then sorted according
to the @code{priority} attribute in each filter.

Once the dictionaries are combined, pruned and sorted, @value{GDBN}
creates an iterator which wraps each frame in the call stack in a
@code{FrameDecorator} object, and calls each filter in order.  The
output from the previous filter will always be the input to the next
filter, and so on.

Frame filters have a mandatory interface which each frame filter must
implement, defined here:

@defun FrameFilter.filter (iterator)
@value{GDBN} will call this method on a frame filter when it has
reached the order in the priority list for that filter.

For example, if there are four frame filters:

@smallexample
Name         Priority

Filter1      5
Filter2      10
Filter3      100
Filter4      1
@end smallexample

The order that the frame filters will be called is:

@smallexample
Filter3 -> Filter2 -> Filter1 -> Filter4
@end smallexample

Note that the output from @code{Filter3} is passed to the input of
@code{Filter2}, and so on.

This @code{filter} method is passed a Python iterator.  This iterator
contains a sequence of frame decorators that wrap each
@code{gdb.Frame}, or a frame decorator that wraps another frame
decorator.  The first filter that is executed in the sequence of frame
filters will receive an iterator entirely comprised of default
@code{FrameDecorator} objects.  However, after each frame filter is
executed, the previous frame filter may have wrapped some or all of
the frame decorators with their own frame decorator.  As frame
decorators must also conform to a mandatory interface, these
decorators can be assumed to act in a uniform manner (@pxref{Frame
Decorator API}).

This method must return an object conforming to the Python iterator
protocol.  Each item in the iterator must be an object conforming to
the frame decorator interface.  If a frame filter does not wish to
perform any operations on this iterator, it should return that
iterator untouched.

This method is not optional.  If it does not exist, @value{GDBN} will
raise and print an error.
@end defun

@defvar FrameFilter.name
The @code{name} attribute must be Python string which contains the
name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
Management}).  This attribute may contain any combination of letters
or numbers.  Care should be taken to ensure that it is unique.  This
attribute is mandatory.
@end defvar

@defvar FrameFilter.enabled
The @code{enabled} attribute must be Python boolean.  This attribute
indicates to @value{GDBN} whether the frame filter is enabled, and
should be considered when frame filters are executed.  If
@code{enabled} is @code{True}, then the frame filter will be executed
when any of the backtrace commands detailed earlier in this chapter
are executed.  If @code{enabled} is @code{False}, then the frame
filter will not be executed.  This attribute is mandatory.
@end defvar

@defvar FrameFilter.priority
The @code{priority} attribute must be Python integer.  This attribute
controls the order of execution in relation to other frame filters.
There are no imposed limits on the range of @code{priority} other than
it must be a valid integer.  The higher the @code{priority} attribute,
the sooner the frame filter will be executed in relation to other
frame filters.  Although @code{priority} can be negative, it is
recommended practice to assume zero is the lowest priority that a
frame filter can be assigned.  Frame filters that have the same
priority are executed in unsorted order in that priority slot.  This
attribute is mandatory.
@end defvar

@node Frame Decorator API
@subsubsection Decorating Frames.
@cindex frame decorator api

Frame decorators are sister objects to frame filters (@pxref{Frame
Filter API}).  Frame decorators are applied by a frame filter and can
only be used in conjunction with frame filters.

The purpose of a frame decorator is to customize the printed content
of each @code{gdb.Frame} in commands where frame filters are executed.
This concept is called decorating a frame.  Frame decorators decorate
a @code{gdb.Frame} with Python code contained within each API call.
This separates the actual data contained in a @code{gdb.Frame} from
the decorated data produced by a frame decorator.  This abstraction is
necessary to maintain integrity of the data contained in each
@code{gdb.Frame}.

Frame decorators have a mandatory interface, defined below.

@value{GDBN} already contains a frame decorator called
@code{FrameDecorator}.  This contains substantial amounts of
boilerplate code to decorate the content of a @code{gdb.Frame}.  It is
recommended that other frame decorators inherit and extend this
object, and only to override the methods needed.

@defun FrameDecorator.elided (self)

The @code{elided} method groups frames together in a hierarchical
system.  An example would be an interpreter, where multiple low-level
frames make up a single call in the interpreted language.  In this
example, the frame filter would elide the low-level frames and present
a single high-level frame, representing the call in the interpreted
language, to the user.

The @code{elided} function must return an iterable and this iterable
must contain the frames that are being elided wrapped in a suitable
frame decorator.  If no frames are being elided this function may
return an empty iterable, or @code{None}.  Elided frames are indented
from normal frames in a @code{CLI} backtrace, or in the case of
@code{GDB/MI}, are placed in the @code{children} field of the eliding
frame.

It is the frame filter's task to also filter out the elided frames from
the source iterator.  This will avoid printing the frame twice.
@end defun

@defun FrameDecorator.function (self)

This method returns the name of the function in the frame that is to
be printed.

This method must return a Python string describing the function, or
@code{None}.

If this function returns @code{None}, @value{GDBN} will not print any
data for this field.
@end defun

@defun FrameDecorator.address (self)

This method returns the address of the frame that is to be printed.

This method must return a Python numeric integer type of sufficient
size to describe the address of the frame, or @code{None}.

If this function returns a @code{None}, @value{GDBN} will not print
any data for this field.
@end defun

@defun FrameDecorator.filename (self)

This method returns the filename and path associated with this frame.

This method must return a Python string containing the filename and
the path to the object file backing the frame, or @code{None}.

If this function returns a @code{None}, @value{GDBN} will not print
any data for this field.
@end defun

@defun FrameDecorator.line (self):

This method returns the line number associated with the current
position within the function addressed by this frame.

This method must return a Python integer type, or @code{None}.

If this function returns a @code{None}, @value{GDBN} will not print
any data for this field.
@end defun

@defun FrameDecorator.frame_args (self)
@anchor{frame_args}

This method must return an iterable, or @code{None}.  Returning an
empty iterable, or @code{None} means frame arguments will not be
printed for this frame.  This iterable must contain objects that
implement two methods, described here.

This object must implement a @code{argument} method which takes a
single @code{self} parameter and must return a @code{gdb.Symbol}
(@pxref{Symbols In Python}), or a Python string.  The object must also
implement a @code{value} method which takes a single @code{self}
parameter and must return a @code{gdb.Value} (@pxref{Values From
Inferior}), a Python value, or @code{None}.  If the @code{value}
method returns @code{None}, and the @code{argument} method returns a
@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
the @code{gdb.Symbol} automatically.

A brief example:

@smallexample
class SymValueWrapper():

    def __init__(self, symbol, value):
        self.sym = symbol
        self.val = value

    def value(self):
        return self.val

    def symbol(self):
        return self.sym

class SomeFrameDecorator()
...
...
    def frame_args(self):
        args = []
        try:
            block = self.inferior_frame.block()
        except:
            return None

        # Iterate over all symbols in a block.  Only add
        # symbols that are arguments.
        for sym in block:
            if not sym.is_argument:
                continue
            args.append(SymValueWrapper(sym,None))

        # Add example synthetic argument.
        args.append(SymValueWrapper(``foo'', 42))

        return args
@end smallexample
@end defun

@defun FrameDecorator.frame_locals (self)

This method must return an iterable or @code{None}.  Returning an
empty iterable, or @code{None} means frame local arguments will not be
printed for this frame.

The object interface, the description of the various strategies for
reading frame locals, and the example are largely similar to those
described in the @code{frame_args} function, (@pxref{frame_args,,The
frame filter frame_args function}).  Below is a modified example:

@smallexample
class SomeFrameDecorator()
...
...
    def frame_locals(self):
        vars = []
        try:
            block = self.inferior_frame.block()
        except:
            return None

        # Iterate over all symbols in a block.  Add all
        # symbols, except arguments.
        for sym in block:
            if sym.is_argument:
                continue
            vars.append(SymValueWrapper(sym,None))

        # Add an example of a synthetic local variable.
        vars.append(SymValueWrapper(``bar'', 99))

        return vars
@end smallexample
@end defun

@defun FrameDecorator.inferior_frame (self):

This method must return the underlying @code{gdb.Frame} that this
frame decorator is decorating.  @value{GDBN} requires the underlying
frame for internal frame information to determine how to print certain
values when printing a frame.
@end defun

@node Writing a Frame Filter
@subsubsection Writing a Frame Filter
@cindex writing a frame filter

There are three basic elements that a frame filter must implement: it
must correctly implement the documented interface (@pxref{Frame Filter
API}), it must register itself with @value{GDBN}, and finally, it must
decide if it is to work on the data provided by @value{GDBN}.  In all
cases, whether it works on the iterator or not, each frame filter must
return an iterator.  A bare-bones frame filter follows the pattern in
the following example.

@smallexample
import gdb

class FrameFilter():

    def __init__(self):
        # Frame filter attribute creation.
        #
        # 'name' is the name of the filter that GDB will display.
        #
        # 'priority' is the priority of the filter relative to other
        # filters.
        #
        # 'enabled' is a boolean that indicates whether this filter is
        # enabled and should be executed.

        self.name = "Foo"
        self.priority = 100
        self.enabled = True

        # Register this frame filter with the global frame_filters
        # dictionary.
        gdb.frame_filters[self.name] = self

    def filter(self, frame_iter):
        # Just return the iterator.
        return frame_iter
@end smallexample

The frame filter in the example above implements the three
requirements for all frame filters.  It implements the API, self
registers, and makes a decision on the iterator (in this case, it just
returns the iterator untouched).

The first step is attribute creation and assignment, and as shown in
the comments the filter assigns the following attributes:  @code{name},
@code{priority} and whether the filter should be enabled with the
@code{enabled} attribute.

The second step is registering the frame filter with the dictionary or
dictionaries that the frame filter has interest in.  As shown in the
comments, this filter just registers itself with the global dictionary
@code{gdb.frame_filters}.  As noted earlier, @code{gdb.frame_filters}
is a dictionary that is initialized in the @code{gdb} module when
@value{GDBN} starts.  What dictionary a filter registers with is an
important consideration.  Generally, if a filter is specific to a set
of code, it should be registered either in the @code{objfile} or
@code{progspace} dictionaries as they are specific to the program
currently loaded in @value{GDBN}.  The global dictionary is always
present in @value{GDBN} and is never unloaded.  Any filters registered
with the global dictionary will exist until @value{GDBN} exits.  To
avoid filters that may conflict, it is generally better to register
frame filters against the dictionaries that more closely align with
the usage of the filter currently in question.  @xref{Python
Auto-loading}, for further information on auto-loading Python scripts.

@value{GDBN} takes a hands-off approach to frame filter registration,
therefore it is the frame filter's responsibility to ensure
registration has occurred, and that any exceptions are handled
appropriately.  In particular, you may wish to handle exceptions
relating to Python dictionary key uniqueness.  It is mandatory that
the dictionary key is the same as frame filter's @code{name}
attribute.  When a user manages frame filters (@pxref{Frame Filter
Management}), the names @value{GDBN} will display are those contained
in the @code{name} attribute.

The final step of this example is the implementation of the
@code{filter} method.  As shown in the example comments, we define the
@code{filter} method and note that the method must take an iterator,
and also must return an iterator.  In this bare-bones example, the
frame filter is not very useful as it just returns the iterator
untouched.  However this is a valid operation for frame filters that
have the @code{enabled} attribute set, but decide not to operate on
any frames.

In the next example, the frame filter operates on all frames and
utilizes a frame decorator to perform some work on the frames.
@xref{Frame Decorator API}, for further information on the frame
decorator interface.

This example works on inlined frames.  It highlights frames which are
inlined by tagging them with an ``[inlined]'' tag.  By applying a
frame decorator to all frames with the Python @code{itertools imap}
method, the example defers actions to the frame decorator.  Frame
decorators are only processed when @value{GDBN} prints the backtrace.

This introduces a new decision making topic: whether to perform
decision making operations at the filtering step, or at the printing
step.  In this example's approach, it does not perform any filtering
decisions at the filtering step beyond mapping a frame decorator to
each frame.  This allows the actual decision making to be performed
when each frame is printed.  This is an important consideration, and
well worth reflecting upon when designing a frame filter.  An issue
that frame filters should avoid is unwinding the stack if possible.
Some stacks can run very deep, into the tens of thousands in some
cases.  To search every frame to determine if it is inlined ahead of
time may be too expensive at the filtering step.  The frame filter
cannot know how many frames it has to iterate over, and it would have
to iterate through them all.  This ends up duplicating effort as
@value{GDBN} performs this iteration when it prints the frames.

In this example decision making can be deferred to the printing step.
As each frame is printed, the frame decorator can examine each frame
in turn when @value{GDBN} iterates.  From a performance viewpoint,
this is the most appropriate decision to make as it avoids duplicating
the effort that the printing step would undertake anyway.  Also, if
there are many frame filters unwinding the stack during filtering, it
can substantially delay the printing of the backtrace which will
result in large memory usage, and a poor user experience.

@smallexample
class InlineFilter():

    def __init__(self):
        self.name = "InlinedFrameFilter"
        self.priority = 100
        self.enabled = True
        gdb.frame_filters[self.name] = self

    def filter(self, frame_iter):
        frame_iter = itertools.imap(InlinedFrameDecorator,
                                    frame_iter)
        return frame_iter
@end smallexample

This frame filter is somewhat similar to the earlier example, except
that the @code{filter} method applies a frame decorator object called
@code{InlinedFrameDecorator} to each element in the iterator.  The
@code{imap} Python method is light-weight.  It does not proactively
iterate over the iterator, but rather creates a new iterator which
wraps the existing one.

Below is the frame decorator for this example.

@smallexample
class InlinedFrameDecorator(FrameDecorator):

    def __init__(self, fobj):
        super(InlinedFrameDecorator, self).__init__(fobj)

    def function(self):
        frame = fobj.inferior_frame()
        name = str(frame.name())

        if frame.type() == gdb.INLINE_FRAME:
            name = name + " [inlined]"

        return name
@end smallexample

This frame decorator only defines and overrides the @code{function}
method.  It lets the supplied @code{FrameDecorator}, which is shipped
with @value{GDBN}, perform the other work associated with printing
this frame.

The combination of these two objects create this output from a
backtrace:

@smallexample
#0  0x004004e0 in bar () at inline.c:11
#1  0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
#2  0x00400566 in main () at inline.c:31
@end smallexample

So in the case of this example, a frame decorator is applied to all
frames, regardless of whether they may be inlined or not.  As
@value{GDBN} iterates over the iterator produced by the frame filters,
@value{GDBN} executes each frame decorator which then makes a decision
on what to print in the @code{function} callback.  Using a strategy
like this is a way to defer decisions on the frame content to printing
time.

@subheading Eliding Frames

It might be that the above example is not desirable for representing
inlined frames, and a hierarchical approach may be preferred.  If we
want to hierarchically represent frames, the @code{elided} frame
decorator interface might be preferable.

This example approaches the issue with the @code{elided} method.  This
example is quite long, but very simplistic.  It is out-of-scope for
this section to write a complete example that comprehensively covers
all approaches of finding and printing inlined frames.  However, this
example illustrates the approach an author might use.

This example comprises of three sections.

@smallexample
class InlineFrameFilter():

    def __init__(self):
        self.name = "InlinedFrameFilter"
        self.priority = 100
        self.enabled = True
        gdb.frame_filters[self.name] = self

    def filter(self, frame_iter):
        return ElidingInlineIterator(frame_iter)
@end smallexample

This frame filter is very similar to the other examples.  The only
difference is this frame filter is wrapping the iterator provided to
it (@code{frame_iter}) with a custom iterator called
@code{ElidingInlineIterator}.  This again defers actions to when
@value{GDBN} prints the backtrace, as the iterator is not traversed
until printing.

The iterator for this example is as follows.  It is in this section of
the example where decisions are made on the content of the backtrace.

@smallexample
class ElidingInlineIterator:
    def __init__(self, ii):
        self.input_iterator = ii

    def __iter__(self):
        return self

    def next(self):
        frame = next(self.input_iterator)

        if frame.inferior_frame().type() != gdb.INLINE_FRAME:
            return frame

        try:
            eliding_frame = next(self.input_iterator)
        except StopIteration:
            return frame
        return ElidingFrameDecorator(eliding_frame, [frame])
@end smallexample

This iterator implements the Python iterator protocol.  When the
@code{next} function is called (when @value{GDBN} prints each frame),
the iterator checks if this frame decorator, @code{frame}, is wrapping
an inlined frame.  If it is not, it returns the existing frame decorator
untouched.  If it is wrapping an inlined frame, it assumes that the
inlined frame was contained within the next oldest frame,
@code{eliding_frame}, which it fetches.  It then creates and returns a
frame decorator, @code{ElidingFrameDecorator}, which contains both the
elided frame, and the eliding frame.

@smallexample
class ElidingInlineDecorator(FrameDecorator):

    def __init__(self, frame, elided_frames):
        super(ElidingInlineDecorator, self).__init__(frame)
        self.frame = frame
        self.elided_frames = elided_frames

    def elided(self):
        return iter(self.elided_frames)
@end smallexample

This frame decorator overrides one function and returns the inlined
frame in the @code{elided} method.  As before it lets
@code{FrameDecorator} do the rest of the work involved in printing
this frame.  This produces the following output.

@smallexample
#0  0x004004e0 in bar () at inline.c:11
#2  0x00400529 in main () at inline.c:25
    #1  0x00400529 in max (b=6, a=12) at inline.c:15
@end smallexample

In that output, @code{max} which has been inlined into @code{main} is
printed hierarchically.  Another approach would be to combine the
@code{function} method, and the @code{elided} method to both print a
marker in the inlined frame, and also show the hierarchical
relationship.

@node Inferiors In Python
@subsubsection Inferiors In Python
@cindex inferiors in Python

@findex gdb.Inferior
Programs which are being run under @value{GDBN} are called inferiors
(@pxref{Inferiors and Programs}).  Python scripts can access
information about and manipulate inferiors controlled by @value{GDBN}
via objects of the @code{gdb.Inferior} class.

The following inferior-related functions are available in the @code{gdb}
module:

@defun gdb.inferiors ()
Return a tuple containing all inferior objects.
@end defun

@defun gdb.selected_inferior ()
Return an object representing the current inferior.
@end defun

A @code{gdb.Inferior} object has the following attributes:

@defvar Inferior.num
ID of inferior, as assigned by GDB.
@end defvar

@defvar Inferior.pid
Process ID of the inferior, as assigned by the underlying operating
system.
@end defvar

@defvar Inferior.was_attached
Boolean signaling whether the inferior was created using `attach', or
started by @value{GDBN} itself.
@end defvar

A @code{gdb.Inferior} object has the following methods:

@defun Inferior.is_valid ()
Returns @code{True} if the @code{gdb.Inferior} object is valid,
@code{False} if not.  A @code{gdb.Inferior} object will become invalid
if the inferior no longer exists within @value{GDBN}.  All other
@code{gdb.Inferior} methods will throw an exception if it is invalid
at the time the method is called.
@end defun

@defun Inferior.threads ()
This method returns a tuple holding all the threads which are valid
when it is called.  If there are no valid threads, the method will
return an empty tuple.
@end defun

@findex Inferior.read_memory
@defun Inferior.read_memory (address, length)
Read @var{length} bytes of memory from the inferior, starting at
@var{address}.  Returns a buffer object, which behaves much like an array
or a string.  It can be modified and given to the
@code{Inferior.write_memory} function.  In @code{Python} 3, the return
value is a @code{memoryview} object.
@end defun

@findex Inferior.write_memory
@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
Write the contents of @var{buffer} to the inferior, starting at
@var{address}.  The @var{buffer} parameter must be a Python object
which supports the buffer protocol, i.e., a string, an array or the
object returned from @code{Inferior.read_memory}.  If given, @var{length}
determines the number of bytes from @var{buffer} to be written.
@end defun

@findex gdb.search_memory
@defun Inferior.search_memory (address, length, pattern)
Search a region of the inferior memory starting at @var{address} with
the given @var{length} using the search pattern supplied in
@var{pattern}.  The @var{pattern} parameter must be a Python object
which supports the buffer protocol, i.e., a string, an array or the
object returned from @code{gdb.read_memory}.  Returns a Python @code{Long}
containing the address where the pattern was found, or @code{None} if
the pattern could not be found.
@end defun

@node Events In Python
@subsubsection Events In Python
@cindex inferior events in Python

@value{GDBN} provides a general event facility so that Python code can be
notified of various state changes, particularly changes that occur in
the inferior.

An @dfn{event} is just an object that describes some state change.  The
type of the object and its attributes will vary depending on the details
of the change.  All the existing events are described below.

In order to be notified of an event, you must register an event handler
with an @dfn{event registry}.  An event registry is an object in the
@code{gdb.events} module which dispatches particular events.  A registry
provides methods to register and unregister event handlers:

@defun EventRegistry.connect (object)
Add the given callable @var{object} to the registry.  This object will be
called when an event corresponding to this registry occurs.
@end defun

@defun EventRegistry.disconnect (object)
Remove the given @var{object} from the registry.  Once removed, the object
will no longer receive notifications of events.
@end defun

Here is an example:

@smallexample
def exit_handler (event):
    print "event type: exit"
    print "exit code: %d" % (event.exit_code)

gdb.events.exited.connect (exit_handler)
@end smallexample

In the above example we connect our handler @code{exit_handler} to the
registry @code{events.exited}.  Once connected, @code{exit_handler} gets
called when the inferior exits.  The argument @dfn{event} in this example is
of type @code{gdb.ExitedEvent}.  As you can see in the example the
@code{ExitedEvent} object has an attribute which indicates the exit code of
the inferior.

The following is a listing of the event registries that are available and
details of the events they emit:

@table @code

@item events.cont
Emits @code{gdb.ThreadEvent}.

Some events can be thread specific when @value{GDBN} is running in non-stop
mode.  When represented in Python, these events all extend
@code{gdb.ThreadEvent}.  Note, this event is not emitted directly; instead,
events which are emitted by this or other modules might extend this event.
Examples of these events are @code{gdb.BreakpointEvent} and
@code{gdb.ContinueEvent}.

@defvar ThreadEvent.inferior_thread
In non-stop mode this attribute will be set to the specific thread which was
involved in the emitted event. Otherwise, it will be set to @code{None}.
@end defvar

Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.

This event indicates that the inferior has been continued after a stop. For
inherited attribute refer to @code{gdb.ThreadEvent} above.

@item events.exited
Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
@code{events.ExitedEvent} has two attributes:
@defvar ExitedEvent.exit_code
An integer representing the exit code, if available, which the inferior 
has returned.  (The exit code could be unavailable if, for example,
@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
the attribute does not exist.
@end defvar
@defvar ExitedEvent inferior
A reference to the inferior which triggered the @code{exited} event.
@end defvar

@item events.stop
Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.

Indicates that the inferior has stopped.  All events emitted by this registry
extend StopEvent.  As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
will indicate the stopped thread when @value{GDBN} is running in non-stop
mode.  Refer to @code{gdb.ThreadEvent} above for more details.

Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.

This event indicates that the inferior or one of its threads has received as
signal.  @code{gdb.SignalEvent} has the following attributes:

@defvar SignalEvent.stop_signal
A string representing the signal received by the inferior.  A list of possible
signal values can be obtained by running the command @code{info signals} in
the @value{GDBN} command prompt.
@end defvar

Also emits  @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.

@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
been hit, and has the following attributes:

@defvar BreakpointEvent.breakpoints
A sequence containing references to all the breakpoints (type 
@code{gdb.Breakpoint}) that were hit.
@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
@end defvar
@defvar BreakpointEvent.breakpoint
A reference to the first breakpoint that was hit.
This function is maintained for backward compatibility and is now deprecated 
in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
@end defvar

@item events.new_objfile
Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
been loaded by @value{GDBN}.  @code{gdb.NewObjFileEvent} has one attribute:

@defvar NewObjFileEvent.new_objfile
A reference to the object file (@code{gdb.Objfile}) which has been loaded.
@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
@end defvar

@end table

@node Threads In Python
@subsubsection Threads In Python
@cindex threads in python

@findex gdb.InferiorThread
Python scripts can access information about, and manipulate inferior threads
controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.

The following thread-related functions are available in the @code{gdb}
module:

@findex gdb.selected_thread
@defun gdb.selected_thread ()
This function returns the thread object for the selected thread.  If there
is no selected thread, this will return @code{None}.
@end defun

A @code{gdb.InferiorThread} object has the following attributes:

@defvar InferiorThread.name
The name of the thread.  If the user specified a name using
@code{thread name}, then this returns that name.  Otherwise, if an
OS-supplied name is available, then it is returned.  Otherwise, this
returns @code{None}.

This attribute can be assigned to.  The new value must be a string
object, which sets the new name, or @code{None}, which removes any
user-specified thread name.
@end defvar

@defvar InferiorThread.num
ID of the thread, as assigned by GDB.
@end defvar

@defvar InferiorThread.ptid
ID of the thread, as assigned by the operating system.  This attribute is a
tuple containing three integers.  The first is the Process ID (PID); the second
is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
Either the LWPID or TID may be 0, which indicates that the operating system
does not  use that identifier.
@end defvar

A @code{gdb.InferiorThread} object has the following methods:

@defun InferiorThread.is_valid ()
Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
@code{False} if not.  A @code{gdb.InferiorThread} object will become
invalid if the thread exits, or the inferior that the thread belongs
is deleted.  All other @code{gdb.InferiorThread} methods will throw an
exception if it is invalid at the time the method is called.
@end defun

@defun InferiorThread.switch ()
This changes @value{GDBN}'s currently selected thread to the one represented
by this object.
@end defun

@defun InferiorThread.is_stopped ()
Return a Boolean indicating whether the thread is stopped.
@end defun

@defun InferiorThread.is_running ()
Return a Boolean indicating whether the thread is running.
@end defun

@defun InferiorThread.is_exited ()
Return a Boolean indicating whether the thread is exited.
@end defun

@node Commands In Python
@subsubsection Commands In Python

@cindex commands in python
@cindex python commands
You can implement new @value{GDBN} CLI commands in Python.  A CLI
command is implemented using an instance of the @code{gdb.Command}
class, most commonly using a subclass.

@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
The object initializer for @code{Command} registers the new command
with @value{GDBN}.  This initializer is normally invoked from the
subclass' own @code{__init__} method.

@var{name} is the name of the command.  If @var{name} consists of
multiple words, then the initial words are looked for as prefix
commands.  In this case, if one of the prefix commands does not exist,
an exception is raised.

There is no support for multi-line commands.

@var{command_class} should be one of the @samp{COMMAND_} constants
defined below.  This argument tells @value{GDBN} how to categorize the
new command in the help system.

@var{completer_class} is an optional argument.  If given, it should be
one of the @samp{COMPLETE_} constants defined below.  This argument
tells @value{GDBN} how to perform completion for this command.  If not
given, @value{GDBN} will attempt to complete using the object's
@code{complete} method (see below); if no such method is found, an
error will occur when completion is attempted.

@var{prefix} is an optional argument.  If @code{True}, then the new
command is a prefix command; sub-commands of this command may be
registered.

The help text for the new command is taken from the Python
documentation string for the command's class, if there is one.  If no
documentation string is provided, the default value ``This command is
not documented.'' is used.
@end defun

@cindex don't repeat Python command
@defun Command.dont_repeat ()
By default, a @value{GDBN} command is repeated when the user enters a
blank line at the command prompt.  A command can suppress this
behavior by invoking the @code{dont_repeat} method.  This is similar
to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
@end defun

@defun Command.invoke (argument, from_tty)
This method is called by @value{GDBN} when this command is invoked.

@var{argument} is a string.  It is the argument to the command, after
leading and trailing whitespace has been stripped.

@var{from_tty} is a boolean argument.  When true, this means that the
command was entered by the user at the terminal; when false it means
that the command came from elsewhere.

If this method throws an exception, it is turned into a @value{GDBN}
@code{error} call.  Otherwise, the return value is ignored.

@findex gdb.string_to_argv
To break @var{argument} up into an argv-like string use
@code{gdb.string_to_argv}.  This function behaves identically to
@value{GDBN}'s internal argument lexer @code{buildargv}.
It is recommended to use this for consistency.
Arguments are separated by spaces and may be quoted.
Example:

@smallexample
print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
['1', '2 "3', '4 "5', "6 '7"]
@end smallexample

@end defun

@cindex completion of Python commands
@defun Command.complete (text, word)
This method is called by @value{GDBN} when the user attempts
completion on this command.  All forms of completion are handled by
this method, that is, the @key{TAB} and @key{M-?} key bindings
(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
complete}).

The arguments @var{text} and @var{word} are both strings.  @var{text}
holds the complete command line up to the cursor's location.
@var{word} holds the last word of the command line; this is computed
using a word-breaking heuristic.

The @code{complete} method can return several values:
@itemize @bullet
@item
If the return value is a sequence, the contents of the sequence are
used as the completions.  It is up to @code{complete} to ensure that the
contents actually do complete the word.  A zero-length sequence is
allowed, it means that there were no completions available.  Only
string elements of the sequence are used; other elements in the
sequence are ignored.

@item
If the return value is one of the @samp{COMPLETE_} constants defined
below, then the corresponding @value{GDBN}-internal completion
function is invoked, and its result is used.

@item
All other results are treated as though there were no available
completions.
@end itemize
@end defun

When a new command is registered, it must be declared as a member of
some general class of commands.  This is used to classify top-level
commands in the on-line help system; note that prefix commands are not
listed under their own category but rather that of their top-level
command.  The available classifications are represented by constants
defined in the @code{gdb} module:

@table @code
@findex COMMAND_NONE
@findex gdb.COMMAND_NONE
@item gdb.COMMAND_NONE
The command does not belong to any particular class.  A command in
this category will not be displayed in any of the help categories.

@findex COMMAND_RUNNING
@findex gdb.COMMAND_RUNNING
@item gdb.COMMAND_RUNNING
The command is related to running the inferior.  For example,
@code{start}, @code{step}, and @code{continue} are in this category.
Type @kbd{help running} at the @value{GDBN} prompt to see a list of
commands in this category.

@findex COMMAND_DATA
@findex gdb.COMMAND_DATA
@item gdb.COMMAND_DATA
The command is related to data or variables.  For example,
@code{call}, @code{find}, and @code{print} are in this category.  Type
@kbd{help data} at the @value{GDBN} prompt to see a list of commands
in this category.

@findex COMMAND_STACK
@findex gdb.COMMAND_STACK
@item gdb.COMMAND_STACK
The command has to do with manipulation of the stack.  For example,
@code{backtrace}, @code{frame}, and @code{return} are in this
category.  Type @kbd{help stack} at the @value{GDBN} prompt to see a
list of commands in this category.

@findex COMMAND_FILES
@findex gdb.COMMAND_FILES
@item gdb.COMMAND_FILES
This class is used for file-related commands.  For example,
@code{file}, @code{list} and @code{section} are in this category.
Type @kbd{help files} at the @value{GDBN} prompt to see a list of
commands in this category.

@findex COMMAND_SUPPORT
@findex gdb.COMMAND_SUPPORT
@item gdb.COMMAND_SUPPORT
This should be used for ``support facilities'', generally meaning
things that are useful to the user when interacting with @value{GDBN},
but not related to the state of the inferior.  For example,
@code{help}, @code{make}, and @code{shell} are in this category.  Type
@kbd{help support} at the @value{GDBN} prompt to see a list of
commands in this category.

@findex COMMAND_STATUS
@findex gdb.COMMAND_STATUS
@item gdb.COMMAND_STATUS
The command is an @samp{info}-related command, that is, related to the
state of @value{GDBN} itself.  For example, @code{info}, @code{macro},
and @code{show} are in this category.  Type @kbd{help status} at the
@value{GDBN} prompt to see a list of commands in this category.

@findex COMMAND_BREAKPOINTS
@findex gdb.COMMAND_BREAKPOINTS
@item gdb.COMMAND_BREAKPOINTS
The command has to do with breakpoints.  For example, @code{break},
@code{clear}, and @code{delete} are in this category.  Type @kbd{help
breakpoints} at the @value{GDBN} prompt to see a list of commands in
this category.

@findex COMMAND_TRACEPOINTS
@findex gdb.COMMAND_TRACEPOINTS
@item gdb.COMMAND_TRACEPOINTS
The command has to do with tracepoints.  For example, @code{trace},
@code{actions}, and @code{tfind} are in this category.  Type
@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
commands in this category.

@findex COMMAND_USER
@findex gdb.COMMAND_USER
@item gdb.COMMAND_USER
The command is a general purpose command for the user, and typically
does not fit in one of the other categories.
Type @kbd{help user-defined} at the @value{GDBN} prompt to see
a list of commands in this category, as well as the list of gdb macros
(@pxref{Sequences}).

@findex COMMAND_OBSCURE
@findex gdb.COMMAND_OBSCURE
@item gdb.COMMAND_OBSCURE
The command is only used in unusual circumstances, or is not of
general interest to users.  For example, @code{checkpoint},
@code{fork}, and @code{stop} are in this category.  Type @kbd{help
obscure} at the @value{GDBN} prompt to see a list of commands in this
category.

@findex COMMAND_MAINTENANCE
@findex gdb.COMMAND_MAINTENANCE
@item gdb.COMMAND_MAINTENANCE
The command is only useful to @value{GDBN} maintainers.  The
@code{maintenance} and @code{flushregs} commands are in this category.
Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
commands in this category.
@end table

A new command can use a predefined completion function, either by
specifying it via an argument at initialization, or by returning it
from the @code{complete} method.  These predefined completion
constants are all defined in the @code{gdb} module:

@table @code
@findex COMPLETE_NONE
@findex gdb.COMPLETE_NONE
@item gdb.COMPLETE_NONE
This constant means that no completion should be done.

@findex COMPLETE_FILENAME
@findex gdb.COMPLETE_FILENAME
@item gdb.COMPLETE_FILENAME
This constant means that filename completion should be performed.

@findex COMPLETE_LOCATION
@findex gdb.COMPLETE_LOCATION
@item gdb.COMPLETE_LOCATION
This constant means that location completion should be done.
@xref{Specify Location}.

@findex COMPLETE_COMMAND
@findex gdb.COMPLETE_COMMAND
@item gdb.COMPLETE_COMMAND
This constant means that completion should examine @value{GDBN}
command names.

@findex COMPLETE_SYMBOL
@findex gdb.COMPLETE_SYMBOL
@item gdb.COMPLETE_SYMBOL
This constant means that completion should be done using symbol names
as the source.

@findex COMPLETE_EXPRESSION
@findex gdb.COMPLETE_EXPRESSION
@item gdb.COMPLETE_EXPRESSION
This constant means that completion should be done on expressions.
Often this means completing on symbol names, but some language
parsers also have support for completing on field names.
@end table

The following code snippet shows how a trivial CLI command can be
implemented in Python:

@smallexample
class HelloWorld (gdb.Command):
  """Greet the whole world."""

  def __init__ (self):
    super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)

  def invoke (self, arg, from_tty):
    print "Hello, World!"

HelloWorld ()
@end smallexample

The last line instantiates the class, and is necessary to trigger the
registration of the command with @value{GDBN}.  Depending on how the
Python code is read into @value{GDBN}, you may need to import the
@code{gdb} module explicitly.

@node Parameters In Python
@subsubsection Parameters In Python

@cindex parameters in python
@cindex python parameters
@tindex gdb.Parameter
@tindex Parameter
You can implement new @value{GDBN} parameters using Python.  A new
parameter is implemented as an instance of the @code{gdb.Parameter}
class.

Parameters are exposed to the user via the @code{set} and
@code{show} commands.  @xref{Help}.

There are many parameters that already exist and can be set in
@value{GDBN}.  Two examples are: @code{set follow fork} and
@code{set charset}.  Setting these parameters influences certain
behavior in @value{GDBN}.  Similarly, you can define parameters that
can be used to influence behavior in custom Python scripts and commands.

@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
The object initializer for @code{Parameter} registers the new
parameter with @value{GDBN}.  This initializer is normally invoked
from the subclass' own @code{__init__} method.

@var{name} is the name of the new parameter.  If @var{name} consists
of multiple words, then the initial words are looked for as prefix
parameters.  An example of this can be illustrated with the
@code{set print} set of parameters.  If @var{name} is
@code{print foo}, then @code{print} will be searched as the prefix
parameter.  In this case the parameter can subsequently be accessed in
@value{GDBN} as @code{set print foo}.

If @var{name} consists of multiple words, and no prefix parameter group
can be found, an exception is raised.

@var{command-class} should be one of the @samp{COMMAND_} constants
(@pxref{Commands In Python}).  This argument tells @value{GDBN} how to
categorize the new parameter in the help system.

@var{parameter-class} should be one of the @samp{PARAM_} constants
defined below.  This argument tells @value{GDBN} the type of the new
parameter; this information is used for input validation and
completion.

If @var{parameter-class} is @code{PARAM_ENUM}, then
@var{enum-sequence} must be a sequence of strings.  These strings
represent the possible values for the parameter.

If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
of a fourth argument will cause an exception to be thrown.

The help text for the new parameter is taken from the Python
documentation string for the parameter's class, if there is one.  If
there is no documentation string, a default value is used.
@end defun

@defvar Parameter.set_doc
If this attribute exists, and is a string, then its value is used as
the help text for this parameter's @code{set} command.  The value is
examined when @code{Parameter.__init__} is invoked; subsequent changes
have no effect.
@end defvar

@defvar Parameter.show_doc
If this attribute exists, and is a string, then its value is used as
the help text for this parameter's @code{show} command.  The value is
examined when @code{Parameter.__init__} is invoked; subsequent changes
have no effect.
@end defvar

@defvar Parameter.value
The @code{value} attribute holds the underlying value of the
parameter.  It can be read and assigned to just as any other
attribute.  @value{GDBN} does validation when assignments are made.
@end defvar

There are two methods that should be implemented in any
@code{Parameter} class.  These are:

@defun Parameter.get_set_string (self)
@value{GDBN} will call this method when a @var{parameter}'s value has
been changed via the @code{set} API (for example, @kbd{set foo off}).
The @code{value} attribute has already been populated with the new
value and may be used in output.  This method must return a string.
@end defun

@defun Parameter.get_show_string (self, svalue)
@value{GDBN} will call this method when a @var{parameter}'s
@code{show} API has been invoked (for example, @kbd{show foo}).  The
argument @code{svalue} receives the string representation of the
current value.  This method must return a string.
@end defun

When a new parameter is defined, its type must be specified.  The
available types are represented by constants defined in the @code{gdb}
module:

@table @code
@findex PARAM_BOOLEAN
@findex gdb.PARAM_BOOLEAN
@item gdb.PARAM_BOOLEAN
The value is a plain boolean.  The Python boolean values, @code{True}
and @code{False} are the only valid values.

@findex PARAM_AUTO_BOOLEAN
@findex gdb.PARAM_AUTO_BOOLEAN
@item gdb.PARAM_AUTO_BOOLEAN
The value has three possible states: true, false, and @samp{auto}.  In
Python, true and false are represented using boolean constants, and
@samp{auto} is represented using @code{None}.

@findex PARAM_UINTEGER
@findex gdb.PARAM_UINTEGER
@item gdb.PARAM_UINTEGER
The value is an unsigned integer.  The value of 0 should be
interpreted to mean ``unlimited''.

@findex PARAM_INTEGER
@findex gdb.PARAM_INTEGER
@item gdb.PARAM_INTEGER
The value is a signed integer.  The value of 0 should be interpreted
to mean ``unlimited''.

@findex PARAM_STRING
@findex gdb.PARAM_STRING
@item gdb.PARAM_STRING
The value is a string.  When the user modifies the string, any escape
sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
translated into corresponding characters and encoded into the current
host charset.

@findex PARAM_STRING_NOESCAPE
@findex gdb.PARAM_STRING_NOESCAPE
@item gdb.PARAM_STRING_NOESCAPE
The value is a string.  When the user modifies the string, escapes are
passed through untranslated.

@findex PARAM_OPTIONAL_FILENAME
@findex gdb.PARAM_OPTIONAL_FILENAME
@item gdb.PARAM_OPTIONAL_FILENAME
The value is a either a filename (a string), or @code{None}.

@findex PARAM_FILENAME
@findex gdb.PARAM_FILENAME
@item gdb.PARAM_FILENAME
The value is a filename.  This is just like
@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.

@findex PARAM_ZINTEGER
@findex gdb.PARAM_ZINTEGER
@item gdb.PARAM_ZINTEGER
The value is an integer.  This is like @code{PARAM_INTEGER}, except 0
is interpreted as itself.

@findex PARAM_ENUM
@findex gdb.PARAM_ENUM
@item gdb.PARAM_ENUM
The value is a string, which must be one of a collection string
constants provided when the parameter is created.
@end table

@node Functions In Python
@subsubsection Writing new convenience functions

@cindex writing convenience functions
@cindex convenience functions in python
@cindex python convenience functions
@tindex gdb.Function
@tindex Function
You can implement new convenience functions (@pxref{Convenience Vars})
in Python.  A convenience function is an instance of a subclass of the
class @code{gdb.Function}.

@defun Function.__init__ (name)
The initializer for @code{Function} registers the new function with
@value{GDBN}.  The argument @var{name} is the name of the function,
a string.  The function will be visible to the user as a convenience
variable of type @code{internal function}, whose name is the same as
the given @var{name}.

The documentation for the new function is taken from the documentation
string for the new class.
@end defun

@defun Function.invoke (@var{*args})
When a convenience function is evaluated, its arguments are converted
to instances of @code{gdb.Value}, and then the function's
@code{invoke} method is called.  Note that @value{GDBN} does not
predetermine the arity of convenience functions.  Instead, all
available arguments are passed to @code{invoke}, following the
standard Python calling convention.  In particular, a convenience
function can have default values for parameters without ill effect.

The return value of this method is used as its value in the enclosing
expression.  If an ordinary Python value is returned, it is converted
to a @code{gdb.Value} following the usual rules.
@end defun

The following code snippet shows how a trivial convenience function can
be implemented in Python:

@smallexample
class Greet (gdb.Function):
  """Return string to greet someone.
Takes a name as argument."""

  def __init__ (self):
    super (Greet, self).__init__ ("greet")

  def invoke (self, name):
    return "Hello, %s!" % name.string ()

Greet ()
@end smallexample

The last line instantiates the class, and is necessary to trigger the
registration of the function with @value{GDBN}.  Depending on how the
Python code is read into @value{GDBN}, you may need to import the
@code{gdb} module explicitly.

Now you can use the function in an expression:

@smallexample
(gdb) print $greet("Bob")
$1 = "Hello, Bob!"
@end smallexample

@node Progspaces In Python
@subsubsection Program Spaces In Python

@cindex progspaces in python
@tindex gdb.Progspace
@tindex Progspace
A program space, or @dfn{progspace}, represents a symbolic view
of an address space.
It consists of all of the objfiles of the program.
@xref{Objfiles In Python}.
@xref{Inferiors and Programs, program spaces}, for more details
about program spaces.

The following progspace-related functions are available in the
@code{gdb} module:

@findex gdb.current_progspace
@defun gdb.current_progspace ()
This function returns the program space of the currently selected inferior.
@xref{Inferiors and Programs}.
@end defun

@findex gdb.progspaces
@defun gdb.progspaces ()
Return a sequence of all the progspaces currently known to @value{GDBN}.
@end defun

Each progspace is represented by an instance of the @code{gdb.Progspace}
class.

@defvar Progspace.filename
The file name of the progspace as a string.
@end defvar

@defvar Progspace.pretty_printers
The @code{pretty_printers} attribute is a list of functions.  It is
used to look up pretty-printers.  A @code{Value} is passed to each
function in order; if the function returns @code{None}, then the
search continues.  Otherwise, the return value should be an object
which is used to format the value.  @xref{Pretty Printing API}, for more
information.
@end defvar

@defvar Progspace.type_printers
The @code{type_printers} attribute is a list of type printer objects.
@xref{Type Printing API}, for more information.
@end defvar

@defvar Progspace.frame_filters
The @code{frame_filters} attribute is a dictionary of frame filter
objects.  @xref{Frame Filter API}, for more information.
@end defvar

@node Objfiles In Python
@subsubsection Objfiles In Python

@cindex objfiles in python
@tindex gdb.Objfile
@tindex Objfile
@value{GDBN} loads symbols for an inferior from various
symbol-containing files (@pxref{Files}).  These include the primary
executable file, any shared libraries used by the inferior, and any
separate debug info files (@pxref{Separate Debug Files}).
@value{GDBN} calls these symbol-containing files @dfn{objfiles}.

The following objfile-related functions are available in the
@code{gdb} module:

@findex gdb.current_objfile
@defun gdb.current_objfile ()
When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
sets the ``current objfile'' to the corresponding objfile.  This
function returns the current objfile.  If there is no current objfile,
this function returns @code{None}.
@end defun

@findex gdb.objfiles
@defun gdb.objfiles ()
Return a sequence of all the objfiles current known to @value{GDBN}.
@xref{Objfiles In Python}.
@end defun

Each objfile is represented by an instance of the @code{gdb.Objfile}
class.

@defvar Objfile.filename
The file name of the objfile as a string.
@end defvar

@defvar Objfile.pretty_printers
The @code{pretty_printers} attribute is a list of functions.  It is
used to look up pretty-printers.  A @code{Value} is passed to each
function in order; if the function returns @code{None}, then the
search continues.  Otherwise, the return value should be an object
which is used to format the value.  @xref{Pretty Printing API}, for more
information.
@end defvar

@defvar Objfile.type_printers
The @code{type_printers} attribute is a list of type printer objects.
@xref{Type Printing API}, for more information.
@end defvar

@defvar Objfile.frame_filters
The @code{frame_filters} attribute is a dictionary of frame filter
objects.  @xref{Frame Filter API}, for more information.
@end defvar

A @code{gdb.Objfile} object has the following methods:

@defun Objfile.is_valid ()
Returns @code{True} if the @code{gdb.Objfile} object is valid,
@code{False} if not.  A @code{gdb.Objfile} object can become invalid
if the object file it refers to is not loaded in @value{GDBN} any
longer.  All other @code{gdb.Objfile} methods will throw an exception
if it is invalid at the time the method is called.
@end defun

@node Frames In Python
@subsubsection Accessing inferior stack frames from Python.

@cindex frames in python
When the debugged program stops, @value{GDBN} is able to analyze its call
stack (@pxref{Frames,,Stack frames}).  The @code{gdb.Frame} class
represents a frame in the stack.  A @code{gdb.Frame} object is only valid
while its corresponding frame exists in the inferior's stack.  If you try
to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
exception (@pxref{Exception Handling}).

Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
operator, like:

@smallexample
(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
True
@end smallexample

The following frame-related functions are available in the @code{gdb} module:

@findex gdb.selected_frame
@defun gdb.selected_frame ()
Return the selected frame object.  (@pxref{Selection,,Selecting a Frame}).
@end defun

@findex gdb.newest_frame
@defun gdb.newest_frame ()
Return the newest frame object for the selected thread.
@end defun

@defun gdb.frame_stop_reason_string (reason)
Return a string explaining the reason why @value{GDBN} stopped unwinding
frames, as expressed by the given @var{reason} code (an integer, see the
@code{unwind_stop_reason} method further down in this section).
@end defun

A @code{gdb.Frame} object has the following methods:

@defun Frame.is_valid ()
Returns true if the @code{gdb.Frame} object is valid, false if not.
A frame object can become invalid if the frame it refers to doesn't
exist anymore in the inferior.  All @code{gdb.Frame} methods will throw
an exception if it is invalid at the time the method is called.
@end defun

@defun Frame.name ()
Returns the function name of the frame, or @code{None} if it can't be
obtained.
@end defun

@defun Frame.architecture ()
Returns the @code{gdb.Architecture} object corresponding to the frame's
architecture.  @xref{Architectures In Python}.
@end defun

@defun Frame.type ()
Returns the type of the frame.  The value can be one of:
@table @code
@item gdb.NORMAL_FRAME
An ordinary stack frame.

@item gdb.DUMMY_FRAME
A fake stack frame that was created by @value{GDBN} when performing an
inferior function call.

@item gdb.INLINE_FRAME
A frame representing an inlined function.  The function was inlined
into a @code{gdb.NORMAL_FRAME} that is older than this one.

@item gdb.TAILCALL_FRAME
A frame representing a tail call.  @xref{Tail Call Frames}.

@item gdb.SIGTRAMP_FRAME
A signal trampoline frame.  This is the frame created by the OS when
it calls into a signal handler.

@item gdb.ARCH_FRAME
A fake stack frame representing a cross-architecture call.

@item gdb.SENTINEL_FRAME
This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
newest frame.
@end table
@end defun

@defun Frame.unwind_stop_reason ()
Return an integer representing the reason why it's not possible to find
more frames toward the outermost frame.  Use
@code{gdb.frame_stop_reason_string} to convert the value returned by this
function to a string. The value can be one of:

@table @code
@item gdb.FRAME_UNWIND_NO_REASON
No particular reason (older frames should be available).

@item gdb.FRAME_UNWIND_NULL_ID
The previous frame's analyzer returns an invalid result.

@item gdb.FRAME_UNWIND_OUTERMOST
This frame is the outermost.

@item gdb.FRAME_UNWIND_UNAVAILABLE
Cannot unwind further, because that would require knowing the 
values of registers or memory that have not been collected.

@item gdb.FRAME_UNWIND_INNER_ID
This frame ID looks like it ought to belong to a NEXT frame,
but we got it for a PREV frame.  Normally, this is a sign of
unwinder failure.  It could also indicate stack corruption.

@item gdb.FRAME_UNWIND_SAME_ID
This frame has the same ID as the previous one.  That means
that unwinding further would almost certainly give us another
frame with exactly the same ID, so break the chain.  Normally,
this is a sign of unwinder failure.  It could also indicate
stack corruption.

@item gdb.FRAME_UNWIND_NO_SAVED_PC
The frame unwinder did not find any saved PC, but we needed
one to unwind further.

@item gdb.FRAME_UNWIND_FIRST_ERROR
Any stop reason greater or equal to this value indicates some kind
of error.  This special value facilitates writing code that tests
for errors in unwinding in a way that will work correctly even if
the list of the other values is modified in future @value{GDBN}
versions.  Using it, you could write:
@smallexample
reason = gdb.selected_frame().unwind_stop_reason ()
reason_str =  gdb.frame_stop_reason_string (reason)
if reason >=  gdb.FRAME_UNWIND_FIRST_ERROR:
    print "An error occured: %s" % reason_str
@end smallexample
@end table

@end defun

@defun Frame.pc ()
Returns the frame's resume address.
@end defun

@defun Frame.block ()
Return the frame's code block.  @xref{Blocks In Python}.
@end defun

@defun Frame.function ()
Return the symbol for the function corresponding to this frame.
@xref{Symbols In Python}.
@end defun

@defun Frame.older ()
Return the frame that called this frame.
@end defun

@defun Frame.newer ()
Return the frame called by this frame.
@end defun

@defun Frame.find_sal ()
Return the frame's symtab and line object.
@xref{Symbol Tables In Python}.
@end defun

@defun Frame.read_var (variable @r{[}, block@r{]})
Return the value of @var{variable} in this frame.  If the optional
argument @var{block} is provided, search for the variable from that
block; otherwise start at the frame's current block (which is
determined by the frame's current program counter).  @var{variable}
must be a string or a @code{gdb.Symbol} object.  @var{block} must be a
@code{gdb.Block} object.
@end defun

@defun Frame.select ()
Set this frame to be the selected frame.  @xref{Stack, ,Examining the
Stack}.
@end defun

@node Blocks In Python
@subsubsection Accessing blocks from Python.

@cindex blocks in python
@tindex gdb.Block

In @value{GDBN}, symbols are stored in blocks.  A block corresponds
roughly to a scope in the source code.  Blocks are organized
hierarchically, and are represented individually in Python as a
@code{gdb.Block}.  Blocks rely on debugging information being
available.

A frame has a block.  Please see @ref{Frames In Python}, for a more
in-depth discussion of frames.

The outermost block is known as the @dfn{global block}.  The global
block typically holds public global variables and functions.

The block nested just inside the global block is the @dfn{static
block}.  The static block typically holds file-scoped variables and
functions.

@value{GDBN} provides a method to get a block's superblock, but there
is currently no way to examine the sub-blocks of a block, or to
iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
Python}).

Here is a short example that should help explain blocks:

@smallexample
/* This is in the global block.  */
int global;

/* This is in the static block.  */
static int file_scope;

/* 'function' is in the global block, and 'argument' is
   in a block nested inside of 'function'.  */
int function (int argument)
@{
  /* 'local' is in a block inside 'function'.  It may or may
     not be in the same block as 'argument'.  */
  int local;

  @{
     /* 'inner' is in a block whose superblock is the one holding
        'local'.  */
     int inner;

     /* If this call is expanded by the compiler, you may see
        a nested block here whose function is 'inline_function'
        and whose superblock is the one holding 'inner'.  */
     inline_function ();
  @}
@}
@end smallexample

A @code{gdb.Block} is iterable.  The iterator returns the symbols
(@pxref{Symbols In Python}) local to the block.  Python programs
should not assume that a specific block object will always contain a
given symbol, since changes in @value{GDBN} features and
infrastructure may cause symbols move across blocks in a symbol
table.

The following block-related functions are available in the @code{gdb}
module:

@findex gdb.block_for_pc
@defun gdb.block_for_pc (pc)
Return the innermost @code{gdb.Block} containing the given @var{pc}
value.  If the block cannot be found for the @var{pc} value specified,
the function will return @code{None}.
@end defun

A @code{gdb.Block} object has the following methods:

@defun Block.is_valid ()
Returns @code{True} if the @code{gdb.Block} object is valid,
@code{False} if not.  A block object can become invalid if the block it
refers to doesn't exist anymore in the inferior.  All other
@code{gdb.Block} methods will throw an exception if it is invalid at
the time the method is called.  The block's validity is also checked
during iteration over symbols of the block.
@end defun

A @code{gdb.Block} object has the following attributes:

@defvar Block.start
The start address of the block.  This attribute is not writable.
@end defvar

@defvar Block.end
The end address of the block.  This attribute is not writable.
@end defvar

@defvar Block.function
The name of the block represented as a @code{gdb.Symbol}.  If the
block is not named, then this attribute holds @code{None}.  This
attribute is not writable.

For ordinary function blocks, the superblock is the static block.
However, you should note that it is possible for a function block to
have a superblock that is not the static block -- for instance this
happens for an inlined function.
@end defvar

@defvar Block.superblock
The block containing this block.  If this parent block does not exist,
this attribute holds @code{None}.  This attribute is not writable.
@end defvar

@defvar Block.global_block
The global block associated with this block.  This attribute is not
writable.
@end defvar

@defvar Block.static_block
The static block associated with this block.  This attribute is not
writable.
@end defvar

@defvar Block.is_global
@code{True} if the @code{gdb.Block} object is a global block,
@code{False} if not.  This attribute is not
writable.
@end defvar

@defvar Block.is_static
@code{True} if the @code{gdb.Block} object is a static block,
@code{False} if not.  This attribute is not writable.
@end defvar

@node Symbols In Python
@subsubsection Python representation of Symbols.

@cindex symbols in python
@tindex gdb.Symbol

@value{GDBN} represents every variable, function and type as an
entry in a symbol table.  @xref{Symbols, ,Examining the Symbol Table}.
Similarly, Python represents these symbols in @value{GDBN} with the
@code{gdb.Symbol} object.

The following symbol-related functions are available in the @code{gdb}
module:

@findex gdb.lookup_symbol
@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
This function searches for a symbol by name.  The search scope can be
restricted to the parameters defined in the optional domain and block
arguments.

@var{name} is the name of the symbol.  It must be a string.  The
optional @var{block} argument restricts the search to symbols visible
in that @var{block}.  The @var{block} argument must be a
@code{gdb.Block} object.  If omitted, the block for the current frame
is used.  The optional @var{domain} argument restricts
the search to the domain type.  The @var{domain} argument must be a
domain constant defined in the @code{gdb} module and described later
in this chapter.

The result is a tuple of two elements.
The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
is not found.
If the symbol is found, the second element is @code{True} if the symbol
is a field of a method's object (e.g., @code{this} in C@t{++}),
otherwise it is @code{False}.
If the symbol is not found, the second element is @code{False}.
@end defun

@findex gdb.lookup_global_symbol
@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
This function searches for a global symbol by name.
The search scope can be restricted to by the domain argument.

@var{name} is the name of the symbol.  It must be a string.
The optional @var{domain} argument restricts the search to the domain type.
The @var{domain} argument must be a domain constant defined in the @code{gdb}
module and described later in this chapter.

The result is a @code{gdb.Symbol} object or @code{None} if the symbol
is not found.
@end defun

A @code{gdb.Symbol} object has the following attributes:

@defvar Symbol.type
The type of the symbol or @code{None} if no type is recorded.
This attribute is represented as a @code{gdb.Type} object.
@xref{Types In Python}.  This attribute is not writable.
@end defvar

@defvar Symbol.symtab
The symbol table in which the symbol appears.  This attribute is
represented as a @code{gdb.Symtab} object.  @xref{Symbol Tables In
Python}.  This attribute is not writable.
@end defvar

@defvar Symbol.line
The line number in the source code at which the symbol was defined.
This is an integer.
@end defvar

@defvar Symbol.name
The name of the symbol as a string.  This attribute is not writable.
@end defvar

@defvar Symbol.linkage_name
The name of the symbol, as used by the linker (i.e., may be mangled).
This attribute is not writable.
@end defvar

@defvar Symbol.print_name
The name of the symbol in a form suitable for output.  This is either
@code{name} or @code{linkage_name}, depending on whether the user
asked @value{GDBN} to display demangled or mangled names.
@end defvar

@defvar Symbol.addr_class
The address class of the symbol.  This classifies how to find the value
of a symbol.  Each address class is a constant defined in the
@code{gdb} module and described later in this chapter.
@end defvar

@defvar Symbol.needs_frame
This is @code{True} if evaluating this symbol's value requires a frame
(@pxref{Frames In Python}) and @code{False} otherwise.  Typically,
local variables will require a frame, but other symbols will not.
@end defvar

@defvar Symbol.is_argument
@code{True} if the symbol is an argument of a function.
@end defvar

@defvar Symbol.is_constant
@code{True} if the symbol is a constant.
@end defvar

@defvar Symbol.is_function
@code{True} if the symbol is a function or a method.
@end defvar

@defvar Symbol.is_variable
@code{True} if the symbol is a variable.
@end defvar

A @code{gdb.Symbol} object has the following methods:

@defun Symbol.is_valid ()
Returns @code{True} if the @code{gdb.Symbol} object is valid,
@code{False} if not.  A @code{gdb.Symbol} object can become invalid if
the symbol it refers to does not exist in @value{GDBN} any longer.
All other @code{gdb.Symbol} methods will throw an exception if it is
invalid at the time the method is called.
@end defun

@defun Symbol.value (@r{[}frame@r{]})
Compute the value of the symbol, as a @code{gdb.Value}.  For
functions, this computes the address of the function, cast to the
appropriate type.  If the symbol requires a frame in order to compute
its value, then @var{frame} must be given.  If @var{frame} is not
given, or if @var{frame} is invalid, then this method will throw an
exception.
@end defun

The available domain categories in @code{gdb.Symbol} are represented
as constants in the @code{gdb} module:

@table @code
@findex SYMBOL_UNDEF_DOMAIN
@findex gdb.SYMBOL_UNDEF_DOMAIN
@item gdb.SYMBOL_UNDEF_DOMAIN
This is used when a domain has not been discovered or none of the
following domains apply.  This usually indicates an error either
in the symbol information or in @value{GDBN}'s handling of symbols.
@findex SYMBOL_VAR_DOMAIN
@findex gdb.SYMBOL_VAR_DOMAIN
@item gdb.SYMBOL_VAR_DOMAIN
This domain contains variables, function names, typedef names and enum
type values.
@findex SYMBOL_STRUCT_DOMAIN
@findex gdb.SYMBOL_STRUCT_DOMAIN
@item gdb.SYMBOL_STRUCT_DOMAIN
This domain holds struct, union and enum type names.
@findex SYMBOL_LABEL_DOMAIN
@findex gdb.SYMBOL_LABEL_DOMAIN
@item gdb.SYMBOL_LABEL_DOMAIN
This domain contains names of labels (for gotos).
@findex SYMBOL_VARIABLES_DOMAIN
@findex gdb.SYMBOL_VARIABLES_DOMAIN
@item gdb.SYMBOL_VARIABLES_DOMAIN
This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
contains everything minus functions and types.
@findex SYMBOL_FUNCTIONS_DOMAIN
@findex gdb.SYMBOL_FUNCTIONS_DOMAIN
@item gdb.SYMBOL_FUNCTION_DOMAIN
This domain contains all functions.
@findex SYMBOL_TYPES_DOMAIN
@findex gdb.SYMBOL_TYPES_DOMAIN
@item gdb.SYMBOL_TYPES_DOMAIN
This domain contains all types.
@end table

The available address class categories in @code{gdb.Symbol} are represented
as constants in the @code{gdb} module:

@table @code
@findex SYMBOL_LOC_UNDEF
@findex gdb.SYMBOL_LOC_UNDEF
@item gdb.SYMBOL_LOC_UNDEF
If this is returned by address class, it indicates an error either in
the symbol information or in @value{GDBN}'s handling of symbols.
@findex SYMBOL_LOC_CONST
@findex gdb.SYMBOL_LOC_CONST
@item gdb.SYMBOL_LOC_CONST
Value is constant int.
@findex SYMBOL_LOC_STATIC
@findex gdb.SYMBOL_LOC_STATIC
@item gdb.SYMBOL_LOC_STATIC
Value is at a fixed address.
@findex SYMBOL_LOC_REGISTER
@findex gdb.SYMBOL_LOC_REGISTER
@item gdb.SYMBOL_LOC_REGISTER
Value is in a register.
@findex SYMBOL_LOC_ARG
@findex gdb.SYMBOL_LOC_ARG
@item gdb.SYMBOL_LOC_ARG
Value is an argument.  This value is at the offset stored within the
symbol inside the frame's argument list.
@findex SYMBOL_LOC_REF_ARG
@findex gdb.SYMBOL_LOC_REF_ARG
@item gdb.SYMBOL_LOC_REF_ARG
Value address is stored in the frame's argument list.  Just like
@code{LOC_ARG} except that the value's address is stored at the
offset, not the value itself.
@findex SYMBOL_LOC_REGPARM_ADDR
@findex gdb.SYMBOL_LOC_REGPARM_ADDR
@item gdb.SYMBOL_LOC_REGPARM_ADDR
Value is a specified register.  Just like @code{LOC_REGISTER} except
the register holds the address of the argument instead of the argument
itself.
@findex SYMBOL_LOC_LOCAL
@findex gdb.SYMBOL_LOC_LOCAL
@item gdb.SYMBOL_LOC_LOCAL
Value is a local variable.
@findex SYMBOL_LOC_TYPEDEF
@findex gdb.SYMBOL_LOC_TYPEDEF
@item gdb.SYMBOL_LOC_TYPEDEF
Value not used.  Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
have this class.
@findex SYMBOL_LOC_BLOCK
@findex gdb.SYMBOL_LOC_BLOCK
@item gdb.SYMBOL_LOC_BLOCK
Value is a block.
@findex SYMBOL_LOC_CONST_BYTES
@findex gdb.SYMBOL_LOC_CONST_BYTES
@item gdb.SYMBOL_LOC_CONST_BYTES
Value is a byte-sequence.
@findex SYMBOL_LOC_UNRESOLVED
@findex gdb.SYMBOL_LOC_UNRESOLVED
@item gdb.SYMBOL_LOC_UNRESOLVED
Value is at a fixed address, but the address of the variable has to be
determined from the minimal symbol table whenever the variable is
referenced.
@findex SYMBOL_LOC_OPTIMIZED_OUT
@findex gdb.SYMBOL_LOC_OPTIMIZED_OUT
@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
The value does not actually exist in the program.
@findex SYMBOL_LOC_COMPUTED
@findex gdb.SYMBOL_LOC_COMPUTED
@item gdb.SYMBOL_LOC_COMPUTED
The value's address is a computed location.
@end table

@node Symbol Tables In Python
@subsubsection Symbol table representation in Python.

@cindex symbol tables in python
@tindex gdb.Symtab
@tindex gdb.Symtab_and_line

Access to symbol table data maintained by @value{GDBN} on the inferior
is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
@code{gdb.Symtab}.  Symbol table and line data for a frame is returned
from the @code{find_sal} method in @code{gdb.Frame} object.
@xref{Frames In Python}.

For more information on @value{GDBN}'s symbol table management, see
@ref{Symbols, ,Examining the Symbol Table}, for more information.

A @code{gdb.Symtab_and_line} object has the following attributes:

@defvar Symtab_and_line.symtab
The symbol table object (@code{gdb.Symtab}) for this frame.
This attribute is not writable.
@end defvar

@defvar Symtab_and_line.pc
Indicates the start of the address range occupied by code for the
current source line.  This attribute is not writable.
@end defvar

@defvar Symtab_and_line.last
Indicates the end of the address range occupied by code for the current
source line.  This attribute is not writable.
@end defvar

@defvar Symtab_and_line.line
Indicates the current line number for this object.  This
attribute is not writable.
@end defvar

A @code{gdb.Symtab_and_line} object has the following methods:

@defun Symtab_and_line.is_valid ()
Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
@code{False} if not.  A @code{gdb.Symtab_and_line} object can become
invalid if the Symbol table and line object it refers to does not
exist in @value{GDBN} any longer.  All other
@code{gdb.Symtab_and_line} methods will throw an exception if it is
invalid at the time the method is called.
@end defun

A @code{gdb.Symtab} object has the following attributes:

@defvar Symtab.filename
The symbol table's source filename.  This attribute is not writable.
@end defvar

@defvar Symtab.objfile
The symbol table's backing object file.  @xref{Objfiles In Python}.
This attribute is not writable.
@end defvar

A @code{gdb.Symtab} object has the following methods:

@defun Symtab.is_valid ()
Returns @code{True} if the @code{gdb.Symtab} object is valid,
@code{False} if not.  A @code{gdb.Symtab} object can become invalid if
the symbol table it refers to does not exist in @value{GDBN} any
longer.  All other @code{gdb.Symtab} methods will throw an exception
if it is invalid at the time the method is called.
@end defun

@defun Symtab.fullname ()
Return the symbol table's source absolute file name.
@end defun

@defun Symtab.global_block ()
Return the global block of the underlying symbol table.
@xref{Blocks In Python}.
@end defun

@defun Symtab.static_block ()
Return the static block of the underlying symbol table.
@xref{Blocks In Python}.
@end defun

@defun Symtab.linetable ()
Return the line table associated with the symbol table.
@xref{Line Tables In Python}.
@end defun

@node Line Tables In Python
@subsubsection Manipulating line tables using Python

@cindex line tables in python
@tindex gdb.LineTable

Python code can request and inspect line table information from a
symbol table that is loaded in @value{GDBN}.  A line table is a
mapping of source lines to their executable locations in memory.  To
acquire the line table information for a particular symbol table, use
the @code{linetable} function (@pxref{Symbol Tables In Python}).

A @code{gdb.LineTable} is iterable.  The iterator returns
@code{LineTableEntry} objects that correspond to the source line and
address for each line table entry.  @code{LineTableEntry} objects have
the following attributes:

@defvar LineTableEntry.line
The source line number for this line table entry.  This number
corresponds to the actual line of source.  This attribute is not
writable.
@end defvar

@defvar LineTableEntry.pc
The address that is associated with the line table entry where the
executable code for that source line resides in memory.  This
attribute is not writable.
@end defvar

As there can be multiple addresses for a single source line, you may
receive multiple @code{LineTableEntry} objects with matching
@code{line} attributes, but with different @code{pc} attributes.  The
iterator is sorted in ascending @code{pc} order.  Here is a small
example illustrating iterating over a line table.

@smallexample
symtab = gdb.selected_frame().find_sal().symtab
linetable = symtab.linetable()
for line in linetable:
   print "Line: "+str(line.line)+" Address: "+hex(line.pc)
@end smallexample

This will have the following output:

@smallexample
Line: 33 Address: 0x4005c8L
Line: 37 Address: 0x4005caL
Line: 39 Address: 0x4005d2L
Line: 40 Address: 0x4005f8L
Line: 42 Address: 0x4005ffL
Line: 44 Address: 0x400608L
Line: 42 Address: 0x40060cL
Line: 45 Address: 0x400615L
@end smallexample

In addition to being able to iterate over a @code{LineTable}, it also
has the following direct access methods:

@defun LineTable.line (line)
Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
entries in the line table for the given @var{line}.  @var{line} refers
to the source code line.  If there are no entries for that source code
@var{line}, the Python @code{None} is returned.
@end defun

@defun LineTable.has_line (line)
Return a Python @code{Boolean} indicating whether there is an entry in
the line table for this source line.  Return @code{True} if an entry
is found, or @code{False} if not.
@end defun

@defun LineTable.source_lines ()
Return a Python @code{List} of the source line numbers in the symbol
table.  Only lines with executable code locations are returned.  The
contents of the @code{List} will just be the source line entries
represented as Python @code{Long} values.
@end defun

@node Breakpoints In Python
@subsubsection Manipulating breakpoints using Python

@cindex breakpoints in python
@tindex gdb.Breakpoint

Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
class.

@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
Create a new breakpoint.  @var{spec} is a string naming the location
of the breakpoint, or an expression that defines a watchpoint.  The
contents can be any location recognized by the @code{break} command,
or in the case of a watchpoint, by the @code{watch} command.  The
optional @var{type} denotes the breakpoint to create from the types
defined later in this chapter.  This argument can be either:
@code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}.  @var{type}
defaults to @code{gdb.BP_BREAKPOINT}.  The optional @var{internal}
argument allows the breakpoint to become invisible to the user.  The
breakpoint will neither be reported when created, nor will it be
listed in the output from @code{info breakpoints} (but will be listed
with the @code{maint info breakpoints} command).  The optional
@var{temporary} argument makes the breakpoint a temporary breakpoint.
Temporary breakpoints are deleted after they have been hit.  Any
further access to the Python breakpoint after it has been hit will
result in a runtime error (as that breakpoint has now been
automatically deleted).  The optional @var{wp_class} argument defines
the class of watchpoint to create, if @var{type} is
@code{gdb.BP_WATCHPOINT}.  If a watchpoint class is not provided, it
is assumed to be a @code{gdb.WP_WRITE} class.
@end defun

@defun Breakpoint.stop (self)
The @code{gdb.Breakpoint} class can be sub-classed and, in
particular, you may choose to implement the @code{stop} method.
If this method is defined in a sub-class of @code{gdb.Breakpoint},
it will be called when the inferior reaches any location of a
breakpoint which instantiates that sub-class.  If the method returns
@code{True}, the inferior will be stopped at the location of the
breakpoint, otherwise the inferior will continue.

If there are multiple breakpoints at the same location with a
@code{stop} method, each one will be called regardless of the
return status of the previous.  This ensures that all @code{stop}
methods have a chance to execute at that location.  In this scenario
if one of the methods returns @code{True} but the others return
@code{False}, the inferior will still be stopped.

You should not alter the execution state of the inferior (i.e.@:, step,
next, etc.), alter the current frame context (i.e.@:, change the current
active frame), or alter, add or delete any breakpoint.  As a general
rule, you should not alter any data within @value{GDBN} or the inferior
at this time.

Example @code{stop} implementation:

@smallexample
class MyBreakpoint (gdb.Breakpoint):
      def stop (self):
        inf_val = gdb.parse_and_eval("foo")
        if inf_val == 3:
          return True
        return False
@end smallexample
@end defun

The available watchpoint types represented by constants are defined in the
@code{gdb} module:

@table @code
@findex WP_READ
@findex gdb.WP_READ
@item gdb.WP_READ
Read only watchpoint.

@findex WP_WRITE
@findex gdb.WP_WRITE
@item gdb.WP_WRITE
Write only watchpoint.

@findex WP_ACCESS
@findex gdb.WP_ACCESS
@item gdb.WP_ACCESS
Read/Write watchpoint.
@end table

@defun Breakpoint.is_valid ()
Return @code{True} if this @code{Breakpoint} object is valid,
@code{False} otherwise.  A @code{Breakpoint} object can become invalid
if the user deletes the breakpoint.  In this case, the object still
exists, but the underlying breakpoint does not.  In the cases of
watchpoint scope, the watchpoint remains valid even if execution of the
inferior leaves the scope of that watchpoint.
@end defun

@defun Breakpoint.delete
Permanently deletes the @value{GDBN} breakpoint.  This also
invalidates the Python @code{Breakpoint} object.  Any further access
to this object's attributes or methods will raise an error.
@end defun

@defvar Breakpoint.enabled
This attribute is @code{True} if the breakpoint is enabled, and
@code{False} otherwise.  This attribute is writable.
@end defvar

@defvar Breakpoint.silent
This attribute is @code{True} if the breakpoint is silent, and
@code{False} otherwise.  This attribute is writable.

Note that a breakpoint can also be silent if it has commands and the
first command is @code{silent}.  This is not reported by the
@code{silent} attribute.
@end defvar

@defvar Breakpoint.thread
If the breakpoint is thread-specific, this attribute holds the thread
id.  If the breakpoint is not thread-specific, this attribute is
@code{None}.  This attribute is writable.
@end defvar

@defvar Breakpoint.task
If the breakpoint is Ada task-specific, this attribute holds the Ada task
id.  If the breakpoint is not task-specific (or the underlying
language is not Ada), this attribute is @code{None}.  This attribute
is writable.
@end defvar

@defvar Breakpoint.ignore_count
This attribute holds the ignore count for the breakpoint, an integer.
This attribute is writable.
@end defvar

@defvar Breakpoint.number
This attribute holds the breakpoint's number --- the identifier used by
the user to manipulate the breakpoint.  This attribute is not writable.
@end defvar

@defvar Breakpoint.type
This attribute holds the breakpoint's type --- the identifier used to
determine the actual breakpoint type or use-case.  This attribute is not
writable.
@end defvar

@defvar Breakpoint.visible
This attribute tells whether the breakpoint is visible to the user
when set, or when the @samp{info breakpoints} command is run.  This
attribute is not writable.
@end defvar

@defvar Breakpoint.temporary
This attribute indicates whether the breakpoint was created as a
temporary breakpoint.  Temporary breakpoints are automatically deleted
after that breakpoint has been hit.  Access to this attribute, and all
other attributes and functions other than the @code{is_valid}
function, will result in an error after the breakpoint has been hit
(as it has been automatically deleted).  This attribute is not
writable.
@end defvar

The available types are represented by constants defined in the @code{gdb}
module:

@table @code
@findex BP_BREAKPOINT
@findex gdb.BP_BREAKPOINT
@item gdb.BP_BREAKPOINT
Normal code breakpoint.

@findex BP_WATCHPOINT
@findex gdb.BP_WATCHPOINT
@item gdb.BP_WATCHPOINT
Watchpoint breakpoint.

@findex BP_HARDWARE_WATCHPOINT
@findex gdb.BP_HARDWARE_WATCHPOINT
@item gdb.BP_HARDWARE_WATCHPOINT
Hardware assisted watchpoint.

@findex BP_READ_WATCHPOINT
@findex gdb.BP_READ_WATCHPOINT
@item gdb.BP_READ_WATCHPOINT
Hardware assisted read watchpoint.

@findex BP_ACCESS_WATCHPOINT
@findex gdb.BP_ACCESS_WATCHPOINT
@item gdb.BP_ACCESS_WATCHPOINT
Hardware assisted access watchpoint.
@end table

@defvar Breakpoint.hit_count
This attribute holds the hit count for the breakpoint, an integer.
This attribute is writable, but currently it can only be set to zero.
@end defvar

@defvar Breakpoint.location
This attribute holds the location of the breakpoint, as specified by
the user.  It is a string.  If the breakpoint does not have a location
(that is, it is a watchpoint) the attribute's value is @code{None}.  This
attribute is not writable.
@end defvar

@defvar Breakpoint.expression
This attribute holds a breakpoint expression, as specified by
the user.  It is a string.  If the breakpoint does not have an
expression (the breakpoint is not a watchpoint) the attribute's value
is @code{None}.  This attribute is not writable.
@end defvar

@defvar Breakpoint.condition
This attribute holds the condition of the breakpoint, as specified by
the user.  It is a string.  If there is no condition, this attribute's
value is @code{None}.  This attribute is writable.
@end defvar

@defvar Breakpoint.commands
This attribute holds the commands attached to the breakpoint.  If
there are commands, this attribute's value is a string holding all the
commands, separated by newlines.  If there are no commands, this
attribute is @code{None}.  This attribute is not writable.
@end defvar

@node Finish Breakpoints in Python
@subsubsection Finish Breakpoints

@cindex python finish breakpoints
@tindex gdb.FinishBreakpoint

A finish breakpoint is a temporary breakpoint set at the return address of
a frame, based on the @code{finish} command.  @code{gdb.FinishBreakpoint}
extends @code{gdb.Breakpoint}.  The underlying breakpoint will be disabled 
and deleted when the execution will run out of the breakpoint scope (i.e.@: 
@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
Finish breakpoints are thread specific and must be create with the right 
thread selected.  
 
@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
Create a finish breakpoint at the return address of the @code{gdb.Frame}
object @var{frame}.  If @var{frame} is not provided, this defaults to the
newest frame.  The optional @var{internal} argument allows the breakpoint to
become invisible to the user.  @xref{Breakpoints In Python}, for further 
details about this argument.
@end defun

@defun FinishBreakpoint.out_of_scope (self)
In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN} 
@code{return} command, @dots{}), a function may not properly terminate, and
thus never hit the finish breakpoint.  When @value{GDBN} notices such a
situation, the @code{out_of_scope} callback will be triggered.

You may want to sub-class @code{gdb.FinishBreakpoint} and override this
method:

@smallexample
class MyFinishBreakpoint (gdb.FinishBreakpoint)
    def stop (self):
        print "normal finish"
        return True
    
    def out_of_scope ():
        print "abnormal finish"
@end smallexample 
@end defun

@defvar FinishBreakpoint.return_value
When @value{GDBN} is stopped at a finish breakpoint and the frame 
used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
attribute will contain a @code{gdb.Value} object corresponding to the return
value of the function.  The value will be @code{None} if the function return 
type is @code{void} or if the return value was not computable.  This attribute
is not writable.
@end defvar

@node Lazy Strings In Python
@subsubsection Python representation of lazy strings.

@cindex lazy strings in python
@tindex gdb.LazyString

A @dfn{lazy string} is a string whose contents is not retrieved or
encoded until it is needed.

A @code{gdb.LazyString} is represented in @value{GDBN} as an
@code{address} that points to a region of memory, an @code{encoding}
that will be used to encode that region of memory, and a @code{length}
to delimit the region of memory that represents the string.  The
difference between a @code{gdb.LazyString} and a string wrapped within
a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
differently by @value{GDBN} when printing.  A @code{gdb.LazyString} is
retrieved and encoded during printing, while a @code{gdb.Value}
wrapping a string is immediately retrieved and encoded on creation.

A @code{gdb.LazyString} object has the following functions:

@defun LazyString.value ()
Convert the @code{gdb.LazyString} to a @code{gdb.Value}.  This value
will point to the string in memory, but will lose all the delayed
retrieval, encoding and handling that @value{GDBN} applies to a
@code{gdb.LazyString}.
@end defun

@defvar LazyString.address
This attribute holds the address of the string.  This attribute is not
writable.
@end defvar

@defvar LazyString.length
This attribute holds the length of the string in characters.  If the
length is -1, then the string will be fetched and encoded up to the
first null of appropriate width.  This attribute is not writable.
@end defvar

@defvar LazyString.encoding
This attribute holds the encoding that will be applied to the string
when the string is printed by @value{GDBN}.  If the encoding is not
set, or contains an empty string,  then @value{GDBN} will select the
most appropriate encoding when the string is printed.  This attribute
is not writable.
@end defvar

@defvar LazyString.type
This attribute holds the type that is represented by the lazy string's
type.  For a lazy string this will always be a pointer type.  To
resolve this to the lazy string's character type, use the type's
@code{target} method.  @xref{Types In Python}.  This attribute is not
writable.
@end defvar

@node Architectures In Python
@subsubsection Python representation of architectures
@cindex Python architectures

@value{GDBN} uses architecture specific parameters and artifacts in a
number of its various computations.  An architecture is represented
by an instance of the @code{gdb.Architecture} class.

A @code{gdb.Architecture} class has the following methods:

@defun Architecture.name ()
Return the name (string value) of the architecture.
@end defun

@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
Return a list of disassembled instructions starting from the memory
address @var{start_pc}.  The optional arguments @var{end_pc} and
@var{count} determine the number of instructions in the returned list.
If both the optional arguments @var{end_pc} and @var{count} are
specified, then a list of at most @var{count} disassembled instructions
whose start address falls in the closed memory address interval from
@var{start_pc} to @var{end_pc} are returned.  If @var{end_pc} is not
specified, but @var{count} is specified, then @var{count} number of
instructions starting from the address @var{start_pc} are returned.  If
@var{count} is not specified but @var{end_pc} is specified, then all
instructions whose start address falls in the closed memory address
interval from @var{start_pc} to @var{end_pc} are returned.  If neither
@var{end_pc} nor @var{count} are specified, then a single instruction at
@var{start_pc} is returned.  For all of these cases, each element of the
returned list is a Python @code{dict} with the following string keys:

@table @code

@item addr
The value corresponding to this key is a Python long integer capturing
the memory address of the instruction.

@item asm
The value corresponding to this key is a string value which represents
the instruction with assembly language mnemonics.  The assembly
language flavor used is the same as that specified by the current CLI
variable @code{disassembly-flavor}.  @xref{Machine Code}.

@item length
The value corresponding to this key is the length (integer value) of the
instruction in bytes.

@end table
@end defun

@node Python Auto-loading
@subsection Python Auto-loading
@cindex Python auto-loading

When a new object file is read (for example, due to the @code{file}
command, or because the inferior has loaded a shared library),
@value{GDBN} will look for Python support scripts in several ways:
@file{@var{objfile}-gdb.py} (@pxref{objfile-gdb.py file})
and @code{.debug_gdb_scripts} section
(@pxref{dotdebug_gdb_scripts section}).

The auto-loading feature is useful for supplying application-specific
debugging commands and scripts.

Auto-loading can be enabled or disabled,
and the list of auto-loaded scripts can be printed.

@table @code
@anchor{set auto-load python-scripts}
@kindex set auto-load python-scripts
@item set auto-load python-scripts [on|off]
Enable or disable the auto-loading of Python scripts.

@anchor{show auto-load python-scripts}
@kindex show auto-load python-scripts
@item show auto-load python-scripts
Show whether auto-loading of Python scripts is enabled or disabled.

@anchor{info auto-load python-scripts}
@kindex info auto-load python-scripts
@cindex print list of auto-loaded Python scripts
@item info auto-load python-scripts [@var{regexp}]
Print the list of all Python scripts that @value{GDBN} auto-loaded.

Also printed is the list of Python scripts that were mentioned in
the @code{.debug_gdb_scripts} section and were not found
(@pxref{dotdebug_gdb_scripts section}).
This is useful because their names are not printed when @value{GDBN}
tries to load them and fails.  There may be many of them, and printing
an error message for each one is problematic.

If @var{regexp} is supplied only Python scripts with matching names are printed.

Example:

@smallexample
(gdb) info auto-load python-scripts
Loaded Script
Yes    py-section-script.py
       full name: /tmp/py-section-script.py
No     my-foo-pretty-printers.py
@end smallexample
@end table

When reading an auto-loaded file, @value{GDBN} sets the
@dfn{current objfile}.  This is available via the @code{gdb.current_objfile}
function (@pxref{Objfiles In Python}).  This can be useful for
registering objfile-specific pretty-printers and frame-filters.

@menu
* objfile-gdb.py file::          The @file{@var{objfile}-gdb.py} file
* dotdebug_gdb_scripts section:: The @code{.debug_gdb_scripts} section
* Which flavor to choose?::
@end menu

@node objfile-gdb.py file
@subsubsection The @file{@var{objfile}-gdb.py} file
@cindex @file{@var{objfile}-gdb.py}

When a new object file is read, @value{GDBN} looks for
a file named @file{@var{objfile}-gdb.py} (we call it @var{script-name} below),
where @var{objfile} is the object file's real name, formed by ensuring
that the file name is absolute, following all symlinks, and resolving
@code{.} and @code{..} components.  If this file exists and is
readable, @value{GDBN} will evaluate it as a Python script.

If this file does not exist, then @value{GDBN} will look for
@var{script-name} file in all of the directories as specified below.

Note that loading of this script file also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

For object files using @file{.exe} suffix @value{GDBN} tries to load first the
scripts normally according to its @file{.exe} filename.  But if no scripts are
found @value{GDBN} also tries script filenames matching the object file without
its @file{.exe} suffix.  This @file{.exe} stripping is case insensitive and it
is attempted on any platform.  This makes the script filenames compatible
between Unix and MS-Windows hosts.

@table @code
@anchor{set auto-load scripts-directory}
@kindex set auto-load scripts-directory
@item set auto-load scripts-directory @r{[}@var{directories}@r{]}
Control @value{GDBN} auto-loaded scripts location.  Multiple directory entries
may be delimited by the host platform path separator in use
(@samp{:} on Unix, @samp{;} on MS-Windows and MS-DOS).

Each entry here needs to be covered also by the security setting
@code{set auto-load safe-path} (@pxref{set auto-load safe-path}).

@anchor{with-auto-load-dir}
This variable defaults to @file{$debugdir:$datadir/auto-load}.  The default
@code{set auto-load safe-path} value can be also overriden by @value{GDBN}
configuration option @option{--with-auto-load-dir}.

Any reference to @file{$debugdir} will get replaced by
@var{debug-file-directory} value (@pxref{Separate Debug Files}) and any
reference to @file{$datadir} will get replaced by @var{data-directory} which is
determined at @value{GDBN} startup (@pxref{Data Files}).  @file{$debugdir} and
@file{$datadir} must be placed as a directory component --- either alone or
delimited by @file{/} or @file{\} directory separators, depending on the host
platform.

The list of directories uses path separator (@samp{:} on GNU and Unix
systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
to the @env{PATH} environment variable.

@anchor{show auto-load scripts-directory}
@kindex show auto-load scripts-directory
@item show auto-load scripts-directory
Show @value{GDBN} auto-loaded scripts location.
@end table

@value{GDBN} does not track which files it has already auto-loaded this way.
@value{GDBN} will load the associated script every time the corresponding
@var{objfile} is opened.
So your @file{-gdb.py} file should be careful to avoid errors if it
is evaluated more than once.

@node dotdebug_gdb_scripts section
@subsubsection The @code{.debug_gdb_scripts} section
@cindex @code{.debug_gdb_scripts} section

For systems using file formats like ELF and COFF,
when @value{GDBN} loads a new object file
it will look for a special section named @samp{.debug_gdb_scripts}.
If this section exists, its contents is a list of names of scripts to load.

@value{GDBN} will look for each specified script file first in the
current directory and then along the source search path
(@pxref{Source Path, ,Specifying Source Directories}),
except that @file{$cdir} is not searched, since the compilation
directory is not relevant to scripts.

Entries can be placed in section @code{.debug_gdb_scripts} with,
for example, this GCC macro:

@example
/* Note: The "MS" section flags are to remove duplicates.  */
#define DEFINE_GDB_SCRIPT(script_name) \
  asm("\
.pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n\
.byte 1\n\
.asciz \"" script_name "\"\n\
.popsection \n\
");
@end example

@noindent
Then one can reference the macro in a header or source file like this:

@example
DEFINE_GDB_SCRIPT ("my-app-scripts.py")
@end example

The script name may include directories if desired.

Note that loading of this script file also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

If the macro is put in a header, any application or library
using this header will get a reference to the specified script.

@node Which flavor to choose?
@subsubsection Which flavor to choose?

Given the multiple ways of auto-loading Python scripts, it might not always
be clear which one to choose.  This section provides some guidance.

Benefits of the @file{-gdb.py} way:

@itemize @bullet
@item
Can be used with file formats that don't support multiple sections.

@item
Ease of finding scripts for public libraries.

Scripts specified in the @code{.debug_gdb_scripts} section are searched for
in the source search path.
For publicly installed libraries, e.g., @file{libstdc++}, there typically
isn't a source directory in which to find the script.

@item
Doesn't require source code additions.
@end itemize

Benefits of the @code{.debug_gdb_scripts} way:

@itemize @bullet
@item
Works with static linking.

Scripts for libraries done the @file{-gdb.py} way require an objfile to
trigger their loading.  When an application is statically linked the only
objfile available is the executable, and it is cumbersome to attach all the
scripts from all the input libraries to the executable's @file{-gdb.py} script.

@item
Works with classes that are entirely inlined.

Some classes can be entirely inlined, and thus there may not be an associated
shared library to attach a @file{-gdb.py} script to.

@item
Scripts needn't be copied out of the source tree.

In some circumstances, apps can be built out of large collections of internal
libraries, and the build infrastructure necessary to install the
@file{-gdb.py} scripts in a place where @value{GDBN} can find them is
cumbersome.  It may be easier to specify the scripts in the
@code{.debug_gdb_scripts} section as relative paths, and add a path to the
top of the source tree to the source search path.
@end itemize

@node Python modules
@subsection Python modules
@cindex python modules

@value{GDBN} comes with several modules to assist writing Python code.

@menu
* gdb.printing::       Building and registering pretty-printers.
* gdb.types::          Utilities for working with types.
* gdb.prompt::         Utilities for prompt value substitution.
@end menu

@node gdb.printing
@subsubsection gdb.printing
@cindex gdb.printing

This module provides a collection of utilities for working with
pretty-printers.

@table @code
@item PrettyPrinter (@var{name}, @var{subprinters}=None)
This class specifies the API that makes @samp{info pretty-printer},
@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
Pretty-printers should generally inherit from this class.

@item SubPrettyPrinter (@var{name})
For printers that handle multiple types, this class specifies the
corresponding API for the subprinters.

@item RegexpCollectionPrettyPrinter (@var{name})
Utility class for handling multiple printers, all recognized via
regular expressions.
@xref{Writing a Pretty-Printer}, for an example.

@item FlagEnumerationPrinter (@var{name})
A pretty-printer which handles printing of @code{enum} values.  Unlike
@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
work properly when there is some overlap between the enumeration
constants.  @var{name} is the name of the printer and also the name of
the @code{enum} type to look up.

@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
Register @var{printer} with the pretty-printer list of @var{obj}.
If @var{replace} is @code{True} then any existing copy of the printer
is replaced.  Otherwise a @code{RuntimeError} exception is raised
if a printer with the same name already exists.
@end table

@node gdb.types
@subsubsection gdb.types
@cindex gdb.types

This module provides a collection of utilities for working with
@code{gdb.Type} objects.

@table @code
@item get_basic_type (@var{type})
Return @var{type} with const and volatile qualifiers stripped,
and with typedefs and C@t{++} references converted to the underlying type.

C@t{++} example:

@smallexample
typedef const int const_int;
const_int foo (3);
const_int& foo_ref (foo);
int main () @{ return 0; @}
@end smallexample

Then in gdb:

@smallexample
(gdb) start
(gdb) python import gdb.types
(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
(gdb) python print gdb.types.get_basic_type(foo_ref.type)
int
@end smallexample

@item has_field (@var{type}, @var{field})
Return @code{True} if @var{type}, assumed to be a type with fields
(e.g., a structure or union), has field @var{field}.

@item make_enum_dict (@var{enum_type})
Return a Python @code{dictionary} type produced from @var{enum_type}.

@item deep_items (@var{type})
Returns a Python iterator similar to the standard
@code{gdb.Type.iteritems} method, except that the iterator returned
by @code{deep_items} will recursively traverse anonymous struct or
union fields.  For example:

@smallexample
struct A
@{
    int a;
    union @{
        int b0;
        int b1;
    @};
@};
@end smallexample

@noindent
Then in @value{GDBN}:
@smallexample
(@value{GDBP}) python import gdb.types
(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
(@value{GDBP}) python print struct_a.keys ()
@{['a', '']@}
(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
@{['a', 'b0', 'b1']@}
@end smallexample

@item get_type_recognizers ()
Return a list of the enabled type recognizers for the current context.
This is called by @value{GDBN} during the type-printing process
(@pxref{Type Printing API}).

@item apply_type_recognizers (recognizers, type_obj)
Apply the type recognizers, @var{recognizers}, to the type object
@var{type_obj}.  If any recognizer returns a string, return that
string.  Otherwise, return @code{None}.  This is called by
@value{GDBN} during the type-printing process (@pxref{Type Printing
API}).

@item register_type_printer (locus, printer)
This is a convenience function to register a type printer.
@var{printer} is the type printer to register.  It must implement the
type printer protocol.  @var{locus} is either a @code{gdb.Objfile}, in
which case the printer is registered with that objfile; a
@code{gdb.Progspace}, in which case the printer is registered with
that progspace; or @code{None}, in which case the printer is
registered globally.

@item TypePrinter
This is a base class that implements the type printer protocol.  Type
printers are encouraged, but not required, to derive from this class.
It defines a constructor:

@defmethod TypePrinter __init__ (self, name)
Initialize the type printer with the given name.  The new printer
starts in the enabled state.
@end defmethod

@end table

@node gdb.prompt
@subsubsection gdb.prompt
@cindex gdb.prompt

This module provides a method for prompt value-substitution.

@table @code
@item substitute_prompt (@var{string})
Return @var{string} with escape sequences substituted by values.  Some
escape sequences take arguments.  You can specify arguments inside
``@{@}'' immediately following the escape sequence.

The escape sequences you can pass to this function are:

@table @code
@item \\
Substitute a backslash.
@item \e
Substitute an ESC character.
@item \f
Substitute the selected frame; an argument names a frame parameter.
@item \n
Substitute a newline.
@item \p
Substitute a parameter's value; the argument names the parameter.
@item \r
Substitute a carriage return.
@item \t
Substitute the selected thread; an argument names a thread parameter.
@item \v
Substitute the version of GDB.
@item \w
Substitute the current working directory.
@item \[
Begin a sequence of non-printing characters.  These sequences are
typically used with the ESC character, and are not counted in the string
length.  Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
blue-colored ``(gdb)'' prompt where the length is five.
@item \]
End a sequence of non-printing characters.
@end table

For example:

@smallexample
substitute_prompt (``frame: \f,
                   print arguments: \p@{print frame-arguments@}'')
@end smallexample

@exdent will return the string:

@smallexample
"frame: main, print arguments: scalars"
@end smallexample
@end table

@node Aliases
@section Creating new spellings of existing commands
@cindex aliases for commands

It is often useful to define alternate spellings of existing commands.
For example, if a new @value{GDBN} command defined in Python has
a long name to type, it is handy to have an abbreviated version of it
that involves less typing.

@value{GDBN} itself uses aliases.  For example @samp{s} is an alias
of the @samp{step} command even though it is otherwise an ambiguous
abbreviation of other commands like @samp{set} and @samp{show}.

Aliases are also used to provide shortened or more common versions
of multi-word commands.  For example, @value{GDBN} provides the
@samp{tty} alias of the @samp{set inferior-tty} command.

You can define a new alias with the @samp{alias} command.

@table @code

@kindex alias
@item alias [-a] [--] @var{ALIAS} = @var{COMMAND}

@end table

@var{ALIAS} specifies the name of the new alias.
Each word of @var{ALIAS} must consist of letters, numbers, dashes and
underscores.

@var{COMMAND} specifies the name of an existing command
that is being aliased.

The @samp{-a} option specifies that the new alias is an abbreviation
of the command.  Abbreviations are not shown in command
lists displayed by the @samp{help} command.

The @samp{--} option specifies the end of options,
and is useful when @var{ALIAS} begins with a dash.

Here is a simple example showing how to make an abbreviation
of a command so that there is less to type.
Suppose you were tired of typing @samp{disas}, the current
shortest unambiguous abbreviation of the @samp{disassemble} command
and you wanted an even shorter version named @samp{di}.
The following will accomplish this.

@smallexample
(gdb) alias -a di = disas
@end smallexample

Note that aliases are different from user-defined commands.
With a user-defined command, you also need to write documentation
for it with the @samp{document} command.
An alias automatically picks up the documentation of the existing command.

Here is an example where we make @samp{elms} an abbreviation of
@samp{elements} in the @samp{set print elements} command.
This is to show that you can make an abbreviation of any part
of a command.

@smallexample
(gdb) alias -a set print elms = set print elements
(gdb) alias -a show print elms = show print elements
(gdb) set p elms 20
(gdb) show p elms
Limit on string chars or array elements to print is 200.
@end smallexample

Note that if you are defining an alias of a @samp{set} command,
and you want to have an alias for the corresponding @samp{show}
command, then you need to define the latter separately.

Unambiguously abbreviated commands are allowed in @var{COMMAND} and
@var{ALIAS}, just as they are normally.

@smallexample
(gdb) alias -a set pr elms = set p ele
@end smallexample

Finally, here is an example showing the creation of a one word
alias for a more complex command.
This creates alias @samp{spe} of the command @samp{set print elements}.

@smallexample
(gdb) alias spe = set print elements
(gdb) spe 20
@end smallexample

@node Interpreters
@chapter Command Interpreters
@cindex command interpreters

@value{GDBN} supports multiple command interpreters, and some command
infrastructure to allow users or user interface writers to switch
between interpreters or run commands in other interpreters.

@value{GDBN} currently supports two command interpreters, the console
interpreter (sometimes called the command-line interpreter or @sc{cli})
and the machine interface interpreter (or @sc{gdb/mi}).  This manual
describes both of these interfaces in great detail.

By default, @value{GDBN} will start with the console interpreter.
However, the user may choose to start @value{GDBN} with another
interpreter by specifying the @option{-i} or @option{--interpreter}
startup options.  Defined interpreters include:

@table @code
@item console
@cindex console interpreter
The traditional console or command-line interpreter.  This is the most often
used interpreter with @value{GDBN}. With no interpreter specified at runtime,
@value{GDBN} will use this interpreter.

@item mi
@cindex mi interpreter
The newest @sc{gdb/mi} interface (currently @code{mi2}).  Used primarily
by programs wishing to use @value{GDBN} as a backend for a debugger GUI
or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
Interface}.

@item mi2
@cindex mi2 interpreter
The current @sc{gdb/mi} interface.

@item mi1
@cindex mi1 interpreter
The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.

@end table

@cindex invoke another interpreter
The interpreter being used by @value{GDBN} may not be dynamically
switched at runtime.  Although possible, this could lead to a very
precarious situation.  Consider an IDE using @sc{gdb/mi}.  If a user
enters the command "interpreter-set console" in a console view,
@value{GDBN} would switch to using the console interpreter, rendering
the IDE inoperable!

@kindex interpreter-exec
Although you may only choose a single interpreter at startup, you may execute
commands in any interpreter from the current interpreter using the appropriate
command.  If you are running the console interpreter, simply use the
@code{interpreter-exec} command:

@smallexample
interpreter-exec mi "-data-list-register-names"
@end smallexample

@sc{gdb/mi} has a similar command, although it is only available in versions of
@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).

@node TUI
@chapter @value{GDBN} Text User Interface
@cindex TUI
@cindex Text User Interface

@menu
* TUI Overview::                TUI overview
* TUI Keys::                    TUI key bindings
* TUI Single Key Mode::         TUI single key mode
* TUI Commands::                TUI-specific commands
* TUI Configuration::           TUI configuration variables
@end menu

The @value{GDBN} Text User Interface (TUI) is a terminal
interface which uses the @code{curses} library to show the source
file, the assembly output, the program registers and @value{GDBN}
commands in separate text windows.  The TUI mode is supported only
on platforms where a suitable version of the @code{curses} library
is available.

The TUI mode is enabled by default when you invoke @value{GDBN} as
@samp{@value{GDBP} -tui}.
You can also switch in and out of TUI mode while @value{GDBN} runs by
using various TUI commands and key bindings, such as @kbd{C-x C-a}. 
@xref{TUI Keys, ,TUI Key Bindings}.

@node TUI Overview
@section TUI Overview

In TUI mode, @value{GDBN} can display several text windows:

@table @emph
@item command
This window is the @value{GDBN} command window with the @value{GDBN}
prompt and the @value{GDBN} output.  The @value{GDBN} input is still
managed using readline.

@item source
The source window shows the source file of the program.  The current
line and active breakpoints are displayed in this window.

@item assembly
The assembly window shows the disassembly output of the program.

@item register
This window shows the processor registers.  Registers are highlighted
when their values change.
@end table

The source and assembly windows show the current program position
by highlighting the current line and marking it with a @samp{>} marker.
Breakpoints are indicated with two markers.  The first marker
indicates the breakpoint type:

@table @code
@item B
Breakpoint which was hit at least once.

@item b
Breakpoint which was never hit.

@item H
Hardware breakpoint which was hit at least once.

@item h
Hardware breakpoint which was never hit.
@end table

The second marker indicates whether the breakpoint is enabled or not:

@table @code
@item +
Breakpoint is enabled.

@item -
Breakpoint is disabled.
@end table

The source, assembly and register windows are updated when the current
thread changes, when the frame changes, or when the program counter
changes.

These windows are not all visible at the same time.  The command
window is always visible.  The others can be arranged in several
layouts:

@itemize @bullet
@item
source only,

@item
assembly only,

@item
source and assembly,

@item
source and registers, or

@item
assembly and registers.
@end itemize

A status line above the command window shows the following information:

@table @emph
@item target
Indicates the current @value{GDBN} target.
(@pxref{Targets, ,Specifying a Debugging Target}).

@item process
Gives the current process or thread number.
When no process is being debugged, this field is set to @code{No process}.

@item function
Gives the current function name for the selected frame.
The name is demangled if demangling is turned on (@pxref{Print Settings}).
When there is no symbol corresponding to the current program counter,
the string @code{??} is displayed.

@item line
Indicates the current line number for the selected frame.
When the current line number is not known, the string @code{??} is displayed.

@item pc
Indicates the current program counter address.
@end table

@node TUI Keys
@section TUI Key Bindings
@cindex TUI key bindings

The TUI installs several key bindings in the readline keymaps
@ifset SYSTEM_READLINE
(@pxref{Command Line Editing, , , rluserman, GNU Readline Library}).
@end ifset
@ifclear SYSTEM_READLINE
(@pxref{Command Line Editing}).
@end ifclear
The following key bindings are installed for both TUI mode and the
@value{GDBN} standard mode.

@table @kbd
@kindex C-x C-a
@item C-x C-a
@kindex C-x a
@itemx C-x a
@kindex C-x A
@itemx C-x A
Enter or leave the TUI mode.  When leaving the TUI mode,
the curses window management stops and @value{GDBN} operates using
its standard mode, writing on the terminal directly.  When reentering
the TUI mode, control is given back to the curses windows.
The screen is then refreshed.

@kindex C-x 1
@item C-x 1
Use a TUI layout with only one window.  The layout will
either be @samp{source} or @samp{assembly}.  When the TUI mode
is not active, it will switch to the TUI mode.

Think of this key binding as the Emacs @kbd{C-x 1} binding.

@kindex C-x 2
@item C-x 2
Use a TUI layout with at least two windows.  When the current
layout already has two windows, the next layout with two windows is used.
When a new layout is chosen, one window will always be common to the
previous layout and the new one.

Think of it as the Emacs @kbd{C-x 2} binding.

@kindex C-x o
@item C-x o
Change the active window.  The TUI associates several key bindings
(like scrolling and arrow keys) with the active window.  This command
gives the focus to the next TUI window.

Think of it as the Emacs @kbd{C-x o} binding.

@kindex C-x s
@item C-x s
Switch in and out of the TUI SingleKey mode that binds single
keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
@end table

The following key bindings only work in the TUI mode:

@table @asis
@kindex PgUp
@item @key{PgUp}
Scroll the active window one page up.

@kindex PgDn
@item @key{PgDn}
Scroll the active window one page down.

@kindex Up
@item @key{Up}
Scroll the active window one line up.

@kindex Down
@item @key{Down}
Scroll the active window one line down.

@kindex Left
@item @key{Left}
Scroll the active window one column left.

@kindex Right
@item @key{Right}
Scroll the active window one column right.

@kindex C-L
@item @kbd{C-L}
Refresh the screen.
@end table

Because the arrow keys scroll the active window in the TUI mode, they
are not available for their normal use by readline unless the command
window has the focus.  When another window is active, you must use
other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
and @kbd{C-f} to control the command window.

@node TUI Single Key Mode
@section TUI Single Key Mode
@cindex TUI single key mode

The TUI also provides a @dfn{SingleKey} mode, which binds several
frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
switch into this mode, where the following key bindings are used:

@table @kbd
@kindex c @r{(SingleKey TUI key)}
@item c
continue

@kindex d @r{(SingleKey TUI key)}
@item d
down

@kindex f @r{(SingleKey TUI key)}
@item f
finish

@kindex n @r{(SingleKey TUI key)}
@item n
next

@kindex q @r{(SingleKey TUI key)}
@item q
exit the SingleKey mode.

@kindex r @r{(SingleKey TUI key)}
@item r
run

@kindex s @r{(SingleKey TUI key)}
@item s
step

@kindex u @r{(SingleKey TUI key)}
@item u
up

@kindex v @r{(SingleKey TUI key)}
@item v
info locals

@kindex w @r{(SingleKey TUI key)}
@item w
where
@end table

Other keys temporarily switch to the @value{GDBN} command prompt.
The key that was pressed is inserted in the editing buffer so that
it is possible to type most @value{GDBN} commands without interaction
with the TUI SingleKey mode.  Once the command is entered the TUI
SingleKey mode is restored.  The only way to permanently leave
this mode is by typing @kbd{q} or @kbd{C-x s}.


@node TUI Commands
@section TUI-specific Commands
@cindex TUI commands

The TUI has specific commands to control the text windows.
These commands are always available, even when @value{GDBN} is not in
the TUI mode.  When @value{GDBN} is in the standard mode, most
of these commands will automatically switch to the TUI mode.

Note that if @value{GDBN}'s @code{stdout} is not connected to a
terminal, or @value{GDBN} has been started with the machine interface
interpreter (@pxref{GDB/MI, ,The @sc{gdb/mi} Interface}), most of
these commands will fail with an error, because it would not be
possible or desirable to enable curses window management.

@table @code
@item info win
@kindex info win
List and give the size of all displayed windows.

@item layout next
@kindex layout
Display the next layout.

@item layout prev
Display the previous layout.

@item layout src
Display the source window only.

@item layout asm
Display the assembly window only.

@item layout split
Display the source and assembly window.

@item layout regs
Display the register window together with the source or assembly window.

@item focus next
@kindex focus
Make the next window active for scrolling.

@item focus prev
Make the previous window active for scrolling.

@item focus src
Make the source window active for scrolling.

@item focus asm
Make the assembly window active for scrolling.

@item focus regs
Make the register window active for scrolling.

@item focus cmd
Make the command window active for scrolling.

@item refresh
@kindex refresh
Refresh the screen.  This is similar to typing @kbd{C-L}.

@item tui reg float
@kindex tui reg
Show the floating point registers in the register window.

@item tui reg general
Show the general registers in the register window.

@item tui reg next
Show the next register group.  The list of register groups as well as
their order is target specific.  The predefined register groups are the
following: @code{general}, @code{float}, @code{system}, @code{vector},
@code{all}, @code{save}, @code{restore}.

@item tui reg system
Show the system registers in the register window.

@item update
@kindex update
Update the source window and the current execution point.

@item winheight @var{name} +@var{count}
@itemx winheight @var{name} -@var{count}
@kindex winheight
Change the height of the window @var{name} by @var{count}
lines.  Positive counts increase the height, while negative counts
decrease it.

@item tabset @var{nchars}
@kindex tabset
Set the width of tab stops to be @var{nchars} characters.
@end table

@node TUI Configuration
@section TUI Configuration Variables
@cindex TUI configuration variables

Several configuration variables control the appearance of TUI windows.

@table @code
@item set tui border-kind @var{kind}
@kindex set tui border-kind
Select the border appearance for the source, assembly and register windows.
The possible values are the following:
@table @code
@item space
Use a space character to draw the border.

@item ascii
Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.

@item acs
Use the Alternate Character Set to draw the border.  The border is
drawn using character line graphics if the terminal supports them.
@end table

@item set tui border-mode @var{mode}
@kindex set tui border-mode
@itemx set tui active-border-mode @var{mode}
@kindex set tui active-border-mode
Select the display attributes for the borders of the inactive windows
or the active window.  The @var{mode} can be one of the following:
@table @code
@item normal
Use normal attributes to display the border.

@item standout
Use standout mode.

@item reverse
Use reverse video mode.

@item half
Use half bright mode.

@item half-standout
Use half bright and standout mode.

@item bold
Use extra bright or bold mode.

@item bold-standout
Use extra bright or bold and standout mode.
@end table
@end table

@node Emacs
@chapter Using @value{GDBN} under @sc{gnu} Emacs

@cindex Emacs
@cindex @sc{gnu} Emacs
A special interface allows you to use @sc{gnu} Emacs to view (and
edit) the source files for the program you are debugging with
@value{GDBN}.

To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
executable file you want to debug as an argument.  This command starts
@value{GDBN} as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.
@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)

Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
things:

@itemize @bullet
@item
All ``terminal'' input and output goes through an Emacs buffer, called
the GUD buffer.

This applies both to @value{GDBN} commands and their output, and to the input
and output done by the program you are debugging.

This is useful because it means that you can copy the text of previous
commands and input them again; you can even use parts of the output
in this way.

All the facilities of Emacs' Shell mode are available for interacting
with your program.  In particular, you can send signals the usual
way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
stop.

@item
@value{GDBN} displays source code through Emacs.

Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
source file for that frame and puts an arrow (@samp{=>}) at the
left margin of the current line.  Emacs uses a separate buffer for
source display, and splits the screen to show both your @value{GDBN} session
and the source.

Explicit @value{GDBN} @code{list} or search commands still produce output as
usual, but you probably have no reason to use them from Emacs.
@end itemize

We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
a graphical mode, enabled by default, which provides further buffers
that can control the execution and describe the state of your program.
@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.

If you specify an absolute file name when prompted for the @kbd{M-x
gdb} argument, then Emacs sets your current working directory to where
your program resides.  If you only specify the file name, then Emacs
sets your current working directory to the directory associated
with the previous buffer.  In this case, @value{GDBN} may find your
program by searching your environment's @code{PATH} variable, but on
some operating systems it might not find the source.  So, although the
@value{GDBN} input and output session proceeds normally, the auxiliary
buffer does not display the current source and line of execution.

The initial working directory of @value{GDBN} is printed on the top
line of the GUD buffer and this serves as a default for the commands
that specify files for @value{GDBN} to operate on.  @xref{Files,
,Commands to Specify Files}.

By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
need to call @value{GDBN} by a different name (for example, if you
keep several configurations around, with different names) you can
customize the Emacs variable @code{gud-gdb-command-name} to run the
one you want.

In the GUD buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:

@table @kbd
@item C-h m
Describe the features of Emacs' GUD Mode.

@item C-c C-s
Execute to another source line, like the @value{GDBN} @code{step} command; also
update the display window to show the current file and location.

@item C-c C-n
Execute to next source line in this function, skipping all function
calls, like the @value{GDBN} @code{next} command.  Then update the display window
to show the current file and location.

@item C-c C-i
Execute one instruction, like the @value{GDBN} @code{stepi} command; update
display window accordingly.

@item C-c C-f
Execute until exit from the selected stack frame, like the @value{GDBN}
@code{finish} command.

@item C-c C-r
Continue execution of your program, like the @value{GDBN} @code{continue}
command.

@item C-c <
Go up the number of frames indicated by the numeric argument
(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
like the @value{GDBN} @code{up} command.

@item C-c >
Go down the number of frames indicated by the numeric argument, like the
@value{GDBN} @code{down} command.
@end table

In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
tells @value{GDBN} to set a breakpoint on the source line point is on.

In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
separate frame which shows a backtrace when the GUD buffer is current.
Move point to any frame in the stack and type @key{RET} to make it
become the current frame and display the associated source in the
source buffer.  Alternatively, click @kbd{Mouse-2} to make the
selected frame become the current one.  In graphical mode, the
speedbar displays watch expressions.

If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command @code{f} in the @value{GDBN} buffer, to
request a frame display; when you run under Emacs, this recreates
the source buffer if necessary to show you the context of the current
frame.

The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way.  You can edit
the files with these buffers if you wish; but keep in mind that @value{GDBN}
communicates with Emacs in terms of line numbers.  If you add or
delete lines from the text, the line numbers that @value{GDBN} knows cease
to correspond properly with the code.

A more detailed description of Emacs' interaction with @value{GDBN} is
given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
Emacs Manual}).

@node GDB/MI
@chapter The @sc{gdb/mi} Interface

@unnumberedsec Function and Purpose

@cindex @sc{gdb/mi}, its purpose
@sc{gdb/mi} is a line based machine oriented text interface to
@value{GDBN} and is activated by specifying using the
@option{--interpreter} command line option (@pxref{Mode Options}).  It
is specifically intended to support the development of systems which
use the debugger as just one small component of a larger system.

This chapter is a specification of the @sc{gdb/mi} interface.  It is written
in the form of a reference manual.

Note that @sc{gdb/mi} is still under construction, so some of the
features described below are incomplete and subject to change
(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  

@unnumberedsec Notation and Terminology

@cindex notational conventions, for @sc{gdb/mi}
This chapter uses the following notation:

@itemize @bullet
@item
@code{|} separates two alternatives.

@item
@code{[ @var{something} ]} indicates that @var{something} is optional:
it may or may not be given.

@item
@code{( @var{group} )*} means that @var{group} inside the parentheses
may repeat zero or more times.

@item
@code{( @var{group} )+} means that @var{group} inside the parentheses
may repeat one or more times.

@item
@code{"@var{string}"} means a literal @var{string}.
@end itemize

@ignore
@heading Dependencies
@end ignore

@menu
* GDB/MI General Design::
* GDB/MI Command Syntax::
* GDB/MI Compatibility with CLI::
* GDB/MI Development and Front Ends::
* GDB/MI Output Records::
* GDB/MI Simple Examples::
* GDB/MI Command Description Format::
* GDB/MI Breakpoint Commands::
* GDB/MI Catchpoint Commands::
* GDB/MI Program Context::
* GDB/MI Thread Commands::
* GDB/MI Ada Tasking Commands::
* GDB/MI Program Execution::
* GDB/MI Stack Manipulation::
* GDB/MI Variable Objects::
* GDB/MI Data Manipulation::
* GDB/MI Tracepoint Commands::
* GDB/MI Symbol Query::
* GDB/MI File Commands::
@ignore
* GDB/MI Kod Commands::
* GDB/MI Memory Overlay Commands::
* GDB/MI Signal Handling Commands::
@end ignore
* GDB/MI Target Manipulation::
* GDB/MI File Transfer Commands::
* GDB/MI Ada Exceptions Commands::
* GDB/MI Miscellaneous Commands::
@end menu

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI General Design
@section @sc{gdb/mi} General Design
@cindex GDB/MI General Design

Interaction of a @sc{GDB/MI} frontend with @value{GDBN} involves three
parts---commands sent to @value{GDBN}, responses to those commands
and notifications.  Each command results in exactly one response,
indicating either successful completion of the command, or an error.
For the commands that do not resume the target, the response contains the
requested information.  For the commands that resume the target, the
response only indicates whether the target was successfully resumed.
Notifications is the mechanism for reporting changes in the state of the
target, or in @value{GDBN} state, that cannot conveniently be associated with
a command and reported as part of that command response.

The important examples of notifications are:
@itemize @bullet

@item 
Exec notifications.  These are used to report changes in
target state---when a target is resumed, or stopped.  It would not
be feasible to include this information in response of resuming
commands, because one resume commands can result in multiple events in
different threads.  Also, quite some time may pass before any event
happens in the target, while a frontend needs to know whether the resuming
command itself was successfully executed.

@item 
Console output, and status notifications.  Console output
notifications are used to report output of CLI commands, as well as
diagnostics for other commands.  Status notifications are used to
report the progress of a long-running operation.  Naturally, including
this information in command response would mean no output is produced
until the command is finished, which is undesirable.

@item
General notifications.  Commands may have various side effects on
the @value{GDBN} or target state beyond their official purpose.  For example,
a command may change the selected thread.  Although such changes can
be included in command response, using notification allows for more
orthogonal frontend design.

@end itemize

There's no guarantee that whenever an MI command reports an error,
@value{GDBN} or the target are in any specific state, and especially,
the state is not reverted to the state before the MI command was
processed.  Therefore, whenever an MI command results in an error, 
we recommend that the frontend refreshes all the information shown in 
the user interface.


@menu
* Context management::
* Asynchronous and non-stop modes::
* Thread groups::
@end menu

@node Context management
@subsection Context management

@subsubsection Threads and Frames

In most cases when @value{GDBN} accesses the target, this access is
done in context of a specific thread and frame (@pxref{Frames}).
Often, even when accessing global data, the target requires that a thread
be specified.  The CLI interface maintains the selected thread and frame,
and supplies them to target on each command.  This is convenient,
because a command line user would not want to specify that information
explicitly on each command, and because user interacts with
@value{GDBN} via a single terminal, so no confusion is possible as 
to what thread and frame are the current ones.

In the case of MI, the concept of selected thread and frame is less
useful.  First, a frontend can easily remember this information
itself.  Second, a graphical frontend can have more than one window,
each one used for debugging a different thread, and the frontend might
want to access additional threads for internal purposes.  This
increases the risk that by relying on implicitly selected thread, the
frontend may be operating on a wrong one.  Therefore, each MI command
should explicitly specify which thread and frame to operate on.  To
make it possible, each MI command accepts the @samp{--thread} and
@samp{--frame} options, the value to each is @value{GDBN} identifier
for thread and frame to operate on.

Usually, each top-level window in a frontend allows the user to select
a thread and a frame, and remembers the user selection for further
operations.  However, in some cases @value{GDBN} may suggest that the
current thread be changed.  For example, when stopping on a breakpoint
it is reasonable to switch to the thread where breakpoint is hit.  For
another example, if the user issues the CLI @samp{thread} command via
the frontend, it is desirable to change the frontend's selected thread to the
one specified by user.  @value{GDBN} communicates the suggestion to
change current thread using the @samp{=thread-selected} notification.
No such notification is available for the selected frame at the moment.

Note that historically, MI shares the selected thread with CLI, so 
frontends used the @code{-thread-select} to execute commands in the
right context.  However, getting this to work right is cumbersome.  The
simplest way is for frontend to emit @code{-thread-select} command
before every command.  This doubles the number of commands that need
to be sent.  The alternative approach is to suppress @code{-thread-select}
if the selected thread in @value{GDBN} is supposed to be identical to the
thread the frontend wants to operate on.  However, getting this
optimization right can be tricky.  In particular, if the frontend
sends several commands to @value{GDBN}, and one of the commands changes the
selected thread, then the behaviour of subsequent commands will
change.  So, a frontend should either wait for response from such
problematic commands, or explicitly add @code{-thread-select} for
all subsequent commands.  No frontend is known to do this exactly
right, so it is suggested to just always pass the @samp{--thread} and
@samp{--frame} options.

@subsubsection Language

The execution of several commands depends on which language is selected.
By default, the current language (@pxref{show language}) is used.
But for commands known to be language-sensitive, it is recommended
to use the @samp{--language} option.  This option takes one argument,
which is the name of the language to use while executing the command.
For instance:

@smallexample
-data-evaluate-expression --language c "sizeof (void*)"
^done,value="4"
(gdb) 
@end smallexample

The valid language names are the same names accepted by the
@samp{set language} command (@pxref{Manually}), excluding @samp{auto},
@samp{local} or @samp{unknown}.

@node Asynchronous and non-stop modes
@subsection Asynchronous command execution and non-stop mode

On some targets, @value{GDBN} is capable of processing MI commands
even while the target is running.  This is called @dfn{asynchronous
command execution} (@pxref{Background Execution}).  The frontend may
specify a preferrence for asynchronous execution using the
@code{-gdb-set target-async 1} command, which should be emitted before
either running the executable or attaching to the target.  After the
frontend has started the executable or attached to the target, it can
find if asynchronous execution is enabled using the
@code{-list-target-features} command.

Even if @value{GDBN} can accept a command while target is running,
many commands that access the target do not work when the target is
running.  Therefore, asynchronous command execution is most useful
when combined with non-stop mode (@pxref{Non-Stop Mode}).  Then,
it is possible to examine the state of one thread, while other threads
are running.

When a given thread is running, MI commands that try to access the
target in the context of that thread may not work, or may work only on
some targets.  In particular, commands that try to operate on thread's
stack will not work, on any target.  Commands that read memory, or
modify breakpoints, may work or not work, depending on the target.  Note
that even commands that operate on global state, such as @code{print},
@code{set}, and breakpoint commands, still access the target in the
context of a specific thread,  so frontend should try to find a
stopped thread and perform the operation on that thread (using the
@samp{--thread} option).

Which commands will work in the context of a running thread is
highly target dependent.  However, the two commands
@code{-exec-interrupt}, to stop a thread, and @code{-thread-info},
to find the state of a thread, will always work.

@node Thread groups
@subsection Thread groups
@value{GDBN} may be used to debug several processes at the same time.
On some platfroms, @value{GDBN} may support debugging of several
hardware systems, each one having several cores with several different
processes running on each core.  This section describes the MI
mechanism to support such debugging scenarios.

The key observation is that regardless of the structure of the 
target, MI can have a global list of threads, because most commands that 
accept the @samp{--thread} option do not need to know what process that
thread belongs to.  Therefore, it is not necessary to introduce
neither additional @samp{--process} option, nor an notion of the
current process in the MI interface.  The only strictly new feature
that is required is the ability to find how the threads are grouped
into processes.

To allow the user to discover such grouping, and to support arbitrary
hierarchy of machines/cores/processes, MI introduces the concept of a
@dfn{thread group}.  Thread group is a collection of threads and other
thread groups.  A thread group always has a string identifier, a type,
and may have additional attributes specific to the type.  A new
command, @code{-list-thread-groups}, returns the list of top-level
thread groups, which correspond to processes that @value{GDBN} is
debugging at the moment.  By passing an identifier of a thread group
to the @code{-list-thread-groups} command, it is possible to obtain
the members of specific thread group.

To allow the user to easily discover processes, and other objects, he
wishes to debug, a concept of @dfn{available thread group} is
introduced.  Available thread group is an thread group that
@value{GDBN} is not debugging, but that can be attached to, using the
@code{-target-attach} command.  The list of available top-level thread
groups can be obtained using @samp{-list-thread-groups --available}.
In general, the content of a thread group may be only retrieved only
after attaching to that thread group.

Thread groups are related to inferiors (@pxref{Inferiors and
Programs}).  Each inferior corresponds to a thread group of a special
type @samp{process}, and some additional operations are permitted on
such thread groups.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Command Syntax
@section @sc{gdb/mi} Command Syntax

@menu
* GDB/MI Input Syntax::
* GDB/MI Output Syntax::
@end menu

@node GDB/MI Input Syntax
@subsection @sc{gdb/mi} Input Syntax

@cindex input syntax for @sc{gdb/mi}
@cindex @sc{gdb/mi}, input syntax
@table @code
@item @var{command} @expansion{}
@code{@var{cli-command} | @var{mi-command}}

@item @var{cli-command} @expansion{}
@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
@var{cli-command} is any existing @value{GDBN} CLI command.

@item @var{mi-command} @expansion{}
@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}

@item @var{token} @expansion{}
"any sequence of digits"

@item @var{option} @expansion{}
@code{"-" @var{parameter} [ " " @var{parameter} ]}

@item @var{parameter} @expansion{}
@code{@var{non-blank-sequence} | @var{c-string}}

@item @var{operation} @expansion{}
@emph{any of the operations described in this chapter}

@item @var{non-blank-sequence} @expansion{}
@emph{anything, provided it doesn't contain special characters such as
"-", @var{nl}, """ and of course " "}

@item @var{c-string} @expansion{}
@code{""" @var{seven-bit-iso-c-string-content} """}

@item @var{nl} @expansion{}
@code{CR | CR-LF}
@end table

@noindent
Notes:

@itemize @bullet
@item
The CLI commands are still handled by the @sc{mi} interpreter; their
output is described below.

@item
The @code{@var{token}}, when present, is passed back when the command
finishes.

@item
Some @sc{mi} commands accept optional arguments as part of the parameter
list.  Each option is identified by a leading @samp{-} (dash) and may be
followed by an optional argument parameter.  Options occur first in the
parameter list and can be delimited from normal parameters using
@samp{--} (this is useful when some parameters begin with a dash).
@end itemize

Pragmatics:

@itemize @bullet
@item
We want easy access to the existing CLI syntax (for debugging).

@item
We want it to be easy to spot a @sc{mi} operation.
@end itemize

@node GDB/MI Output Syntax
@subsection @sc{gdb/mi} Output Syntax

@cindex output syntax of @sc{gdb/mi}
@cindex @sc{gdb/mi}, output syntax
The output from @sc{gdb/mi} consists of zero or more out-of-band records
followed, optionally, by a single result record.  This result record
is for the most recent command.  The sequence of output records is
terminated by @samp{(gdb)}.

If an input command was prefixed with a @code{@var{token}} then the
corresponding output for that command will also be prefixed by that same
@var{token}.

@table @code
@item @var{output} @expansion{}
@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}

@item @var{result-record} @expansion{}
@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}

@item @var{out-of-band-record} @expansion{}
@code{@var{async-record} | @var{stream-record}}

@item @var{async-record} @expansion{}
@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}

@item @var{exec-async-output} @expansion{}
@code{[ @var{token} ] "*" @var{async-output}}

@item @var{status-async-output} @expansion{}
@code{[ @var{token} ] "+" @var{async-output}}

@item @var{notify-async-output} @expansion{}
@code{[ @var{token} ] "=" @var{async-output}}

@item @var{async-output} @expansion{}
@code{@var{async-class} ( "," @var{result} )* @var{nl}}

@item @var{result-class} @expansion{}
@code{"done" | "running" | "connected" | "error" | "exit"}

@item @var{async-class} @expansion{}
@code{"stopped" | @var{others}} (where @var{others} will be added
depending on the needs---this is still in development).

@item @var{result} @expansion{}
@code{ @var{variable} "=" @var{value}}

@item @var{variable} @expansion{}
@code{ @var{string} }

@item @var{value} @expansion{}
@code{ @var{const} | @var{tuple} | @var{list} }

@item @var{const} @expansion{}
@code{@var{c-string}}

@item @var{tuple} @expansion{}
@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }

@item @var{list} @expansion{}
@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
@var{result} ( "," @var{result} )* "]" }

@item @var{stream-record} @expansion{}
@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}

@item @var{console-stream-output} @expansion{}
@code{"~" @var{c-string}}

@item @var{target-stream-output} @expansion{}
@code{"@@" @var{c-string}}

@item @var{log-stream-output} @expansion{}
@code{"&" @var{c-string}}

@item @var{nl} @expansion{}
@code{CR | CR-LF}

@item @var{token} @expansion{}
@emph{any sequence of digits}.
@end table

@noindent
Notes:

@itemize @bullet
@item
All output sequences end in a single line containing a period.

@item
The @code{@var{token}} is from the corresponding request.  Note that
for all async output, while the token is allowed by the grammar and
may be output by future versions of @value{GDBN} for select async
output messages, it is generally omitted.  Frontends should treat
all async output as reporting general changes in the state of the
target and there should be no need to associate async output to any
prior command.

@item
@cindex status output in @sc{gdb/mi}
@var{status-async-output} contains on-going status information about the
progress of a slow operation.  It can be discarded.  All status output is
prefixed by @samp{+}.

@item
@cindex async output in @sc{gdb/mi}
@var{exec-async-output} contains asynchronous state change on the target
(stopped, started, disappeared).  All async output is prefixed by
@samp{*}.

@item
@cindex notify output in @sc{gdb/mi}
@var{notify-async-output} contains supplementary information that the
client should handle (e.g., a new breakpoint information).  All notify
output is prefixed by @samp{=}.

@item
@cindex console output in @sc{gdb/mi}
@var{console-stream-output} is output that should be displayed as is in the
console.  It is the textual response to a CLI command.  All the console
output is prefixed by @samp{~}.

@item
@cindex target output in @sc{gdb/mi}
@var{target-stream-output} is the output produced by the target program.
All the target output is prefixed by @samp{@@}.

@item
@cindex log output in @sc{gdb/mi}
@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
instance messages that should be displayed as part of an error log.  All
the log output is prefixed by @samp{&}.

@item
@cindex list output in @sc{gdb/mi}
New @sc{gdb/mi} commands should only output @var{lists} containing
@var{values}.


@end itemize

@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
details about the various output records.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Compatibility with CLI
@section @sc{gdb/mi} Compatibility with CLI

@cindex compatibility, @sc{gdb/mi} and CLI
@cindex @sc{gdb/mi}, compatibility with CLI

For the developers convenience CLI commands can be entered directly,
but there may be some unexpected behaviour.  For example, commands
that query the user will behave as if the user replied yes, breakpoint
command lists are not executed and some CLI commands, such as
@code{if}, @code{when} and @code{define}, prompt for further input with
@samp{>}, which is not valid MI output.

This feature may be removed at some stage in the future and it is
recommended that front ends use the @code{-interpreter-exec} command
(@pxref{-interpreter-exec}).

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Development and Front Ends
@section @sc{gdb/mi} Development and Front Ends
@cindex @sc{gdb/mi} development

The application which takes the MI output and presents the state of the
program being debugged to the user is called a @dfn{front end}.

Although @sc{gdb/mi} is still incomplete, it is currently being used
by a variety of front ends to @value{GDBN}.  This makes it difficult
to introduce new functionality without breaking existing usage.  This
section tries to minimize the problems by describing how the protocol
might change.

Some changes in MI need not break a carefully designed front end, and
for these the MI version will remain unchanged.  The following is a
list of changes that may occur within one level, so front ends should
parse MI output in a way that can handle them:

@itemize @bullet
@item
New MI commands may be added.

@item
New fields may be added to the output of any MI command.

@item
The range of values for fields with specified values, e.g.,
@code{in_scope} (@pxref{-var-update}) may be extended.

@c The format of field's content e.g type prefix, may change so parse it
@c   at your own risk.  Yes, in general?

@c The order of fields may change?  Shouldn't really matter but it might
@c resolve inconsistencies.
@end itemize

If the changes are likely to break front ends, the MI version level
will be increased by one.  This will allow the front end to parse the
output according to the MI version.  Apart from mi0, new versions of
@value{GDBN} will not support old versions of MI and it will be the
responsibility of the front end to work with the new one.

@c Starting with mi3, add a new command -mi-version that prints the MI
@c version?

The best way to avoid unexpected changes in MI that might break your front
end is to make your project known to @value{GDBN} developers and
follow development on @email{gdb@@sourceware.org} and
@email{gdb-patches@@sourceware.org}.
@cindex mailing lists

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Output Records
@section @sc{gdb/mi} Output Records

@menu
* GDB/MI Result Records::
* GDB/MI Stream Records::
* GDB/MI Async Records::
* GDB/MI Breakpoint Information::
* GDB/MI Frame Information::
* GDB/MI Thread Information::
* GDB/MI Ada Exception Information::
@end menu

@node GDB/MI Result Records
@subsection @sc{gdb/mi} Result Records

@cindex result records in @sc{gdb/mi}
@cindex @sc{gdb/mi}, result records
In addition to a number of out-of-band notifications, the response to a
@sc{gdb/mi} command includes one of the following result indications:

@table @code
@findex ^done
@item "^done" [ "," @var{results} ]
The synchronous operation was successful, @code{@var{results}} are the return
values.

@item "^running"
@findex ^running
This result record is equivalent to @samp{^done}.  Historically, it
was output instead of @samp{^done} if the command has resumed the
target.  This behaviour is maintained for backward compatibility, but
all frontends should treat @samp{^done} and @samp{^running}
identically and rely on the @samp{*running} output record to determine
which threads are resumed.

@item "^connected"
@findex ^connected
@value{GDBN} has connected to a remote target.

@item "^error" "," @var{c-string}
@findex ^error
The operation failed.  The @code{@var{c-string}} contains the corresponding
error message.

@item "^exit"
@findex ^exit
@value{GDBN} has terminated.

@end table

@node GDB/MI Stream Records
@subsection @sc{gdb/mi} Stream Records

@cindex @sc{gdb/mi}, stream records
@cindex stream records in @sc{gdb/mi}
@value{GDBN} internally maintains a number of output streams: the console, the
target, and the log.  The output intended for each of these streams is
funneled through the @sc{gdb/mi} interface using @dfn{stream records}.

Each stream record begins with a unique @dfn{prefix character} which
identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
Syntax}).  In addition to the prefix, each stream record contains a
@code{@var{string-output}}.  This is either raw text (with an implicit new
line) or a quoted C string (which does not contain an implicit newline).

@table @code
@item "~" @var{string-output}
The console output stream contains text that should be displayed in the
CLI console window.  It contains the textual responses to CLI commands.

@item "@@" @var{string-output}
The target output stream contains any textual output from the running
target.  This is only present when GDB's event loop is truly
asynchronous, which is currently only the case for remote targets.

@item "&" @var{string-output}
The log stream contains debugging messages being produced by @value{GDBN}'s
internals.
@end table

@node GDB/MI Async Records
@subsection @sc{gdb/mi} Async Records

@cindex async records in @sc{gdb/mi}
@cindex @sc{gdb/mi}, async records
@dfn{Async} records are used to notify the @sc{gdb/mi} client of
additional changes that have occurred.  Those changes can either be a
consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
target activity (e.g., target stopped).

The following is the list of possible async records:

@table @code

@item *running,thread-id="@var{thread}"
The target is now running.  The @var{thread} field tells which
specific thread is now running, and can be @samp{all} if all threads
are running.  The frontend should assume that no interaction with a 
running thread is possible after this notification is produced.
The frontend should not assume that this notification is output
only once for any command.  @value{GDBN} may emit this notification 
several times, either for different threads, because it cannot resume
all threads together, or even for a single thread, if the thread must
be stepped though some code before letting it run freely.

@item *stopped,reason="@var{reason}",thread-id="@var{id}",stopped-threads="@var{stopped}",core="@var{core}"
The target has stopped.  The @var{reason} field can have one of the
following values:

@table @code
@item breakpoint-hit
A breakpoint was reached.
@item watchpoint-trigger
A watchpoint was triggered.
@item read-watchpoint-trigger
A read watchpoint was triggered.
@item access-watchpoint-trigger 
An access watchpoint was triggered.
@item function-finished
An -exec-finish or similar CLI command was accomplished.
@item location-reached
An -exec-until or similar CLI command was accomplished.
@item watchpoint-scope
A watchpoint has gone out of scope.
@item end-stepping-range
An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
similar CLI command was accomplished.
@item exited-signalled 
The inferior exited because of a signal.
@item exited 
The inferior exited.
@item exited-normally 
The inferior exited normally.
@item signal-received 
A signal was received by the inferior.
@item solib-event
The inferior has stopped due to a library being loaded or unloaded.
This can happen when @code{stop-on-solib-events} (@pxref{Files}) is
set or when a @code{catch load} or @code{catch unload} catchpoint is
in use (@pxref{Set Catchpoints}).
@item fork
The inferior has forked.  This is reported when @code{catch fork}
(@pxref{Set Catchpoints}) has been used.
@item vfork
The inferior has vforked.  This is reported in when @code{catch vfork}
(@pxref{Set Catchpoints}) has been used.
@item syscall-entry
The inferior entered a system call.  This is reported when @code{catch
syscall} (@pxref{Set Catchpoints}) has been used.
@item syscall-entry
The inferior returned from a system call.  This is reported when
@code{catch syscall} (@pxref{Set Catchpoints}) has been used.
@item exec
The inferior called @code{exec}.  This is reported when @code{catch exec}
(@pxref{Set Catchpoints}) has been used.
@end table

The @var{id} field identifies the thread that directly caused the stop
-- for example by hitting a breakpoint.  Depending on whether all-stop
mode is in effect (@pxref{All-Stop Mode}), @value{GDBN} may either
stop all threads, or only the thread that directly triggered the stop.
If all threads are stopped, the @var{stopped} field will have the
value of @code{"all"}.  Otherwise, the value of the @var{stopped}
field will be a list of thread identifiers.  Presently, this list will
always include a single thread, but frontend should be prepared to see
several threads in the list.  The @var{core} field reports the
processor core on which the stop event has happened.  This field may be absent
if such information is not available.

@item =thread-group-added,id="@var{id}"
@itemx =thread-group-removed,id="@var{id}"
A thread group was either added or removed.  The @var{id} field
contains the @value{GDBN} identifier of the thread group.  When a thread
group is added, it generally might not be associated with a running
process.  When a thread group is removed, its id becomes invalid and
cannot be used in any way.

@item =thread-group-started,id="@var{id}",pid="@var{pid}"
A thread group became associated with a running program,
either because the program was just started or the thread group
was attached to a program.  The @var{id} field contains the
@value{GDBN} identifier of the thread group.  The @var{pid} field
contains process identifier, specific to the operating system.

@item =thread-group-exited,id="@var{id}"[,exit-code="@var{code}"]
A thread group is no longer associated with a running program,
either because the program has exited, or because it was detached
from.  The @var{id} field contains the @value{GDBN} identifier of the
thread group.  @var{code} is the exit code of the inferior; it exists
only when the inferior exited with some code.

@item =thread-created,id="@var{id}",group-id="@var{gid}"
@itemx =thread-exited,id="@var{id}",group-id="@var{gid}"
A thread either was created, or has exited.  The @var{id} field
contains the @value{GDBN} identifier of the thread.  The @var{gid}
field identifies the thread group this thread belongs to.

@item =thread-selected,id="@var{id}"
Informs that the selected thread was changed as result of the last
command.  This notification is not emitted as result of @code{-thread-select}
command but is emitted whenever an MI command that is not documented
to change the selected thread actually changes it.  In particular,
invoking, directly or indirectly (via user-defined command), the CLI
@code{thread} command, will generate this notification.

We suggest that in response to this notification, front ends
highlight the selected thread and cause subsequent commands to apply to
that thread.

@item =library-loaded,...
Reports that a new library file was loaded by the program.  This
notification has 4 fields---@var{id}, @var{target-name},
@var{host-name}, and @var{symbols-loaded}.  The @var{id} field is an
opaque identifier of the library.  For remote debugging case,
@var{target-name} and @var{host-name} fields give the name of the
library file on the target, and on the host respectively.  For native
debugging, both those fields have the same value.  The
@var{symbols-loaded} field is emitted only for backward compatibility
and should not be relied on to convey any useful information.  The
@var{thread-group} field, if present, specifies the id of the thread
group in whose context the library was loaded.  If the field is
absent, it means the library was loaded in the context of all present
thread groups.

@item =library-unloaded,...
Reports that a library was unloaded by the program.  This notification
has 3 fields---@var{id}, @var{target-name} and @var{host-name} with
the same meaning as for the @code{=library-loaded} notification.
The @var{thread-group} field, if present, specifies the id of the
thread group in whose context the library was unloaded.  If the field is
absent, it means the library was unloaded in the context of all present
thread groups.

@item =traceframe-changed,num=@var{tfnum},tracepoint=@var{tpnum}
@itemx =traceframe-changed,end
Reports that the trace frame was changed and its new number is
@var{tfnum}.  The number of the tracepoint associated with this trace
frame is @var{tpnum}.

@item =tsv-created,name=@var{name},initial=@var{initial}
Reports that the new trace state variable @var{name} is created with
initial value @var{initial}.

@item =tsv-deleted,name=@var{name}
@itemx =tsv-deleted
Reports that the trace state variable @var{name} is deleted or all
trace state variables are deleted.

@item =tsv-modified,name=@var{name},initial=@var{initial}[,current=@var{current}]
Reports that the trace state variable @var{name} is modified with
the initial value @var{initial}. The current value @var{current} of
trace state variable is optional and is reported if the current
value of trace state variable is known.

@item =breakpoint-created,bkpt=@{...@}
@itemx =breakpoint-modified,bkpt=@{...@}
@itemx =breakpoint-deleted,id=@var{number}
Reports that a breakpoint was created, modified, or deleted,
respectively.  Only user-visible breakpoints are reported to the MI
user.

The @var{bkpt} argument is of the same form as returned by the various
breakpoint commands; @xref{GDB/MI Breakpoint Commands}.  The
@var{number} is the ordinal number of the breakpoint.

Note that if a breakpoint is emitted in the result record of a
command, then it will not also be emitted in an async record.

@item =record-started,thread-group="@var{id}"
@itemx =record-stopped,thread-group="@var{id}"
Execution log recording was either started or stopped on an
inferior.  The @var{id} is the @value{GDBN} identifier of the thread
group corresponding to the affected inferior.

@item =cmd-param-changed,param=@var{param},value=@var{value}
Reports that a parameter of the command @code{set @var{param}} is
changed to @var{value}.  In the multi-word @code{set} command,
the @var{param} is the whole parameter list to @code{set} command.
For example, In command @code{set check type on}, @var{param}
is @code{check type} and @var{value} is @code{on}.

@item =memory-changed,thread-group=@var{id},addr=@var{addr},len=@var{len}[,type="code"]
Reports that bytes from @var{addr} to @var{data} + @var{len} were
written in an inferior.  The @var{id} is the identifier of the
thread group corresponding to the affected inferior.  The optional
@code{type="code"} part is reported if the memory written to holds
executable code.
@end table

@node GDB/MI Breakpoint Information
@subsection @sc{gdb/mi} Breakpoint Information

When @value{GDBN} reports information about a breakpoint, a
tracepoint, a watchpoint, or a catchpoint, it uses a tuple with the
following fields:

@table @code
@item number
The breakpoint number.  For a breakpoint that represents one location
of a multi-location breakpoint, this will be a dotted pair, like
@samp{1.2}.

@item type
The type of the breakpoint.  For ordinary breakpoints this will be
@samp{breakpoint}, but many values are possible.

@item catch-type
If the type of the breakpoint is @samp{catchpoint}, then this
indicates the exact type of catchpoint.

@item disp
This is the breakpoint disposition---either @samp{del}, meaning that
the breakpoint will be deleted at the next stop, or @samp{keep},
meaning that the breakpoint will not be deleted.

@item enabled
This indicates whether the breakpoint is enabled, in which case the
value is @samp{y}, or disabled, in which case the value is @samp{n}.
Note that this is not the same as the field @code{enable}.

@item addr
The address of the breakpoint.  This may be a hexidecimal number,
giving the address; or the string @samp{<PENDING>}, for a pending
breakpoint; or the string @samp{<MULTIPLE>}, for a breakpoint with
multiple locations.  This field will not be present if no address can
be determined.  For example, a watchpoint does not have an address.

@item func
If known, the function in which the breakpoint appears.
If not known, this field is not present.

@item filename
The name of the source file which contains this function, if known.
If not known, this field is not present.

@item fullname
The full file name of the source file which contains this function, if
known.  If not known, this field is not present.

@item line
The line number at which this breakpoint appears, if known.
If not known, this field is not present.

@item at
If the source file is not known, this field may be provided.  If
provided, this holds the address of the breakpoint, possibly followed
by a symbol name.

@item pending
If this breakpoint is pending, this field is present and holds the
text used to set the breakpoint, as entered by the user.

@item evaluated-by
Where this breakpoint's condition is evaluated, either @samp{host} or
@samp{target}.

@item thread
If this is a thread-specific breakpoint, then this identifies the
thread in which the breakpoint can trigger.

@item task
If this breakpoint is restricted to a particular Ada task, then this
field will hold the task identifier.

@item cond
If the breakpoint is conditional, this is the condition expression.

@item ignore
The ignore count of the breakpoint.

@item enable
The enable count of the breakpoint.

@item traceframe-usage
FIXME.

@item static-tracepoint-marker-string-id
For a static tracepoint, the name of the static tracepoint marker.

@item mask
For a masked watchpoint, this is the mask.

@item pass
A tracepoint's pass count.

@item original-location
The location of the breakpoint as originally specified by the user.
This field is optional.

@item times
The number of times the breakpoint has been hit.

@item installed
This field is only given for tracepoints.  This is either @samp{y},
meaning that the tracepoint is installed, or @samp{n}, meaning that it
is not.

@item what
Some extra data, the exact contents of which are type-dependent.

@end table

For example, here is what the output of @code{-break-insert}
(@pxref{GDB/MI Breakpoint Commands}) might be:

@smallexample
-> -break-insert main
<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
    enabled="y",addr="0x08048564",func="main",file="myprog.c",
    fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
    times="0"@}
<- (gdb)
@end smallexample

@node GDB/MI Frame Information
@subsection @sc{gdb/mi} Frame Information

Response from many MI commands includes an information about stack
frame.  This information is a tuple that may have the following
fields:

@table @code
@item level
The level of the stack frame.  The innermost frame has the level of
zero.  This field is always present.

@item func
The name of the function corresponding to the frame.  This field may
be absent if @value{GDBN} is unable to determine the function name.

@item addr
The code address for the frame.  This field is always present.

@item file
The name of the source files that correspond to the frame's code
address.  This field may be absent.

@item line
The source line corresponding to the frames' code address.  This field
may be absent.

@item from
The name of the binary file (either executable or shared library) the
corresponds to the frame's code address.  This field may be absent.

@end table

@node GDB/MI Thread Information
@subsection @sc{gdb/mi} Thread Information

Whenever @value{GDBN} has to report an information about a thread, it
uses a tuple with the following fields:

@table @code
@item id
The numeric id assigned to the thread by @value{GDBN}.  This field is
always present.

@item target-id
Target-specific string identifying the thread.  This field is always present.

@item details
Additional information about the thread provided by the target.
It is supposed to be human-readable and not interpreted by the
frontend.  This field is optional.

@item state
Either @samp{stopped} or @samp{running}, depending on whether the
thread is presently running.  This field is always present.

@item core
The value of this field is an integer number of the processor core the
thread was last seen on.  This field is optional.
@end table

@node GDB/MI Ada Exception Information
@subsection @sc{gdb/mi} Ada Exception Information

Whenever a @code{*stopped} record is emitted because the program
stopped after hitting an exception catchpoint (@pxref{Set Catchpoints}),
@value{GDBN} provides the name of the exception that was raised via
the @code{exception-name} field.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Simple Examples
@section Simple Examples of @sc{gdb/mi} Interaction
@cindex @sc{gdb/mi}, simple examples

This subsection presents several simple examples of interaction using
the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
the output received from @sc{gdb/mi}.

Note the line breaks shown in the examples are here only for
readability, they don't appear in the real output.

@subheading Setting a Breakpoint

Setting a breakpoint generates synchronous output which contains detailed
information of the breakpoint.

@smallexample
-> -break-insert main
<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
    enabled="y",addr="0x08048564",func="main",file="myprog.c",
    fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
    times="0"@}
<- (gdb)
@end smallexample

@subheading Program Execution

Program execution generates asynchronous records and MI gives the
reason that execution stopped.

@smallexample
-> -exec-run
<- ^running
<- (gdb)
<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
   frame=@{addr="0x08048564",func="main",
   args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
   file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
<- (gdb)
-> -exec-continue
<- ^running
<- (gdb)
<- *stopped,reason="exited-normally"
<- (gdb)
@end smallexample

@subheading Quitting @value{GDBN}

Quitting @value{GDBN} just prints the result class @samp{^exit}.

@smallexample
-> (gdb)
<- -gdb-exit
<- ^exit
@end smallexample

Please note that @samp{^exit} is printed immediately, but it might
take some time for @value{GDBN} to actually exit.  During that time, @value{GDBN}
performs necessary cleanups, including killing programs being debugged
or disconnecting from debug hardware, so the frontend should wait till
@value{GDBN} exits and should only forcibly kill @value{GDBN} if it
fails to exit in reasonable time.

@subheading A Bad Command

Here's what happens if you pass a non-existent command:

@smallexample
-> -rubbish
<- ^error,msg="Undefined MI command: rubbish"
<- (gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Command Description Format
@section @sc{gdb/mi} Command Description Format

The remaining sections describe blocks of commands.  Each block of
commands is laid out in a fashion similar to this section.

@subheading Motivation

The motivation for this collection of commands.

@subheading Introduction

A brief introduction to this collection of commands as a whole.

@subheading Commands

For each command in the block, the following is described:

@subsubheading Synopsis

@smallexample
 -command @var{args}@dots{}
@end smallexample

@subsubheading Result

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} CLI command(s), if any.

@subsubheading Example

Example(s) formatted for readability.  Some of the described commands  have
not been implemented yet and these are labeled N.A.@: (not available).


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Breakpoint Commands
@section @sc{gdb/mi} Breakpoint Commands

@cindex breakpoint commands for @sc{gdb/mi}
@cindex @sc{gdb/mi}, breakpoint commands
This section documents @sc{gdb/mi} commands for manipulating
breakpoints.

@subheading The @code{-break-after} Command
@findex -break-after

@subsubheading Synopsis

@smallexample
 -break-after @var{number} @var{count}
@end smallexample

The breakpoint number @var{number} is not in effect until it has been
hit @var{count} times.  To see how this is reflected in the output of
the @samp{-break-list} command, see the description of the
@samp{-break-list} command below.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{ignore}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",
enabled="y",addr="0x000100d0",func="main",file="hello.c",
fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
times="0"@}
(gdb)
-break-after 1 3
~
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0",ignore="3"@}]@}
(gdb)
@end smallexample

@ignore
@subheading The @code{-break-catch} Command
@findex -break-catch
@end ignore

@subheading The @code{-break-commands} Command
@findex -break-commands

@subsubheading Synopsis

@smallexample
 -break-commands @var{number} [ @var{command1} ... @var{commandN} ]
@end smallexample

Specifies the CLI commands that should be executed when breakpoint
@var{number} is hit.  The parameters @var{command1} to @var{commandN}
are the commands.  If no command is specified, any previously-set
commands are cleared.  @xref{Break Commands}.  Typical use of this
functionality is tracing a program, that is, printing of values of
some variables whenever breakpoint is hit and then continuing.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{commands}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",
enabled="y",addr="0x000100d0",func="main",file="hello.c",
fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
times="0"@}
(gdb)
-break-commands 1 "print v" "continue"
^done
(gdb)
@end smallexample

@subheading The @code{-break-condition} Command
@findex -break-condition

@subsubheading Synopsis

@smallexample
 -break-condition @var{number} @var{expr}
@end smallexample

Breakpoint @var{number} will stop the program only if the condition in
@var{expr} is true.  The condition becomes part of the
@samp{-break-list} output (see the description of the @samp{-break-list}
command below).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{condition}.

@subsubheading Example

@smallexample
(gdb)
-break-condition 1 1
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",cond="1",thread-groups=["i1"],times="0",ignore="3"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-delete} Command
@findex -break-delete

@subsubheading Synopsis

@smallexample
 -break-delete ( @var{breakpoint} )+
@end smallexample

Delete the breakpoint(s) whose number(s) are specified in the argument
list.  This is obviously reflected in the breakpoint list.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{delete}.

@subsubheading Example

@smallexample
(gdb)
-break-delete 1
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[]@}
(gdb)
@end smallexample

@subheading The @code{-break-disable} Command
@findex -break-disable

@subsubheading Synopsis

@smallexample
 -break-disable ( @var{breakpoint} )+
@end smallexample

Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
break list is now set to @samp{n} for the named @var{breakpoint}(s).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disable}.

@subsubheading Example

@smallexample
(gdb)
-break-disable 2
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-enable} Command
@findex -break-enable

@subsubheading Synopsis

@smallexample
 -break-enable ( @var{breakpoint} )+
@end smallexample

Enable (previously disabled) @var{breakpoint}(s).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{enable}.

@subsubheading Example

@smallexample
(gdb)
-break-enable 2
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-info} Command
@findex -break-info

@subsubheading Synopsis

@smallexample
 -break-info @var{breakpoint}
@end smallexample

@c REDUNDANT???
Get information about a single breakpoint.

The result is a table of breakpoints.  @xref{GDB/MI Breakpoint
Information}, for details on the format of each breakpoint in the
table.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.

@subsubheading Example
N.A.

@subheading The @code{-break-insert} Command
@findex -break-insert

@subsubheading Synopsis

@smallexample
 -break-insert [ -t ] [ -h ] [ -f ] [ -d ] [ -a ]
    [ -c @var{condition} ] [ -i @var{ignore-count} ]
    [ -p @var{thread-id} ] [ @var{location} ]
@end smallexample

@noindent
If specified, @var{location}, can be one of:

@itemize @bullet
@item function
@c @item +offset
@c @item -offset
@c @item linenum
@item filename:linenum
@item filename:function
@item *address
@end itemize

The possible optional parameters of this command are:

@table @samp
@item -t
Insert a temporary breakpoint.
@item -h
Insert a hardware breakpoint.
@item -f
If @var{location} cannot be parsed (for example if it
refers to unknown files or functions), create a pending
breakpoint. Without this flag, @value{GDBN} will report
an error, and won't create a breakpoint, if @var{location}
cannot be parsed.
@item -d
Create a disabled breakpoint.
@item -a
Create a tracepoint.  @xref{Tracepoints}.  When this parameter
is used together with @samp{-h}, a fast tracepoint is created.
@item -c @var{condition}
Make the breakpoint conditional on @var{condition}.
@item -i @var{ignore-count}
Initialize the @var{ignore-count}.
@item -p @var{thread-id}
Restrict the breakpoint to the specified @var{thread-id}.
@end table

@subsubheading Result

@xref{GDB/MI Breakpoint Information}, for details on the format of the
resulting breakpoint.

Note: this format is open to change.
@c An out-of-band breakpoint instead of part of the result?

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
@samp{hbreak}, and @samp{thbreak}. @c and @samp{rbreak}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
fullname="/home/foo/recursive2.c,line="4",thread-groups=["i1"],
times="0"@}
(gdb)
-break-insert -t foo
^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
fullname="/home/foo/recursive2.c,line="11",thread-groups=["i1"],
times="0"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x0001072c", func="main",file="recursive2.c",
fullname="/home/foo/recursive2.c,"line="4",thread-groups=["i1"],
times="0"@},
bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
addr="0x00010774",func="foo",file="recursive2.c",
fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
times="0"@}]@}
(gdb)
@c -break-insert -r foo.*
@c ~int foo(int, int);
@c ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
@c "fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
@c times="0"@}
@c (gdb)
@end smallexample

@subheading The @code{-dprintf-insert} Command
@findex -dprintf-insert

@subsubheading Synopsis

@smallexample
 -dprintf-insert [ -t ] [ -f ] [ -d ]
    [ -c @var{condition} ] [ -i @var{ignore-count} ]
    [ -p @var{thread-id} ] [ @var{location} ] [ @var{format} ]
    [ @var{argument} ]
@end smallexample

@noindent
If specified, @var{location}, can be one of:

@itemize @bullet
@item @var{function}
@c @item +offset
@c @item -offset
@c @item @var{linenum}
@item @var{filename}:@var{linenum}
@item @var{filename}:function
@item *@var{address}
@end itemize

The possible optional parameters of this command are:

@table @samp
@item -t
Insert a temporary breakpoint.
@item -f
If @var{location} cannot be parsed (for example, if it
refers to unknown files or functions), create a pending
breakpoint.  Without this flag, @value{GDBN} will report
an error, and won't create a breakpoint, if @var{location}
cannot be parsed.
@item -d
Create a disabled breakpoint.
@item -c @var{condition}
Make the breakpoint conditional on @var{condition}.
@item -i @var{ignore-count}
Set the ignore count of the breakpoint (@pxref{Conditions, ignore count})
to @var{ignore-count}.
@item -p @var{thread-id}
Restrict the breakpoint to the specified @var{thread-id}.
@end table

@subsubheading Result

@xref{GDB/MI Breakpoint Information}, for details on the format of the
resulting breakpoint.

@c An out-of-band breakpoint instead of part of the result?

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{dprintf}.

@subsubheading Example

@smallexample
(gdb)
4-dprintf-insert foo "At foo entry\n"
4^done,bkpt=@{number="1",type="dprintf",disp="keep",enabled="y",
addr="0x000000000040061b",func="foo",file="mi-dprintf.c",
fullname="mi-dprintf.c",line="25",thread-groups=["i1"],
times="0",script=@{"printf \"At foo entry\\n\"","continue"@},
original-location="foo"@}
(gdb)
5-dprintf-insert 26 "arg=%d, g=%d\n" arg g
5^done,bkpt=@{number="2",type="dprintf",disp="keep",enabled="y",
addr="0x000000000040062a",func="foo",file="mi-dprintf.c",
fullname="mi-dprintf.c",line="26",thread-groups=["i1"],
times="0",script=@{"printf \"arg=%d, g=%d\\n\", arg, g","continue"@},
original-location="mi-dprintf.c:26"@}
(gdb)
@end smallexample

@subheading The @code{-break-list} Command
@findex -break-list

@subsubheading Synopsis

@smallexample
 -break-list
@end smallexample

Displays the list of inserted breakpoints, showing the following fields:

@table @samp
@item Number
number of the breakpoint
@item Type
type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
@item Disposition
should the breakpoint be deleted or disabled when it is hit: @samp{keep}
or @samp{nokeep}
@item Enabled
is the breakpoint enabled or no: @samp{y} or @samp{n}
@item Address
memory location at which the breakpoint is set
@item What
logical location of the breakpoint, expressed by function name, file
name, line number
@item Thread-groups
list of thread groups to which this breakpoint applies
@item Times
number of times the breakpoint has been hit
@end table

If there are no breakpoints or watchpoints, the @code{BreakpointTable}
@code{body} field is an empty list.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info break}.

@subsubheading Example

@smallexample
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",thread-groups=["i1"],
times="0"@},
bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
line="13",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

Here's an example of the result when there are no breakpoints:

@smallexample
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[]@}
(gdb)
@end smallexample

@subheading The @code{-break-passcount} Command
@findex -break-passcount

@subsubheading Synopsis

@smallexample
 -break-passcount @var{tracepoint-number} @var{passcount}
@end smallexample

Set the passcount for tracepoint @var{tracepoint-number} to
@var{passcount}.  If the breakpoint referred to by @var{tracepoint-number}
is not a tracepoint, error is emitted.  This corresponds to CLI
command @samp{passcount}.

@subheading The @code{-break-watch} Command
@findex -break-watch

@subsubheading Synopsis

@smallexample
 -break-watch [ -a | -r ]
@end smallexample

Create a watchpoint.  With the @samp{-a} option it will create an
@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
read from or on a write to the memory location.  With the @samp{-r}
option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
trigger only when the memory location is accessed for reading.  Without
either of the options, the watchpoint created is a regular watchpoint,
i.e., it will trigger when the memory location is accessed for writing.
@xref{Set Watchpoints, , Setting Watchpoints}.

Note that @samp{-break-list} will report a single list of watchpoints and
breakpoints inserted.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
@samp{rwatch}.

@subsubheading Example

Setting a watchpoint on a variable in the @code{main} function:

@smallexample
(gdb)
-break-watch x
^done,wpt=@{number="2",exp="x"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
value=@{old="-268439212",new="55"@},
frame=@{func="main",args=[],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="5"@}
(gdb)
@end smallexample

Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
the program execution twice: first for the variable changing value, then
for the watchpoint going out of scope.

@smallexample
(gdb)
-break-watch C
^done,wpt=@{number="5",exp="C"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",
wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-scope",wpnum="5",
frame=@{func="callee3",args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
(gdb)
@end smallexample

Listing breakpoints and watchpoints, at different points in the program
execution.  Note that once the watchpoint goes out of scope, it is
deleted.

@smallexample
(gdb)
-break-watch C
^done,wpt=@{number="2",exp="C"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",thread-groups=["i1"],
times="1"@},
bkpt=@{number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",thread-groups=["i1"],times="0"@}]@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
value=@{old="-276895068",new="3"@},
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",thread-groups=["i1"],
times="1"@},
bkpt=@{number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",thread-groups=["i1"],times="-5"@}]@}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="2",
frame=@{func="callee3",args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
thread-groups=["i1"],times="1"@}]@}
(gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Catchpoint Commands
@section @sc{gdb/mi} Catchpoint Commands

This section documents @sc{gdb/mi} commands for manipulating
catchpoints.

@menu
* Shared Library GDB/MI Catchpoint Commands::
* Ada Exception GDB/MI Catchpoint Commands::
@end menu

@node Shared Library GDB/MI Catchpoint Commands
@subsection Shared Library @sc{gdb/mi} Catchpoints

@subheading The @code{-catch-load} Command
@findex -catch-load

@subsubheading Synopsis

@smallexample
 -catch-load [ -t ] [ -d ] @var{regexp}
@end smallexample

Add a catchpoint for library load events.  If the @samp{-t} option is used,
the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
Breakpoints}).  If the @samp{-d} option is used, the catchpoint is created
in a disabled state.  The @samp{regexp} argument is a regular
expression used to match the name of the loaded library.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch load}.

@subsubheading Example

@smallexample
-catch-load -t foo.so
^done,bkpt=@{number="1",type="catchpoint",disp="del",enabled="y",
what="load of library matching foo.so",catch-type="load",times="0"@}
(gdb)
@end smallexample


@subheading The @code{-catch-unload} Command
@findex -catch-unload

@subsubheading Synopsis

@smallexample
 -catch-unload [ -t ] [ -d ] @var{regexp}
@end smallexample

Add a catchpoint for library unload events.  If the @samp{-t} option is
used, the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
Breakpoints}).  If the @samp{-d} option is used, the catchpoint is
created in a disabled state.  The @samp{regexp} argument is a regular
expression used to match the name of the unloaded library.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch unload}.

@subsubheading Example

@smallexample
-catch-unload -d bar.so
^done,bkpt=@{number="2",type="catchpoint",disp="keep",enabled="n",
what="load of library matching bar.so",catch-type="unload",times="0"@}
(gdb)
@end smallexample

@node Ada Exception GDB/MI Catchpoint Commands
@subsection Ada Exception @sc{gdb/mi} Catchpoints

The following @sc{gdb/mi} commands can be used to create catchpoints
that stop the execution when Ada exceptions are being raised.

@subheading The @code{-catch-assert} Command
@findex -catch-assert

@subsubheading Synopsis

@smallexample
 -catch-assert [ -c @var{condition}] [ -d ] [ -t ]
@end smallexample

Add a catchpoint for failed Ada assertions.

The possible optional parameters for this command are:

@table @samp
@item -c @var{condition}
Make the catchpoint conditional on @var{condition}.
@item -d
Create a disabled catchpoint.
@item -t
Create a temporary catchpoint.
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch assert}.

@subsubheading Example

@smallexample
-catch-assert
^done,bkptno="5",bkpt=@{number="5",type="breakpoint",disp="keep",
enabled="y",addr="0x0000000000404888",what="failed Ada assertions",
thread-groups=["i1"],times="0",
original-location="__gnat_debug_raise_assert_failure"@}
(gdb)
@end smallexample

@subheading The @code{-catch-exception} Command
@findex -catch-exception

@subsubheading Synopsis

@smallexample
 -catch-exception [ -c @var{condition}] [ -d ] [ -e @var{exception-name} ]
    [ -t ] [ -u ]
@end smallexample

Add a catchpoint stopping when Ada exceptions are raised.
By default, the command stops the program when any Ada exception
gets raised.  But it is also possible, by using some of the
optional parameters described below, to create more selective
catchpoints.

The possible optional parameters for this command are:

@table @samp
@item -c @var{condition}
Make the catchpoint conditional on @var{condition}.
@item -d
Create a disabled catchpoint.
@item -e @var{exception-name}
Only stop when @var{exception-name} is raised.  This option cannot
be used combined with @samp{-u}.
@item -t
Create a temporary catchpoint.
@item -u
Stop only when an unhandled exception gets raised.  This option
cannot be used combined with @samp{-e}.
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{catch exception}
and @samp{catch exception unhandled}.

@subsubheading Example

@smallexample
-catch-exception -e Program_Error
^done,bkptno="4",bkpt=@{number="4",type="breakpoint",disp="keep",
enabled="y",addr="0x0000000000404874",
what="`Program_Error' Ada exception", thread-groups=["i1"],
times="0",original-location="__gnat_debug_raise_exception"@}
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Program Context
@section @sc{gdb/mi}  Program Context

@subheading The @code{-exec-arguments} Command
@findex -exec-arguments


@subsubheading Synopsis

@smallexample
 -exec-arguments @var{args}
@end smallexample

Set the inferior program arguments, to be used in the next
@samp{-exec-run}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set args}.

@subsubheading Example

@smallexample
(gdb)
-exec-arguments -v word
^done
(gdb)
@end smallexample


@ignore
@subheading The @code{-exec-show-arguments} Command
@findex -exec-show-arguments

@subsubheading Synopsis

@smallexample
 -exec-show-arguments
@end smallexample

Print the arguments of the program.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show args}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-environment-cd} Command
@findex -environment-cd

@subsubheading Synopsis

@smallexample
 -environment-cd @var{pathdir}
@end smallexample

Set @value{GDBN}'s working directory.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{cd}.

@subsubheading Example

@smallexample
(gdb)
-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done
(gdb)
@end smallexample


@subheading The @code{-environment-directory} Command
@findex -environment-directory

@subsubheading Synopsis

@smallexample
 -environment-directory [ -r ] [ @var{pathdir} ]+
@end smallexample

Add directories @var{pathdir} to beginning of search path for source files.
If the @samp{-r} option is used, the search path is reset to the default
search path.  If directories @var{pathdir} are supplied in addition to the
@samp{-r} option, the search path is first reset and then addition
occurs as normal.
Multiple directories may be specified, separated by blanks.  Specifying
multiple directories in a single command
results in the directories added to the beginning of the
search path in the same order they were presented in the command.
If blanks are needed as
part of a directory name, double-quotes should be used around
the name.  In the command output, the path will show up separated
by the system directory-separator character.  The directory-separator
character must not be used
in any directory name.
If no directories are specified, the current search path is displayed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{dir}.

@subsubheading Example

@smallexample
(gdb)
-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory ""
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory -r /home/jjohnstn/src/gdb /usr/src
^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
(gdb)
-environment-directory -r
^done,source-path="$cdir:$cwd"
(gdb)
@end smallexample


@subheading The @code{-environment-path} Command
@findex -environment-path

@subsubheading Synopsis

@smallexample
 -environment-path [ -r ] [ @var{pathdir} ]+
@end smallexample

Add directories @var{pathdir} to beginning of search path for object files.
If the @samp{-r} option is used, the search path is reset to the original
search path that existed at gdb start-up.  If directories @var{pathdir} are
supplied in addition to the
@samp{-r} option, the search path is first reset and then addition
occurs as normal.
Multiple directories may be specified, separated by blanks.  Specifying
multiple directories in a single command
results in the directories added to the beginning of the
search path in the same order they were presented in the command.
If blanks are needed as
part of a directory name, double-quotes should be used around
the name.  In the command output, the path will show up separated
by the system directory-separator character.  The directory-separator
character must not be used
in any directory name.
If no directories are specified, the current path is displayed.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{path}.

@subsubheading Example

@smallexample
(gdb)
-environment-path
^done,path="/usr/bin"
(gdb)
-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
(gdb)
-environment-path -r /usr/local/bin
^done,path="/usr/local/bin:/usr/bin"
(gdb)
@end smallexample


@subheading The @code{-environment-pwd} Command
@findex -environment-pwd

@subsubheading Synopsis

@smallexample
 -environment-pwd
@end smallexample

Show the current working directory.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{pwd}.

@subsubheading Example

@smallexample
(gdb)
-environment-pwd
^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Thread Commands
@section @sc{gdb/mi} Thread Commands


@subheading The @code{-thread-info} Command
@findex -thread-info

@subsubheading Synopsis

@smallexample
 -thread-info [ @var{thread-id} ]
@end smallexample

Reports information about either a specific thread, if 
the @var{thread-id} parameter is present, or about all
threads.  When printing information about all threads,
also reports the current thread.

@subsubheading @value{GDBN} Command

The @samp{info thread} command prints the same information
about all threads.

@subsubheading Result

The result is a list of threads.  The following attributes are
defined for a given thread:

@table @samp
@item current
This field exists only for the current thread.  It has the value @samp{*}.

@item id
The identifier that @value{GDBN} uses to refer to the thread.

@item target-id
The identifier that the target uses to refer to the thread.

@item details
Extra information about the thread, in a target-specific format.  This
field is optional.

@item name
The name of the thread.  If the user specified a name using the
@code{thread name} command, then this name is given.  Otherwise, if
@value{GDBN} can extract the thread name from the target, then that
name is given.  If @value{GDBN} cannot find the thread name, then this
field is omitted.

@item frame
The stack frame currently executing in the thread.

@item state
The thread's state.  The @samp{state} field may have the following
values:

@table @code
@item stopped
The thread is stopped.  Frame information is available for stopped
threads.

@item running
The thread is running.  There's no frame information for running
threads.

@end table

@item core
If @value{GDBN} can find the CPU core on which this thread is running,
then this field is the core identifier.  This field is optional.

@end table

@subsubheading Example

@smallexample
-thread-info
^done,threads=[
@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
   frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",
           args=[]@},state="running"@},
@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
   frame=@{level="0",addr="0x0804891f",func="foo",
           args=[@{name="i",value="10"@}],
           file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},
           state="running"@}],
current-thread-id="1"
(gdb)
@end smallexample

@subheading The @code{-thread-list-ids} Command
@findex -thread-list-ids

@subsubheading Synopsis

@smallexample
 -thread-list-ids
@end smallexample

Produces a list of the currently known @value{GDBN} thread ids.  At the
end of the list it also prints the total number of such threads.

This command is retained for historical reasons, the
@code{-thread-info} command should be used instead.

@subsubheading @value{GDBN} Command

Part of @samp{info threads} supplies the same information.

@subsubheading Example

@smallexample
(gdb)
-thread-list-ids
^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
current-thread-id="1",number-of-threads="3"
(gdb)
@end smallexample


@subheading The @code{-thread-select} Command
@findex -thread-select

@subsubheading Synopsis

@smallexample
 -thread-select @var{threadnum}
@end smallexample

Make @var{threadnum} the current thread.  It prints the number of the new
current thread, and the topmost frame for that thread.

This command is deprecated in favor of explicitly using the
@samp{--thread} option to each command.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{thread}.

@subsubheading Example

@smallexample
(gdb)
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",thread-id="2",line="187",
file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
(gdb)
-thread-list-ids
^done,
thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
number-of-threads="3"
(gdb)
-thread-select 3
^done,new-thread-id="3",
frame=@{level="0",func="vprintf",
args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Ada Tasking Commands
@section @sc{gdb/mi} Ada Tasking Commands

@subheading The @code{-ada-task-info} Command
@findex -ada-task-info

@subsubheading Synopsis

@smallexample
 -ada-task-info [ @var{task-id} ]
@end smallexample

Reports information about either a specific Ada task, if the
@var{task-id} parameter is present, or about all Ada tasks.

@subsubheading @value{GDBN} Command

The @samp{info tasks} command prints the same information
about all Ada tasks (@pxref{Ada Tasks}).

@subsubheading Result

The result is a table of Ada tasks.  The following columns are
defined for each Ada task:

@table @samp
@item current
This field exists only for the current thread.  It has the value @samp{*}.

@item id
The identifier that @value{GDBN} uses to refer to the Ada task.

@item task-id
The identifier that the target uses to refer to the Ada task.

@item thread-id
The identifier of the thread corresponding to the Ada task.

This field should always exist, as Ada tasks are always implemented
on top of a thread.  But if @value{GDBN} cannot find this corresponding
thread for any reason, the field is omitted.

@item parent-id
This field exists only when the task was created by another task.
In this case, it provides the ID of the parent task.

@item priority
The base priority of the task.

@item state
The current state of the task.  For a detailed description of the
possible states, see @ref{Ada Tasks}.

@item name
The name of the task.

@end table

@subsubheading Example

@smallexample
-ada-task-info
^done,tasks=@{nr_rows="3",nr_cols="8",
hdr=[@{width="1",alignment="-1",col_name="current",colhdr=""@},
@{width="3",alignment="1",col_name="id",colhdr="ID"@},
@{width="9",alignment="1",col_name="task-id",colhdr="TID"@},
@{width="4",alignment="1",col_name="thread-id",colhdr=""@},
@{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"@},
@{width="3",alignment="1",col_name="priority",colhdr="Pri"@},
@{width="22",alignment="-1",col_name="state",colhdr="State"@},
@{width="1",alignment="2",col_name="name",colhdr="Name"@}],
body=[@{current="*",id="1",task-id="   644010",thread-id="1",priority="48",
state="Child Termination Wait",name="main_task"@}]@}
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Program Execution
@section @sc{gdb/mi} Program Execution

These are the asynchronous commands which generate the out-of-band
record @samp{*stopped}.  Currently @value{GDBN} only really executes
asynchronously with remote targets and this interaction is mimicked in
other cases.

@subheading The @code{-exec-continue} Command
@findex -exec-continue

@subsubheading Synopsis

@smallexample
 -exec-continue [--reverse] [--all|--thread-group N]
@end smallexample

Resumes the execution of the inferior program, which will continue
to execute until it reaches a debugger stop event.  If the 
@samp{--reverse} option is specified, execution resumes in reverse until 
it reaches a stop event.  Stop events may include
@itemize @bullet
@item
breakpoints or watchpoints
@item
signals or exceptions
@item
the end of the process (or its beginning under @samp{--reverse})
@item
the end or beginning of a replay log if one is being used.
@end itemize
In all-stop mode (@pxref{All-Stop
Mode}), may resume only one thread, or all threads, depending on the
value of the @samp{scheduler-locking} variable.  If @samp{--all} is
specified, all threads (in all inferiors) will be resumed.  The @samp{--all} option is
ignored in all-stop mode.  If the @samp{--thread-group} options is
specified, then all threads in that thread group are resumed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} corresponding is @samp{continue}.

@subsubheading Example

@smallexample
-exec-continue
^running
(gdb)
@@Hello world
*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
line="13"@}
(gdb)
@end smallexample


@subheading The @code{-exec-finish} Command
@findex -exec-finish

@subsubheading Synopsis

@smallexample
 -exec-finish [--reverse]
@end smallexample

Resumes the execution of the inferior program until the current
function is exited.  Displays the results returned by the function.
If the @samp{--reverse} option is specified, resumes the reverse
execution of the inferior program until the point where current
function was called.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{finish}.

@subsubheading Example

Function returning @code{void}.

@smallexample
-exec-finish
^running
(gdb)
@@hello from foo
*stopped,reason="function-finished",frame=@{func="main",args=[],
file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
(gdb)
@end smallexample

Function returning other than @code{void}.  The name of the internal
@value{GDBN} variable storing the result is printed, together with the
value itself.

@smallexample
-exec-finish
^running
(gdb)
*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
args=[@{name="a",value="1"],@{name="b",value="9"@}@},
file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
gdb-result-var="$1",return-value="0"
(gdb)
@end smallexample


@subheading The @code{-exec-interrupt} Command
@findex -exec-interrupt

@subsubheading Synopsis

@smallexample
 -exec-interrupt [--all|--thread-group N]
@end smallexample

Interrupts the background execution of the target.  Note how the token
associated with the stop message is the one for the execution command
that has been interrupted.  The token for the interrupt itself only
appears in the @samp{^done} output.  If the user is trying to
interrupt a non-running program, an error message will be printed.

Note that when asynchronous execution is enabled, this command is
asynchronous just like other execution commands.  That is, first the
@samp{^done} response will be printed, and the target stop will be
reported after that using the @samp{*stopped} notification.

In non-stop mode, only the context thread is interrupted by default.
All threads (in all inferiors) will be interrupted if the
@samp{--all}  option is specified.  If the @samp{--thread-group}
option is specified, all threads in that group will be interrupted.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{interrupt}.

@subsubheading Example

@smallexample
(gdb)
111-exec-continue
111^running

(gdb)
222-exec-interrupt
222^done
(gdb)
111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="13"@}
(gdb)

(gdb)
-exec-interrupt
^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
(gdb)
@end smallexample

@subheading The @code{-exec-jump} Command
@findex -exec-jump

@subsubheading Synopsis

@smallexample
 -exec-jump @var{location}
@end smallexample

Resumes execution of the inferior program at the location specified by
parameter.  @xref{Specify Location}, for a description of the
different forms of @var{location}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{jump}.

@subsubheading Example

@smallexample
-exec-jump foo.c:10
*running,thread-id="all"
^running
@end smallexample


@subheading The @code{-exec-next} Command
@findex -exec-next

@subsubheading Synopsis

@smallexample
 -exec-next [--reverse]
@end smallexample

Resumes execution of the inferior program, stopping when the beginning
of the next source line is reached.

If the @samp{--reverse} option is specified, resumes reverse execution
of the inferior program, stopping at the beginning of the previous
source line.  If you issue this command on the first line of a
function, it will take you back to the caller of that function, to the
source line where the function was called.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{next}.

@subsubheading Example

@smallexample
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",line="8",file="hello.c"
(gdb)
@end smallexample


@subheading The @code{-exec-next-instruction} Command
@findex -exec-next-instruction

@subsubheading Synopsis

@smallexample
 -exec-next-instruction [--reverse]
@end smallexample

Executes one machine instruction.  If the instruction is a function
call, continues until the function returns.  If the program stops at an
instruction in the middle of a source line, the address will be
printed as well.

If the @samp{--reverse} option is specified, resumes reverse execution
of the inferior program, stopping at the previous instruction.  If the
previously executed instruction was a return from another function,
it will continue to execute in reverse until the call to that function
(from the current stack frame) is reached.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{nexti}.

@subsubheading Example

@smallexample
(gdb)
-exec-next-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
addr="0x000100d4",line="5",file="hello.c"
(gdb)
@end smallexample


@subheading The @code{-exec-return} Command
@findex -exec-return

@subsubheading Synopsis

@smallexample
 -exec-return
@end smallexample

Makes current function return immediately.  Doesn't execute the inferior.
Displays the new current frame.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{return}.

@subsubheading Example

@smallexample
(gdb)
200-break-insert callee4
200^done,bkpt=@{number="1",addr="0x00010734",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
(gdb)
000-exec-run
000^running
(gdb)
000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
(gdb)
205-break-delete
205^done
(gdb)
111-exec-return
111^done,frame=@{level="0",func="callee3",
args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
(gdb)
@end smallexample


@subheading The @code{-exec-run} Command
@findex -exec-run

@subsubheading Synopsis

@smallexample
 -exec-run [ --all | --thread-group N ] [ --start ]
@end smallexample

Starts execution of the inferior from the beginning.  The inferior
executes until either a breakpoint is encountered or the program
exits.  In the latter case the output will include an exit code, if
the program has exited exceptionally.

When neither the @samp{--all} nor the @samp{--thread-group} option
is specified, the current inferior is started.  If the
@samp{--thread-group} option is specified, it should refer to a thread
group of type @samp{process}, and that thread group will be started.
If the @samp{--all} option is specified, then all inferiors will be started.

Using the @samp{--start} option instructs the debugger to stop
the execution at the start of the inferior's main subprogram,
following the same behavior as the @code{start} command
(@pxref{Starting}).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{run}.

@subsubheading Examples

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
frame=@{func="main",args=[],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="4"@}
(gdb)
@end smallexample

@noindent
Program exited normally:

@smallexample
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited-normally"
(gdb)
@end smallexample

@noindent
Program exited exceptionally:

@smallexample
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited",exit-code="01"
(gdb)
@end smallexample

Another way the program can terminate is if it receives a signal such as
@code{SIGINT}.  In this case, @sc{gdb/mi} displays this:

@smallexample
(gdb)
*stopped,reason="exited-signalled",signal-name="SIGINT",
signal-meaning="Interrupt"
@end smallexample


@c @subheading -exec-signal


@subheading The @code{-exec-step} Command
@findex -exec-step

@subsubheading Synopsis

@smallexample
 -exec-step [--reverse]
@end smallexample

Resumes execution of the inferior program, stopping when the beginning
of the next source line is reached, if the next source line is not a
function call.  If it is, stop at the first instruction of the called
function.  If the @samp{--reverse} option is specified, resumes reverse
execution of the inferior program, stopping at the beginning of the
previously executed source line.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{step}.

@subsubheading Example

Stepping into a function:

@smallexample
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",
frame=@{func="foo",args=[@{name="a",value="10"@},
@{name="b",value="0"@}],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="11"@}
(gdb)
@end smallexample

Regular stepping:

@smallexample
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
(gdb)
@end smallexample


@subheading The @code{-exec-step-instruction} Command
@findex -exec-step-instruction

@subsubheading Synopsis

@smallexample
 -exec-step-instruction [--reverse]
@end smallexample

Resumes the inferior which executes one machine instruction.  If the
@samp{--reverse} option is specified, resumes reverse execution of the
inferior program, stopping at the previously executed instruction.
The output, once @value{GDBN} has stopped, will vary depending on
whether we have stopped in the middle of a source line or not.  In the
former case, the address at which the program stopped will be printed
as well.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{stepi}.

@subsubheading Example

@smallexample
(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame=@{func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="10"@}
(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="10"@}
(gdb)
@end smallexample


@subheading The @code{-exec-until} Command
@findex -exec-until

@subsubheading Synopsis

@smallexample
 -exec-until [ @var{location} ]
@end smallexample

Executes the inferior until the @var{location} specified in the
argument is reached.  If there is no argument, the inferior executes
until a source line greater than the current one is reached.  The
reason for stopping in this case will be @samp{location-reached}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{until}.

@subsubheading Example

@smallexample
(gdb)
-exec-until recursive2.c:6
^running
(gdb)
x = 55
*stopped,reason="location-reached",frame=@{func="main",args=[],
file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
(gdb)
@end smallexample

@ignore
@subheading -file-clear
Is this going away????
@end ignore

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Stack Manipulation
@section @sc{gdb/mi} Stack Manipulation Commands

@subheading The @code{-enable-frame-filters} Command
@findex -enable-frame-filters

@smallexample
-enable-frame-filters
@end smallexample

@value{GDBN} allows Python-based frame filters to affect the output of
the MI commands relating to stack traces.  As there is no way to
implement this in a fully backward-compatible way, a front end must
request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into @value{GDBN},
this command will still succeed (and do nothing).

@subheading The @code{-stack-info-frame} Command
@findex -stack-info-frame

@subsubheading Synopsis

@smallexample
 -stack-info-frame
@end smallexample

Get info on the selected frame.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
(without arguments).

@subsubheading Example

@smallexample
(gdb)
-stack-info-frame
^done,frame=@{level="1",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
(gdb)
@end smallexample

@subheading The @code{-stack-info-depth} Command
@findex -stack-info-depth

@subsubheading Synopsis

@smallexample
 -stack-info-depth [ @var{max-depth} ]
@end smallexample

Return the depth of the stack.  If the integer argument @var{max-depth}
is specified, do not count beyond @var{max-depth} frames.

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.

@subsubheading Example

For a stack with frame levels 0 through 11:

@smallexample
(gdb)
-stack-info-depth
^done,depth="12"
(gdb)
-stack-info-depth 4
^done,depth="4"
(gdb)
-stack-info-depth 12
^done,depth="12"
(gdb)
-stack-info-depth 11
^done,depth="11"
(gdb)
-stack-info-depth 13
^done,depth="12"
(gdb)
@end smallexample

@anchor{-stack-list-arguments}
@subheading The @code{-stack-list-arguments} Command
@findex -stack-list-arguments

@subsubheading Synopsis

@smallexample
 -stack-list-arguments [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
    [ @var{low-frame} @var{high-frame} ]
@end smallexample

Display a list of the arguments for the frames between @var{low-frame}
and @var{high-frame} (inclusive).  If @var{low-frame} and
@var{high-frame} are not provided, list the arguments for the whole
call stack.  If the two arguments are equal, show the single frame
at the corresponding level.  It is an error if @var{low-frame} is
larger than the actual number of frames.  On the other hand,
@var{high-frame} may be larger than the actual number of frames, in
which case only existing frames will be returned.

If @var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  If the option @code{--no-frame-filters} is
supplied, then Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, arguments that
are not available are not listed.  Partially available arguments
are still displayed, however.

Use of this command to obtain arguments in a single frame is
deprecated in favor of the @samp{-stack-list-variables} command.

@subsubheading @value{GDBN} Command

@value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
@samp{gdb_get_args} command which partially overlaps with the
functionality of @samp{-stack-list-arguments}.

@subsubheading Example

@smallexample
(gdb)
-stack-list-frames
^done,
stack=[
frame=@{level="0",addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
frame=@{level="1",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
frame=@{level="2",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
frame=@{level="3",addr="0x000107b4",func="callee1",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
frame=@{level="4",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
(gdb)
-stack-list-arguments 0
^done,
stack-args=[
frame=@{level="0",args=[]@},
frame=@{level="1",args=[name="strarg"]@},
frame=@{level="2",args=[name="intarg",name="strarg"]@},
frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
frame=@{level="4",args=[]@}]
(gdb)
-stack-list-arguments 1
^done,
stack-args=[
frame=@{level="0",args=[]@},
frame=@{level="1",
 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
frame=@{level="2",args=[
@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
@{frame=@{level="3",args=[
@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@},
@{name="fltarg",value="3.5"@}]@},
frame=@{level="4",args=[]@}]
(gdb)
-stack-list-arguments 0 2 2
^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
(gdb)
-stack-list-arguments 1 2 2
^done,stack-args=[frame=@{level="2",
args=[@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
(gdb)
@end smallexample

@c @subheading -stack-list-exception-handlers


@anchor{-stack-list-frames}
@subheading The @code{-stack-list-frames} Command
@findex -stack-list-frames

@subsubheading Synopsis

@smallexample
 -stack-list-frames [ --no-frame-filters @var{low-frame} @var{high-frame} ]
@end smallexample

List the frames currently on the stack.  For each frame it displays the
following info:

@table @samp
@item @var{level}
The frame number, 0 being the topmost frame, i.e., the innermost function.
@item @var{addr}
The @code{$pc} value for that frame.
@item @var{func}
Function name.
@item @var{file}
File name of the source file where the function lives.
@item @var{fullname}
The full file name of the source file where the function lives.
@item @var{line}
Line number corresponding to the @code{$pc}.
@item @var{from}
The shared library where this function is defined.  This is only given
if the frame's function is not known.
@end table

If invoked without arguments, this command prints a backtrace for the
whole stack.  If given two integer arguments, it shows the frames whose
levels are between the two arguments (inclusive).  If the two arguments
are equal, it shows the single frame at the corresponding level.  It is
an error if @var{low-frame} is larger than the actual number of
frames.  On the other hand, @var{high-frame} may be larger than the
actual number of frames, in which case only existing frames will be
returned.  If the option @code{--no-frame-filters} is supplied, then
Python frame filters will not be executed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.

@subsubheading Example

Full stack backtrace:

@smallexample
(gdb)
-stack-list-frames
^done,stack=
[frame=@{level="0",addr="0x0001076c",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
frame=@{level="1",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="2",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="4",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="5",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="6",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="7",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="8",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="9",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="10",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="11",addr="0x00010738",func="main",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
(gdb)
@end smallexample

Show frames between @var{low_frame} and @var{high_frame}:

@smallexample
(gdb)
-stack-list-frames 3 5
^done,stack=
[frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="4",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
frame=@{level="5",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
(gdb)
@end smallexample

Show a single frame:

@smallexample
(gdb)
-stack-list-frames 3 3
^done,stack=
[frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
(gdb)
@end smallexample


@subheading The @code{-stack-list-locals} Command
@findex -stack-list-locals
@anchor{-stack-list-locals}

@subsubheading Synopsis

@smallexample
 -stack-list-locals [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
@end smallexample

Display the local variable names for the selected frame.  If
@var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  In this last case, a frontend can immediately
display the value of simple data types and create variable objects for
other data types when the user wishes to explore their values in
more detail.  If the option @code{--no-frame-filters} is supplied, then
Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, local variables
that are not available are not listed.  Partially available local
variables are still displayed, however.

This command is deprecated in favor of the
@samp{-stack-list-variables} command.

@subsubheading @value{GDBN} Command

@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.

@subsubheading Example

@smallexample
(gdb)
-stack-list-locals 0
^done,locals=[name="A",name="B",name="C"]
(gdb)
-stack-list-locals --all-values
^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
  @{name="C",value="@{1, 2, 3@}"@}]
-stack-list-locals --simple-values
^done,locals=[@{name="A",type="int",value="1"@},
  @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
(gdb)
@end smallexample

@anchor{-stack-list-variables}
@subheading The @code{-stack-list-variables} Command
@findex -stack-list-variables

@subsubheading Synopsis

@smallexample
 -stack-list-variables [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
@end smallexample

Display the names of local variables and function arguments for the selected frame.  If
@var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  If the option @code{--no-frame-filters} is
supplied, then Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, local variables
and arguments that are not available are not listed.  Partially
available arguments and local variables are still displayed, however.

@subsubheading Example

@smallexample
(gdb)
-stack-list-variables --thread 1 --frame 0 --all-values
^done,variables=[@{name="x",value="11"@},@{name="s",value="@{a = 1, b = 2@}"@}]
(gdb)
@end smallexample


@subheading The @code{-stack-select-frame} Command
@findex -stack-select-frame

@subsubheading Synopsis

@smallexample
 -stack-select-frame @var{framenum}
@end smallexample

Change the selected frame.  Select a different frame @var{framenum} on
the stack.

This command in deprecated in favor of passing the @samp{--frame}
option to every command.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.

@subsubheading Example

@smallexample
(gdb)
-stack-select-frame 2
^done
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Variable Objects
@section @sc{gdb/mi} Variable Objects

@ignore

@subheading Motivation for Variable Objects in @sc{gdb/mi}

For the implementation of a variable debugger window (locals, watched
expressions, etc.), we are proposing the adaptation of the existing code
used by @code{Insight}.

The two main reasons for that are:

@enumerate 1
@item
It has been proven in practice (it is already on its second generation).

@item
It will shorten development time (needless to say how important it is
now).
@end enumerate

The original interface was designed to be used by Tcl code, so it was
slightly changed so it could be used through @sc{gdb/mi}.  This section
describes the @sc{gdb/mi} operations that will be available and gives some
hints about their use.

@emph{Note}: In addition to the set of operations described here, we
expect the @sc{gui} implementation of a variable window to require, at
least, the following operations:

@itemize @bullet
@item @code{-gdb-show} @code{output-radix}
@item @code{-stack-list-arguments}
@item @code{-stack-list-locals}
@item @code{-stack-select-frame}
@end itemize

@end ignore

@subheading Introduction to Variable Objects

@cindex variable objects in @sc{gdb/mi}

Variable objects are "object-oriented" MI interface for examining and
changing values of expressions.  Unlike some other MI interfaces that
work with expressions, variable objects are specifically designed for
simple and efficient presentation in the frontend.  A variable object
is identified by string name.  When a variable object is created, the
frontend specifies the expression for that variable object.  The
expression can be a simple variable, or it can be an arbitrary complex
expression, and can even involve CPU registers.  After creating a
variable object, the frontend can invoke other variable object
operations---for example to obtain or change the value of a variable
object, or to change display format.

Variable objects have hierarchical tree structure.  Any variable object
that corresponds to a composite type, such as structure in C, has
a number of child variable objects, for example corresponding to each
element of a structure.  A child variable object can itself have 
children, recursively.  Recursion ends when we reach 
leaf variable objects, which always have built-in types.  Child variable
objects are created only by explicit request, so if a frontend 
is not interested in the children of a particular variable object, no
child will be created.

For a leaf variable object it is possible to obtain its value as a
string, or set the value from a string.  String value can be also
obtained for a non-leaf variable object, but it's generally a string
that only indicates the type of the object, and does not list its
contents.  Assignment to a non-leaf variable object is not allowed.
 
A frontend does not need to read the values of all variable objects each time
the program stops.  Instead, MI provides an update command that lists all
variable objects whose values has changed since the last update
operation.  This considerably reduces the amount of data that must
be transferred to the frontend.  As noted above, children variable
objects are created on demand, and only leaf variable objects have a
real value.  As result, gdb will read target memory only for leaf
variables that frontend has created.

The automatic update is not always desirable.  For example, a frontend
might want to keep a value of some expression for future reference,
and never update it.  For another example,  fetching memory is
relatively slow for embedded targets, so a frontend might want
to disable automatic update for the variables that are either not
visible on the screen, or ``closed''.  This is possible using so
called ``frozen variable objects''.  Such variable objects are never
implicitly updated.  

Variable objects can be either @dfn{fixed} or @dfn{floating}.  For the
fixed variable object, the expression is parsed when the variable
object is created, including associating identifiers to specific
variables.  The meaning of expression never changes.  For a floating
variable object the values of variables whose names appear in the
expressions are re-evaluated every time in the context of the current
frame.  Consider this example:

@smallexample
void do_work(...)
@{
        struct work_state state;

        if (...)
           do_work(...);
@}
@end smallexample

If a fixed variable object for the @code{state} variable is created in
this function, and we enter the recursive call, the variable
object will report the value of @code{state} in the top-level
@code{do_work} invocation.  On the other hand, a floating variable
object will report the value of @code{state} in the current frame.

If an expression specified when creating a fixed variable object
refers to a local variable, the variable object becomes bound to the
thread and frame in which the variable object is created.  When such
variable object is updated, @value{GDBN} makes sure that the
thread/frame combination the variable object is bound to still exists,
and re-evaluates the variable object in context of that thread/frame.

The following is the complete set of @sc{gdb/mi} operations defined to
access this functionality:

@multitable @columnfractions .4 .6
@item @strong{Operation}
@tab @strong{Description}

@item @code{-enable-pretty-printing}
@tab enable Python-based pretty-printing
@item @code{-var-create}
@tab create a variable object
@item @code{-var-delete}
@tab delete the variable object and/or its children
@item @code{-var-set-format}
@tab set the display format of this variable
@item @code{-var-show-format}
@tab show the display format of this variable
@item @code{-var-info-num-children}
@tab tells how many children this object has
@item @code{-var-list-children}
@tab return a list of the object's children
@item @code{-var-info-type}
@tab show the type of this variable object
@item @code{-var-info-expression}
@tab print parent-relative expression that this variable object represents
@item @code{-var-info-path-expression}
@tab print full expression that this variable object represents
@item @code{-var-show-attributes}
@tab is this variable editable? does it exist here?
@item @code{-var-evaluate-expression}
@tab get the value of this variable
@item @code{-var-assign}
@tab set the value of this variable
@item @code{-var-update}
@tab update the variable and its children
@item @code{-var-set-frozen}
@tab set frozeness attribute
@item @code{-var-set-update-range}
@tab set range of children to display on update
@end multitable

In the next subsection we describe each operation in detail and suggest
how it can be used.

@subheading Description And Use of Operations on Variable Objects

@subheading The @code{-enable-pretty-printing} Command
@findex -enable-pretty-printing

@smallexample
-enable-pretty-printing
@end smallexample

@value{GDBN} allows Python-based visualizers to affect the output of the
MI variable object commands.  However, because there was no way to
implement this in a fully backward-compatible way, a front end must
request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into @value{GDBN},
this command will still succeed (and do nothing).

This feature is currently (as of @value{GDBN} 7.0) experimental, and
may work differently in future versions of @value{GDBN}.

@subheading The @code{-var-create} Command
@findex -var-create

@subsubheading Synopsis

@smallexample
 -var-create @{@var{name} | "-"@}
    @{@var{frame-addr} | "*" | "@@"@} @var{expression}
@end smallexample

This operation creates a variable object, which allows the monitoring of
a variable, the result of an expression, a memory cell or a CPU
register.

The @var{name} parameter is the string by which the object can be
referenced.  It must be unique.  If @samp{-} is specified, the varobj
system will generate a string ``varNNNNNN'' automatically.  It will be
unique provided that one does not specify @var{name} of that format.
The command fails if a duplicate name is found.

The frame under which the expression should be evaluated can be
specified by @var{frame-addr}.  A @samp{*} indicates that the current
frame should be used.  A @samp{@@} indicates that a floating variable
object must be created.

@var{expression} is any expression valid on the current language set (must not
begin with a @samp{*}), or one of the following:

@itemize @bullet
@item
@samp{*@var{addr}}, where @var{addr} is the address of a memory cell

@item
@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)

@item
@samp{$@var{regname}} --- a CPU register name
@end itemize

@cindex dynamic varobj
A varobj's contents may be provided by a Python-based pretty-printer.  In this
case the varobj is known as a @dfn{dynamic varobj}.  Dynamic varobjs
have slightly different semantics in some cases.  If the
@code{-enable-pretty-printing} command is not sent, then @value{GDBN}
will never create a dynamic varobj.  This ensures backward
compatibility for existing clients.

@subsubheading Result

This operation returns attributes of the newly-created varobj.  These
are:

@table @samp
@item name
The name of the varobj.

@item numchild
The number of children of the varobj.  This number is not necessarily
reliable for a dynamic varobj.  Instead, you must examine the
@samp{has_more} attribute.

@item value
The varobj's scalar value.  For a varobj whose type is some sort of
aggregate (e.g., a @code{struct}), or for a dynamic varobj, this value
will not be interesting.

@item type
The varobj's type.  This is a string representation of the type, as
would be printed by the @value{GDBN} CLI.  If @samp{print object}
(@pxref{Print Settings, set print object}) is set to @code{on}, the
@emph{actual} (derived) type of the object is shown rather than the
@emph{declared} one.

@item thread-id
If a variable object is bound to a specific thread, then this is the
thread's identifier.

@item has_more
For a dynamic varobj, this indicates whether there appear to be any
children available.  For a non-dynamic varobj, this will be 0.

@item dynamic
This attribute will be present and have the value @samp{1} if the
varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
then this attribute will not be present.

@item displayhint
A dynamic varobj can supply a display hint to the front end.  The
value comes directly from the Python pretty-printer object's
@code{display_hint} method.  @xref{Pretty Printing API}.
@end table

Typical output will look like this:

@smallexample
 name="@var{name}",numchild="@var{N}",type="@var{type}",thread-id="@var{M}",
  has_more="@var{has_more}"
@end smallexample


@subheading The @code{-var-delete} Command
@findex -var-delete

@subsubheading Synopsis

@smallexample
 -var-delete [ -c ] @var{name}
@end smallexample

Deletes a previously created variable object and all of its children.
With the @samp{-c} option, just deletes the children.

Returns an error if the object @var{name} is not found.


@subheading The @code{-var-set-format} Command
@findex -var-set-format

@subsubheading Synopsis

@smallexample
 -var-set-format @var{name} @var{format-spec}
@end smallexample

Sets the output format for the value of the object @var{name} to be
@var{format-spec}.

@anchor{-var-set-format}
The syntax for the @var{format-spec} is as follows:

@smallexample
 @var{format-spec} @expansion{}
 @{binary | decimal | hexadecimal | octal | natural@}
@end smallexample

The natural format is the default format choosen automatically
based on the variable type (like decimal for an @code{int}, hex
for pointers, etc.).

For a variable with children, the format is set only on the 
variable itself, and the children are not affected.  

@subheading The @code{-var-show-format} Command
@findex -var-show-format

@subsubheading Synopsis

@smallexample
 -var-show-format @var{name}
@end smallexample

Returns the format used to display the value of the object @var{name}.

@smallexample
 @var{format} @expansion{}
 @var{format-spec}
@end smallexample


@subheading The @code{-var-info-num-children} Command
@findex -var-info-num-children

@subsubheading Synopsis

@smallexample
 -var-info-num-children @var{name}
@end smallexample

Returns the number of children of a variable object @var{name}:

@smallexample
 numchild=@var{n}
@end smallexample

Note that this number is not completely reliable for a dynamic varobj.
It will return the current number of children, but more children may
be available.


@subheading The @code{-var-list-children} Command
@findex -var-list-children

@subsubheading Synopsis

@smallexample
 -var-list-children [@var{print-values}] @var{name} [@var{from} @var{to}]
@end smallexample
@anchor{-var-list-children}

Return a list of the children of the specified variable object and
create variable objects for them, if they do not already exist.  With
a single argument or if @var{print-values} has a value of 0 or
@code{--no-values}, print only the names of the variables; if
@var{print-values} is 1 or @code{--all-values}, also print their
values; and if it is 2 or @code{--simple-values} print the name and
value for simple data types and just the name for arrays, structures
and unions.

@var{from} and @var{to}, if specified, indicate the range of children
to report.  If @var{from} or @var{to} is less than zero, the range is
reset and all children will be reported.  Otherwise, children starting
at @var{from} (zero-based) and up to and excluding @var{to} will be
reported.

If a child range is requested, it will only affect the current call to
@code{-var-list-children}, but not future calls to @code{-var-update}.
For this, you must instead use @code{-var-set-update-range}.  The
intent of this approach is to enable a front end to implement any
update approach it likes; for example, scrolling a view may cause the
front end to request more children with @code{-var-list-children}, and
then the front end could call @code{-var-set-update-range} with a
different range to ensure that future updates are restricted to just
the visible items.

For each child the following results are returned:

@table @var

@item name
Name of the variable object created for this child.

@item exp
The expression to be shown to the user by the front end to designate this child.
For example this may be the name of a structure member.

For a dynamic varobj, this value cannot be used to form an
expression.  There is no way to do this at all with a dynamic varobj.

For C/C@t{++} structures there are several pseudo children returned to
designate access qualifiers.  For these pseudo children @var{exp} is
@samp{public}, @samp{private}, or @samp{protected}.  In this case the
type and value are not present.

A dynamic varobj will not report the access qualifying
pseudo-children, regardless of the language.  This information is not
available at all with a dynamic varobj.

@item numchild
Number of children this child has.  For a dynamic varobj, this will be
0.

@item type
The type of the child.  If @samp{print object}
(@pxref{Print Settings, set print object}) is set to @code{on}, the
@emph{actual} (derived) type of the object is shown rather than the
@emph{declared} one.

@item value
If values were requested, this is the value.

@item thread-id
If this variable object is associated with a thread, this is the thread id.  
Otherwise this result is not present.

@item frozen
If the variable object is frozen, this variable will be present with a value of 1.
@end table

The result may have its own attributes:

@table @samp
@item displayhint
A dynamic varobj can supply a display hint to the front end.  The
value comes directly from the Python pretty-printer object's
@code{display_hint} method.  @xref{Pretty Printing API}.

@item has_more
This is an integer attribute which is nonzero if there are children
remaining after the end of the selected range.
@end table

@subsubheading Example

@smallexample
(gdb)
 -var-list-children n
 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
(gdb)
 -var-list-children --all-values n
 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
@end smallexample


@subheading The @code{-var-info-type} Command
@findex -var-info-type

@subsubheading Synopsis

@smallexample
 -var-info-type @var{name}
@end smallexample

Returns the type of the specified variable @var{name}.  The type is
returned as a string in the same format as it is output by the
@value{GDBN} CLI:

@smallexample
 type=@var{typename}
@end smallexample


@subheading The @code{-var-info-expression} Command
@findex -var-info-expression

@subsubheading Synopsis

@smallexample
 -var-info-expression @var{name}
@end smallexample

Returns a string that is suitable for presenting this
variable object in user interface.  The string is generally
not valid expression in the current language, and cannot be evaluated.

For example, if @code{a} is an array, and variable object
@code{A} was created for @code{a}, then we'll get this output:

@smallexample
(gdb) -var-info-expression A.1
^done,lang="C",exp="1"
@end smallexample

@noindent
Here, the value of @code{lang} is the language name, which can be
found in @ref{Supported Languages}.

Note that the output of the @code{-var-list-children} command also
includes those expressions, so the @code{-var-info-expression} command
is of limited use.

@subheading The @code{-var-info-path-expression} Command
@findex -var-info-path-expression

@subsubheading Synopsis

@smallexample
 -var-info-path-expression @var{name}
@end smallexample

Returns an expression that can be evaluated in the current
context and will yield the same value that a variable object has.
Compare this with the @code{-var-info-expression} command, which
result can be used only for UI presentation.  Typical use of
the @code{-var-info-path-expression} command is creating a 
watchpoint from a variable object.

This command is currently not valid for children of a dynamic varobj,
and will give an error when invoked on one.

For example, suppose @code{C} is a C@t{++} class, derived from class
@code{Base}, and that the @code{Base} class has a member called
@code{m_size}.  Assume a variable @code{c} is has the type of
@code{C} and a variable object @code{C} was created for variable
@code{c}.  Then, we'll get this output:
@smallexample
(gdb) -var-info-path-expression C.Base.public.m_size
^done,path_expr=((Base)c).m_size)
@end smallexample

@subheading The @code{-var-show-attributes} Command
@findex -var-show-attributes

@subsubheading Synopsis

@smallexample
 -var-show-attributes @var{name}
@end smallexample

List attributes of the specified variable object @var{name}:

@smallexample
 status=@var{attr} [ ( ,@var{attr} )* ]
@end smallexample

@noindent
where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.

@subheading The @code{-var-evaluate-expression} Command
@findex -var-evaluate-expression

@subsubheading Synopsis

@smallexample
 -var-evaluate-expression [-f @var{format-spec}] @var{name}
@end smallexample

Evaluates the expression that is represented by the specified variable
object and returns its value as a string.  The format of the string
can be specified with the @samp{-f} option.  The possible values of 
this option are the same as for @code{-var-set-format} 
(@pxref{-var-set-format}).  If the @samp{-f} option is not specified,
the current display format will be used.  The current display format 
can be changed using the @code{-var-set-format} command.

@smallexample
 value=@var{value}
@end smallexample

Note that one must invoke @code{-var-list-children} for a variable
before the value of a child variable can be evaluated.

@subheading The @code{-var-assign} Command
@findex -var-assign

@subsubheading Synopsis

@smallexample
 -var-assign @var{name} @var{expression}
@end smallexample

Assigns the value of @var{expression} to the variable object specified
by @var{name}.  The object must be @samp{editable}.  If the variable's
value is altered by the assign, the variable will show up in any
subsequent @code{-var-update} list.

@subsubheading Example

@smallexample
(gdb)
-var-assign var1 3
^done,value="3"
(gdb)
-var-update *
^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
(gdb)
@end smallexample

@subheading The @code{-var-update} Command
@findex -var-update

@subsubheading Synopsis

@smallexample
 -var-update [@var{print-values}] @{@var{name} | "*"@}
@end smallexample

Reevaluate the expressions corresponding to the variable object
@var{name} and all its direct and indirect children, and return the
list of variable objects whose values have changed; @var{name} must
be a root variable object.  Here, ``changed'' means that the result of
@code{-var-evaluate-expression} before and after the
@code{-var-update} is different.  If @samp{*} is used as the variable
object names, all existing variable objects are updated, except
for frozen ones (@pxref{-var-set-frozen}).  The option
@var{print-values} determines whether both names and values, or just
names are printed.  The possible values of this option are the same
as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
recommended to use the @samp{--all-values} option, to reduce the
number of MI commands needed on each program stop.

With the @samp{*} parameter, if a variable object is bound to a
currently running thread, it will not be updated, without any
diagnostic.

If @code{-var-set-update-range} was previously used on a varobj, then
only the selected range of children will be reported.

@code{-var-update} reports all the changed varobjs in a tuple named
@samp{changelist}.

Each item in the change list is itself a tuple holding:

@table @samp
@item name
The name of the varobj.

@item value
If values were requested for this update, then this field will be
present and will hold the value of the varobj.

@item in_scope
@anchor{-var-update}
This field is a string which may take one of three values:

@table @code
@item "true"
The variable object's current value is valid.

@item "false"
The variable object does not currently hold a valid value but it may
hold one in the future if its associated expression comes back into
scope.

@item "invalid"
The variable object no longer holds a valid value.
This can occur when the executable file being debugged has changed,
either through recompilation or by using the @value{GDBN} @code{file}
command.  The front end should normally choose to delete these variable
objects.
@end table

In the future new values may be added to this list so the front should
be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.

@item type_changed
This is only present if the varobj is still valid.  If the type
changed, then this will be the string @samp{true}; otherwise it will
be @samp{false}.

When a varobj's type changes, its children are also likely to have
become incorrect.  Therefore, the varobj's children are automatically
deleted when this attribute is @samp{true}.  Also, the varobj's update
range, when set using the @code{-var-set-update-range} command, is
unset.

@item new_type
If the varobj's type changed, then this field will be present and will
hold the new type.

@item new_num_children
For a dynamic varobj, if the number of children changed, or if the
type changed, this will be the new number of children.

The @samp{numchild} field in other varobj responses is generally not
valid for a dynamic varobj -- it will show the number of children that
@value{GDBN} knows about, but because dynamic varobjs lazily
instantiate their children, this will not reflect the number of
children which may be available.

The @samp{new_num_children} attribute only reports changes to the
number of children known by @value{GDBN}.  This is the only way to
detect whether an update has removed children (which necessarily can
only happen at the end of the update range).

@item displayhint
The display hint, if any.

@item has_more
This is an integer value, which will be 1 if there are more children
available outside the varobj's update range.

@item dynamic
This attribute will be present and have the value @samp{1} if the
varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
then this attribute will not be present.

@item new_children
If new children were added to a dynamic varobj within the selected
update range (as set by @code{-var-set-update-range}), then they will
be listed in this attribute.
@end table

@subsubheading Example

@smallexample
(gdb)
-var-assign var1 3
^done,value="3"
(gdb)
-var-update --all-values var1
^done,changelist=[@{name="var1",value="3",in_scope="true",
type_changed="false"@}]
(gdb)
@end smallexample

@subheading The @code{-var-set-frozen} Command
@findex -var-set-frozen
@anchor{-var-set-frozen}

@subsubheading Synopsis

@smallexample
 -var-set-frozen @var{name} @var{flag}
@end smallexample

Set the frozenness flag on the variable object @var{name}.  The
@var{flag} parameter should be either @samp{1} to make the variable
frozen or @samp{0} to make it unfrozen.  If a variable object is
frozen, then neither itself, nor any of its children, are 
implicitly updated by @code{-var-update} of 
a parent variable or by @code{-var-update *}.  Only
@code{-var-update} of the variable itself will update its value and
values of its children.  After a variable object is unfrozen, it is
implicitly updated by all subsequent @code{-var-update} operations.  
Unfreezing a variable does not update it, only subsequent
@code{-var-update} does.

@subsubheading Example

@smallexample
(gdb)
-var-set-frozen V 1
^done
(gdb)
@end smallexample

@subheading The @code{-var-set-update-range} command
@findex -var-set-update-range
@anchor{-var-set-update-range}

@subsubheading Synopsis

@smallexample
 -var-set-update-range @var{name} @var{from} @var{to}
@end smallexample

Set the range of children to be returned by future invocations of
@code{-var-update}.

@var{from} and @var{to} indicate the range of children to report.  If
@var{from} or @var{to} is less than zero, the range is reset and all
children will be reported.  Otherwise, children starting at @var{from}
(zero-based) and up to and excluding @var{to} will be reported.

@subsubheading Example

@smallexample
(gdb)
-var-set-update-range V 1 2
^done
@end smallexample

@subheading The @code{-var-set-visualizer} command
@findex -var-set-visualizer
@anchor{-var-set-visualizer}

@subsubheading Synopsis

@smallexample
 -var-set-visualizer @var{name} @var{visualizer}
@end smallexample

Set a visualizer for the variable object @var{name}.

@var{visualizer} is the visualizer to use.  The special value
@samp{None} means to disable any visualizer in use.

If not @samp{None}, @var{visualizer} must be a Python expression.
This expression must evaluate to a callable object which accepts a
single argument.  @value{GDBN} will call this object with the value of
the varobj @var{name} as an argument (this is done so that the same
Python pretty-printing code can be used for both the CLI and MI).
When called, this object must return an object which conforms to the
pretty-printing interface (@pxref{Pretty Printing API}).

The pre-defined function @code{gdb.default_visualizer} may be used to
select a visualizer by following the built-in process
(@pxref{Selecting Pretty-Printers}).  This is done automatically when
a varobj is created, and so ordinarily is not needed.

This feature is only available if Python support is enabled.  The MI
command @code{-list-features} (@pxref{GDB/MI Miscellaneous Commands})
can be used to check this.

@subsubheading Example

Resetting the visualizer:

@smallexample
(gdb)
-var-set-visualizer V None
^done
@end smallexample

Reselecting the default (type-based) visualizer:

@smallexample
(gdb)
-var-set-visualizer V gdb.default_visualizer
^done
@end smallexample

Suppose @code{SomeClass} is a visualizer class.  A lambda expression
can be used to instantiate this class for a varobj:

@smallexample
(gdb)
-var-set-visualizer V "lambda val: SomeClass()"
^done
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Data Manipulation
@section @sc{gdb/mi} Data Manipulation

@cindex data manipulation, in @sc{gdb/mi}
@cindex @sc{gdb/mi}, data manipulation
This section describes the @sc{gdb/mi} commands that manipulate data:
examine memory and registers, evaluate expressions, etc.

@c REMOVED FROM THE INTERFACE.
@c @subheading -data-assign
@c Change the value of a program variable. Plenty of side effects.
@c @subsubheading GDB Command
@c set variable
@c @subsubheading Example
@c N.A.

@subheading The @code{-data-disassemble} Command
@findex -data-disassemble

@subsubheading Synopsis

@smallexample
 -data-disassemble
    [ -s @var{start-addr} -e @var{end-addr} ]
  | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
  -- @var{mode}
@end smallexample

@noindent
Where:

@table @samp
@item @var{start-addr}
is the beginning address (or @code{$pc})
@item @var{end-addr}
is the end address
@item @var{filename}
is the name of the file to disassemble
@item @var{linenum}
is the line number to disassemble around
@item @var{lines}
is the number of disassembly lines to be produced.  If it is -1,
the whole function will be disassembled, in case no @var{end-addr} is
specified.  If @var{end-addr} is specified as a non-zero value, and
@var{lines} is lower than the number of disassembly lines between
@var{start-addr} and @var{end-addr}, only @var{lines} lines are
displayed; if @var{lines} is higher than the number of lines between
@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
are displayed.
@item @var{mode}
is either 0 (meaning only disassembly), 1 (meaning mixed source and
disassembly), 2 (meaning disassembly with raw opcodes), or 3 (meaning
mixed source and disassembly with raw opcodes).
@end table

@subsubheading Result

The result of the @code{-data-disassemble} command will be a list named
@samp{asm_insns}, the contents of this list depend on the @var{mode}
used with the @code{-data-disassemble} command.

For modes 0 and 2 the @samp{asm_insns} list contains tuples with the
following fields:

@table @code
@item address
The address at which this instruction was disassembled.

@item func-name
The name of the function this instruction is within.

@item offset
The decimal offset in bytes from the start of @samp{func-name}.

@item inst
The text disassembly for this @samp{address}.

@item opcodes
This field is only present for mode 2.  This contains the raw opcode
bytes for the @samp{inst} field.

@end table

For modes 1 and 3 the @samp{asm_insns} list contains tuples named
@samp{src_and_asm_line}, each of which has the following fields:

@table @code
@item line
The line number within @samp{file}.

@item file
The file name from the compilation unit.  This might be an absolute
file name or a relative file name depending on the compile command
used.

@item fullname
Absolute file name of @samp{file}.  It is converted to a canonical form
using the source file search path
(@pxref{Source Path, ,Specifying Source Directories})
and after resolving all the symbolic links.

If the source file is not found this field will contain the path as
present in the debug information.

@item line_asm_insn
This is a list of tuples containing the disassembly for @samp{line} in
@samp{file}.  The fields of each tuple are the same as for
@code{-data-disassemble} in @var{mode} 0 and 2, so @samp{address},
@samp{func-name}, @samp{offset}, @samp{inst}, and optionally
@samp{opcodes}.

@end table

Note that whatever included in the @samp{inst} field, is not
manipulated directly by @sc{gdb/mi}, i.e., it is not possible to
adjust its format.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disassemble}.

@subsubheading Example

Disassemble from the current value of @code{$pc} to @code{$pc + 20}:

@smallexample
(gdb)
-data-disassemble -s $pc -e "$pc + 20" -- 0
^done,
asm_insns=[
@{address="0x000107c0",func-name="main",offset="4",
inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@},
@{address="0x000107c8",func-name="main",offset="12",
inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
@{address="0x000107cc",func-name="main",offset="16",
inst="sethi  %hi(0x11800), %o2"@},
@{address="0x000107d0",func-name="main",offset="20",
inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
(gdb)
@end smallexample

Disassemble the whole @code{main} function.  Line 32 is part of
@code{main}.

@smallexample
-data-disassemble -f basics.c -l 32 -- 0
^done,asm_insns=[
@{address="0x000107bc",func-name="main",offset="0",
inst="save  %sp, -112, %sp"@},
@{address="0x000107c0",func-name="main",offset="4",
inst="mov   2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"@},
[@dots{}]
@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
(gdb)
@end smallexample

Disassemble 3 instructions from the start of @code{main}:

@smallexample
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 0
^done,asm_insns=[
@{address="0x000107bc",func-name="main",offset="0",
inst="save  %sp, -112, %sp"@},
@{address="0x000107c0",func-name="main",offset="4",
inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@}]
(gdb)
@end smallexample

Disassemble 3 instructions from the start of @code{main} in mixed mode:

@smallexample
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 1
^done,asm_insns=[
src_and_asm_line=@{line="31",
file="../../../src/gdb/testsuite/gdb.mi/basics.c",
fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
line_asm_insn=[@{address="0x000107bc",
func-name="main",offset="0",inst="save  %sp, -112, %sp"@}]@},
src_and_asm_line=@{line="32",
file="../../../src/gdb/testsuite/gdb.mi/basics.c",
fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
line_asm_insn=[@{address="0x000107c0",
func-name="main",offset="4",inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@}]@}]
(gdb)
@end smallexample


@subheading The @code{-data-evaluate-expression} Command
@findex -data-evaluate-expression

@subsubheading Synopsis

@smallexample
 -data-evaluate-expression @var{expr}
@end smallexample

Evaluate @var{expr} as an expression.  The expression could contain an
inferior function call.  The function call will execute synchronously.
If the expression contains spaces, it must be enclosed in double quotes.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
@samp{call}.  In @code{gdbtk} only, there's a corresponding
@samp{gdb_eval} command.

@subsubheading Example

In the following example, the numbers that precede the commands are the
@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
output.

@smallexample
211-data-evaluate-expression A
211^done,value="1"
(gdb)
311-data-evaluate-expression &A
311^done,value="0xefffeb7c"
(gdb)
411-data-evaluate-expression A+3
411^done,value="4"
(gdb)
511-data-evaluate-expression "A + 3"
511^done,value="4"
(gdb)
@end smallexample


@subheading The @code{-data-list-changed-registers} Command
@findex -data-list-changed-registers

@subsubheading Synopsis

@smallexample
 -data-list-changed-registers
@end smallexample

Display a list of the registers that have changed.

@subsubheading @value{GDBN} Command

@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
has the corresponding command @samp{gdb_changed_register_list}.

@subsubheading Example

On a PPC MBX board:

@smallexample
(gdb)
-exec-continue
^running

(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
line="5"@}
(gdb)
-data-list-changed-registers
^done,changed-registers=["0","1","2","4","5","6","7","8","9",
"10","11","13","14","15","16","17","18","19","20","21","22","23",
"24","25","26","27","28","30","31","64","65","66","67","69"]
(gdb)
@end smallexample


@subheading The @code{-data-list-register-names} Command
@findex -data-list-register-names

@subsubheading Synopsis

@smallexample
 -data-list-register-names [ ( @var{regno} )+ ]
@end smallexample

Show a list of register names for the current target.  If no arguments
are given, it shows a list of the names of all the registers.  If
integer numbers are given as arguments, it will print a list of the
names of the registers corresponding to the arguments.  To ensure
consistency between a register name and its number, the output list may
include empty register names.

@subsubheading @value{GDBN} Command

@value{GDBN} does not have a command which corresponds to
@samp{-data-list-register-names}.  In @code{gdbtk} there is a
corresponding command @samp{gdb_regnames}.

@subsubheading Example

For the PPC MBX board:
@smallexample
(gdb)
-data-list-register-names
^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
"", "pc","ps","cr","lr","ctr","xer"]
(gdb)
-data-list-register-names 1 2 3
^done,register-names=["r1","r2","r3"]
(gdb)
@end smallexample

@subheading The @code{-data-list-register-values} Command
@findex -data-list-register-values

@subsubheading Synopsis

@smallexample
 -data-list-register-values
    [ @code{--skip-unavailable} ] @var{fmt} [ ( @var{regno} )*]
@end smallexample

Display the registers' contents.  @var{fmt} is the format according to
which the registers' contents are to be returned, followed by an optional
list of numbers specifying the registers to display.  A missing list of
numbers indicates that the contents of all the registers must be
returned.  The @code{--skip-unavailable} option indicates that only
the available registers are to be returned.

Allowed formats for @var{fmt} are:

@table @code
@item x
Hexadecimal
@item o
Octal
@item t
Binary
@item d
Decimal
@item r
Raw
@item N
Natural
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.

@subsubheading Example

For a PPC MBX board (note: line breaks are for readability only, they
don't appear in the actual output):

@smallexample
(gdb)
-data-list-register-values r 64 65
^done,register-values=[@{number="64",value="0xfe00a300"@},
@{number="65",value="0x00029002"@}]
(gdb)
-data-list-register-values x
^done,register-values=[@{number="0",value="0xfe0043c8"@},
@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
@{number="3",value="0x0"@},@{number="4",value="0xa"@},
@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
@{number="11",value="0x1"@},@{number="12",value="0x0"@},
@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
@{number="31",value="0x0"@},@{number="32",value="0x0"@},
@{number="33",value="0x0"@},@{number="34",value="0x0"@},
@{number="35",value="0x0"@},@{number="36",value="0x0"@},
@{number="37",value="0x0"@},@{number="38",value="0x0"@},
@{number="39",value="0x0"@},@{number="40",value="0x0"@},
@{number="41",value="0x0"@},@{number="42",value="0x0"@},
@{number="43",value="0x0"@},@{number="44",value="0x0"@},
@{number="45",value="0x0"@},@{number="46",value="0x0"@},
@{number="47",value="0x0"@},@{number="48",value="0x0"@},
@{number="49",value="0x0"@},@{number="50",value="0x0"@},
@{number="51",value="0x0"@},@{number="52",value="0x0"@},
@{number="53",value="0x0"@},@{number="54",value="0x0"@},
@{number="55",value="0x0"@},@{number="56",value="0x0"@},
@{number="57",value="0x0"@},@{number="58",value="0x0"@},
@{number="59",value="0x0"@},@{number="60",value="0x0"@},
@{number="61",value="0x0"@},@{number="62",value="0x0"@},
@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
@{number="69",value="0x20002b03"@}]
(gdb)
@end smallexample


@subheading The @code{-data-read-memory} Command
@findex -data-read-memory

This command is deprecated, use @code{-data-read-memory-bytes} instead.

@subsubheading Synopsis

@smallexample
 -data-read-memory [ -o @var{byte-offset} ]
   @var{address} @var{word-format} @var{word-size}
   @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first memory word to be
read.  Complex expressions containing embedded white space should be
quoted using the C convention.

@item @var{word-format}
The format to be used to print the memory words.  The notation is the
same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
,Output Formats}).

@item @var{word-size}
The size of each memory word in bytes.

@item @var{nr-rows}
The number of rows in the output table.

@item @var{nr-cols}
The number of columns in the output table.

@item @var{aschar}
If present, indicates that each row should include an @sc{ascii} dump.  The
value of @var{aschar} is used as a padding character when a byte is not a
member of the printable @sc{ascii} character set (printable @sc{ascii}
characters are those whose code is between 32 and 126, inclusively).

@item @var{byte-offset}
An offset to add to the @var{address} before fetching memory.
@end table

This command displays memory contents as a table of @var{nr-rows} by
@var{nr-cols} words, each word being @var{word-size} bytes.  In total,
@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
(returned as @samp{total-bytes}).  Should less than the requested number
of bytes be returned by the target, the missing words are identified
using @samp{N/A}.  The number of bytes read from the target is returned
in @samp{nr-bytes} and the starting address used to read memory in
@samp{addr}.

The address of the next/previous row or page is available in
@samp{next-row} and @samp{prev-row}, @samp{next-page} and
@samp{prev-page}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
@samp{gdb_get_mem} memory read command.

@subsubheading Example

Read six bytes of memory starting at @code{bytes+6} but then offset by
@code{-6} bytes.  Format as three rows of two columns.  One byte per
word.  Display each word in hex.

@smallexample
(gdb)
9-data-read-memory -o -6 -- bytes+6 x 1 3 2
9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
prev-page="0x0000138a",memory=[
@{addr="0x00001390",data=["0x00","0x01"]@},
@{addr="0x00001392",data=["0x02","0x03"]@},
@{addr="0x00001394",data=["0x04","0x05"]@}]
(gdb)
@end smallexample

Read two bytes of memory starting at address @code{shorts + 64} and
display as a single word formatted in decimal.

@smallexample
(gdb)
5-data-read-memory shorts+64 d 2 1 1
5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
next-row="0x00001512",prev-row="0x0000150e",
next-page="0x00001512",prev-page="0x0000150e",memory=[
@{addr="0x00001510",data=["128"]@}]
(gdb)
@end smallexample

Read thirty two bytes of memory starting at @code{bytes+16} and format
as eight rows of four columns.  Include a string encoding with @samp{x}
used as the non-printable character.

@smallexample
(gdb)
4-data-read-memory bytes+16 x 1 8 4 x
4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
next-row="0x000013c0",prev-row="0x0000139c",
next-page="0x000013c0",prev-page="0x00001380",memory=[
@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
(gdb)
@end smallexample

@subheading The @code{-data-read-memory-bytes} Command
@findex -data-read-memory-bytes

@subsubheading Synopsis

@smallexample
 -data-read-memory-bytes [ -o @var{byte-offset} ]
   @var{address} @var{count}
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first memory word to be
read.  Complex expressions containing embedded white space should be
quoted using the C convention.

@item @var{count}
The number of bytes to read.  This should be an integer literal.

@item @var{byte-offset}
The offsets in bytes relative to @var{address} at which to start
reading.  This should be an integer literal.  This option is provided
so that a frontend is not required to first evaluate address and then
perform address arithmetics itself.

@end table

This command attempts to read all accessible memory regions in the
specified range.  First, all regions marked as unreadable in the memory
map (if one is defined) will be skipped.  @xref{Memory Region
Attributes}.  Second, @value{GDBN} will attempt to read the remaining
regions.  For each one, if reading full region results in an errors,
@value{GDBN} will try to read a subset of the region.

In general, every single byte in the region may be readable or not,
and the only way to read every readable byte is to try a read at
every address, which is not practical.   Therefore, @value{GDBN} will
attempt to read all accessible bytes at either beginning or the end
of the region, using a binary division scheme.  This heuristic works
well for reading accross a memory map boundary.  Note that if a region
has a readable range that is neither at the beginning or the end,
@value{GDBN} will not read it.

The result record (@pxref{GDB/MI Result Records}) that is output of
the command includes a field named @samp{memory} whose content is a
list of tuples.  Each tuple represent a successfully read memory block
and has the following fields:

@table @code
@item begin
The start address of the memory block, as hexadecimal literal.

@item end
The end address of the memory block, as hexadecimal literal.

@item offset
The offset of the memory block, as hexadecimal literal, relative to
the start address passed to @code{-data-read-memory-bytes}.

@item contents
The contents of the memory block, in hex.

@end table



@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{x}.

@subsubheading Example

@smallexample
(gdb)
-data-read-memory-bytes &a 10
^done,memory=[@{begin="0xbffff154",offset="0x00000000",
              end="0xbffff15e",
              contents="01000000020000000300"@}]
(gdb)
@end smallexample


@subheading The @code{-data-write-memory-bytes} Command
@findex -data-write-memory-bytes

@subsubheading Synopsis

@smallexample
 -data-write-memory-bytes @var{address} @var{contents}
 -data-write-memory-bytes @var{address} @var{contents} @r{[}@var{count}@r{]}
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first memory word to be
read.  Complex expressions containing embedded white space should be
quoted using the C convention.

@item @var{contents}
The hex-encoded bytes to write.

@item @var{count}
Optional argument indicating the number of bytes to be written.  If @var{count} 
is greater than @var{contents}' length, @value{GDBN} will repeatedly 
write @var{contents} until it fills @var{count} bytes.

@end table

@subsubheading @value{GDBN} Command

There's no corresponding @value{GDBN} command.

@subsubheading Example

@smallexample
(gdb)
-data-write-memory-bytes &a "aabbccdd"
^done
(gdb)
@end smallexample

@smallexample
(gdb)
-data-write-memory-bytes &a "aabbccdd" 16e
^done
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Tracepoint Commands
@section @sc{gdb/mi} Tracepoint Commands

The commands defined in this section implement MI support for
tracepoints.  For detailed introduction, see @ref{Tracepoints}.

@subheading The @code{-trace-find} Command
@findex -trace-find

@subsubheading Synopsis

@smallexample
 -trace-find @var{mode} [@var{parameters}@dots{}]
@end smallexample

Find a trace frame using criteria defined by @var{mode} and
@var{parameters}.  The following table lists permissible
modes and their parameters.  For details of operation, see @ref{tfind}.

@table @samp

@item none
No parameters are required.  Stops examining trace frames.

@item frame-number
An integer is required as parameter.  Selects tracepoint frame with
that index.

@item tracepoint-number
An integer is required as parameter.  Finds next
trace frame that corresponds to tracepoint with the specified number.

@item pc
An address is required as parameter.  Finds
next trace frame that corresponds to any tracepoint at the specified
address.

@item pc-inside-range
Two addresses are required as parameters.  Finds next trace
frame that corresponds to a tracepoint at an address inside the
specified range.  Both bounds are considered to be inside the range.

@item pc-outside-range
Two addresses are required as parameters.  Finds
next trace frame that corresponds to a tracepoint at an address outside
the specified range.  Both bounds are considered to be inside the range.

@item line
Line specification is required as parameter.  @xref{Specify Location}.
Finds next trace frame that corresponds to a tracepoint at
the specified location.

@end table

If @samp{none} was passed as @var{mode}, the response does not
have fields.  Otherwise, the response may have the following fields:

@table @samp
@item found
This field has either @samp{0} or @samp{1} as the value, depending
on whether a matching tracepoint was found.

@item traceframe
The index of the found traceframe.  This field is present iff
the @samp{found} field has value of @samp{1}.

@item tracepoint
The index of the found tracepoint.  This field is present iff
the @samp{found} field has value of @samp{1}.

@item frame
The information about the frame corresponding to the found trace
frame.  This field is present only if a trace frame was found.
@xref{GDB/MI Frame Information}, for description of this field.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tfind}.

@subheading -trace-define-variable
@findex -trace-define-variable

@subsubheading Synopsis

@smallexample
 -trace-define-variable @var{name} [ @var{value} ]
@end smallexample

Create trace variable @var{name} if it does not exist.  If
@var{value} is specified, sets the initial value of the specified
trace variable to that value.  Note that the @var{name} should start
with the @samp{$} character.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tvariable}.

@subheading The @code{-trace-frame-collected} Command
@findex -trace-frame-collected

@subsubheading Synopsis

@smallexample
 -trace-frame-collected
    [--var-print-values @var{var_pval}]
    [--comp-print-values @var{comp_pval}]
    [--registers-format @var{regformat}]
    [--memory-contents]
@end smallexample

This command returns the set of collected objects, register names,
trace state variable names, memory ranges and computed expressions
that have been collected at a particular trace frame.  The optional
parameters to the command affect the output format in different ways.
See the output description table below for more details.

The reported names can be used in the normal manner to create
varobjs and inspect the objects themselves.  The items returned by
this command are categorized so that it is clear which is a variable,
which is a register, which is a trace state variable, which is a
memory range and which is a computed expression.

For instance, if the actions were
@smallexample
collect myVar, myArray[myIndex], myObj.field, myPtr->field, myCount + 2
collect *(int*)0xaf02bef0@@40
@end smallexample

@noindent
the object collected in its entirety would be @code{myVar}.  The
object @code{myArray} would be partially collected, because only the
element at index @code{myIndex} would be collected.  The remaining
objects would be computed expressions.

An example output would be:

@smallexample
(gdb)
-trace-frame-collected
^done,
  explicit-variables=[@{name="myVar",value="1"@}],
  computed-expressions=[@{name="myArray[myIndex]",value="0"@},
                        @{name="myObj.field",value="0"@},
                        @{name="myPtr->field",value="1"@},
                        @{name="myCount + 2",value="3"@},
                        @{name="$tvar1 + 1",value="43970027"@}],
  registers=[@{number="0",value="0x7fe2c6e79ec8"@},
             @{number="1",value="0x0"@},
             @{number="2",value="0x4"@},
             ...
             @{number="125",value="0x0"@}],
  tvars=[@{name="$tvar1",current="43970026"@}],
  memory=[@{address="0x0000000000602264",length="4"@},
          @{address="0x0000000000615bc0",length="4"@}]
(gdb)
@end smallexample

Where:

@table @code
@item explicit-variables
The set of objects that have been collected in their entirety (as
opposed to collecting just a few elements of an array or a few struct
members).  For each object, its name and value are printed.
The @code{--var-print-values} option affects how or whether the value
field is output.  If @var{var_pval} is 0, then print only the names;
if it is 1, print also their values; and if it is 2, print the name,
type and value for simple data types, and the name and type for
arrays, structures and unions.

@item computed-expressions
The set of computed expressions that have been collected at the
current trace frame.  The @code{--comp-print-values} option affects
this set like the @code{--var-print-values} option affects the
@code{explicit-variables} set.  See above.

@item registers
The registers that have been collected at the current trace frame.
For each register collected, the name and current value are returned.
The value is formatted according to the @code{--registers-format}
option.  See the @command{-data-list-register-values} command for a
list of the allowed formats.  The default is @samp{x}.

@item tvars
The trace state variables that have been collected at the current
trace frame.  For each trace state variable collected, the name and
current value are returned.

@item memory
The set of memory ranges that have been collected at the current trace
frame.  Its content is a list of tuples.  Each tuple represents a
collected memory range and has the following fields:

@table @code
@item address
The start address of the memory range, as hexadecimal literal.

@item length
The length of the memory range, as decimal literal.

@item contents
The contents of the memory block, in hex.  This field is only present
if the @code{--memory-contents} option is specified.

@end table

@end table

@subsubheading @value{GDBN} Command

There is no corresponding @value{GDBN} command.

@subsubheading Example

@subheading -trace-list-variables
@findex -trace-list-variables

@subsubheading Synopsis

@smallexample
 -trace-list-variables
@end smallexample

Return a table of all defined trace variables.  Each element of the
table has the following fields:

@table @samp
@item name
The name of the trace variable.  This field is always present.

@item initial
The initial value.  This is a 64-bit signed integer.  This
field is always present.

@item current
The value the trace variable has at the moment.  This is a 64-bit
signed integer.  This field is absent iff current value is
not defined, for example if the trace was never run, or is
presently running.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tvariables}.

@subsubheading Example

@smallexample
(gdb)
-trace-list-variables
^done,trace-variables=@{nr_rows="1",nr_cols="3",
hdr=[@{width="15",alignment="-1",col_name="name",colhdr="Name"@},
     @{width="11",alignment="-1",col_name="initial",colhdr="Initial"@},
     @{width="11",alignment="-1",col_name="current",colhdr="Current"@}],
body=[variable=@{name="$trace_timestamp",initial="0"@}
      variable=@{name="$foo",initial="10",current="15"@}]@}
(gdb)
@end smallexample

@subheading -trace-save
@findex -trace-save

@subsubheading Synopsis

@smallexample
 -trace-save [-r ] @var{filename}
@end smallexample

Saves the collected trace data to @var{filename}.  Without the
@samp{-r} option, the data is downloaded from the target and saved
in a local file.  With the @samp{-r} option the target is asked
to perform the save.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tsave}.


@subheading -trace-start
@findex -trace-start

@subsubheading Synopsis

@smallexample
 -trace-start
@end smallexample

Starts a tracing experiments.  The result of this command does not
have any fields.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstart}.

@subheading -trace-status
@findex -trace-status

@subsubheading Synopsis

@smallexample
 -trace-status
@end smallexample

Obtains the status of a tracing experiment.  The result may include
the following fields:

@table @samp

@item supported
May have a value of either @samp{0}, when no tracing operations are
supported, @samp{1}, when all tracing operations are supported, or
@samp{file} when examining trace file.  In the latter case, examining
of trace frame is possible but new tracing experiement cannot be
started.  This field is always present.

@item running
May have a value of either @samp{0} or @samp{1} depending on whether
tracing experiement is in progress on target.  This field is present
if @samp{supported} field is not @samp{0}.

@item stop-reason
Report the reason why the tracing was stopped last time.  This field
may be absent iff tracing was never stopped on target yet.  The
value of @samp{request} means the tracing was stopped as result of
the @code{-trace-stop} command.  The value of @samp{overflow} means
the tracing buffer is full.  The value of @samp{disconnection} means
tracing was automatically stopped when @value{GDBN} has disconnected.
The value of @samp{passcount} means tracing was stopped when a
tracepoint was passed a maximal number of times for that tracepoint.
This field is present if @samp{supported} field is not @samp{0}.

@item stopping-tracepoint
The number of tracepoint whose passcount as exceeded.  This field is
present iff the @samp{stop-reason} field has the value of
@samp{passcount}.

@item frames
@itemx frames-created
The @samp{frames} field is a count of the total number of trace frames
in the trace buffer, while @samp{frames-created} is the total created
during the run, including ones that were discarded, such as when a
circular trace buffer filled up.  Both fields are optional.

@item buffer-size
@itemx buffer-free
These fields tell the current size of the tracing buffer and the
remaining space.  These fields are optional.

@item circular
The value of the circular trace buffer flag.  @code{1} means that the
trace buffer is circular and old trace frames will be discarded if
necessary to make room, @code{0} means that the trace buffer is linear
and may fill up.

@item disconnected
The value of the disconnected tracing flag.  @code{1} means that
tracing will continue after @value{GDBN} disconnects, @code{0} means
that the trace run will stop.

@item trace-file
The filename of the trace file being examined.  This field is
optional, and only present when examining a trace file.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstatus}.

@subheading -trace-stop
@findex -trace-stop

@subsubheading Synopsis

@smallexample
 -trace-stop
@end smallexample

Stops a tracing experiment.  The result of this command has the same
fields as @code{-trace-status}, except that the @samp{supported} and
@samp{running} fields are not output.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstop}.


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Symbol Query
@section @sc{gdb/mi} Symbol Query Commands


@ignore
@subheading The @code{-symbol-info-address} Command
@findex -symbol-info-address

@subsubheading Synopsis

@smallexample
 -symbol-info-address @var{symbol}
@end smallexample

Describe where @var{symbol} is stored.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info address}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-file} Command
@findex -symbol-info-file

@subsubheading Synopsis

@smallexample
 -symbol-info-file
@end smallexample

Show the file for the symbol.

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.  @code{gdbtk} has
@samp{gdb_find_file}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-function} Command
@findex -symbol-info-function

@subsubheading Synopsis

@smallexample
 -symbol-info-function
@end smallexample

Show which function the symbol lives in.

@subsubheading @value{GDBN} Command

@samp{gdb_get_function} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-line} Command
@findex -symbol-info-line

@subsubheading Synopsis

@smallexample
 -symbol-info-line
@end smallexample

Show the core addresses of the code for a source line.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info line}.
@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-symbol} Command
@findex -symbol-info-symbol

@subsubheading Synopsis

@smallexample
 -symbol-info-symbol @var{addr}
@end smallexample

Describe what symbol is at location @var{addr}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info symbol}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-list-functions} Command
@findex -symbol-list-functions

@subsubheading Synopsis

@smallexample
 -symbol-list-functions
@end smallexample

List the functions in the executable.

@subsubheading @value{GDBN} Command

@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
@samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-symbol-list-lines} Command
@findex -symbol-list-lines

@subsubheading Synopsis

@smallexample
 -symbol-list-lines @var{filename}
@end smallexample

Print the list of lines that contain code and their associated program
addresses for the given source filename.  The entries are sorted in
ascending PC order.

@subsubheading @value{GDBN} Command

There is no corresponding @value{GDBN} command.

@subsubheading Example
@smallexample
(gdb)
-symbol-list-lines basics.c
^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
(gdb)
@end smallexample


@ignore
@subheading The @code{-symbol-list-types} Command
@findex -symbol-list-types

@subsubheading Synopsis

@smallexample
 -symbol-list-types
@end smallexample

List all the type names.

@subsubheading @value{GDBN} Command

The corresponding commands are @samp{info types} in @value{GDBN},
@samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-list-variables} Command
@findex -symbol-list-variables

@subsubheading Synopsis

@smallexample
 -symbol-list-variables
@end smallexample

List all the global and static variable names.

@subsubheading @value{GDBN} Command

@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-locate} Command
@findex -symbol-locate

@subsubheading Synopsis

@smallexample
 -symbol-locate
@end smallexample

@subsubheading @value{GDBN} Command

@samp{gdb_loc} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-type} Command
@findex -symbol-type

@subsubheading Synopsis

@smallexample
 -symbol-type @var{variable}
@end smallexample

Show type of @var{variable}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
@samp{gdb_obj_variable}.

@subsubheading Example
N.A.
@end ignore


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI File Commands
@section @sc{gdb/mi} File Commands

This section describes the GDB/MI commands to specify executable file names
and to read in and obtain symbol table information.

@subheading The @code{-file-exec-and-symbols} Command
@findex -file-exec-and-symbols

@subsubheading Synopsis

@smallexample
 -file-exec-and-symbols @var{file}
@end smallexample

Specify the executable file to be debugged.  This file is the one from
which the symbol table is also read.  If no file is specified, the
command clears the executable and symbol information.  If breakpoints
are set when using this command with no arguments, @value{GDBN} will produce
error messages.  Otherwise, no output is produced, except a completion
notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{file}.

@subsubheading Example

@smallexample
(gdb)
-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample


@subheading The @code{-file-exec-file} Command
@findex -file-exec-file

@subsubheading Synopsis

@smallexample
 -file-exec-file @var{file}
@end smallexample

Specify the executable file to be debugged.  Unlike
@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
from this file.  If used without argument, @value{GDBN} clears the information
about the executable file.  No output is produced, except a completion
notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{exec-file}.

@subsubheading Example

@smallexample
(gdb)
-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample


@ignore
@subheading The @code{-file-list-exec-sections} Command
@findex -file-list-exec-sections

@subsubheading Synopsis

@smallexample
 -file-list-exec-sections
@end smallexample

List the sections of the current executable file.

@subsubheading @value{GDBN} Command

The @value{GDBN} command @samp{info file} shows, among the rest, the same
information as this command.  @code{gdbtk} has a corresponding command
@samp{gdb_load_info}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-file-list-exec-source-file} Command
@findex -file-list-exec-source-file

@subsubheading Synopsis

@smallexample
 -file-list-exec-source-file
@end smallexample

List the line number, the current source file, and the absolute path
to the current source file for the current executable.  The macro
information field has a value of @samp{1} or @samp{0} depending on
whether or not the file includes preprocessor macro information.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{info source}

@subsubheading Example

@smallexample
(gdb)
123-file-list-exec-source-file
123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
(gdb)
@end smallexample


@subheading The @code{-file-list-exec-source-files} Command
@findex -file-list-exec-source-files

@subsubheading Synopsis

@smallexample
 -file-list-exec-source-files
@end smallexample

List the source files for the current executable.

It will always output both the filename and fullname (absolute file
name) of a source file.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{info sources}.
@code{gdbtk} has an analogous command @samp{gdb_listfiles}.

@subsubheading Example
@smallexample
(gdb)
-file-list-exec-source-files
^done,files=[
@{file=foo.c,fullname=/home/foo.c@},
@{file=/home/bar.c,fullname=/home/bar.c@},
@{file=gdb_could_not_find_fullpath.c@}]
(gdb)
@end smallexample

@ignore
@subheading The @code{-file-list-shared-libraries} Command
@findex -file-list-shared-libraries

@subsubheading Synopsis

@smallexample
 -file-list-shared-libraries
@end smallexample

List the shared libraries in the program.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info shared}.

@subsubheading Example
N.A.


@subheading The @code{-file-list-symbol-files} Command
@findex -file-list-symbol-files

@subsubheading Synopsis

@smallexample
 -file-list-symbol-files
@end smallexample

List symbol files.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info file} (part of it).

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-file-symbol-file} Command
@findex -file-symbol-file

@subsubheading Synopsis

@smallexample
 -file-symbol-file @var{file}
@end smallexample

Read symbol table info from the specified @var{file} argument.  When
used without arguments, clears @value{GDBN}'s symbol table info.  No output is
produced, except for a completion notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{symbol-file}.

@subsubheading Example

@smallexample
(gdb)
-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample

@ignore
@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Memory Overlay Commands
@section @sc{gdb/mi} Memory Overlay Commands

The memory overlay commands are not implemented.

@c @subheading -overlay-auto

@c @subheading -overlay-list-mapping-state

@c @subheading -overlay-list-overlays

@c @subheading -overlay-map

@c @subheading -overlay-off

@c @subheading -overlay-on

@c @subheading -overlay-unmap

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Signal Handling Commands
@section @sc{gdb/mi} Signal Handling Commands

Signal handling commands are not implemented.

@c @subheading -signal-handle

@c @subheading -signal-list-handle-actions

@c @subheading -signal-list-signal-types
@end ignore


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Target Manipulation
@section @sc{gdb/mi} Target Manipulation Commands


@subheading The @code{-target-attach} Command
@findex -target-attach

@subsubheading Synopsis

@smallexample
 -target-attach @var{pid} | @var{gid} | @var{file}
@end smallexample

Attach to a process @var{pid} or a file @var{file} outside of
@value{GDBN}, or a thread group @var{gid}.  If attaching to a thread
group, the id previously returned by 
@samp{-list-thread-groups --available} must be used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{attach}.

@subsubheading Example
@smallexample
(gdb)
-target-attach 34
=thread-created,id="1"
*stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
^done
(gdb)
@end smallexample

@ignore
@subheading The @code{-target-compare-sections} Command
@findex -target-compare-sections

@subsubheading Synopsis

@smallexample
 -target-compare-sections [ @var{section} ]
@end smallexample

Compare data of section @var{section} on target to the exec file.
Without the argument, all sections are compared.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{compare-sections}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-target-detach} Command
@findex -target-detach

@subsubheading Synopsis

@smallexample
 -target-detach [ @var{pid} | @var{gid} ]
@end smallexample

Detach from the remote target which normally resumes its execution.
If either @var{pid} or @var{gid} is specified, detaches from either
the specified process, or specified thread group.  There's no output.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{detach}.

@subsubheading Example

@smallexample
(gdb)
-target-detach
^done
(gdb)
@end smallexample


@subheading The @code{-target-disconnect} Command
@findex -target-disconnect

@subsubheading Synopsis

@smallexample
 -target-disconnect
@end smallexample

Disconnect from the remote target.  There's no output and the target is
generally not resumed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disconnect}.

@subsubheading Example

@smallexample
(gdb)
-target-disconnect
^done
(gdb)
@end smallexample


@subheading The @code{-target-download} Command
@findex -target-download

@subsubheading Synopsis

@smallexample
 -target-download
@end smallexample

Loads the executable onto the remote target.
It prints out an update message every half second, which includes the fields:

@table @samp
@item section
The name of the section.
@item section-sent
The size of what has been sent so far for that section.
@item section-size
The size of the section.
@item total-sent
The total size of what was sent so far (the current and the previous sections).
@item total-size
The size of the overall executable to download.
@end table

@noindent
Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
@sc{gdb/mi} Output Syntax}).

In addition, it prints the name and size of the sections, as they are
downloaded.  These messages include the following fields:

@table @samp
@item section
The name of the section.
@item section-size
The size of the section.
@item total-size
The size of the overall executable to download.
@end table

@noindent
At the end, a summary is printed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{load}.

@subsubheading Example

Note: each status message appears on a single line.  Here the messages
have been broken down so that they can fit onto a page.

@smallexample
(gdb)
-target-download
+download,@{section=".text",section-size="6668",total-size="9880"@}
+download,@{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"@}
+download,@{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"@}
+download,@{section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"@}
+download,@{section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"@}
+download,@{section=".text",section-sent="2560",section-size="6668",
total-sent="2560",total-size="9880"@}
+download,@{section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"@}
+download,@{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"@}
+download,@{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"@}
+download,@{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"@}
+download,@{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"@}
+download,@{section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"@}
+download,@{section=".text",section-sent="6144",section-size="6668",
total-sent="6144",total-size="9880"@}
+download,@{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"@}
+download,@{section=".init",section-size="28",total-size="9880"@}
+download,@{section=".fini",section-size="28",total-size="9880"@}
+download,@{section=".data",section-size="3156",total-size="9880"@}
+download,@{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"@}
+download,@{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"@}
+download,@{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"@}
+download,@{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"@}
+download,@{section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"@}
+download,@{section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"@}
^done,address="0x10004",load-size="9880",transfer-rate="6586",
write-rate="429"
(gdb)
@end smallexample


@ignore
@subheading The @code{-target-exec-status} Command
@findex -target-exec-status

@subsubheading Synopsis

@smallexample
 -target-exec-status
@end smallexample

Provide information on the state of the target (whether it is running or
not, for instance).

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.

@subsubheading Example
N.A.


@subheading The @code{-target-list-available-targets} Command
@findex -target-list-available-targets

@subsubheading Synopsis

@smallexample
 -target-list-available-targets
@end smallexample

List the possible targets to connect to.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{help target}.

@subsubheading Example
N.A.


@subheading The @code{-target-list-current-targets} Command
@findex -target-list-current-targets

@subsubheading Synopsis

@smallexample
 -target-list-current-targets
@end smallexample

Describe the current target.

@subsubheading @value{GDBN} Command

The corresponding information is printed by @samp{info file} (among
other things).

@subsubheading Example
N.A.


@subheading The @code{-target-list-parameters} Command
@findex -target-list-parameters

@subsubheading Synopsis

@smallexample
 -target-list-parameters
@end smallexample

@c ????
@end ignore

@subsubheading @value{GDBN} Command

No equivalent.

@subsubheading Example
N.A.


@subheading The @code{-target-select} Command
@findex -target-select

@subsubheading Synopsis

@smallexample
 -target-select @var{type} @var{parameters @dots{}}
@end smallexample

Connect @value{GDBN} to the remote target.  This command takes two args:

@table @samp
@item @var{type}
The type of target, for instance @samp{remote}, etc.
@item @var{parameters}
Device names, host names and the like.  @xref{Target Commands, ,
Commands for Managing Targets}, for more details.
@end table

The output is a connection notification, followed by the address at
which the target program is, in the following form:

@smallexample
^connected,addr="@var{address}",func="@var{function name}",
  args=[@var{arg list}]
@end smallexample

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{target}.

@subsubheading Example

@smallexample
(gdb)
-target-select remote /dev/ttya
^connected,addr="0xfe00a300",func="??",args=[]
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI File Transfer Commands
@section @sc{gdb/mi} File Transfer Commands


@subheading The @code{-target-file-put} Command
@findex -target-file-put

@subsubheading Synopsis

@smallexample
 -target-file-put @var{hostfile} @var{targetfile}
@end smallexample

Copy file @var{hostfile} from the host system (the machine running
@value{GDBN}) to @var{targetfile} on the target system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote put}.

@subsubheading Example

@smallexample
(gdb)
-target-file-put localfile remotefile
^done
(gdb)
@end smallexample


@subheading The @code{-target-file-get} Command
@findex -target-file-get

@subsubheading Synopsis

@smallexample
 -target-file-get @var{targetfile} @var{hostfile}
@end smallexample

Copy file @var{targetfile} from the target system to @var{hostfile}
on the host system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote get}.

@subsubheading Example

@smallexample
(gdb)
-target-file-get remotefile localfile
^done
(gdb)
@end smallexample


@subheading The @code{-target-file-delete} Command
@findex -target-file-delete

@subsubheading Synopsis

@smallexample
 -target-file-delete @var{targetfile}
@end smallexample

Delete @var{targetfile} from the target system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote delete}.

@subsubheading Example

@smallexample
(gdb)
-target-file-delete remotefile
^done
(gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Ada Exceptions Commands
@section Ada Exceptions @sc{gdb/mi} Commands

@subheading The @code{-info-ada-exceptions} Command
@findex -info-ada-exceptions

@subsubheading Synopsis

@smallexample
 -info-ada-exceptions [ @var{regexp}]
@end smallexample

List all Ada exceptions defined within the program being debugged.
With a regular expression @var{regexp}, only those exceptions whose
names match @var{regexp} are listed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info exceptions}.

@subsubheading Result

The result is a table of Ada exceptions.  The following columns are
defined for each exception:

@table @samp
@item name
The name of the exception.

@item address
The address of the exception.

@end table

@subsubheading Example

@smallexample
-info-ada-exceptions aint
^done,ada-exceptions=@{nr_rows="2",nr_cols="2",
hdr=[@{width="1",alignment="-1",col_name="name",colhdr="Name"@},
@{width="1",alignment="-1",col_name="address",colhdr="Address"@}],
body=[@{name="constraint_error",address="0x0000000000613da0"@},
@{name="const.aint_global_e",address="0x0000000000613b00"@}]@}
@end smallexample

@subheading Catching Ada Exceptions

The commands describing how to ask @value{GDBN} to stop when a program
raises an exception are described at @ref{Ada Exception GDB/MI
Catchpoint Commands}.


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Miscellaneous Commands
@section Miscellaneous @sc{gdb/mi} Commands

@c @subheading -gdb-complete

@subheading The @code{-gdb-exit} Command
@findex -gdb-exit

@subsubheading Synopsis

@smallexample
 -gdb-exit
@end smallexample

Exit @value{GDBN} immediately.

@subsubheading @value{GDBN} Command

Approximately corresponds to @samp{quit}.

@subsubheading Example

@smallexample
(gdb)
-gdb-exit
^exit
@end smallexample


@ignore
@subheading The @code{-exec-abort} Command
@findex -exec-abort

@subsubheading Synopsis

@smallexample
 -exec-abort
@end smallexample

Kill the inferior running program.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{kill}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-gdb-set} Command
@findex -gdb-set

@subsubheading Synopsis

@smallexample
 -gdb-set
@end smallexample

Set an internal @value{GDBN} variable.
@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set}.

@subsubheading Example

@smallexample
(gdb)
-gdb-set $foo=3
^done
(gdb)
@end smallexample


@subheading The @code{-gdb-show} Command
@findex -gdb-show

@subsubheading Synopsis

@smallexample
 -gdb-show
@end smallexample

Show the current value of a @value{GDBN} variable.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show}.

@subsubheading Example

@smallexample
(gdb)
-gdb-show annotate
^done,value="0"
(gdb)
@end smallexample

@c @subheading -gdb-source


@subheading The @code{-gdb-version} Command
@findex -gdb-version

@subsubheading Synopsis

@smallexample
 -gdb-version
@end smallexample

Show version information for @value{GDBN}.  Used mostly in testing.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
default shows this information when you start an interactive session.

@subsubheading Example

@c This example modifies the actual output from GDB to avoid overfull
@c box in TeX.
@smallexample
(gdb)
-gdb-version
~GNU gdb 5.2.1
~Copyright 2000 Free Software Foundation, Inc.
~GDB is free software, covered by the GNU General Public License, and
~you are welcome to change it and/or distribute copies of it under
~ certain conditions.
~Type "show copying" to see the conditions.
~There is absolutely no warranty for GDB.  Type "show warranty" for
~ details.
~This GDB was configured as
 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
^done
(gdb)
@end smallexample

@subheading The @code{-list-features} Command
@findex -list-features

Returns a list of particular features of the MI protocol that
this version of gdb implements.  A feature can be a command,
or a new field in an output of some command, or even an
important bugfix.  While a frontend can sometimes detect presence
of a feature at runtime, it is easier to perform detection at debugger
startup. 

The command returns a list of strings, with each string naming an
available feature.  Each returned string is just a name, it does not
have any internal structure.  The list of possible feature names 
is given below.

Example output:

@smallexample
(gdb) -list-features
^done,result=["feature1","feature2"]
@end smallexample

The current list of features is:

@table @samp
@item frozen-varobjs
Indicates support for the @code{-var-set-frozen} command, as well
as possible presense of the @code{frozen} field in the output
of @code{-varobj-create}.
@item pending-breakpoints
Indicates support for the @option{-f} option to the @code{-break-insert}
command.
@item python
Indicates Python scripting support, Python-based
pretty-printing commands, and possible presence of the
@samp{display_hint} field in the output of @code{-var-list-children}
@item thread-info
Indicates support for the @code{-thread-info} command.
@item data-read-memory-bytes
Indicates support for the @code{-data-read-memory-bytes} and the
@code{-data-write-memory-bytes} commands.
@item breakpoint-notifications
Indicates that changes to breakpoints and breakpoints created via the
CLI will be announced via async records.
@item ada-task-info
Indicates support for the @code{-ada-task-info} command.
@item ada-exceptions
Indicates support for the following commands, all of them related to Ada
exceptions: @code{-info-ada-exceptions}, @code{-catch-assert} and
@code{-catch-exception}.
@item language-option
Indicates that all @sc{gdb/mi} commands accept the @option{--language}
option (@pxref{Context management}).
@end table

@subheading The @code{-list-target-features} Command
@findex -list-target-features

Returns a list of particular features that are supported by the
target.  Those features affect the permitted MI commands, but 
unlike the features reported by the @code{-list-features} command, the
features depend on which target GDB is using at the moment.  Whenever
a target can change, due to commands such as @code{-target-select},
@code{-target-attach} or @code{-exec-run}, the list of target features
may change, and the frontend should obtain it again.
Example output:

@smallexample
(gdb) -list-target-features
^done,result=["async"]
@end smallexample

The current list of features is:

@table @samp
@item async
Indicates that the target is capable of asynchronous command
execution, which means that @value{GDBN} will accept further commands
while the target is running.

@item reverse
Indicates that the target is capable of reverse execution.
@xref{Reverse Execution}, for more information.

@end table

@subheading The @code{-list-thread-groups} Command
@findex -list-thread-groups

@subheading Synopsis

@smallexample
-list-thread-groups [ --available ] [ --recurse 1 ] [ @var{group} ... ]
@end smallexample

Lists thread groups (@pxref{Thread groups}).  When a single thread
group is passed as the argument, lists the children of that group.
When several thread group are passed, lists information about those
thread groups.  Without any parameters, lists information about all
top-level thread groups.

Normally, thread groups that are being debugged are reported.
With the @samp{--available} option, @value{GDBN} reports thread groups
available on the target.

The output of this command may have either a @samp{threads} result or
a @samp{groups} result.  The @samp{thread} result has a list of tuples
as value, with each tuple describing a thread (@pxref{GDB/MI Thread
Information}).  The @samp{groups} result has a list of tuples as value,
each tuple describing a thread group.  If top-level groups are
requested (that is, no parameter is passed), or when several groups
are passed, the output always has a @samp{groups} result.  The format
of the @samp{group} result is described below.

To reduce the number of roundtrips it's possible to list thread groups
together with their children, by passing the @samp{--recurse} option
and the recursion depth.  Presently, only recursion depth of 1 is
permitted.  If this option is present, then every reported thread group
will also include its children, either as @samp{group} or
@samp{threads} field.

In general, any combination of option and parameters is permitted, with
the following caveats:

@itemize @bullet
@item
When a single thread group is passed, the output will typically
be the @samp{threads} result.  Because threads may not contain
anything, the @samp{recurse} option will be ignored.

@item
When the @samp{--available} option is passed, limited information may
be available.  In particular, the list of threads of a process might
be inaccessible.  Further, specifying specific thread groups might
not give any performance advantage over listing all thread groups.
The frontend should assume that @samp{-list-thread-groups --available}
is always an expensive operation and cache the results.

@end itemize

The @samp{groups} result is a list of tuples, where each tuple may
have the following fields:

@table @code
@item id
Identifier of the thread group.  This field is always present.
The identifier is an opaque string; frontends should not try to
convert it to an integer, even though it might look like one.

@item type
The type of the thread group.  At present, only @samp{process} is a
valid type.

@item pid
The target-specific process identifier.  This field is only present
for thread groups of type @samp{process} and only if the process exists.

@item num_children
The number of children this thread group has.  This field may be
absent for an available thread group.

@item threads
This field has a list of tuples as value, each tuple describing a
thread.  It may be present if the @samp{--recurse} option is
specified, and it's actually possible to obtain the threads.

@item cores
This field is a list of integers, each identifying a core that one
thread of the group is running on.  This field may be absent if
such information is not available.

@item executable
The name of the executable file that corresponds to this thread group.
The field is only present for thread groups of type @samp{process},
and only if there is a corresponding executable file.

@end table

@subheading Example

@smallexample
@value{GDBP}
-list-thread-groups
^done,groups=[@{id="17",type="process",pid="yyy",num_children="2"@}]
-list-thread-groups 17
^done,threads=[@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
   frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},state="running"@},
@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
   frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
           file="/tmp/a.c",fullname="/tmp/a.c",line="158"@},state="running"@}]]
-list-thread-groups --available
^done,groups=[@{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]@}]
-list-thread-groups --available --recurse 1
 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
                threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
                         @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},..]
-list-thread-groups --available --recurse 1 17 18
^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
               threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
                        @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},...]
@end smallexample

@subheading The @code{-info-os} Command
@findex -info-os

@subsubheading Synopsis

@smallexample
-info-os [ @var{type} ]
@end smallexample

If no argument is supplied, the command returns a table of available
operating-system-specific information types.  If one of these types is
supplied as an argument @var{type}, then the command returns a table
of data of that type.

The types of information available depend on the target operating
system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info os}.

@subsubheading Example

When run on a @sc{gnu}/Linux system, the output will look something
like this:

@smallexample
@value{GDBP}
-info-os
^done,OSDataTable=@{nr_rows="9",nr_cols="3",
hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="Type"@},
     @{width="10",alignment="-1",col_name="col1",colhdr="Description"@},
     @{width="10",alignment="-1",col_name="col2",colhdr="Title"@}],
body=[item=@{col0="processes",col1="Listing of all processes",
            col2="Processes"@},
      item=@{col0="procgroups",col1="Listing of all process groups",
            col2="Process groups"@},
      item=@{col0="threads",col1="Listing of all threads",
            col2="Threads"@},
      item=@{col0="files",col1="Listing of all file descriptors",
            col2="File descriptors"@},
      item=@{col0="sockets",col1="Listing of all internet-domain sockets",
            col2="Sockets"@},
      item=@{col0="shm",col1="Listing of all shared-memory regions",
            col2="Shared-memory regions"@},
      item=@{col0="semaphores",col1="Listing of all semaphores",
            col2="Semaphores"@},
      item=@{col0="msg",col1="Listing of all message queues",
            col2="Message queues"@},
      item=@{col0="modules",col1="Listing of all loaded kernel modules",
            col2="Kernel modules"@}]@}
@value{GDBP}
-info-os processes
^done,OSDataTable=@{nr_rows="190",nr_cols="4",
hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="pid"@},
     @{width="10",alignment="-1",col_name="col1",colhdr="user"@},
     @{width="10",alignment="-1",col_name="col2",colhdr="command"@},
     @{width="10",alignment="-1",col_name="col3",colhdr="cores"@}],
body=[item=@{col0="1",col1="root",col2="/sbin/init",col3="0"@},
      item=@{col0="2",col1="root",col2="[kthreadd]",col3="1"@},
      item=@{col0="3",col1="root",col2="[ksoftirqd/0]",col3="0"@},
      ...
      item=@{col0="26446",col1="stan",col2="bash",col3="0"@},
      item=@{col0="28152",col1="stan",col2="bash",col3="1"@}]@}
(gdb)
@end smallexample

(Note that the MI output here includes a @code{"Title"} column that
does not appear in command-line @code{info os}; this column is useful
for MI clients that want to enumerate the types of data, such as in a
popup menu, but is needless clutter on the command line, and
@code{info os} omits it.)

@subheading The @code{-add-inferior} Command
@findex -add-inferior

@subheading Synopsis

@smallexample
-add-inferior
@end smallexample

Creates a new inferior (@pxref{Inferiors and Programs}).  The created
inferior is not associated with any executable.  Such association may
be established with the @samp{-file-exec-and-symbols} command
(@pxref{GDB/MI File Commands}).  The command response has a single
field, @samp{inferior}, whose value is the identifier of the
thread group corresponding to the new inferior.

@subheading Example

@smallexample
@value{GDBP}
-add-inferior
^done,inferior="i3"
@end smallexample

@subheading The @code{-interpreter-exec} Command
@findex -interpreter-exec

@subheading Synopsis

@smallexample
-interpreter-exec @var{interpreter} @var{command}
@end smallexample
@anchor{-interpreter-exec} 

Execute the specified @var{command} in the given @var{interpreter}.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{interpreter-exec}.

@subheading Example

@smallexample
(gdb)
-interpreter-exec console "break main"
&"During symbol reading, couldn't parse type; debugger out of date?.\n"
&"During symbol reading, bad structure-type format.\n"
~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
^done
(gdb)
@end smallexample

@subheading The @code{-inferior-tty-set} Command
@findex -inferior-tty-set

@subheading Synopsis

@smallexample
-inferior-tty-set /dev/pts/1
@end smallexample

Set terminal for future runs of the program being debugged.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.

@subheading Example

@smallexample
(gdb)
-inferior-tty-set /dev/pts/1
^done
(gdb)
@end smallexample

@subheading The @code{-inferior-tty-show} Command
@findex -inferior-tty-show

@subheading Synopsis

@smallexample
-inferior-tty-show
@end smallexample

Show terminal for future runs of program being debugged.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show inferior-tty}.

@subheading Example

@smallexample
(gdb)
-inferior-tty-set /dev/pts/1
^done
(gdb)
-inferior-tty-show
^done,inferior_tty_terminal="/dev/pts/1"
(gdb)
@end smallexample

@subheading The @code{-enable-timings} Command
@findex -enable-timings

@subheading Synopsis

@smallexample
-enable-timings [yes | no]
@end smallexample

Toggle the printing of the wallclock, user and system times for an MI
command as a field in its output.  This command is to help frontend
developers optimize the performance of their code.  No argument is
equivalent to @samp{yes}.

@subheading @value{GDBN} Command

No equivalent.

@subheading Example

@smallexample
(gdb)
-enable-timings
^done
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x080484ed",func="main",file="myprog.c",
fullname="/home/nickrob/myprog.c",line="73",thread-groups=["i1"],
times="0"@},
time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
(gdb)
-enable-timings no
^done
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
@{name="argv",value="0xbfb60364"@}],file="myprog.c",
fullname="/home/nickrob/myprog.c",line="73"@}
(gdb)
@end smallexample

@node Annotations
@chapter @value{GDBN} Annotations

This chapter describes annotations in @value{GDBN}.  Annotations were
designed to interface @value{GDBN} to graphical user interfaces or other
similar programs which want to interact with @value{GDBN} at a
relatively high level.

The annotation mechanism has largely been superseded by @sc{gdb/mi}
(@pxref{GDB/MI}).

@ignore
This is Edition @value{EDITION}, @value{DATE}.
@end ignore

@menu
* Annotations Overview::  What annotations are; the general syntax.
* Server Prefix::       Issuing a command without affecting user state.
* Prompting::           Annotations marking @value{GDBN}'s need for input.
* Errors::              Annotations for error messages.
* Invalidation::        Some annotations describe things now invalid.
* Annotations for Running::
                        Whether the program is running, how it stopped, etc.
* Source Annotations::  Annotations describing source code.
@end menu

@node Annotations Overview
@section What is an Annotation?
@cindex annotations

Annotations start with a newline character, two @samp{control-z}
characters, and the name of the annotation.  If there is no additional
information associated with this annotation, the name of the annotation
is followed immediately by a newline.  If there is additional
information, the name of the annotation is followed by a space, the
additional information, and a newline.  The additional information
cannot contain newline characters.

Any output not beginning with a newline and two @samp{control-z}
characters denotes literal output from @value{GDBN}.  Currently there is
no need for @value{GDBN} to output a newline followed by two
@samp{control-z} characters, but if there was such a need, the
annotations could be extended with an @samp{escape} annotation which
means those three characters as output.

The annotation @var{level}, which is specified using the
@option{--annotate} command line option (@pxref{Mode Options}), controls
how much information @value{GDBN} prints together with its prompt,
values of expressions, source lines, and other types of output.  Level 0
is for no annotations, level 1 is for use when @value{GDBN} is run as a
subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
for programs that control @value{GDBN}, and level 2 annotations have
been made obsolete (@pxref{Limitations, , Limitations of the Annotation
Interface, annotate, GDB's Obsolete Annotations}).

@table @code
@kindex set annotate
@item set annotate @var{level}
The @value{GDBN} command @code{set annotate} sets the level of
annotations to the specified @var{level}.

@item show annotate
@kindex show annotate
Show the current annotation level.
@end table

This chapter describes level 3 annotations.

A simple example of starting up @value{GDBN} with annotations is:

@smallexample
$ @kbd{gdb --annotate=3}
GNU gdb 6.0
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty"
for details.
This GDB was configured as "i386-pc-linux-gnu"

^Z^Zpre-prompt
(@value{GDBP})
^Z^Zprompt
@kbd{quit}

^Z^Zpost-prompt
$
@end smallexample

Here @samp{quit} is input to @value{GDBN}; the rest is output from
@value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
denotes a @samp{control-z} character) are annotations; the rest is
output from @value{GDBN}.

@node Server Prefix
@section The Server Prefix
@cindex server prefix

If you prefix a command with @samp{server } then it will not affect
the command history, nor will it affect @value{GDBN}'s notion of which
command to repeat if @key{RET} is pressed on a line by itself.  This
means that commands can be run behind a user's back by a front-end in
a transparent manner.

The @code{server } prefix does not affect the recording of values into
the value history; to print a value without recording it into the
value history, use the @code{output} command instead of the
@code{print} command.

Using this prefix also disables confirmation requests
(@pxref{confirmation requests}).

@node Prompting
@section Annotation for @value{GDBN} Input

@cindex annotations for prompts
When @value{GDBN} prompts for input, it annotates this fact so it is possible
to know when to send output, when the output from a given command is
over, etc.

Different kinds of input each have a different @dfn{input type}.  Each
input type has three annotations: a @code{pre-} annotation, which
denotes the beginning of any prompt which is being output, a plain
annotation, which denotes the end of the prompt, and then a @code{post-}
annotation which denotes the end of any echo which may (or may not) be
associated with the input.  For example, the @code{prompt} input type
features the following annotations:

@smallexample
^Z^Zpre-prompt
^Z^Zprompt
^Z^Zpost-prompt
@end smallexample

The input types are

@table @code
@findex pre-prompt annotation
@findex prompt annotation
@findex post-prompt annotation
@item prompt
When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).

@findex pre-commands annotation
@findex commands annotation
@findex post-commands annotation
@item commands
When @value{GDBN} prompts for a set of commands, like in the @code{commands}
command.  The annotations are repeated for each command which is input.

@findex pre-overload-choice annotation
@findex overload-choice annotation
@findex post-overload-choice annotation
@item overload-choice
When @value{GDBN} wants the user to select between various overloaded functions.

@findex pre-query annotation
@findex query annotation
@findex post-query annotation
@item query
When @value{GDBN} wants the user to confirm a potentially dangerous operation.

@findex pre-prompt-for-continue annotation
@findex prompt-for-continue annotation
@findex post-prompt-for-continue annotation
@item prompt-for-continue
When @value{GDBN} is asking the user to press return to continue.  Note: Don't
expect this to work well; instead use @code{set height 0} to disable
prompting.  This is because the counting of lines is buggy in the
presence of annotations.
@end table

@node Errors
@section Errors
@cindex annotations for errors, warnings and interrupts

@findex quit annotation
@smallexample
^Z^Zquit
@end smallexample

This annotation occurs right before @value{GDBN} responds to an interrupt.

@findex error annotation
@smallexample
^Z^Zerror
@end smallexample

This annotation occurs right before @value{GDBN} responds to an error.

Quit and error annotations indicate that any annotations which @value{GDBN} was
in the middle of may end abruptly.  For example, if a
@code{value-history-begin} annotation is followed by a @code{error}, one
cannot expect to receive the matching @code{value-history-end}.  One
cannot expect not to receive it either, however; an error annotation
does not necessarily mean that @value{GDBN} is immediately returning all the way
to the top level.

@findex error-begin annotation
A quit or error annotation may be preceded by

@smallexample
^Z^Zerror-begin
@end smallexample

Any output between that and the quit or error annotation is the error
message.

Warning messages are not yet annotated.
@c If we want to change that, need to fix warning(), type_error(),
@c range_error(), and possibly other places.

@node Invalidation
@section Invalidation Notices

@cindex annotations for invalidation messages
The following annotations say that certain pieces of state may have
changed.

@table @code
@findex frames-invalid annotation
@item ^Z^Zframes-invalid

The frames (for example, output from the @code{backtrace} command) may
have changed.

@findex breakpoints-invalid annotation
@item ^Z^Zbreakpoints-invalid

The breakpoints may have changed.  For example, the user just added or
deleted a breakpoint.
@end table

@node Annotations for Running
@section Running the Program
@cindex annotations for running programs

@findex starting annotation
@findex stopping annotation
When the program starts executing due to a @value{GDBN} command such as
@code{step} or @code{continue},

@smallexample
^Z^Zstarting
@end smallexample

is output.  When the program stops,

@smallexample
^Z^Zstopped
@end smallexample

is output.  Before the @code{stopped} annotation, a variety of
annotations describe how the program stopped.

@table @code
@findex exited annotation
@item ^Z^Zexited @var{exit-status}
The program exited, and @var{exit-status} is the exit status (zero for
successful exit, otherwise nonzero).

@findex signalled annotation
@findex signal-name annotation
@findex signal-name-end annotation
@findex signal-string annotation
@findex signal-string-end annotation
@item ^Z^Zsignalled
The program exited with a signal.  After the @code{^Z^Zsignalled}, the
annotation continues:

@smallexample
@var{intro-text}
^Z^Zsignal-name
@var{name}
^Z^Zsignal-name-end
@var{middle-text}
^Z^Zsignal-string
@var{string}
^Z^Zsignal-string-end
@var{end-text}
@end smallexample

@noindent
where @var{name} is the name of the signal, such as @code{SIGILL} or
@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
as @code{Illegal Instruction} or @code{Segmentation fault}.
@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
user's benefit and have no particular format.

@findex signal annotation
@item ^Z^Zsignal
The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
just saying that the program received the signal, not that it was
terminated with it.

@findex breakpoint annotation
@item ^Z^Zbreakpoint @var{number}
The program hit breakpoint number @var{number}.

@findex watchpoint annotation
@item ^Z^Zwatchpoint @var{number}
The program hit watchpoint number @var{number}.
@end table

@node Source Annotations
@section Displaying Source
@cindex annotations for source display

@findex source annotation
The following annotation is used instead of displaying source code:

@smallexample
^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
@end smallexample

where @var{filename} is an absolute file name indicating which source
file, @var{line} is the line number within that file (where 1 is the
first line in the file), @var{character} is the character position
within the file (where 0 is the first character in the file) (for most
debug formats this will necessarily point to the beginning of a line),
@var{middle} is @samp{middle} if @var{addr} is in the middle of the
line, or @samp{beg} if @var{addr} is at the beginning of the line, and
@var{addr} is the address in the target program associated with the
source which is being displayed.  @var{addr} is in the form @samp{0x}
followed by one or more lowercase hex digits (note that this does not
depend on the language).

@node JIT Interface
@chapter JIT Compilation Interface
@cindex just-in-time compilation
@cindex JIT compilation interface

This chapter documents @value{GDBN}'s @dfn{just-in-time} (JIT) compilation
interface.  A JIT compiler is a program or library that generates native
executable code at runtime and executes it, usually in order to achieve good
performance while maintaining platform independence. 

Programs that use JIT compilation are normally difficult to debug because
portions of their code are generated at runtime, instead of being loaded from
object files, which is where @value{GDBN} normally finds the program's symbols
and debug information.  In order to debug programs that use JIT compilation,
@value{GDBN} has an interface that allows the program to register in-memory
symbol files with @value{GDBN} at runtime.

If you are using @value{GDBN} to debug a program that uses this interface, then
it should work transparently so long as you have not stripped the binary.  If
you are developing a JIT compiler, then the interface is documented in the rest
of this chapter.  At this time, the only known client of this interface is the
LLVM JIT.

Broadly speaking, the JIT interface mirrors the dynamic loader interface.  The
JIT compiler communicates with @value{GDBN} by writing data into a global
variable and calling a fuction at a well-known symbol.  When @value{GDBN}
attaches, it reads a linked list of symbol files from the global variable to
find existing code, and puts a breakpoint in the function so that it can find
out about additional code.

@menu
* Declarations::                Relevant C struct declarations
* Registering Code::            Steps to register code
* Unregistering Code::          Steps to unregister code
* Custom Debug Info::           Emit debug information in a custom format
@end menu

@node Declarations
@section JIT Declarations

These are the relevant struct declarations that a C program should include to
implement the interface:

@smallexample
typedef enum
@{
  JIT_NOACTION = 0,
  JIT_REGISTER_FN,
  JIT_UNREGISTER_FN
@} jit_actions_t;

struct jit_code_entry
@{
  struct jit_code_entry *next_entry;
  struct jit_code_entry *prev_entry;
  const char *symfile_addr;
  uint64_t symfile_size;
@};

struct jit_descriptor
@{
  uint32_t version;
  /* This type should be jit_actions_t, but we use uint32_t
     to be explicit about the bitwidth.  */
  uint32_t action_flag;
  struct jit_code_entry *relevant_entry;
  struct jit_code_entry *first_entry;
@};

/* GDB puts a breakpoint in this function.  */
void __attribute__((noinline)) __jit_debug_register_code() @{ @};

/* Make sure to specify the version statically, because the
   debugger may check the version before we can set it.  */
struct jit_descriptor __jit_debug_descriptor = @{ 1, 0, 0, 0 @};
@end smallexample

If the JIT is multi-threaded, then it is important that the JIT synchronize any
modifications to this global data properly, which can easily be done by putting
a global mutex around modifications to these structures.

@node Registering Code
@section Registering Code

To register code with @value{GDBN}, the JIT should follow this protocol:

@itemize @bullet
@item
Generate an object file in memory with symbols and other desired debug
information.  The file must include the virtual addresses of the sections.

@item
Create a code entry for the file, which gives the start and size of the symbol
file.

@item
Add it to the linked list in the JIT descriptor.

@item
Point the relevant_entry field of the descriptor at the entry.

@item
Set @code{action_flag} to @code{JIT_REGISTER} and call
@code{__jit_debug_register_code}.
@end itemize

When @value{GDBN} is attached and the breakpoint fires, @value{GDBN} uses the
@code{relevant_entry} pointer so it doesn't have to walk the list looking for
new code.  However, the linked list must still be maintained in order to allow
@value{GDBN} to attach to a running process and still find the symbol files.

@node Unregistering Code
@section Unregistering Code

If code is freed, then the JIT should use the following protocol:

@itemize @bullet
@item
Remove the code entry corresponding to the code from the linked list.

@item
Point the @code{relevant_entry} field of the descriptor at the code entry.

@item
Set @code{action_flag} to @code{JIT_UNREGISTER} and call
@code{__jit_debug_register_code}.
@end itemize

If the JIT frees or recompiles code without unregistering it, then @value{GDBN}
and the JIT will leak the memory used for the associated symbol files.

@node Custom Debug Info
@section Custom Debug Info
@cindex custom JIT debug info
@cindex JIT debug info reader

Generating debug information in platform-native file formats (like ELF
or COFF) may be an overkill for JIT compilers; especially if all the
debug info is used for is displaying a meaningful backtrace.  The
issue can be resolved by having the JIT writers decide on a debug info
format and also provide a reader that parses the debug info generated
by the JIT compiler.  This section gives a brief overview on writing
such a parser.  More specific details can be found in the source file
@file{gdb/jit-reader.in}, which is also installed as a header at
@file{@var{includedir}/gdb/jit-reader.h} for easy inclusion.

The reader is implemented as a shared object (so this functionality is
not available on platforms which don't allow loading shared objects at
runtime).  Two @value{GDBN} commands, @code{jit-reader-load} and
@code{jit-reader-unload} are provided, to be used to load and unload
the readers from a preconfigured directory.  Once loaded, the shared
object is used the parse the debug information emitted by the JIT
compiler.

@menu
* Using JIT Debug Info Readers::       How to use supplied readers correctly
* Writing JIT Debug Info Readers::     Creating a debug-info reader
@end menu

@node Using JIT Debug Info Readers
@subsection Using JIT Debug Info Readers
@kindex jit-reader-load
@kindex jit-reader-unload

Readers can be loaded and unloaded using the @code{jit-reader-load}
and @code{jit-reader-unload} commands.

@table @code
@item jit-reader-load @var{reader}
Load the JIT reader named @var{reader}.  @var{reader} is a shared
object specified as either an absolute or a relative file name.  In
the latter case, @value{GDBN} will try to load the reader from a
pre-configured directory, usually @file{@var{libdir}/gdb/} on a UNIX
system (here @var{libdir} is the system library directory, often
@file{/usr/local/lib}).

Only one reader can be active at a time; trying to load a second
reader when one is already loaded will result in @value{GDBN}
reporting an error.  A new JIT reader can be loaded by first unloading
the current one using @code{jit-reader-unload} and then invoking
@code{jit-reader-load}.

@item jit-reader-unload
Unload the currently loaded JIT reader.

@end table

@node Writing JIT Debug Info Readers
@subsection Writing JIT Debug Info Readers
@cindex writing JIT debug info readers

As mentioned, a reader is essentially a shared object conforming to a
certain ABI.  This ABI is described in @file{jit-reader.h}.

@file{jit-reader.h} defines the structures, macros and functions
required to write a reader.  It is installed (along with
@value{GDBN}), in @file{@var{includedir}/gdb} where @var{includedir} is
the system include directory.

Readers need to be released under a GPL compatible license.  A reader
can be declared as released under such a license by placing the macro
@code{GDB_DECLARE_GPL_COMPATIBLE_READER} in a source file.

The entry point for readers is the symbol @code{gdb_init_reader},
which is expected to be a function with the prototype

@findex gdb_init_reader
@smallexample
extern struct gdb_reader_funcs *gdb_init_reader (void);
@end smallexample

@cindex @code{struct gdb_reader_funcs}

@code{struct gdb_reader_funcs} contains a set of pointers to callback
functions.  These functions are executed to read the debug info
generated by the JIT compiler (@code{read}), to unwind stack frames
(@code{unwind}) and to create canonical frame IDs
(@code{get_Frame_id}).  It also has a callback that is called when the
reader is being unloaded (@code{destroy}).  The struct looks like this

@smallexample
struct gdb_reader_funcs
@{
  /* Must be set to GDB_READER_INTERFACE_VERSION.  */
  int reader_version;

  /* For use by the reader.  */
  void *priv_data;

  gdb_read_debug_info *read;
  gdb_unwind_frame *unwind;
  gdb_get_frame_id *get_frame_id;
  gdb_destroy_reader *destroy;
@};
@end smallexample

@cindex @code{struct gdb_symbol_callbacks}
@cindex @code{struct gdb_unwind_callbacks}

The callbacks are provided with another set of callbacks by
@value{GDBN} to do their job.  For @code{read}, these callbacks are
passed in a @code{struct gdb_symbol_callbacks} and for @code{unwind}
and @code{get_frame_id}, in a @code{struct gdb_unwind_callbacks}.
@code{struct gdb_symbol_callbacks} has callbacks to create new object
files and new symbol tables inside those object files.  @code{struct
gdb_unwind_callbacks} has callbacks to read registers off the current
frame and to write out the values of the registers in the previous
frame.  Both have a callback (@code{target_read}) to read bytes off the
target's address space.

@node In-Process Agent
@chapter In-Process Agent
@cindex debugging agent
The traditional debugging model is conceptually low-speed, but works fine,
because most bugs can be reproduced in debugging-mode execution.  However,
as multi-core or many-core processors are becoming mainstream, and
multi-threaded programs become more and more popular, there should be more
and more bugs that only manifest themselves at normal-mode execution, for
example, thread races, because debugger's interference with the program's
timing may conceal the bugs.  On the other hand, in some applications,
it is not feasible for the debugger to interrupt the program's execution
long enough for the developer to learn anything helpful about its behavior.
If the program's correctness depends on its real-time behavior, delays
introduced by a debugger might cause the program to fail, even when the
code itself is correct.  It is useful to be able to observe the program's
behavior without interrupting it.

Therefore, traditional debugging model is too intrusive to reproduce
some bugs.  In order to reduce the interference with the program, we can
reduce the number of operations performed by debugger.  The
@dfn{In-Process Agent}, a shared library, is running within the same
process with inferior, and is able to perform some debugging operations
itself.  As a result, debugger is only involved when necessary, and
performance of debugging can be improved accordingly.  Note that
interference with program can be reduced but can't be removed completely,
because the in-process agent will still stop or slow down the program.

The in-process agent can interpret and execute Agent Expressions
(@pxref{Agent Expressions}) during performing debugging operations.  The
agent expressions can be used for different purposes, such as collecting
data in tracepoints, and condition evaluation in breakpoints.

@anchor{Control Agent}
You can control whether the in-process agent is used as an aid for
debugging with the following commands:

@table @code
@kindex set agent on
@item set agent on
Causes the in-process agent to perform some operations on behalf of the
debugger.  Just which operations requested by the user will be done
by the in-process agent depends on the its capabilities.  For example,
if you request to evaluate breakpoint conditions in the in-process agent,
and the in-process agent has such capability as well, then breakpoint
conditions will be evaluated in the in-process agent.

@kindex set agent off
@item set agent off
Disables execution of debugging operations by the in-process agent.  All
of the operations will be performed by @value{GDBN}.

@kindex show agent
@item show agent
Display the current setting of execution of debugging operations by
the in-process agent.
@end table

@menu
* In-Process Agent Protocol::
@end menu

@node In-Process Agent Protocol
@section In-Process Agent Protocol
@cindex in-process agent protocol

The in-process agent is able to communicate with both @value{GDBN} and
GDBserver (@pxref{In-Process Agent}).  This section documents the protocol
used for communications between @value{GDBN} or GDBserver and the IPA.
In general, @value{GDBN} or GDBserver sends commands
(@pxref{IPA Protocol Commands}) and data to in-process agent, and then
in-process agent replies back with the return result of the command, or
some other information.  The data sent to in-process agent is composed
of primitive data types, such as 4-byte or 8-byte type, and composite
types, which are called objects (@pxref{IPA Protocol Objects}).

@menu
* IPA Protocol Objects::
* IPA Protocol Commands::
@end menu

@node IPA Protocol Objects
@subsection IPA Protocol Objects
@cindex ipa protocol objects

The commands sent to and results received from agent may contain some
complex data types called @dfn{objects}.

The in-process agent is running on the same machine with @value{GDBN}
or GDBserver, so it doesn't have to handle as much differences between
two ends as remote protocol (@pxref{Remote Protocol}) tries to handle.
However, there are still some differences of two ends in two processes:

@enumerate
@item
word size.  On some 64-bit machines, @value{GDBN} or GDBserver can be
compiled as a 64-bit executable, while in-process agent is a 32-bit one.
@item
ABI.  Some machines may have multiple types of ABI, @value{GDBN} or
GDBserver is compiled with one, and in-process agent is compiled with
the other one.
@end enumerate

Here are the IPA Protocol Objects:

@enumerate
@item
agent expression object.  It represents an agent expression
(@pxref{Agent Expressions}).
@anchor{agent expression object}
@item
tracepoint action object.  It represents a tracepoint action
(@pxref{Tracepoint Actions,,Tracepoint Action Lists}) to collect registers,
memory, static trace data and to evaluate expression.
@anchor{tracepoint action object}
@item
tracepoint object.  It represents a tracepoint (@pxref{Tracepoints}).
@anchor{tracepoint object}

@end enumerate

The following table describes important attributes of each IPA protocol
object:

@multitable @columnfractions .30 .20 .50
@headitem Name @tab Size @tab Description
@item @emph{agent expression object} @tab @tab
@item length @tab 4 @tab length of bytes code
@item byte code @tab @var{length} @tab contents of byte code
@item @emph{tracepoint action for collecting memory} @tab @tab
@item 'M' @tab 1 @tab type of tracepoint action
@item addr @tab 8 @tab if @var{basereg} is @samp{-1}, @var{addr} is the
address of the lowest byte to collect, otherwise @var{addr} is the offset
of @var{basereg} for memory collecting.
@item len @tab 8 @tab length of memory for collecting
@item basereg @tab 4 @tab the register number containing the starting
memory address for collecting.
@item @emph{tracepoint action for collecting registers} @tab @tab
@item 'R' @tab 1 @tab type of tracepoint action
@item @emph{tracepoint action for collecting static trace data} @tab @tab
@item 'L' @tab 1 @tab type of tracepoint action
@item @emph{tracepoint action for expression evaluation} @tab @tab
@item 'X' @tab 1 @tab type of tracepoint action
@item agent expression @tab length of @tab @ref{agent expression object}
@item @emph{tracepoint object} @tab @tab
@item number @tab 4 @tab number of tracepoint
@item address @tab 8 @tab address of tracepoint inserted on
@item type @tab 4 @tab type of tracepoint
@item enabled @tab 1 @tab enable or disable of tracepoint
@item step_count @tab 8 @tab step
@item pass_count @tab 8 @tab pass
@item numactions @tab 4 @tab number of tracepoint actions
@item hit count @tab 8 @tab hit count
@item trace frame usage @tab 8 @tab trace frame usage
@item compiled_cond @tab 8 @tab compiled condition
@item orig_size @tab 8 @tab orig size
@item condition @tab 4 if condition is NULL otherwise length of
@ref{agent expression object}
@tab zero if condition is NULL, otherwise is
@ref{agent expression object}
@item actions @tab variable
@tab numactions number of @ref{tracepoint action object}
@end multitable

@node IPA Protocol Commands
@subsection IPA Protocol Commands
@cindex ipa protocol commands

The spaces in each command are delimiters to ease reading this commands
specification.  They don't exist in real commands.

@table @samp

@item FastTrace:@var{tracepoint_object} @var{gdb_jump_pad_head}
Installs a new fast tracepoint described by @var{tracepoint_object}
(@pxref{tracepoint object}).  @var{gdb_jump_pad_head}, 8-byte long, is the
head of @dfn{jumppad}, which is used to jump to data collection routine
in IPA finally.

Replies:
@table @samp
@item OK @var{target_address} @var{gdb_jump_pad_head} @var{fjump_size} @var{fjump}
@var{target_address} is address of tracepoint in the inferior.
@var{gdb_jump_pad_head} is updated head of jumppad.  Both of
@var{target_address} and @var{gdb_jump_pad_head} are 8-byte long.
@var{fjump} contains a sequence of instructions jump to jumppad entry.
@var{fjump_size}, 4-byte long, is the size of @var{fjump}.
@item E @var{NN}
for an error

@end table

@item close
Closes the in-process agent.  This command is sent when @value{GDBN} or GDBserver
is about to kill inferiors.

@item qTfSTM
@xref{qTfSTM}.
@item qTsSTM
@xref{qTsSTM}.
@item qTSTMat
@xref{qTSTMat}.
@item probe_marker_at:@var{address}
Asks in-process agent to probe the marker at @var{address}.

Replies:
@table @samp
@item E @var{NN}
for an error
@end table
@item unprobe_marker_at:@var{address}
Asks in-process agent to unprobe the marker at @var{address}.
@end table

@node GDB Bugs
@chapter Reporting Bugs in @value{GDBN}
@cindex bugs in @value{GDBN}
@cindex reporting bugs in @value{GDBN}

Your bug reports play an essential role in making @value{GDBN} reliable.

Reporting a bug may help you by bringing a solution to your problem, or it
may not.  But in any case the principal function of a bug report is to help
the entire community by making the next version of @value{GDBN} work better.  Bug
reports are your contribution to the maintenance of @value{GDBN}.

In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.

@menu
* Bug Criteria::                Have you found a bug?
* Bug Reporting::               How to report bugs
@end menu

@node Bug Criteria
@section Have You Found a Bug?
@cindex bug criteria

If you are not sure whether you have found a bug, here are some guidelines:

@itemize @bullet
@cindex fatal signal
@cindex debugger crash
@cindex crash of debugger
@item
If the debugger gets a fatal signal, for any input whatever, that is a
@value{GDBN} bug.  Reliable debuggers never crash.

@cindex error on valid input
@item
If @value{GDBN} produces an error message for valid input, that is a
bug.  (Note that if you're cross debugging, the problem may also be
somewhere in the connection to the target.)

@cindex invalid input
@item
If @value{GDBN} does not produce an error message for invalid input,
that is a bug.  However, you should note that your idea of
``invalid input'' might be our idea of ``an extension'' or ``support
for traditional practice''.

@item
If you are an experienced user of debugging tools, your suggestions
for improvement of @value{GDBN} are welcome in any case.
@end itemize

@node Bug Reporting
@section How to Report Bugs
@cindex bug reports
@cindex @value{GDBN} bugs, reporting

A number of companies and individuals offer support for @sc{gnu} products.
If you obtained @value{GDBN} from a support organization, we recommend you
contact that organization first.

You can find contact information for many support companies and
individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
distribution.
@c should add a web page ref...

@ifset BUGURL
@ifset BUGURL_DEFAULT
In any event, we also recommend that you submit bug reports for
@value{GDBN}.  The preferred method is to submit them directly using
@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
be used.

@strong{Do not send bug reports to @samp{info-gdb}, or to
@samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
not want to receive bug reports.  Those that do have arranged to receive
@samp{bug-gdb}.

The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
serves as a repeater.  The mailing list and the newsgroup carry exactly
the same messages.  Often people think of posting bug reports to the
newsgroup instead of mailing them.  This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender.  Thus, if we need to ask for more information,
we may be unable to reach you.  For this reason, it is better to send
bug reports to the mailing list.
@end ifset
@ifclear BUGURL_DEFAULT
In any event, we also recommend that you submit bug reports for
@value{GDBN} to @value{BUGURL}.
@end ifclear
@end ifset

The fundamental principle of reporting bugs usefully is this:
@strong{report all the facts}.  If you are not sure whether to state a
fact or leave it out, state it!

Often people omit facts because they think they know what causes the
problem and assume that some details do not matter.  Thus, you might
assume that the name of the variable you use in an example does not matter.
Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
stray memory reference which happens to fetch from the location where that
name is stored in memory; perhaps, if the name were different, the contents
of that location would fool the debugger into doing the right thing despite
the bug.  Play it safe and give a specific, complete example.  That is the
easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the
bug.  It may be that the bug has been reported previously, but neither
you nor we can know that unless your bug report is complete and
self-contained.

Sometimes people give a few sketchy facts and ask, ``Does this ring a
bell?''  Those bug reports are useless, and we urge everyone to
@emph{refuse to respond to them} except to chide the sender to report
bugs properly.

To enable us to fix the bug, you should include all these things:

@itemize @bullet
@item
The version of @value{GDBN}.  @value{GDBN} announces it if you start
with no arguments; you can also print it at any time using @code{show
version}.

Without this, we will not know whether there is any point in looking for
the bug in the current version of @value{GDBN}.

@item
The type of machine you are using, and the operating system name and
version number.

@item
The details of the @value{GDBN} build-time configuration.
@value{GDBN} shows these details if you invoke it with the
@option{--configuration} command-line option, or if you type
@code{show configuration} at @value{GDBN}'s prompt.

@item
What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
``@value{GCC}--2.8.1''.

@item
What compiler (and its version) was used to compile the program you are
debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
to get this information; for other compilers, see the documentation for
those compilers.

@item
The command arguments you gave the compiler to compile your example and
observe the bug.  For example, did you use @samp{-O}?  To guarantee
you will not omit something important, list them all.  A copy of the
Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong
and then we might not encounter the bug.

@item
A complete input script, and all necessary source files, that will
reproduce the bug.

@item
A description of what behavior you observe that you believe is
incorrect.  For example, ``It gets a fatal signal.''

Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
will certainly notice it.  But if the bug is incorrect output, we might
not notice unless it is glaringly wrong.  You might as well not give us
a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still
say so explicitly.  Suppose something strange is going on, such as, your
copy of @value{GDBN} is out of synch, or you have encountered a bug in
the C library on your system.  (This has happened!)  Your copy might
crash and ours would not.  If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for
us.  If you had not told us to expect a crash, then we would not be able
to draw any conclusion from our observations.

@pindex script
@cindex recording a session script
To collect all this information, you can use a session recording program
such as @command{script}, which is available on many Unix systems.
Just run your @value{GDBN} session inside @command{script} and then
include the @file{typescript} file with your bug report.

Another way to record a @value{GDBN} session is to run @value{GDBN}
inside Emacs and then save the entire buffer to a file.

@item
If you wish to suggest changes to the @value{GDBN} source, send us context
diffs.  If you even discuss something in the @value{GDBN} source, refer to
it by context, not by line number.

The line numbers in our development sources will not match those in your
sources.  Your line numbers would convey no useful information to us.

@end itemize

Here are some things that are not necessary:

@itemize @bullet
@item
A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.

This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
We recommend that you save your time for something else.

Of course, if you can find a simpler example to report @emph{instead}
of the original one, that is a convenience for us.  Errors in the
output will be easier to spot, running under the debugger will take
less time, and so on.

However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.

@item
A patch for the bug.

A patch for the bug does help us if it is a good one.  But do not omit
the necessary information, such as the test case, on the assumption that
a patch is all we need.  We might see problems with your patch and decide
to fix the problem another way, or we might not understand it at all.

Sometimes with a program as complicated as @value{GDBN} it is very hard to
construct an example that will make the program follow a certain path
through the code.  If you do not send us the example, we will not be able
to construct one, so we will not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your
patch should be an improvement, we will not install it.  A test case will
help us to understand.

@item
A guess about what the bug is or what it depends on.

Such guesses are usually wrong.  Even we cannot guess right about such
things without first using the debugger to find the facts.
@end itemize

@c The readline documentation is distributed with the readline code
@c and consists of the two following files:
@c     rluser.texi
@c     hsuser.texi
@c Use -I with makeinfo to point to the appropriate directory,
@c environment var TEXINPUTS with TeX.
@ifclear SYSTEM_READLINE
@include rluser.texi
@include hsuser.texi
@end ifclear

@node In Memoriam
@appendix In Memoriam

The @value{GDBN} project mourns the loss of the following long-time
contributors:

@table @code
@item Fred Fish
Fred was a long-standing contributor to @value{GDBN} (1991-2006), and
to Free Software in general.  Outside of @value{GDBN}, he was known in
the Amiga world for his series of Fish Disks, and the GeekGadget project.

@item Michael Snyder
Michael was one of the Global Maintainers of the @value{GDBN} project,
with contributions recorded as early as 1996, until 2011.  In addition
to his day to day participation, he was a large driving force behind
adding Reverse Debugging to @value{GDBN}.
@end table

Beyond their technical contributions to the project, they were also
enjoyable members of the Free Software Community.  We will miss them.

@node Formatting Documentation
@appendix Formatting Documentation

@cindex @value{GDBN} reference card
@cindex reference card
The @value{GDBN} 4 release includes an already-formatted reference card, ready
for printing with PostScript or Ghostscript, in the @file{gdb}
subdirectory of the main source directory@footnote{In
@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
release.}.  If you can use PostScript or Ghostscript with your printer,
you can print the reference card immediately with @file{refcard.ps}.

The release also includes the source for the reference card.  You
can format it, using @TeX{}, by typing:

@smallexample
make refcard.dvi
@end smallexample

The @value{GDBN} reference card is designed to print in @dfn{landscape}
mode on US ``letter'' size paper;
that is, on a sheet 11 inches wide by 8.5 inches
high.  You will need to specify this form of printing as an option to
your @sc{dvi} output program.

@cindex documentation

All the documentation for @value{GDBN} comes as part of the machine-readable
distribution.  The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual.  You can use one of the Info
formatting commands to create the on-line version of the documentation
and @TeX{} (or @code{texi2roff}) to typeset the printed version.

@value{GDBN} includes an already formatted copy of the on-line Info
version of this manual in the @file{gdb} subdirectory.  The main Info
file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
subordinate files matching @samp{gdb.info*} in the same directory.  If
necessary, you can print out these files, or read them with any editor;
but they are easier to read using the @code{info} subsystem in @sc{gnu}
Emacs or the standalone @code{info} program, available as part of the
@sc{gnu} Texinfo distribution.

If you want to format these Info files yourself, you need one of the
Info formatting programs, such as @code{texinfo-format-buffer} or
@code{makeinfo}.

If you have @code{makeinfo} installed, and are in the top level
@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
version @value{GDBVN}), you can make the Info file by typing:

@smallexample
cd gdb
make gdb.info
@end smallexample

If you want to typeset and print copies of this manual, you need @TeX{},
a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
Texinfo definitions file.

@TeX{} is a typesetting program; it does not print files directly, but
produces output files called @sc{dvi} files.  To print a typeset
document, you need a program to print @sc{dvi} files.  If your system
has @TeX{} installed, chances are it has such a program.  The precise
command to use depends on your system; @kbd{lpr -d} is common; another
(for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
require a file name without any extension or a @samp{.dvi} extension.

@TeX{} also requires a macro definitions file called
@file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
written in Texinfo format.  On its own, @TeX{} cannot either read or
typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
and is located in the @file{gdb-@var{version-number}/texinfo}
directory.

If you have @TeX{} and a @sc{dvi} printer program installed, you can
typeset and print this manual.  First switch to the @file{gdb}
subdirectory of the main source directory (for example, to
@file{gdb-@value{GDBVN}/gdb}) and type:

@smallexample
make gdb.dvi
@end smallexample

Then give @file{gdb.dvi} to your @sc{dvi} printing program.

@node Installing GDB
@appendix Installing @value{GDBN}
@cindex installation

@menu
* Requirements::                Requirements for building @value{GDBN}
* Running Configure::           Invoking the @value{GDBN} @file{configure} script
* Separate Objdir::             Compiling @value{GDBN} in another directory
* Config Names::                Specifying names for hosts and targets
* Configure Options::           Summary of options for configure
* System-wide configuration::   Having a system-wide init file
@end menu

@node Requirements
@section Requirements for Building @value{GDBN}
@cindex building @value{GDBN}, requirements for

Building @value{GDBN} requires various tools and packages to be available.
Other packages will be used only if they are found.

@heading Tools/Packages Necessary for Building @value{GDBN}
@table @asis
@item ISO C90 compiler
@value{GDBN} is written in ISO C90.  It should be buildable with any
working C90 compiler, e.g.@: GCC.

@end table

@heading Tools/Packages Optional for Building @value{GDBN}
@table @asis
@item Expat
@anchor{Expat}
@value{GDBN} can use the Expat XML parsing library.  This library may be
included with your operating system distribution; if it is not, you
can get the latest version from @url{http://expat.sourceforge.net}.
The @file{configure} script will search for this library in several
standard locations; if it is installed in an unusual path, you can
use the @option{--with-libexpat-prefix} option to specify its location.

Expat is used for:

@itemize @bullet
@item
Remote protocol memory maps (@pxref{Memory Map Format})
@item
Target descriptions (@pxref{Target Descriptions})
@item
Remote shared library lists (@xref{Library List Format},
or alternatively @pxref{Library List Format for SVR4 Targets})
@item
MS-Windows shared libraries (@pxref{Shared Libraries})
@item
Traceframe info (@pxref{Traceframe Info Format})
@item
Branch trace (@pxref{Branch Trace Format})
@end itemize

@item zlib
@cindex compressed debug sections 
@value{GDBN} will use the @samp{zlib} library, if available, to read
compressed debug sections.  Some linkers, such as GNU gold, are capable
of producing binaries with compressed debug sections.  If @value{GDBN}
is compiled with @samp{zlib}, it will be able to read the debug
information in such binaries.

The @samp{zlib} library is likely included with your operating system
distribution; if it is not, you can get the latest version from
@url{http://zlib.net}.

@item iconv
@value{GDBN}'s features related to character sets (@pxref{Character
Sets}) require a functioning @code{iconv} implementation.  If you are
on a GNU system, then this is provided by the GNU C Library.  Some
other systems also provide a working @code{iconv}.

If @value{GDBN} is using the @code{iconv} program which is installed
in a non-standard place, you will need to tell @value{GDBN} where to find it.
This is done with @option{--with-iconv-bin} which specifies the
directory that contains the @code{iconv} program.

On systems without @code{iconv}, you can install GNU Libiconv.  If you
have previously installed Libiconv, you can use the
@option{--with-libiconv-prefix} option to configure.

@value{GDBN}'s top-level @file{configure} and @file{Makefile} will
arrange to build Libiconv if a directory named @file{libiconv} appears
in the top-most source directory.  If Libiconv is built this way, and
if the operating system does not provide a suitable @code{iconv}
implementation, then the just-built library will automatically be used
by @value{GDBN}.  One easy way to set this up is to download GNU
Libiconv, unpack it, and then rename the directory holding the
Libiconv source code to @samp{libiconv}.
@end table

@node Running Configure
@section Invoking the @value{GDBN} @file{configure} Script
@cindex configuring @value{GDBN}
@value{GDBN} comes with a @file{configure} script that automates the process
of preparing @value{GDBN} for installation; you can then use @code{make} to
build the @code{gdb} program.
@iftex
@c irrelevant in info file; it's as current as the code it lives with.
@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
look at the @file{README} file in the sources; we may have improved the
installation procedures since publishing this manual.}
@end iftex

The @value{GDBN} distribution includes all the source code you need for
@value{GDBN} in a single directory, whose name is usually composed by
appending the version number to @samp{gdb}.

For example, the @value{GDBN} version @value{GDBVN} distribution is in the
@file{gdb-@value{GDBVN}} directory.  That directory contains:

@table @code
@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
script for configuring @value{GDBN} and all its supporting libraries

@item gdb-@value{GDBVN}/gdb
the source specific to @value{GDBN} itself

@item gdb-@value{GDBVN}/bfd
source for the Binary File Descriptor library

@item gdb-@value{GDBVN}/include
@sc{gnu} include files

@item gdb-@value{GDBVN}/libiberty
source for the @samp{-liberty} free software library

@item gdb-@value{GDBVN}/opcodes
source for the library of opcode tables and disassemblers

@item gdb-@value{GDBVN}/readline
source for the @sc{gnu} command-line interface

@item gdb-@value{GDBVN}/glob
source for the @sc{gnu} filename pattern-matching subroutine

@item gdb-@value{GDBVN}/mmalloc
source for the @sc{gnu} memory-mapped malloc package
@end table

The simplest way to configure and build @value{GDBN} is to run @file{configure}
from the @file{gdb-@var{version-number}} source directory, which in
this example is the @file{gdb-@value{GDBVN}} directory.

First switch to the @file{gdb-@var{version-number}} source directory
if you are not already in it; then run @file{configure}.  Pass the
identifier for the platform on which @value{GDBN} will run as an
argument.

For example:

@smallexample
cd gdb-@value{GDBVN}
./configure @var{host}
make
@end smallexample

@noindent
where @var{host} is an identifier such as @samp{sun4} or
@samp{decstation}, that identifies the platform where @value{GDBN} will run.
(You can often leave off @var{host}; @file{configure} tries to guess the
correct value by examining your system.)

Running @samp{configure @var{host}} and then running @code{make} builds the
@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
libraries, then @code{gdb} itself.  The configured source files, and the
binaries, are left in the corresponding source directories.

@need 750
@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
system does not recognize this automatically when you run a different
shell, you may need to run @code{sh} on it explicitly:

@smallexample
sh configure @var{host}
@end smallexample

If you run @file{configure} from a directory that contains source
directories for multiple libraries or programs, such as the
@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
@file{configure}
creates configuration files for every directory level underneath (unless
you tell it not to, with the @samp{--norecursion} option).

You should run the @file{configure} script from the top directory in the
source tree, the @file{gdb-@var{version-number}} directory.  If you run
@file{configure} from one of the subdirectories, you will configure only
that subdirectory.  That is usually not what you want.  In particular,
if you run the first @file{configure} from the @file{gdb} subdirectory
of the @file{gdb-@var{version-number}} directory, you will omit the
configuration of @file{bfd}, @file{readline}, and other sibling
directories of the @file{gdb} subdirectory.  This leads to build errors
about missing include files such as @file{bfd/bfd.h}.

You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
However, you should make sure that the shell on your path (named by
the @samp{SHELL} environment variable) is publicly readable.  Remember
that @value{GDBN} uses the shell to start your program---some systems refuse to
let @value{GDBN} debug child processes whose programs are not readable.

@node Separate Objdir
@section Compiling @value{GDBN} in Another Directory

If you want to run @value{GDBN} versions for several host or target machines,
you need a different @code{gdb} compiled for each combination of
host and target.  @file{configure} is designed to make this easy by
allowing you to generate each configuration in a separate subdirectory,
rather than in the source directory.  If your @code{make} program
handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
@code{make} in each of these directories builds the @code{gdb}
program specified there.

To build @code{gdb} in a separate directory, run @file{configure}
with the @samp{--srcdir} option to specify where to find the source.
(You also need to specify a path to find @file{configure}
itself from your working directory.  If the path to @file{configure}
would be the same as the argument to @samp{--srcdir}, you can leave out
the @samp{--srcdir} option; it is assumed.)

For example, with version @value{GDBVN}, you can build @value{GDBN} in a
separate directory for a Sun 4 like this:

@smallexample
@group
cd gdb-@value{GDBVN}
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-@value{GDBVN}/configure sun4
make
@end group
@end smallexample

When @file{configure} builds a configuration using a remote source
directory, it creates a tree for the binaries with the same structure
(and using the same names) as the tree under the source directory.  In
the example, you'd find the Sun 4 library @file{libiberty.a} in the
directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
@file{gdb-sun4/gdb}.

Make sure that your path to the @file{configure} script has just one
instance of @file{gdb} in it.  If your path to @file{configure} looks
like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
one subdirectory of @value{GDBN}, not the whole package.  This leads to
build errors about missing include files such as @file{bfd/bfd.h}.

One popular reason to build several @value{GDBN} configurations in separate
directories is to configure @value{GDBN} for cross-compiling (where
@value{GDBN} runs on one machine---the @dfn{host}---while debugging
programs that run on another machine---the @dfn{target}).
You specify a cross-debugging target by
giving the @samp{--target=@var{target}} option to @file{configure}.

When you run @code{make} to build a program or library, you must run
it in a configured directory---whatever directory you were in when you
called @file{configure} (or one of its subdirectories).

The @code{Makefile} that @file{configure} generates in each source
directory also runs recursively.  If you type @code{make} in a source
directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
will build all the required libraries, and then build GDB.

When you have multiple hosts or targets configured in separate
directories, you can run @code{make} on them in parallel (for example,
if they are NFS-mounted on each of the hosts); they will not interfere
with each other.

@node Config Names
@section Specifying Names for Hosts and Targets

The specifications used for hosts and targets in the @file{configure}
script are based on a three-part naming scheme, but some short predefined
aliases are also supported.  The full naming scheme encodes three pieces
of information in the following pattern:

@smallexample
@var{architecture}-@var{vendor}-@var{os}
@end smallexample

For example, you can use the alias @code{sun4} as a @var{host} argument,
or as the value for @var{target} in a @code{--target=@var{target}}
option.  The equivalent full name is @samp{sparc-sun-sunos4}.

The @file{configure} script accompanying @value{GDBN} does not provide
any query facility to list all supported host and target names or
aliases.  @file{configure} calls the Bourne shell script
@code{config.sub} to map abbreviations to full names; you can read the
script, if you wish, or you can use it to test your guesses on
abbreviations---for example:

@smallexample
% sh config.sub i386-linux
i386-pc-linux-gnu
% sh config.sub alpha-linux
alpha-unknown-linux-gnu
% sh config.sub hp9k700
hppa1.1-hp-hpux
% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub i986v
Invalid configuration `i986v': machine `i986v' not recognized
@end smallexample

@noindent
@code{config.sub} is also distributed in the @value{GDBN} source
directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).

@node Configure Options
@section @file{configure} Options

Here is a summary of the @file{configure} options and arguments that
are most often useful for building @value{GDBN}.  @file{configure} also has
several other options not listed here.  @inforef{What Configure
Does,,configure.info}, for a full explanation of @file{configure}.

@smallexample
configure @r{[}--help@r{]}
          @r{[}--prefix=@var{dir}@r{]}
          @r{[}--exec-prefix=@var{dir}@r{]}
          @r{[}--srcdir=@var{dirname}@r{]}
          @r{[}--norecursion@r{]} @r{[}--rm@r{]}
          @r{[}--target=@var{target}@r{]}
          @var{host}
@end smallexample

@noindent
You may introduce options with a single @samp{-} rather than
@samp{--} if you prefer; but you may abbreviate option names if you use
@samp{--}.

@table @code
@item --help
Display a quick summary of how to invoke @file{configure}.

@item --prefix=@var{dir}
Configure the source to install programs and files under directory
@file{@var{dir}}.

@item --exec-prefix=@var{dir}
Configure the source to install programs under directory
@file{@var{dir}}.

@c avoid splitting the warning from the explanation:
@need 2000
@item --srcdir=@var{dirname}
@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
@code{make} that implements the @code{VPATH} feature.}@*
Use this option to make configurations in directories separate from the
@value{GDBN} source directories.  Among other things, you can use this to
build (or maintain) several configurations simultaneously, in separate
directories.  @file{configure} writes configuration-specific files in
the current directory, but arranges for them to use the source in the
directory @var{dirname}.  @file{configure} creates directories under
the working directory in parallel to the source directories below
@var{dirname}.

@item --norecursion
Configure only the directory level where @file{configure} is executed; do not
propagate configuration to subdirectories.

@item --target=@var{target}
Configure @value{GDBN} for cross-debugging programs running on the specified
@var{target}.  Without this option, @value{GDBN} is configured to debug
programs that run on the same machine (@var{host}) as @value{GDBN} itself.

There is no convenient way to generate a list of all available targets.

@item @var{host} @dots{}
Configure @value{GDBN} to run on the specified @var{host}.

There is no convenient way to generate a list of all available hosts.
@end table

There are many other options available as well, but they are generally
needed for special purposes only.

@node System-wide configuration
@section System-wide configuration and settings
@cindex system-wide init file

@value{GDBN} can be configured to have a system-wide init file;
this file will be read and executed at startup (@pxref{Startup, , What
@value{GDBN} does during startup}).

Here is the corresponding configure option:

@table @code
@item --with-system-gdbinit=@var{file}
Specify that the default location of the system-wide init file is
@var{file}.
@end table

If @value{GDBN} has been configured with the option @option{--prefix=$prefix},
it may be subject to relocation.  Two possible cases:

@itemize @bullet
@item 
If the default location of this init file contains @file{$prefix},
it will be subject to relocation.  Suppose that the configure options
are @option{--prefix=$prefix --with-system-gdbinit=$prefix/etc/gdbinit};
if @value{GDBN} is moved from @file{$prefix} to @file{$install}, the system
init file is looked for as @file{$install/etc/gdbinit} instead of
@file{$prefix/etc/gdbinit}.

@item
By contrast, if the default location does not contain the prefix,
it will not be relocated.  E.g.@: if @value{GDBN} has been configured with
@option{--prefix=/usr/local --with-system-gdbinit=/usr/share/gdb/gdbinit},
then @value{GDBN} will always look for @file{/usr/share/gdb/gdbinit},
wherever @value{GDBN} is installed.
@end itemize

If the configured location of the system-wide init file (as given by the
@option{--with-system-gdbinit} option at configure time) is in the
data-directory (as specified by @option{--with-gdb-datadir} at configure
time) or in one of its subdirectories, then @value{GDBN} will look for the
system-wide init file in the directory specified by the
@option{--data-directory} command-line option.
Note that the system-wide init file is only read once, during @value{GDBN}
initialization.  If the data-directory is changed after @value{GDBN} has
started with the @code{set data-directory} command, the file will not be
reread.

@menu
* System-wide Configuration Scripts::  Installed System-wide Configuration Scripts
@end menu

@node System-wide Configuration Scripts
@subsection Installed System-wide Configuration Scripts
@cindex system-wide configuration scripts

The @file{system-gdbinit} directory, located inside the data-directory
(as specified by @option{--with-gdb-datadir} at configure time) contains
a number of scripts which can be used as system-wide init files.  To
automatically source those scripts at startup, @value{GDBN} should be
configured with @option{--with-system-gdbinit}.  Otherwise, any user
should be able to source them by hand as needed.

The following scripts are currently available:
@itemize @bullet

@item @file{elinos.py}
@pindex elinos.py
@cindex ELinOS system-wide configuration script
This script is useful when debugging a program on an ELinOS target.
It takes advantage of the environment variables defined in a standard
ELinOS environment in order to determine the location of the system
shared libraries, and then sets the @samp{solib-absolute-prefix}
and @samp{solib-search-path} variables appropriately.

@item @file{wrs-linux.py}
@pindex wrs-linux.py
@cindex Wind River Linux system-wide configuration script
This script is useful when debugging a program on a target running
Wind River Linux.  It expects the @env{ENV_PREFIX} to be set to
the host-side sysroot used by the target system.

@end itemize

@node Maintenance Commands
@appendix Maintenance Commands
@cindex maintenance commands
@cindex internal commands

In addition to commands intended for @value{GDBN} users, @value{GDBN}
includes a number of commands intended for @value{GDBN} developers,
that are not documented elsewhere in this manual.  These commands are
provided here for reference.  (For commands that turn on debugging
messages, see @ref{Debugging Output}.)

@table @code
@kindex maint agent
@kindex maint agent-eval
@item maint agent @r{[}-at @var{location}@r{,}@r{]} @var{expression}
@itemx maint agent-eval @r{[}-at @var{location}@r{,}@r{]} @var{expression}
Translate the given @var{expression} into remote agent bytecodes.
This command is useful for debugging the Agent Expression mechanism
(@pxref{Agent Expressions}).  The @samp{agent} version produces an
expression useful for data collection, such as by tracepoints, while
@samp{maint agent-eval} produces an expression that evaluates directly
to a result.  For instance, a collection expression for @code{globa +
globb} will include bytecodes to record four bytes of memory at each
of the addresses of @code{globa} and @code{globb}, while discarding
the result of the addition, while an evaluation expression will do the
addition and return the sum.
If @code{-at} is given, generate remote agent bytecode for @var{location}.
If not, generate remote agent bytecode for current frame PC address.

@kindex maint agent-printf
@item maint agent-printf @var{format},@var{expr},...
Translate the given format string and list of argument expressions
into remote agent bytecodes and display them as a disassembled list.
This command is useful for debugging the agent version of dynamic
printf (@pxref{Dynamic Printf}).

@kindex maint info breakpoints
@item @anchor{maint info breakpoints}maint info breakpoints
Using the same format as @samp{info breakpoints}, display both the
breakpoints you've set explicitly, and those @value{GDBN} is using for
internal purposes.  Internal breakpoints are shown with negative
breakpoint numbers.  The type column identifies what kind of breakpoint
is shown:

@table @code
@item breakpoint
Normal, explicitly set breakpoint.

@item watchpoint
Normal, explicitly set watchpoint.

@item longjmp
Internal breakpoint, used to handle correctly stepping through
@code{longjmp} calls.

@item longjmp resume
Internal breakpoint at the target of a @code{longjmp}.

@item until
Temporary internal breakpoint used by the @value{GDBN} @code{until} command.

@item finish
Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.

@item shlib events
Shared library events.

@end table

@kindex maint info bfds
@item maint info bfds
This prints information about each @code{bfd} object that is known to
@value{GDBN}.  @xref{Top, , BFD, bfd, The Binary File Descriptor Library}.

@kindex set displaced-stepping
@kindex show displaced-stepping
@cindex displaced stepping support
@cindex out-of-line single-stepping
@item set displaced-stepping
@itemx show displaced-stepping
Control whether or not @value{GDBN} will do @dfn{displaced stepping}
if the target supports it.  Displaced stepping is a way to single-step
over breakpoints without removing them from the inferior, by executing
an out-of-line copy of the instruction that was originally at the
breakpoint location.  It is also known as out-of-line single-stepping.

@table @code
@item set displaced-stepping on
If the target architecture supports it, @value{GDBN} will use
displaced stepping to step over breakpoints.

@item set displaced-stepping off
@value{GDBN} will not use displaced stepping to step over breakpoints,
even if such is supported by the target architecture.

@cindex non-stop mode, and @samp{set displaced-stepping}
@item set displaced-stepping auto
This is the default mode.  @value{GDBN} will use displaced stepping
only if non-stop mode is active (@pxref{Non-Stop Mode}) and the target
architecture supports displaced stepping.
@end table

@kindex maint check-psymtabs
@item maint check-psymtabs
Check the consistency of currently expanded psymtabs versus symtabs.
Use this to check, for example, whether a symbol is in one but not the other.

@kindex maint check-symtabs
@item maint check-symtabs
Check the consistency of currently expanded symtabs.

@kindex maint expand-symtabs
@item maint expand-symtabs [@var{regexp}]
Expand symbol tables.
If @var{regexp} is specified, only expand symbol tables for file
names matching @var{regexp}.

@kindex maint cplus first_component
@item maint cplus first_component @var{name}
Print the first C@t{++} class/namespace component of @var{name}.

@kindex maint cplus namespace
@item maint cplus namespace
Print the list of possible C@t{++} namespaces.

@kindex maint demangle
@item maint demangle @var{name}
Demangle a C@t{++} or Objective-C mangled @var{name}.

@kindex maint deprecate
@kindex maint undeprecate
@cindex deprecated commands
@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
@itemx maint undeprecate @var{command}
Deprecate or undeprecate the named @var{command}.  Deprecated commands
cause @value{GDBN} to issue a warning when you use them.  The optional
argument @var{replacement} says which newer command should be used in
favor of the deprecated one; if it is given, @value{GDBN} will mention
the replacement as part of the warning.

@kindex maint dump-me
@item maint dump-me
@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
Cause a fatal signal in the debugger and force it to dump its core.
This is supported only on systems which support aborting a program
with the @code{SIGQUIT} signal.

@kindex maint internal-error
@kindex maint internal-warning
@item maint internal-error @r{[}@var{message-text}@r{]}
@itemx maint internal-warning @r{[}@var{message-text}@r{]}
Cause @value{GDBN} to call the internal function @code{internal_error}
or @code{internal_warning} and hence behave as though an internal error
or internal warning has been detected.  In addition to reporting the
internal problem, these functions give the user the opportunity to
either quit @value{GDBN} or create a core file of the current
@value{GDBN} session.

These commands take an optional parameter @var{message-text} that is
used as the text of the error or warning message.

Here's an example of using @code{internal-error}:

@smallexample
(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
@dots{}/maint.c:121: internal-error: testing, 1, 2
A problem internal to GDB has been detected.  Further
debugging may prove unreliable.
Quit this debugging session? (y or n) @kbd{n}
Create a core file? (y or n) @kbd{n}
(@value{GDBP})
@end smallexample

@cindex @value{GDBN} internal error
@cindex internal errors, control of @value{GDBN} behavior

@kindex maint set internal-error
@kindex maint show internal-error
@kindex maint set internal-warning
@kindex maint show internal-warning
@item maint set internal-error @var{action} [ask|yes|no]
@itemx maint show internal-error @var{action}
@itemx maint set internal-warning @var{action} [ask|yes|no]
@itemx maint show internal-warning @var{action}
When @value{GDBN} reports an internal problem (error or warning) it
gives the user the opportunity to both quit @value{GDBN} and create a
core file of the current @value{GDBN} session.  These commands let you
override the default behaviour for each particular @var{action},
described in the table below.

@table @samp
@item quit
You can specify that @value{GDBN} should always (yes) or never (no)
quit.  The default is to ask the user what to do.

@item corefile
You can specify that @value{GDBN} should always (yes) or never (no)
create a core file.  The default is to ask the user what to do.
@end table

@kindex maint packet
@item maint packet @var{text}
If @value{GDBN} is talking to an inferior via the serial protocol,
then this command sends the string @var{text} to the inferior, and
displays the response packet.  @value{GDBN} supplies the initial
@samp{$} character, the terminating @samp{#} character, and the
checksum.

@kindex maint print architecture
@item maint print architecture @r{[}@var{file}@r{]}
Print the entire architecture configuration.  The optional argument
@var{file} names the file where the output goes.

@kindex maint print c-tdesc
@item maint print c-tdesc
Print the current target description (@pxref{Target Descriptions}) as
a C source file.  The created source file can be used in @value{GDBN}
when an XML parser is not available to parse the description.

@kindex maint print dummy-frames
@item maint print dummy-frames
Prints the contents of @value{GDBN}'s internal dummy-frame stack.

@smallexample
(@value{GDBP}) @kbd{b add}
@dots{}
(@value{GDBP}) @kbd{print add(2,3)}
Breakpoint 2, add (a=2, b=3) at @dots{}
58	  return (a + b);
The program being debugged stopped while in a function called from GDB.
@dots{}
(@value{GDBP}) @kbd{maint print dummy-frames}
0x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
 call_lo=0x01014000 call_hi=0x01014001
(@value{GDBP})
@end smallexample

Takes an optional file parameter.

@kindex maint print registers
@kindex maint print raw-registers
@kindex maint print cooked-registers
@kindex maint print register-groups
@kindex maint print remote-registers
@item maint print registers @r{[}@var{file}@r{]}
@itemx maint print raw-registers @r{[}@var{file}@r{]}
@itemx maint print cooked-registers @r{[}@var{file}@r{]}
@itemx maint print register-groups @r{[}@var{file}@r{]}
@itemx maint print remote-registers @r{[}@var{file}@r{]}
Print @value{GDBN}'s internal register data structures.

The command @code{maint print raw-registers} includes the contents of
the raw register cache; the command @code{maint print
cooked-registers} includes the (cooked) value of all registers,
including registers which aren't available on the target nor visible
to user; the command @code{maint print register-groups} includes the
groups that each register is a member of; and the command @code{maint
print remote-registers} includes the remote target's register numbers
and offsets in the `G' packets.

These commands take an optional parameter, a file name to which to
write the information.

@kindex maint print reggroups
@item maint print reggroups @r{[}@var{file}@r{]}
Print @value{GDBN}'s internal register group data structures.  The
optional argument @var{file} tells to what file to write the
information.

The register groups info looks like this:

@smallexample
(@value{GDBP}) @kbd{maint print reggroups}
 Group      Type
 general    user
 float      user
 all        user
 vector     user
 system     user
 save       internal
 restore    internal
@end smallexample

@kindex flushregs
@item flushregs
This command forces @value{GDBN} to flush its internal register cache.

@kindex maint print objfiles
@cindex info for known object files
@item maint print objfiles @r{[}@var{regexp}@r{]}
Print a dump of all known object files.
If @var{regexp} is specified, only print object files whose names
match @var{regexp}.  For each object file, this command prints its name,
address in memory, and all of its psymtabs and symtabs.

@kindex maint print section-scripts
@cindex info for known .debug_gdb_scripts-loaded scripts
@item maint print section-scripts [@var{regexp}]
Print a dump of scripts specified in the @code{.debug_gdb_section} section.
If @var{regexp} is specified, only print scripts loaded by object files
matching @var{regexp}.
For each script, this command prints its name as specified in the objfile,
and the full path if known.
@xref{dotdebug_gdb_scripts section}.

@kindex maint print statistics
@cindex bcache statistics
@item maint print statistics
This command prints, for each object file in the program, various data
about that object file followed by the byte cache (@dfn{bcache})
statistics for the object file.  The objfile data includes the number
of minimal, partial, full, and stabs symbols, the number of types
defined by the objfile, the number of as yet unexpanded psym tables,
the number of line tables and string tables, and the amount of memory
used by the various tables.  The bcache statistics include the counts,
sizes, and counts of duplicates of all and unique objects, max,
average, and median entry size, total memory used and its overhead and
savings, and various measures of the hash table size and chain
lengths.

@kindex maint print target-stack
@cindex target stack description
@item maint print target-stack
A @dfn{target} is an interface between the debugger and a particular
kind of file or process.  Targets can be stacked in @dfn{strata},
so that more than one target can potentially respond to a request.
In particular, memory accesses will walk down the stack of targets
until they find a target that is interested in handling that particular
address.

This command prints a short description of each layer that was pushed on
the @dfn{target stack}, starting from the top layer down to the bottom one.

@kindex maint print type
@cindex type chain of a data type
@item maint print type @var{expr}
Print the type chain for a type specified by @var{expr}.  The argument
can be either a type name or a symbol.  If it is a symbol, the type of
that symbol is described.  The type chain produced by this command is
a recursive definition of the data type as stored in @value{GDBN}'s
data structures, including its flags and contained types.

@kindex maint set dwarf2 always-disassemble
@kindex maint show dwarf2 always-disassemble
@item maint set dwarf2 always-disassemble
@item maint show dwarf2 always-disassemble
Control the behavior of @code{info address} when using DWARF debugging
information.

The default is @code{off}, which means that @value{GDBN} should try to
describe a variable's location in an easily readable format.  When
@code{on}, @value{GDBN} will instead display the DWARF location
expression in an assembly-like format.  Note that some locations are
too complex for @value{GDBN} to describe simply; in this case you will
always see the disassembly form.

Here is an example of the resulting disassembly:

@smallexample
(gdb) info addr argc
Symbol "argc" is a complex DWARF expression:
     1: DW_OP_fbreg 0
@end smallexample

For more information on these expressions, see
@uref{http://www.dwarfstd.org/, the DWARF standard}.

@kindex maint set dwarf2 max-cache-age
@kindex maint show dwarf2 max-cache-age
@item maint set dwarf2 max-cache-age
@itemx maint show dwarf2 max-cache-age
Control the DWARF 2 compilation unit cache.

@cindex DWARF 2 compilation units cache
In object files with inter-compilation-unit references, such as those
produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
reader needs to frequently refer to previously read compilation units.
This setting controls how long a compilation unit will remain in the
cache if it is not referenced.  A higher limit means that cached
compilation units will be stored in memory longer, and more total
memory will be used.  Setting it to zero disables caching, which will
slow down @value{GDBN} startup, but reduce memory consumption.

@kindex maint set profile
@kindex maint show profile
@cindex profiling GDB
@item maint set profile
@itemx maint show profile
Control profiling of @value{GDBN}.

Profiling will be disabled until you use the @samp{maint set profile}
command to enable it.  When you enable profiling, the system will begin
collecting timing and execution count data; when you disable profiling or
exit @value{GDBN}, the results will be written to a log file.  Remember that
if you use profiling, @value{GDBN} will overwrite the profiling log file
(often called @file{gmon.out}).  If you have a record of important profiling
data in a @file{gmon.out} file, be sure to move it to a safe location.

Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
compiled with the @samp{-pg} compiler option.

@kindex maint set show-debug-regs
@kindex maint show show-debug-regs
@cindex hardware debug registers
@item maint set show-debug-regs
@itemx maint show show-debug-regs
Control whether to show variables that mirror the hardware debug
registers.  Use @code{ON} to enable, @code{OFF} to disable.  If
enabled, the debug registers values are shown when @value{GDBN} inserts or
removes a hardware breakpoint or watchpoint, and when the inferior
triggers a hardware-assisted breakpoint or watchpoint.

@kindex maint set show-all-tib
@kindex maint show show-all-tib
@item maint set show-all-tib
@itemx maint show show-all-tib
Control whether to show all non zero areas within a 1k block starting
at thread local base, when using the @samp{info w32 thread-information-block}
command.

@kindex maint set per-command
@kindex maint show per-command
@item maint set per-command
@itemx maint show per-command
@cindex resources used by commands

@value{GDBN} can display the resources used by each command.
This is useful in debugging performance problems.

@table @code
@item maint set per-command space [on|off]
@itemx maint show per-command space
Enable or disable the printing of the memory used by GDB for each command.
If enabled, @value{GDBN} will display how much memory each command
took, following the command's own output.
This can also be requested by invoking @value{GDBN} with the
@option{--statistics} command-line switch (@pxref{Mode Options}).

@item maint set per-command time [on|off]
@itemx maint show per-command time
Enable or disable the printing of the execution time of @value{GDBN}
for each command.
If enabled, @value{GDBN} will display how much time it
took to execute each command, following the command's own output.
Both CPU time and wallclock time are printed.
Printing both is useful when trying to determine whether the cost is
CPU or, e.g., disk/network latency.
Note that the CPU time printed is for @value{GDBN} only, it does not include
the execution time of the inferior because there's no mechanism currently
to compute how much time was spent by @value{GDBN} and how much time was
spent by the program been debugged.
This can also be requested by invoking @value{GDBN} with the
@option{--statistics} command-line switch (@pxref{Mode Options}).

@item maint set per-command symtab [on|off]
@itemx maint show per-command symtab
Enable or disable the printing of basic symbol table statistics
for each command.
If enabled, @value{GDBN} will display the following information:

@enumerate a
@item
number of symbol tables
@item
number of primary symbol tables
@item
number of blocks in the blockvector
@end enumerate
@end table

@kindex maint space
@cindex memory used by commands
@item maint space @var{value}
An alias for @code{maint set per-command space}.
A non-zero value enables it, zero disables it.

@kindex maint time
@cindex time of command execution
@item maint time @var{value}
An alias for @code{maint set per-command time}.
A non-zero value enables it, zero disables it.

@kindex maint translate-address
@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
Find the symbol stored at the location specified by the address
@var{addr} and an optional section name @var{section}.  If found,
@value{GDBN} prints the name of the closest symbol and an offset from
the symbol's location to the specified address.  This is similar to
the @code{info address} command (@pxref{Symbols}), except that this
command also allows to find symbols in other sections.

If section was not specified, the section in which the symbol was found
is also printed.  For dynamically linked executables, the name of
executable or shared library containing the symbol is printed as well.

@end table

The following command is useful for non-interactive invocations of
@value{GDBN}, such as in the test suite.

@table @code
@item set watchdog @var{nsec}
@kindex set watchdog
@cindex watchdog timer
@cindex timeout for commands
Set the maximum number of seconds @value{GDBN} will wait for the
target operation to finish.  If this time expires, @value{GDBN}
reports and error and the command is aborted.

@item show watchdog
Show the current setting of the target wait timeout.
@end table

@node Remote Protocol
@appendix @value{GDBN} Remote Serial Protocol

@menu
* Overview::
* Packets::
* Stop Reply Packets::
* General Query Packets::
* Architecture-Specific Protocol Details::
* Tracepoint Packets::
* Host I/O Packets::
* Interrupts::
* Notification Packets::
* Remote Non-Stop::
* Packet Acknowledgment::
* Examples::
* File-I/O Remote Protocol Extension::
* Library List Format::
* Library List Format for SVR4 Targets::
* Memory Map Format::
* Thread List Format::
* Traceframe Info Format::
* Branch Trace Format::
@end menu

@node Overview
@section Overview

There may be occasions when you need to know something about the
protocol---for example, if there is only one serial port to your target
machine, you might want your program to do something special if it
recognizes a packet meant for @value{GDBN}.

In the examples below, @samp{->} and @samp{<-} are used to indicate
transmitted and received data, respectively.

@cindex protocol, @value{GDBN} remote serial
@cindex serial protocol, @value{GDBN} remote
@cindex remote serial protocol
All @value{GDBN} commands and responses (other than acknowledgments
and notifications, see @ref{Notification Packets}) are sent as a
@var{packet}.  A @var{packet} is introduced with the character
@samp{$}, the actual @var{packet-data}, and the terminating character
@samp{#} followed by a two-digit @var{checksum}:

@smallexample
@code{$}@var{packet-data}@code{#}@var{checksum}
@end smallexample
@noindent

@cindex checksum, for @value{GDBN} remote
@noindent
The two-digit @var{checksum} is computed as the modulo 256 sum of all
characters between the leading @samp{$} and the trailing @samp{#} (an
eight bit unsigned checksum).

Implementors should note that prior to @value{GDBN} 5.0 the protocol
specification also included an optional two-digit @var{sequence-id}:

@smallexample
@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
@end smallexample

@cindex sequence-id, for @value{GDBN} remote
@noindent
That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
has never output @var{sequence-id}s.  Stubs that handle packets added
since @value{GDBN} 5.0 must not accept @var{sequence-id}.

When either the host or the target machine receives a packet, the first
response expected is an acknowledgment: either @samp{+} (to indicate
the package was received correctly) or @samp{-} (to request
retransmission):

@smallexample
-> @code{$}@var{packet-data}@code{#}@var{checksum}
<- @code{+}
@end smallexample
@noindent

The @samp{+}/@samp{-} acknowledgments can be disabled
once a connection is established.
@xref{Packet Acknowledgment}, for details.

The host (@value{GDBN}) sends @var{command}s, and the target (the
debugging stub incorporated in your program) sends a @var{response}.  In
the case of step and continue @var{command}s, the response is only sent
when the operation has completed, and the target has again stopped all
threads in all attached processes.  This is the default all-stop mode
behavior, but the remote protocol also supports @value{GDBN}'s non-stop 
execution mode; see @ref{Remote Non-Stop}, for details.

@var{packet-data} consists of a sequence of characters with the
exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
exceptions).

@cindex remote protocol, field separator
Fields within the packet should be separated using @samp{,} @samp{;} or
@samp{:}.  Except where otherwise noted all numbers are represented in
@sc{hex} with leading zeros suppressed.

Implementors should note that prior to @value{GDBN} 5.0, the character
@samp{:} could not appear as the third character in a packet (as it
would potentially conflict with the @var{sequence-id}).

@cindex remote protocol, binary data
@anchor{Binary Data}
Binary data in most packets is encoded either as two hexadecimal
digits per byte of binary data.  This allowed the traditional remote
protocol to work over connections which were only seven-bit clean.
Some packets designed more recently assume an eight-bit clean
connection, and use a more efficient encoding to send and receive
binary data.

The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
as an escape character.  Any escaped byte is transmitted as the escape
character followed by the original character XORed with @code{0x20}.
For example, the byte @code{0x7d} would be transmitted as the two
bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
@samp{@}}) must always be escaped.  Responses sent by the stub
must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
is not interpreted as the start of a run-length encoded sequence
(described next).

Response @var{data} can be run-length encoded to save space.
Run-length encoding replaces runs of identical characters with one
instance of the repeated character, followed by a @samp{*} and a
repeat count.  The repeat count is itself sent encoded, to avoid
binary characters in @var{data}: a value of @var{n} is sent as
@code{@var{n}+29}.  For a repeat count greater or equal to 3, this
produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
code 32) for a repeat count of 3.  (This is because run-length
encoding starts to win for counts 3 or more.)  Thus, for example,
@samp{0* } is a run-length encoding of ``0000'': the space character
after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
3}} more times.

The printable characters @samp{#} and @samp{$} or with a numeric value
greater than 126 must not be used.  Runs of six repeats (@samp{#}) or
seven repeats (@samp{$}) can be expanded using a repeat count of only
five (@samp{"}).  For example, @samp{00000000} can be encoded as
@samp{0*"00}.

The error response returned for some packets includes a two character
error number.  That number is not well defined.

@cindex empty response, for unsupported packets
For any @var{command} not supported by the stub, an empty response
(@samp{$#00}) should be returned.  That way it is possible to extend the
protocol.  A newer @value{GDBN} can tell if a packet is supported based
on that response.

At a minimum, a stub is required to support the @samp{g} and @samp{G}
commands for register access, and the @samp{m} and @samp{M} commands
for memory access.  Stubs that only control single-threaded targets
can implement run control with the @samp{c} (continue), and @samp{s}
(step) commands.  Stubs that support multi-threading targets should
support the @samp{vCont} command.  All other commands are optional.

@node Packets
@section Packets

The following table provides a complete list of all currently defined
@var{command}s and their corresponding response @var{data}.
@xref{File-I/O Remote Protocol Extension}, for details about the File
I/O extension of the remote protocol.

Each packet's description has a template showing the packet's overall
syntax, followed by an explanation of the packet's meaning.  We
include spaces in some of the templates for clarity; these are not
part of the packet's syntax.  No @value{GDBN} packet uses spaces to
separate its components.  For example, a template like @samp{foo
@var{bar} @var{baz}} describes a packet beginning with the three ASCII
bytes @samp{foo}, followed by a @var{bar}, followed directly by a
@var{baz}.  @value{GDBN} does not transmit a space character between the
@samp{foo} and the @var{bar}, or between the @var{bar} and the
@var{baz}.

@cindex @var{thread-id}, in remote protocol
@anchor{thread-id syntax} 
Several packets and replies include a @var{thread-id} field to identify
a thread.  Normally these are positive numbers with a target-specific
interpretation, formatted as big-endian hex strings.  A @var{thread-id}
can also be a literal @samp{-1} to indicate all threads, or @samp{0} to
pick any thread.

In addition, the remote protocol supports a multiprocess feature in
which the @var{thread-id} syntax is extended to optionally include both
process and thread ID fields, as @samp{p@var{pid}.@var{tid}}.
The @var{pid} (process) and @var{tid} (thread) components each have the
format described above: a positive number with target-specific
interpretation formatted as a big-endian hex string, literal @samp{-1}
to indicate all processes or threads (respectively), or @samp{0} to
indicate an arbitrary process or thread.  Specifying just a process, as
@samp{p@var{pid}}, is equivalent to @samp{p@var{pid}.-1}.  It is an
error to specify all processes but a specific thread, such as
@samp{p-1.@var{tid}}.  Note that the @samp{p} prefix is @emph{not} used
for those packets and replies explicitly documented to include a process
ID, rather than a @var{thread-id}.

The multiprocess @var{thread-id} syntax extensions are only used if both
@value{GDBN} and the stub report support for the @samp{multiprocess}
feature using @samp{qSupported}.  @xref{multiprocess extensions}, for
more information.

Note that all packet forms beginning with an upper- or lower-case
letter, other than those described here, are reserved for future use.

Here are the packet descriptions.

@table @samp

@item !
@cindex @samp{!} packet
@anchor{extended mode}
Enable extended mode.  In extended mode, the remote server is made
persistent.  The @samp{R} packet is used to restart the program being
debugged.

Reply:
@table @samp
@item OK
The remote target both supports and has enabled extended mode.
@end table

@item ?
@cindex @samp{?} packet
Indicate the reason the target halted.  The reply is the same as for
step and continue.  This packet has a special interpretation when the
target is in non-stop mode; see @ref{Remote Non-Stop}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item A @var{arglen},@var{argnum},@var{arg},@dots{}
@cindex @samp{A} packet
Initialized @code{argv[]} array passed into program. @var{arglen}
specifies the number of bytes in the hex encoded byte stream
@var{arg}.  See @code{gdbserver} for more details.

Reply:
@table @samp
@item OK
The arguments were set.
@item E @var{NN}
An error occurred.
@end table

@item b @var{baud}
@cindex @samp{b} packet
(Don't use this packet; its behavior is not well-defined.)
Change the serial line speed to @var{baud}.

JTC: @emph{When does the transport layer state change?  When it's
received, or after the ACK is transmitted.  In either case, there are
problems if the command or the acknowledgment packet is dropped.}

Stan: @emph{If people really wanted to add something like this, and get
it working for the first time, they ought to modify ser-unix.c to send
some kind of out-of-band message to a specially-setup stub and have the
switch happen "in between" packets, so that from remote protocol's point
of view, nothing actually happened.}

@item B @var{addr},@var{mode}
@cindex @samp{B} packet
Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
breakpoint at @var{addr}.

Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
(@pxref{insert breakpoint or watchpoint packet}).

@cindex @samp{bc} packet
@anchor{bc}
@item bc
Backward continue.  Execute the target system in reverse.  No parameter.
@xref{Reverse Execution}, for more information.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@cindex @samp{bs} packet
@anchor{bs}
@item bs
Backward single step.  Execute one instruction in reverse.  No parameter.
@xref{Reverse Execution}, for more information.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item c @r{[}@var{addr}@r{]}
@cindex @samp{c} packet
Continue.  @var{addr} is address to resume.  If @var{addr} is omitted,
resume at current address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item C @var{sig}@r{[};@var{addr}@r{]}
@cindex @samp{C} packet
Continue with signal @var{sig} (hex signal number).  If
@samp{;@var{addr}} is omitted, resume at same address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item d
@cindex @samp{d} packet
Toggle debug flag.

Don't use this packet; instead, define a general set packet
(@pxref{General Query Packets}).

@item D
@itemx D;@var{pid}
@cindex @samp{D} packet
The first form of the packet is used to detach @value{GDBN} from the 
remote system.  It is sent to the remote target
before @value{GDBN} disconnects via the @code{detach} command.

The second form, including a process ID, is used when multiprocess
protocol extensions are enabled (@pxref{multiprocess extensions}), to
detach only a specific process.  The @var{pid} is specified as a
big-endian hex string.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item F @var{RC},@var{EE},@var{CF};@var{XX}
@cindex @samp{F} packet
A reply from @value{GDBN} to an @samp{F} packet sent by the target.
This is part of the File-I/O protocol extension.  @xref{File-I/O
Remote Protocol Extension}, for the specification.

@item g
@anchor{read registers packet}
@cindex @samp{g} packet
Read general registers.

Reply:
@table @samp
@item @var{XX@dots{}}
Each byte of register data is described by two hex digits.  The bytes
with the register are transmitted in target byte order.  The size of
each register and their position within the @samp{g} packet are
determined by the @value{GDBN} internal gdbarch functions
@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.  The
specification of several standard @samp{g} packets is specified below.

When reading registers from a trace frame (@pxref{Analyze Collected
Data,,Using the Collected Data}), the stub may also return a string of
literal @samp{x}'s in place of the register data digits, to indicate
that the corresponding register has not been collected, thus its value
is unavailable.  For example, for an architecture with 4 registers of
4 bytes each, the following reply indicates to @value{GDBN} that
registers 0 and 2 have not been collected, while registers 1 and 3
have been collected, and both have zero value:

@smallexample
-> @code{g}
<- @code{xxxxxxxx00000000xxxxxxxx00000000}
@end smallexample

@item E @var{NN}
for an error.
@end table

@item G @var{XX@dots{}}
@cindex @samp{G} packet
Write general registers.  @xref{read registers packet}, for a
description of the @var{XX@dots{}} data.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item H @var{op} @var{thread-id}
@cindex @samp{H} packet
Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
@samp{G}, et.al.).  @var{op} depends on the operation to be performed:
it should be @samp{c} for step and continue operations (note that this
is deprecated, supporting the @samp{vCont} command is a better
option), @samp{g} for other operations.  The thread designator
@var{thread-id} has the format and interpretation described in
@ref{thread-id syntax}.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@c FIXME: JTC:
@c   'H': How restrictive (or permissive) is the thread model.  If a
@c        thread is selected and stopped, are other threads allowed
@c        to continue to execute?  As I mentioned above, I think the
@c        semantics of each command when a thread is selected must be
@c        described.  For example:
@c
@c        'g':    If the stub supports threads and a specific thread is
@c                selected, returns the register block from that thread;
@c                otherwise returns current registers.
@c
@c        'G'     If the stub supports threads and a specific thread is
@c                selected, sets the registers of the register block of
@c                that thread; otherwise sets current registers.

@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
@anchor{cycle step packet}
@cindex @samp{i} packet
Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
step starting at that address.

@item I
@cindex @samp{I} packet
Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
step packet}.

@item k
@cindex @samp{k} packet
Kill request.

FIXME: @emph{There is no description of how to operate when a specific
thread context has been selected (i.e.@: does 'k' kill only that
thread?)}.

@item m @var{addr},@var{length}
@cindex @samp{m} packet
Read @var{length} bytes of memory starting at address @var{addr}.
Note that @var{addr} may not be aligned to any particular boundary.

The stub need not use any particular size or alignment when gathering
data from memory for the response; even if @var{addr} is word-aligned
and @var{length} is a multiple of the word size, the stub is free to
use byte accesses, or not.  For this reason, this packet may not be
suitable for accessing memory-mapped I/O devices.
@cindex alignment of remote memory accesses
@cindex size of remote memory accesses
@cindex memory, alignment and size of remote accesses

Reply:
@table @samp
@item @var{XX@dots{}}
Memory contents; each byte is transmitted as a two-digit hexadecimal
number.  The reply may contain fewer bytes than requested if the
server was able to read only part of the region of memory.
@item E @var{NN}
@var{NN} is errno
@end table

@item M @var{addr},@var{length}:@var{XX@dots{}}
@cindex @samp{M} packet
Write @var{length} bytes of memory starting at address @var{addr}.
@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
hexadecimal number.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error (this includes the case where only part of the data was
written).
@end table

@item p @var{n}
@cindex @samp{p} packet
Read the value of register @var{n}; @var{n} is in hex.
@xref{read registers packet}, for a description of how the returned
register value is encoded.

Reply:
@table @samp
@item @var{XX@dots{}}
the register's value
@item E @var{NN}
for an error
@item @w{}
Indicating an unrecognized @var{query}.
@end table

@item P @var{n@dots{}}=@var{r@dots{}}
@anchor{write register packet}
@cindex @samp{P} packet
Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
digits for each byte in the register (target byte order).

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item q @var{name} @var{params}@dots{}
@itemx Q @var{name} @var{params}@dots{}
@cindex @samp{q} packet
@cindex @samp{Q} packet
General query (@samp{q}) and set (@samp{Q}).  These packets are
described fully in @ref{General Query Packets}.

@item r
@cindex @samp{r} packet
Reset the entire system.

Don't use this packet; use the @samp{R} packet instead.

@item R @var{XX}
@cindex @samp{R} packet
Restart the program being debugged.  @var{XX}, while needed, is ignored.
This packet is only available in extended mode (@pxref{extended mode}).

The @samp{R} packet has no reply.

@item s @r{[}@var{addr}@r{]}
@cindex @samp{s} packet
Single step.  @var{addr} is the address at which to resume.  If
@var{addr} is omitted, resume at same address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item S @var{sig}@r{[};@var{addr}@r{]}
@anchor{step with signal packet}
@cindex @samp{S} packet
Step with signal.  This is analogous to the @samp{C} packet, but
requests a single-step, rather than a normal resumption of execution.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item t @var{addr}:@var{PP},@var{MM}
@cindex @samp{t} packet
Search backwards starting at address @var{addr} for a match with pattern
@var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4 bytes.
@var{addr} must be at least 3 digits.

@item T @var{thread-id}
@cindex @samp{T} packet
Find out if the thread @var{thread-id} is alive.  @xref{thread-id syntax}.

Reply:
@table @samp
@item OK
thread is still alive
@item E @var{NN}
thread is dead
@end table

@item v
Packets starting with @samp{v} are identified by a multi-letter name,
up to the first @samp{;} or @samp{?} (or the end of the packet).

@item vAttach;@var{pid}
@cindex @samp{vAttach} packet
Attach to a new process with the specified process ID @var{pid}.
The process ID is a
hexadecimal integer identifying the process.  In all-stop mode, all
threads in the attached process are stopped; in non-stop mode, it may be
attached without being stopped if that is supported by the target.

@c In non-stop mode, on a successful vAttach, the stub should set the
@c current thread to a thread of the newly-attached process.  After
@c attaching, GDB queries for the attached process's thread ID with qC.
@c Also note that, from a user perspective, whether or not the 
@c target is stopped on attach in non-stop mode depends on whether you 
@c use the foreground or background version of the attach command, not 
@c on what vAttach does; GDB does the right thing with respect to either 
@c stopping or restarting threads.

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item E @var{nn}
for an error
@item @r{Any stop packet}
for success in all-stop mode (@pxref{Stop Reply Packets})
@item OK
for success in non-stop mode (@pxref{Remote Non-Stop})
@end table

@item vCont@r{[};@var{action}@r{[}:@var{thread-id}@r{]]}@dots{}
@cindex @samp{vCont} packet
@anchor{vCont packet}
Resume the inferior, specifying different actions for each thread.
If an action is specified with no @var{thread-id}, then it is applied to any
threads that don't have a specific action specified; if no default action is
specified then other threads should remain stopped in all-stop mode and
in their current state in non-stop mode.
Specifying multiple
default actions is an error; specifying no actions is also an error.
Thread IDs are specified using the syntax described in @ref{thread-id syntax}.

Currently supported actions are:

@table @samp
@item c
Continue.
@item C @var{sig}
Continue with signal @var{sig}.  The signal @var{sig} should be two hex digits.
@item s
Step.
@item S @var{sig}
Step with signal @var{sig}.  The signal @var{sig} should be two hex digits.
@item t
Stop.
@item r @var{start},@var{end}
Step once, and then keep stepping as long as the thread stops at
addresses between @var{start} (inclusive) and @var{end} (exclusive).
The remote stub reports a stop reply when either the thread goes out
of the range or is stopped due to an unrelated reason, such as hitting
a breakpoint.  @xref{range stepping}.

If the range is empty (@var{start} == @var{end}), then the action
becomes equivalent to the @samp{s} action.  In other words,
single-step once, and report the stop (even if the stepped instruction
jumps to @var{start}).

(A stop reply may be sent at any point even if the PC is still within
the stepping range; for example, it is valid to implement this packet
in a degenerate way as a single instruction step operation.)

@end table

The optional argument @var{addr} normally associated with the 
@samp{c}, @samp{C}, @samp{s}, and @samp{S} packets is
not supported in @samp{vCont}.

The @samp{t} action is only relevant in non-stop mode
(@pxref{Remote Non-Stop}) and may be ignored by the stub otherwise.
A stop reply should be generated for any affected thread not already stopped.
When a thread is stopped by means of a @samp{t} action,
the corresponding stop reply should indicate that the thread has stopped with
signal @samp{0}, regardless of whether the target uses some other signal
as an implementation detail.

The stub must support @samp{vCont} if it reports support for
multiprocess extensions (@pxref{multiprocess extensions}).  Note that in
this case @samp{vCont} actions can be specified to apply to all threads
in a process by using the @samp{p@var{pid}.-1} form of the
@var{thread-id}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item vCont?
@cindex @samp{vCont?} packet
Request a list of actions supported by the @samp{vCont} packet.

Reply:
@table @samp
@item vCont@r{[};@var{action}@dots{}@r{]}
The @samp{vCont} packet is supported.  Each @var{action} is a supported
command in the @samp{vCont} packet.
@item @w{}
The @samp{vCont} packet is not supported.
@end table

@item vFile:@var{operation}:@var{parameter}@dots{}
@cindex @samp{vFile} packet
Perform a file operation on the target system.  For details,
see @ref{Host I/O Packets}.

@item vFlashErase:@var{addr},@var{length}
@cindex @samp{vFlashErase} packet
Direct the stub to erase @var{length} bytes of flash starting at
@var{addr}.  The region may enclose any number of flash blocks, but
its start and end must fall on block boundaries, as indicated by the
flash block size appearing in the memory map (@pxref{Memory Map
Format}).  @value{GDBN} groups flash memory programming operations
together, and sends a @samp{vFlashDone} request after each group; the
stub is allowed to delay erase operation until the @samp{vFlashDone}
packet is received.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item vFlashWrite:@var{addr}:@var{XX@dots{}}
@cindex @samp{vFlashWrite} packet
Direct the stub to write data to flash address @var{addr}.  The data
is passed in binary form using the same encoding as for the @samp{X}
packet (@pxref{Binary Data}).  The memory ranges specified by
@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
not overlap, and must appear in order of increasing addresses
(although @samp{vFlashErase} packets for higher addresses may already
have been received; the ordering is guaranteed only between
@samp{vFlashWrite} packets).  If a packet writes to an address that was
neither erased by a preceding @samp{vFlashErase} packet nor by some other
target-specific method, the results are unpredictable.


Reply:
@table @samp
@item OK
for success
@item E.memtype
for vFlashWrite addressing non-flash memory
@item E @var{NN}
for an error
@end table

@item vFlashDone
@cindex @samp{vFlashDone} packet
Indicate to the stub that flash programming operation is finished.
The stub is permitted to delay or batch the effects of a group of
@samp{vFlashErase} and @samp{vFlashWrite} packets until a
@samp{vFlashDone} packet is received.  The contents of the affected
regions of flash memory are unpredictable until the @samp{vFlashDone}
request is completed.

@item vKill;@var{pid}
@cindex @samp{vKill} packet
Kill the process with the specified process ID.  @var{pid} is a
hexadecimal integer identifying the process.  This packet is used in
preference to @samp{k} when multiprocess protocol extensions are
supported; see @ref{multiprocess extensions}.

Reply:
@table @samp
@item E @var{nn}
for an error
@item OK
for success
@end table

@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
@cindex @samp{vRun} packet
Run the program @var{filename}, passing it each @var{argument} on its
command line.  The file and arguments are hex-encoded strings.  If
@var{filename} is an empty string, the stub may use a default program
(e.g.@: the last program run).  The program is created in the stopped
state.

@c FIXME:  What about non-stop mode?

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item E @var{nn}
for an error
@item @r{Any stop packet}
for success (@pxref{Stop Reply Packets})
@end table

@item vStopped
@cindex @samp{vStopped} packet
@xref{Notification Packets}.

@item X @var{addr},@var{length}:@var{XX@dots{}}
@anchor{X packet}
@cindex @samp{X} packet
Write data to memory, where the data is transmitted in binary.
@var{addr} is address, @var{length} is number of bytes,
@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item z @var{type},@var{addr},@var{kind}
@itemx Z @var{type},@var{addr},@var{kind}
@anchor{insert breakpoint or watchpoint packet}
@cindex @samp{z} packet
@cindex @samp{Z} packets
Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
watchpoint starting at address @var{address} of kind @var{kind}.

Each breakpoint and watchpoint packet @var{type} is documented
separately.

@emph{Implementation notes: A remote target shall return an empty string
for an unrecognized breakpoint or watchpoint packet @var{type}.  A
remote target shall support either both or neither of a given
@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
avoid potential problems with duplicate packets, the operations should
be implemented in an idempotent way.}

@item z0,@var{addr},@var{kind}
@itemx Z0,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}@r{[};cmds:@var{persist},@var{cmd_list}@dots{}@r{]}
@cindex @samp{z0} packet
@cindex @samp{Z0} packet
Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
@var{addr} of type @var{kind}.

A memory breakpoint is implemented by replacing the instruction at
@var{addr} with a software breakpoint or trap instruction.  The
@var{kind} is target-specific and typically indicates the size of
the breakpoint in bytes that should be inserted.  E.g., the @sc{arm}
and @sc{mips} can insert either a 2 or 4 byte breakpoint.  Some
architectures have additional meanings for @var{kind};
@var{cond_list} is an optional list of conditional expressions in bytecode
form that should be evaluated on the target's side.  These are the
conditions that should be taken into consideration when deciding if
the breakpoint trigger should be reported back to @var{GDBN}.

The @var{cond_list} parameter is comprised of a series of expressions,
concatenated without separators. Each expression has the following form:

@table @samp

@item X @var{len},@var{expr}
@var{len} is the length of the bytecode expression and @var{expr} is the
actual conditional expression in bytecode form.

@end table

The optional @var{cmd_list} parameter introduces commands that may be
run on the target, rather than being reported back to @value{GDBN}.
The parameter starts with a numeric flag @var{persist}; if the flag is
nonzero, then the breakpoint may remain active and the commands
continue to be run even when @value{GDBN} disconnects from the target.
Following this flag is a series of expressions concatenated with no
separators.  Each expression has the following form:

@table @samp

@item X @var{len},@var{expr}
@var{len} is the length of the bytecode expression and @var{expr} is the
actual conditional expression in bytecode form.

@end table

see @ref{Architecture-Specific Protocol Details}.

@emph{Implementation note: It is possible for a target to copy or move
code that contains memory breakpoints (e.g., when implementing
overlays).  The behavior of this packet, in the presence of such a
target, is not defined.}

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z1,@var{addr},@var{kind}
@itemx Z1,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}
@cindex @samp{z1} packet
@cindex @samp{Z1} packet
Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
address @var{addr}.

A hardware breakpoint is implemented using a mechanism that is not
dependant on being able to modify the target's memory.  @var{kind}
and @var{cond_list} have the same meaning as in @samp{Z0} packets.

@emph{Implementation note: A hardware breakpoint is not affected by code
movement.}

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z2,@var{addr},@var{kind}
@itemx Z2,@var{addr},@var{kind}
@cindex @samp{z2} packet
@cindex @samp{Z2} packet
Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint at @var{addr}.
@var{kind} is interpreted as the number of bytes to watch.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z3,@var{addr},@var{kind}
@itemx Z3,@var{addr},@var{kind}
@cindex @samp{z3} packet
@cindex @samp{Z3} packet
Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint at @var{addr}.
@var{kind} is interpreted as the number of bytes to watch.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z4,@var{addr},@var{kind}
@itemx Z4,@var{addr},@var{kind}
@cindex @samp{z4} packet
@cindex @samp{Z4} packet
Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint at @var{addr}.
@var{kind} is interpreted as the number of bytes to watch.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@end table

@node Stop Reply Packets
@section Stop Reply Packets
@cindex stop reply packets

The @samp{C}, @samp{c}, @samp{S}, @samp{s}, @samp{vCont},
@samp{vAttach}, @samp{vRun}, @samp{vStopped}, and @samp{?} packets can
receive any of the below as a reply.  Except for @samp{?}
and @samp{vStopped}, that reply is only returned
when the target halts.  In the below the exact meaning of @dfn{signal
number} is defined by the header @file{include/gdb/signals.h} in the
@value{GDBN} source code.

As in the description of request packets, we include spaces in the
reply templates for clarity; these are not part of the reply packet's
syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
components.

@table @samp

@item S @var{AA}
The program received signal number @var{AA} (a two-digit hexadecimal
number).  This is equivalent to a @samp{T} response with no
@var{n}:@var{r} pairs.

@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
@cindex @samp{T} packet reply
The program received signal number @var{AA} (a two-digit hexadecimal
number).  This is equivalent to an @samp{S} response, except that the
@samp{@var{n}:@var{r}} pairs can carry values of important registers
and other information directly in the stop reply packet, reducing
round-trip latency.  Single-step and breakpoint traps are reported
this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:

@itemize @bullet
@item
If @var{n} is a hexadecimal number, it is a register number, and the
corresponding @var{r} gives that register's value.  @var{r} is a
series of bytes in target byte order, with each byte given by a
two-digit hex number.

@item
If @var{n} is @samp{thread}, then @var{r} is the @var{thread-id} of
the stopped thread, as specified in @ref{thread-id syntax}.

@item
If @var{n} is @samp{core}, then @var{r} is the hexadecimal number of
the core on which the stop event was detected.

@item
If @var{n} is a recognized @dfn{stop reason}, it describes a more
specific event that stopped the target.  The currently defined stop
reasons are listed below.  @var{aa} should be @samp{05}, the trap
signal.  At most one stop reason should be present.

@item
Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
and go on to the next; this allows us to extend the protocol in the
future.
@end itemize

The currently defined stop reasons are:

@table @samp
@item watch
@itemx rwatch
@itemx awatch
The packet indicates a watchpoint hit, and @var{r} is the data address, in
hex.

@cindex shared library events, remote reply
@item library
The packet indicates that the loaded libraries have changed.
@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
list of loaded libraries.  @var{r} is ignored.

@cindex replay log events, remote reply
@item replaylog
The packet indicates that the target cannot continue replaying 
logged execution events, because it has reached the end (or the
beginning when executing backward) of the log.  The value of @var{r}
will be either @samp{begin} or @samp{end}.  @xref{Reverse Execution}, 
for more information.
@end table

@item W @var{AA}
@itemx W @var{AA} ; process:@var{pid}
The process exited, and @var{AA} is the exit status.  This is only
applicable to certain targets.

The second form of the response, including the process ID of the exited
process, can be used only when @value{GDBN} has reported support for
multiprocess protocol extensions; see @ref{multiprocess extensions}.
The @var{pid} is formatted as a big-endian hex string.

@item X @var{AA}
@itemx X @var{AA} ; process:@var{pid}
The process terminated with signal @var{AA}.

The second form of the response, including the process ID of the
terminated process, can be used only when @value{GDBN} has reported
support for multiprocess protocol extensions; see @ref{multiprocess
extensions}.  The @var{pid} is formatted as a big-endian hex string.

@item O @var{XX}@dots{}
@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
written as the program's console output.  This can happen at any time
while the program is running and the debugger should continue to wait
for @samp{W}, @samp{T}, etc.  This reply is not permitted in non-stop mode.

@item F @var{call-id},@var{parameter}@dots{}
@var{call-id} is the identifier which says which host system call should
be called.  This is just the name of the function.  Translation into the
correct system call is only applicable as it's defined in @value{GDBN}.
@xref{File-I/O Remote Protocol Extension}, for a list of implemented
system calls.

@samp{@var{parameter}@dots{}} is a list of parameters as defined for
this very system call.

The target replies with this packet when it expects @value{GDBN} to
call a host system call on behalf of the target.  @value{GDBN} replies
with an appropriate @samp{F} packet and keeps up waiting for the next
reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
Protocol Extension}, for more details.

@end table

@node General Query Packets
@section General Query Packets
@cindex remote query requests

Packets starting with @samp{q} are @dfn{general query packets};
packets starting with @samp{Q} are @dfn{general set packets}.  General
query and set packets are a semi-unified form for retrieving and
sending information to and from the stub.

The initial letter of a query or set packet is followed by a name
indicating what sort of thing the packet applies to.  For example,
@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
definitions with the stub.  These packet names follow some
conventions:

@itemize @bullet
@item
The name must not contain commas, colons or semicolons.
@item
Most @value{GDBN} query and set packets have a leading upper case
letter.
@item
The names of custom vendor packets should use a company prefix, in
lower case, followed by a period.  For example, packets designed at
the Acme Corporation might begin with @samp{qacme.foo} (for querying
foos) or @samp{Qacme.bar} (for setting bars).
@end itemize

The name of a query or set packet should be separated from any
parameters by a @samp{:}; the parameters themselves should be
separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
full packet name, and check for a separator or the end of the packet,
in case two packet names share a common prefix.  New packets should not begin
with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
packets predate these conventions, and have arguments without any terminator
for the packet name; we suspect they are in widespread use in places that
are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
existing stubs (e.g.@: RedBoot) are known to not check for the end of the
packet.}.

Like the descriptions of the other packets, each description here
has a template showing the packet's overall syntax, followed by an
explanation of the packet's meaning.  We include spaces in some of the
templates for clarity; these are not part of the packet's syntax.  No
@value{GDBN} packet uses spaces to separate its components.

Here are the currently defined query and set packets:

@table @samp

@item QAgent:1
@itemx QAgent:0
Turn on or off the agent as a helper to perform some debugging operations
delegated from @value{GDBN} (@pxref{Control Agent}).

@item QAllow:@var{op}:@var{val}@dots{}
@cindex @samp{QAllow} packet
Specify which operations @value{GDBN} expects to request of the
target, as a semicolon-separated list of operation name and value
pairs.  Possible values for @var{op} include @samp{WriteReg},
@samp{WriteMem}, @samp{InsertBreak}, @samp{InsertTrace},
@samp{InsertFastTrace}, and @samp{Stop}. @var{val} is either 0,
indicating that @value{GDBN} will not request the operation, or 1,
indicating that it may.  (The target can then use this to set up its
own internals optimally, for instance if the debugger never expects to
insert breakpoints, it may not need to install its own trap handler.)

@item qC
@cindex current thread, remote request
@cindex @samp{qC} packet
Return the current thread ID.

Reply:
@table @samp
@item QC @var{thread-id}
Where @var{thread-id} is a thread ID as documented in 
@ref{thread-id syntax}.
@item @r{(anything else)}
Any other reply implies the old thread ID.
@end table

@item qCRC:@var{addr},@var{length}
@cindex CRC of memory block, remote request
@cindex @samp{qCRC} packet
Compute the CRC checksum of a block of memory using CRC-32 defined in
IEEE 802.3.  The CRC is computed byte at a time, taking the most
significant bit of each byte first.  The initial pattern code
@code{0xffffffff} is used to ensure leading zeros affect the CRC.

@emph{Note:} This is the same CRC used in validating separate debug
files (@pxref{Separate Debug Files, , Debugging Information in Separate
Files}).  However the algorithm is slightly different.  When validating
separate debug files, the CRC is computed taking the @emph{least}
significant bit of each byte first, and the final result is inverted to
detect trailing zeros.

Reply:
@table @samp
@item E @var{NN}
An error (such as memory fault)
@item C @var{crc32}
The specified memory region's checksum is @var{crc32}.
@end table

@item QDisableRandomization:@var{value}
@cindex disable address space randomization, remote request
@cindex @samp{QDisableRandomization} packet
Some target operating systems will randomize the virtual address space
of the inferior process as a security feature, but provide a feature
to disable such randomization, e.g.@: to allow for a more deterministic
debugging experience.  On such systems, this packet with a @var{value}
of 1 directs the target to disable address space randomization for
processes subsequently started via @samp{vRun} packets, while a packet
with a @var{value} of 0 tells the target to enable address space
randomization.

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{QDisableRandomization} is not supported
by the stub.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
This should only be done on targets that actually support disabling
address space randomization.

@item qfThreadInfo
@itemx qsThreadInfo
@cindex list active threads, remote request
@cindex @samp{qfThreadInfo} packet
@cindex @samp{qsThreadInfo} packet
Obtain a list of all active thread IDs from the target (OS).  Since there
may be too many active threads to fit into one reply packet, this query
works iteratively: it may require more than one query/reply sequence to
obtain the entire list of threads.  The first query of the sequence will
be the @samp{qfThreadInfo} query; subsequent queries in the
sequence will be the @samp{qsThreadInfo} query.

NOTE: This packet replaces the @samp{qL} query (see below).

Reply:
@table @samp
@item m @var{thread-id}
A single thread ID
@item m @var{thread-id},@var{thread-id}@dots{}
a comma-separated list of thread IDs
@item l
(lower case letter @samp{L}) denotes end of list.
@end table

In response to each query, the target will reply with a list of one or
more thread IDs, separated by commas.
@value{GDBN} will respond to each reply with a request for more thread
ids (using the @samp{qs} form of the query), until the target responds
with @samp{l} (lower-case ell, for @dfn{last}).
Refer to @ref{thread-id syntax}, for the format of the @var{thread-id}
fields.

@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
@cindex get thread-local storage address, remote request
@cindex @samp{qGetTLSAddr} packet
Fetch the address associated with thread local storage specified
by @var{thread-id}, @var{offset}, and @var{lm}.

@var{thread-id} is the thread ID associated with the
thread for which to fetch the TLS address.  @xref{thread-id syntax}.

@var{offset} is the (big endian, hex encoded) offset associated with the
thread local variable.  (This offset is obtained from the debug
information associated with the variable.)

@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
load module associated with the thread local storage.  For example,
a @sc{gnu}/Linux system will pass the link map address of the shared
object associated with the thread local storage under consideration. 
Other operating environments may choose to represent the load module
differently, so the precise meaning of this parameter will vary.

Reply:
@table @samp
@item @var{XX}@dots{}
Hex encoded (big endian) bytes representing the address of the thread
local storage requested.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
@end table

@item qGetTIBAddr:@var{thread-id}
@cindex get thread information block address
@cindex @samp{qGetTIBAddr} packet
Fetch address of the Windows OS specific Thread Information Block.

@var{thread-id} is the thread ID associated with the thread.

Reply:
@table @samp
@item @var{XX}@dots{}
Hex encoded (big endian) bytes representing the linear address of the
thread information block.

@item E @var{nn}
An error occured.  This means that either the thread was not found, or the
address could not be retrieved.

@item @w{}
An empty reply indicates that @samp{qGetTIBAddr} is not supported by the stub.
@end table

@item qL @var{startflag} @var{threadcount} @var{nextthread}
Obtain thread information from RTOS.  Where: @var{startflag} (one hex
digit) is one to indicate the first query and zero to indicate a
subsequent query; @var{threadcount} (two hex digits) is the maximum
number of threads the response packet can contain; and @var{nextthread}
(eight hex digits), for subsequent queries (@var{startflag} is zero), is
returned in the response as @var{argthread}.

Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).

Reply:
@table @samp
@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
Where: @var{count} (two hex digits) is the number of threads being
returned; @var{done} (one hex digit) is zero to indicate more threads
and one indicates no further threads; @var{argthreadid} (eight hex
digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
is a sequence of thread IDs from the target.  @var{threadid} (eight hex
digits).  See @code{remote.c:parse_threadlist_response()}.
@end table

@item qOffsets
@cindex section offsets, remote request
@cindex @samp{qOffsets} packet
Get section offsets that the target used when relocating the downloaded
image.

Reply:
@table @samp
@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
Relocate the @code{Text} section by @var{xxx} from its original address.
Relocate the @code{Data} section by @var{yyy} from its original address.
If the object file format provides segment information (e.g.@: @sc{elf}
@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
segments by the supplied offsets.

@emph{Note: while a @code{Bss} offset may be included in the response,
@value{GDBN} ignores this and instead applies the @code{Data} offset
to the @code{Bss} section.}

@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
Relocate the first segment of the object file, which conventionally
contains program code, to a starting address of @var{xxx}.  If
@samp{DataSeg} is specified, relocate the second segment, which
conventionally contains modifiable data, to a starting address of
@var{yyy}.  @value{GDBN} will report an error if the object file
does not contain segment information, or does not contain at least
as many segments as mentioned in the reply.  Extra segments are
kept at fixed offsets relative to the last relocated segment.
@end table

@item qP @var{mode} @var{thread-id}
@cindex thread information, remote request
@cindex @samp{qP} packet
Returns information on @var{thread-id}.  Where: @var{mode} is a hex
encoded 32 bit mode; @var{thread-id} is a thread ID 
(@pxref{thread-id syntax}).

Don't use this packet; use the @samp{qThreadExtraInfo} query instead
(see below).

Reply: see @code{remote.c:remote_unpack_thread_info_response()}.

@item QNonStop:1
@itemx QNonStop:0
@cindex non-stop mode, remote request
@cindex @samp{QNonStop} packet
@anchor{QNonStop}
Enter non-stop (@samp{QNonStop:1}) or all-stop (@samp{QNonStop:0}) mode.
@xref{Remote Non-Stop}, for more information.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{QNonStop} is not supported by
the stub.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
Use of this packet is controlled by the @code{set non-stop} command; 
@pxref{Non-Stop Mode}.

@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
@cindex pass signals to inferior, remote request
@cindex @samp{QPassSignals} packet
@anchor{QPassSignals}
Each listed @var{signal} should be passed directly to the inferior process. 
Signals are numbered identically to continue packets and stop replies
(@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
strictly greater than the previous item.  These signals do not need to stop
the inferior, or be reported to @value{GDBN}.  All other signals should be
reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
combine; any earlier @samp{QPassSignals} list is completely replaced by the
new list.  This packet improves performance when using @samp{handle
@var{signal} nostop noprint pass}.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{QPassSignals} is not supported by
the stub.
@end table

Use of this packet is controlled by the @code{set remote pass-signals}
command (@pxref{Remote Configuration, set remote pass-signals}).
This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item QProgramSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
@cindex signals the inferior may see, remote request
@cindex @samp{QProgramSignals} packet
@anchor{QProgramSignals}
Each listed @var{signal} may be delivered to the inferior process.
Others should be silently discarded.

In some cases, the remote stub may need to decide whether to deliver a
signal to the program or not without @value{GDBN} involvement.  One
example of that is while detaching --- the program's threads may have
stopped for signals that haven't yet had a chance of being reported to
@value{GDBN}, and so the remote stub can use the signal list specified
by this packet to know whether to deliver or ignore those pending
signals.

This does not influence whether to deliver a signal as requested by a
resumption packet (@pxref{vCont packet}).

Signals are numbered identically to continue packets and stop replies
(@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
strictly greater than the previous item.  Multiple
@samp{QProgramSignals} packets do not combine; any earlier
@samp{QProgramSignals} list is completely replaced by the new list.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{QProgramSignals} is not supported
by the stub.
@end table

Use of this packet is controlled by the @code{set remote program-signals}
command (@pxref{Remote Configuration, set remote program-signals}).
This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qRcmd,@var{command}
@cindex execute remote command, remote request
@cindex @samp{qRcmd} packet
@var{command} (hex encoded) is passed to the local interpreter for
execution.  Invalid commands should be reported using the output
string.  Before the final result packet, the target may also respond
with a number of intermediate @samp{O@var{output}} console output
packets.  @emph{Implementors should note that providing access to a
stubs's interpreter may have security implications}.

Reply:
@table @samp
@item OK
A command response with no output.
@item @var{OUTPUT}
A command response with the hex encoded output string @var{OUTPUT}.
@item E @var{NN}
Indicate a badly formed request.
@item @w{}
An empty reply indicates that @samp{qRcmd} is not recognized.
@end table

(Note that the @code{qRcmd} packet's name is separated from the
command by a @samp{,}, not a @samp{:}, contrary to the naming
conventions above.  Please don't use this packet as a model for new
packets.)

@item qSearch:memory:@var{address};@var{length};@var{search-pattern}
@cindex searching memory, in remote debugging
@ifnotinfo
@cindex @samp{qSearch:memory} packet
@end ifnotinfo
@cindex @samp{qSearch memory} packet
@anchor{qSearch memory}
Search @var{length} bytes at @var{address} for @var{search-pattern}.
@var{address} and @var{length} are encoded in hex.
@var{search-pattern} is a sequence of bytes, hex encoded.

Reply:
@table @samp
@item 0
The pattern was not found.
@item 1,address
The pattern was found at @var{address}.
@item E @var{NN}
A badly formed request or an error was encountered while searching memory.
@item @w{}
An empty reply indicates that @samp{qSearch:memory} is not recognized.
@end table

@item QStartNoAckMode
@cindex @samp{QStartNoAckMode} packet
@anchor{QStartNoAckMode}
Request that the remote stub disable the normal @samp{+}/@samp{-}
protocol acknowledgments (@pxref{Packet Acknowledgment}).

Reply:
@table @samp
@item OK
The stub has switched to no-acknowledgment mode.
@value{GDBN} acknowledges this reponse,
but neither the stub nor @value{GDBN} shall send or expect further
@samp{+}/@samp{-} acknowledgments in the current connection.
@item @w{}
An empty reply indicates that the stub does not support no-acknowledgment mode.
@end table

@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
@cindex supported packets, remote query
@cindex features of the remote protocol
@cindex @samp{qSupported} packet
@anchor{qSupported}
Tell the remote stub about features supported by @value{GDBN}, and
query the stub for features it supports.  This packet allows
@value{GDBN} and the remote stub to take advantage of each others'
features.  @samp{qSupported} also consolidates multiple feature probes
at startup, to improve @value{GDBN} performance---a single larger
packet performs better than multiple smaller probe packets on
high-latency links.  Some features may enable behavior which must not
be on by default, e.g.@: because it would confuse older clients or
stubs.  Other features may describe packets which could be
automatically probed for, but are not.  These features must be
reported before @value{GDBN} will use them.  This ``default
unsupported'' behavior is not appropriate for all packets, but it
helps to keep the initial connection time under control with new
versions of @value{GDBN} which support increasing numbers of packets.

Reply:
@table @samp
@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
The stub supports or does not support each returned @var{stubfeature},
depending on the form of each @var{stubfeature} (see below for the
possible forms).
@item @w{}
An empty reply indicates that @samp{qSupported} is not recognized,
or that no features needed to be reported to @value{GDBN}.
@end table

The allowed forms for each feature (either a @var{gdbfeature} in the
@samp{qSupported} packet, or a @var{stubfeature} in the response)
are:

@table @samp
@item @var{name}=@var{value}
The remote protocol feature @var{name} is supported, and associated
with the specified @var{value}.  The format of @var{value} depends
on the feature, but it must not include a semicolon.
@item @var{name}+
The remote protocol feature @var{name} is supported, and does not
need an associated value.
@item @var{name}-
The remote protocol feature @var{name} is not supported.
@item @var{name}?
The remote protocol feature @var{name} may be supported, and
@value{GDBN} should auto-detect support in some other way when it is
needed.  This form will not be used for @var{gdbfeature} notifications,
but may be used for @var{stubfeature} responses.
@end table

Whenever the stub receives a @samp{qSupported} request, the
supplied set of @value{GDBN} features should override any previous
request.  This allows @value{GDBN} to put the stub in a known
state, even if the stub had previously been communicating with
a different version of @value{GDBN}.

The following values of @var{gdbfeature} (for the packet sent by @value{GDBN})
are defined:  

@table @samp
@item multiprocess
This feature indicates whether @value{GDBN} supports multiprocess 
extensions to the remote protocol.  @value{GDBN} does not use such
extensions unless the stub also reports that it supports them by
including @samp{multiprocess+} in its @samp{qSupported} reply.
@xref{multiprocess extensions}, for details.

@item xmlRegisters
This feature indicates that @value{GDBN} supports the XML target
description.  If the stub sees @samp{xmlRegisters=} with target
specific strings separated by a comma, it will report register
description.

@item qRelocInsn
This feature indicates whether @value{GDBN} supports the
@samp{qRelocInsn} packet (@pxref{Tracepoint Packets,,Relocate
instruction reply packet}).
@end table

Stubs should ignore any unknown values for
@var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
packet supports receiving packets of unlimited length (earlier
versions of @value{GDBN} may reject overly long responses).  Additional values
for @var{gdbfeature} may be defined in the future to let the stub take
advantage of new features in @value{GDBN}, e.g.@: incompatible
improvements in the remote protocol---the @samp{multiprocess} feature is
an example of such a feature.  The stub's reply should be independent
of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
describes all the features it supports, and then the stub replies with
all the features it supports.

Similarly, @value{GDBN} will silently ignore unrecognized stub feature
responses, as long as each response uses one of the standard forms.

Some features are flags.  A stub which supports a flag feature
should respond with a @samp{+} form response.  Other features
require values, and the stub should respond with an @samp{=}
form response.

Each feature has a default value, which @value{GDBN} will use if
@samp{qSupported} is not available or if the feature is not mentioned
in the @samp{qSupported} response.  The default values are fixed; a
stub is free to omit any feature responses that match the defaults.

Not all features can be probed, but for those which can, the probing
mechanism is useful: in some cases, a stub's internal
architecture may not allow the protocol layer to know some information
about the underlying target in advance.  This is especially common in
stubs which may be configured for multiple targets.

These are the currently defined stub features and their properties:

@multitable @columnfractions 0.35 0.2 0.12 0.2
@c NOTE: The first row should be @headitem, but we do not yet require
@c a new enough version of Texinfo (4.7) to use @headitem.
@item Feature Name
@tab Value Required
@tab Default
@tab Probe Allowed

@item @samp{PacketSize}
@tab Yes
@tab @samp{-}
@tab No

@item @samp{qXfer:auxv:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:btrace:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:features:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:libraries:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:libraries-svr4:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{augmented-libraries-svr4-read}
@tab No
@tab @samp{-}
@tab No

@item @samp{qXfer:memory-map:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:sdata:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:spu:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:spu:write}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:siginfo:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:siginfo:write}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:threads:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:traceframe-info:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:uib:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:fdpic:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace:off}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace:bts}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{QNonStop}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{QPassSignals}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{QStartNoAckMode}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{multiprocess}
@tab No
@tab @samp{-}
@tab No

@item @samp{ConditionalBreakpoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{ConditionalTracepoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{ReverseContinue}
@tab No
@tab @samp{-}
@tab No

@item @samp{ReverseStep}
@tab No
@tab @samp{-}
@tab No

@item @samp{TracepointSource}
@tab No
@tab @samp{-}
@tab No

@item @samp{QAgent}
@tab No
@tab @samp{-}
@tab No

@item @samp{QAllow}
@tab No
@tab @samp{-}
@tab No

@item @samp{QDisableRandomization}
@tab No
@tab @samp{-}
@tab No

@item @samp{EnableDisableTracepoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{QTBuffer:size}
@tab No
@tab @samp{-}
@tab No

@item @samp{tracenz}
@tab No
@tab @samp{-}
@tab No

@item @samp{BreakpointCommands}
@tab No
@tab @samp{-}
@tab No

@end multitable

These are the currently defined stub features, in more detail:

@table @samp
@cindex packet size, remote protocol
@item PacketSize=@var{bytes}
The remote stub can accept packets up to at least @var{bytes} in
length.  @value{GDBN} will send packets up to this size for bulk
transfers, and will never send larger packets.  This is a limit on the
data characters in the packet, including the frame and checksum.
There is no trailing NUL byte in a remote protocol packet; if the stub
stores packets in a NUL-terminated format, it should allow an extra
byte in its buffer for the NUL.  If this stub feature is not supported,
@value{GDBN} guesses based on the size of the @samp{g} packet response.

@item qXfer:auxv:read
The remote stub understands the @samp{qXfer:auxv:read} packet
(@pxref{qXfer auxiliary vector read}).

@item qXfer:btrace:read
The remote stub understands the @samp{qXfer:btrace:read}
packet (@pxref{qXfer btrace read}).

@item qXfer:features:read
The remote stub understands the @samp{qXfer:features:read} packet
(@pxref{qXfer target description read}).

@item qXfer:libraries:read
The remote stub understands the @samp{qXfer:libraries:read} packet
(@pxref{qXfer library list read}).

@item qXfer:libraries-svr4:read
The remote stub understands the @samp{qXfer:libraries-svr4:read} packet
(@pxref{qXfer svr4 library list read}).

@item augmented-libraries-svr4-read
The remote stub understands the augmented form of the
@samp{qXfer:libraries-svr4:read} packet
(@pxref{qXfer svr4 library list read}).

@item qXfer:memory-map:read
The remote stub understands the @samp{qXfer:memory-map:read} packet
(@pxref{qXfer memory map read}).

@item qXfer:sdata:read
The remote stub understands the @samp{qXfer:sdata:read} packet
(@pxref{qXfer sdata read}).

@item qXfer:spu:read
The remote stub understands the @samp{qXfer:spu:read} packet
(@pxref{qXfer spu read}).

@item qXfer:spu:write
The remote stub understands the @samp{qXfer:spu:write} packet
(@pxref{qXfer spu write}).

@item qXfer:siginfo:read
The remote stub understands the @samp{qXfer:siginfo:read} packet
(@pxref{qXfer siginfo read}).

@item qXfer:siginfo:write
The remote stub understands the @samp{qXfer:siginfo:write} packet
(@pxref{qXfer siginfo write}).

@item qXfer:threads:read
The remote stub understands the @samp{qXfer:threads:read} packet
(@pxref{qXfer threads read}).

@item qXfer:traceframe-info:read
The remote stub understands the @samp{qXfer:traceframe-info:read}
packet (@pxref{qXfer traceframe info read}).

@item qXfer:uib:read
The remote stub understands the @samp{qXfer:uib:read}
packet (@pxref{qXfer unwind info block}).

@item qXfer:fdpic:read
The remote stub understands the @samp{qXfer:fdpic:read}
packet (@pxref{qXfer fdpic loadmap read}).

@item QNonStop
The remote stub understands the @samp{QNonStop} packet
(@pxref{QNonStop}).

@item QPassSignals
The remote stub understands the @samp{QPassSignals} packet
(@pxref{QPassSignals}).

@item QStartNoAckMode
The remote stub understands the @samp{QStartNoAckMode} packet and
prefers to operate in no-acknowledgment mode.  @xref{Packet Acknowledgment}.

@item multiprocess
@anchor{multiprocess extensions}
@cindex multiprocess extensions, in remote protocol
The remote stub understands the multiprocess extensions to the remote
protocol syntax.  The multiprocess extensions affect the syntax of
thread IDs in both packets and replies (@pxref{thread-id syntax}), and
add process IDs to the @samp{D} packet and @samp{W} and @samp{X}
replies.  Note that reporting this feature indicates support for the
syntactic extensions only, not that the stub necessarily supports
debugging of more than one process at a time.  The stub must not use
multiprocess extensions in packet replies unless @value{GDBN} has also
indicated it supports them in its @samp{qSupported} request.

@item qXfer:osdata:read
The remote stub understands the @samp{qXfer:osdata:read} packet
((@pxref{qXfer osdata read}).

@item ConditionalBreakpoints
The target accepts and implements evaluation of conditional expressions
defined for breakpoints.  The target will only report breakpoint triggers
when such conditions are true (@pxref{Conditions, ,Break Conditions}).

@item ConditionalTracepoints
The remote stub accepts and implements conditional expressions defined
for tracepoints (@pxref{Tracepoint Conditions}).

@item ReverseContinue
The remote stub accepts and implements the reverse continue packet
(@pxref{bc}).

@item ReverseStep
The remote stub accepts and implements the reverse step packet
(@pxref{bs}).

@item TracepointSource
The remote stub understands the @samp{QTDPsrc} packet that supplies
the source form of tracepoint definitions.

@item QAgent
The remote stub understands the @samp{QAgent} packet.

@item QAllow
The remote stub understands the @samp{QAllow} packet.

@item QDisableRandomization
The remote stub understands the @samp{QDisableRandomization} packet.

@item StaticTracepoint
@cindex static tracepoints, in remote protocol
The remote stub supports static tracepoints.

@item InstallInTrace
@anchor{install tracepoint in tracing}
The remote stub supports installing tracepoint in tracing.

@item EnableDisableTracepoints
The remote stub supports the @samp{QTEnable} (@pxref{QTEnable}) and
@samp{QTDisable} (@pxref{QTDisable}) packets that allow tracepoints
to be enabled and disabled while a trace experiment is running.

@item QTBuffer:size
The remote stub supports the @samp{QTBuffer:size} (@pxref{QTBuffer-size})
packet that allows to change the size of the trace buffer.

@item tracenz
@cindex string tracing, in remote protocol
The remote stub supports the @samp{tracenz} bytecode for collecting strings.
See @ref{Bytecode Descriptions} for details about the bytecode.

@item BreakpointCommands
@cindex breakpoint commands, in remote protocol
The remote stub supports running a breakpoint's command list itself,
rather than reporting the hit to @value{GDBN}.

@item Qbtrace:off
The remote stub understands the @samp{Qbtrace:off} packet.

@item Qbtrace:bts
The remote stub understands the @samp{Qbtrace:bts} packet.

@end table

@item qSymbol::
@cindex symbol lookup, remote request
@cindex @samp{qSymbol} packet
Notify the target that @value{GDBN} is prepared to serve symbol lookup
requests.  Accept requests from the target for the values of symbols.

Reply:
@table @samp
@item OK
The target does not need to look up any (more) symbols.
@item qSymbol:@var{sym_name}
The target requests the value of symbol @var{sym_name} (hex encoded).
@value{GDBN} may provide the value by using the
@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
below.
@end table

@item qSymbol:@var{sym_value}:@var{sym_name}
Set the value of @var{sym_name} to @var{sym_value}.

@var{sym_name} (hex encoded) is the name of a symbol whose value the
target has previously requested.

@var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
@value{GDBN} cannot supply a value for @var{sym_name}, then this field
will be empty.

Reply:
@table @samp
@item OK
The target does not need to look up any (more) symbols.
@item qSymbol:@var{sym_name}
The target requests the value of a new symbol @var{sym_name} (hex
encoded).  @value{GDBN} will continue to supply the values of symbols
(if available), until the target ceases to request them.
@end table

@item qTBuffer
@itemx QTBuffer
@itemx QTDisconnected
@itemx QTDP
@itemx QTDPsrc
@itemx QTDV
@itemx qTfP
@itemx qTfV
@itemx QTFrame
@itemx qTMinFTPILen

@xref{Tracepoint Packets}.

@item qThreadExtraInfo,@var{thread-id}
@cindex thread attributes info, remote request
@cindex @samp{qThreadExtraInfo} packet
Obtain a printable string description of a thread's attributes from
the target OS.  @var{thread-id} is a thread ID; 
see @ref{thread-id syntax}.  This
string may contain anything that the target OS thinks is interesting
for @value{GDBN} to tell the user about the thread.  The string is
displayed in @value{GDBN}'s @code{info threads} display.  Some
examples of possible thread extra info strings are @samp{Runnable}, or
@samp{Blocked on Mutex}.

Reply:
@table @samp
@item @var{XX}@dots{}
Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
comprising the printable string containing the extra information about
the thread's attributes.
@end table

(Note that the @code{qThreadExtraInfo} packet's name is separated from
the command by a @samp{,}, not a @samp{:}, contrary to the naming
conventions above.  Please don't use this packet as a model for new
packets.)

@item QTNotes
@itemx qTP
@itemx QTSave
@itemx qTsP
@itemx qTsV
@itemx QTStart    
@itemx QTStop     
@itemx QTEnable
@itemx QTDisable
@itemx QTinit     
@itemx QTro       
@itemx qTStatus   
@itemx qTV
@itemx qTfSTM
@itemx qTsSTM
@itemx qTSTMat
@xref{Tracepoint Packets}.

@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
@cindex read special object, remote request
@cindex @samp{qXfer} packet
@anchor{qXfer read}
Read uninterpreted bytes from the target's special data area
identified by the keyword @var{object}.  Request @var{length} bytes
starting at @var{offset} bytes into the data.  The content and
encoding of @var{annex} is specific to @var{object}; it can supply
additional details about what data to access.

Here are the specific requests of this form defined so far.  All
@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
formats, listed below.

@table @samp
@item qXfer:auxv:read::@var{offset},@var{length}
@anchor{qXfer auxiliary vector read}
Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
auxiliary vector}.  Note @var{annex} must be empty.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:btrace:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer btrace read}

Return a description of the current branch trace.
@xref{Branch Trace Format}.  The annex part of the generic @samp{qXfer}
packet may have one of the following values:

@table @code
@item all
Returns all available branch trace.

@item new
Returns all available branch trace if the branch trace changed since
the last read request.
@end table

This packet is not probed by default; the remote stub must request it
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer target description read}
Access the @dfn{target description}.  @xref{Target Descriptions}.  The
annex specifies which XML document to access.  The main description is
always loaded from the @samp{target.xml} annex.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer library list read}
Access the target's list of loaded libraries.  @xref{Library List Format}.
The annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

Targets which maintain a list of libraries in the program's memory do
not need to implement this packet; it is designed for platforms where
the operating system manages the list of loaded libraries.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:libraries-svr4:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer svr4 library list read}
Access the target's list of loaded libraries when the target is an SVR4
platform.  @xref{Library List Format for SVR4 Targets}.  The annex part
of the generic @samp{qXfer} packet must be empty unless the remote
stub indicated it supports the augmented form of this packet
by supplying an appropriate @samp{qSupported} response
(@pxref{qXfer read}, @ref{qSupported}).

This packet is optional for better performance on SVR4 targets.  
@value{GDBN} uses memory read packets to read the SVR4 library list otherwise.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

If the remote stub indicates it supports the augmented form of this
packet then the annex part of the generic @samp{qXfer} packet may
contain a semicolon-separated list of @samp{@var{name}=@var{value}}
arguments.  The currently supported arguments are:

@table @code
@item start=@var{address}
A hexadecimal number specifying the address of the @samp{struct
link_map} to start reading the library list from.  If unset or zero
then the first @samp{struct link_map} in the library list will be
chosen as the starting point.

@item prev=@var{address}
A hexadecimal number specifying the address of the @samp{struct
link_map} immediately preceding the @samp{struct link_map}
specified by the @samp{start} argument.  If unset or zero then
the remote stub will expect that no @samp{struct link_map}
exists prior to the starting point.

@end table

Arguments that are not understood by the remote stub will be silently
ignored.

@item qXfer:memory-map:read::@var{offset},@var{length}
@anchor{qXfer memory map read}
Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:sdata:read::@var{offset},@var{length}
@anchor{qXfer sdata read}

Read contents of the extra collected static tracepoint marker
information.  The annex part of the generic @samp{qXfer} packet must
be empty (@pxref{qXfer read}).  @xref{Tracepoint Actions,,Tracepoint
Action Lists}.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:siginfo:read::@var{offset},@var{length}
@anchor{qXfer siginfo read}
Read contents of the extra signal information on the target
system.  The annex part of the generic @samp{qXfer} packet must be
empty (@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer spu read}
Read contents of an @code{spufs} file on the target system.  The
annex specifies which file to read; it must be of the form 
@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
in the target process, and @var{name} identifes the @code{spufs} file
in that context to be accessed.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:threads:read::@var{offset},@var{length}
@anchor{qXfer threads read}
Access the list of threads on target.  @xref{Thread List Format}.  The
annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:traceframe-info:read::@var{offset},@var{length}
@anchor{qXfer traceframe info read}

Return a description of the current traceframe's contents.
@xref{Traceframe Info Format}.  The annex part of the generic
@samp{qXfer} packet must be empty (@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:uib:read:@var{pc}:@var{offset},@var{length}
@anchor{qXfer unwind info block}

Return the unwind information block for @var{pc}.  This packet is used
on OpenVMS/ia64 to ask the kernel unwind information.

This packet is not probed by default.

@item qXfer:fdpic:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer fdpic loadmap read}
Read contents of @code{loadmap}s on the target system.  The
annex, either @samp{exec} or @samp{interp}, specifies which @code{loadmap},
executable @code{loadmap} or interpreter @code{loadmap} to read.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:osdata:read::@var{offset},@var{length}
@anchor{qXfer osdata read}
Access the target's @dfn{operating system information}.  
@xref{Operating System Information}.

@end table

Reply:
@table @samp
@item m @var{data}
Data @var{data} (@pxref{Binary Data}) has been read from the
target.  There may be more data at a higher address (although
it is permitted to return @samp{m} even for the last valid
block of data, as long as at least one byte of data was read).
@var{data} may have fewer bytes than the @var{length} in the
request.

@item l @var{data}
Data @var{data} (@pxref{Binary Data}) has been read from the target.
There is no more data to be read.  @var{data} may have fewer bytes
than the @var{length} in the request.

@item l
The @var{offset} in the request is at the end of the data.
There is no more data to be read.

@item E00
The request was malformed, or @var{annex} was invalid.

@item E @var{nn}
The offset was invalid, or there was an error encountered reading the data.
@var{nn} is a hex-encoded @code{errno} value.

@item @w{}
An empty reply indicates the @var{object} string was not recognized by
the stub, or that the object does not support reading.
@end table

@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
@cindex write data into object, remote request
@anchor{qXfer write}
Write uninterpreted bytes into the target's special data area
identified by the keyword @var{object}, starting at @var{offset} bytes
into the data.  @var{data}@dots{} is the binary-encoded data
(@pxref{Binary Data}) to be written.  The content and encoding of @var{annex}
is specific to @var{object}; it can supply additional details about what data
to access.

Here are the specific requests of this form defined so far.  All
@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
formats, listed below.

@table @samp
@item qXfer:siginfo:write::@var{offset}:@var{data}@dots{}
@anchor{qXfer siginfo write}
Write @var{data} to the extra signal information on the target system.
The annex part of the generic @samp{qXfer} packet must be
empty (@pxref{qXfer write}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:spu:write:@var{annex}:@var{offset}:@var{data}@dots{}
@anchor{qXfer spu write}
Write @var{data} to an @code{spufs} file on the target system.  The
annex specifies which file to write; it must be of the form
@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
in the target process, and @var{name} identifes the @code{spufs} file
in that context to be accessed.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
@end table

Reply:
@table @samp
@item @var{nn}
@var{nn} (hex encoded) is the number of bytes written.
This may be fewer bytes than supplied in the request.

@item E00
The request was malformed, or @var{annex} was invalid.

@item E @var{nn}
The offset was invalid, or there was an error encountered writing the data.
@var{nn} is a hex-encoded @code{errno} value.

@item @w{}
An empty reply indicates the @var{object} string was not
recognized by the stub, or that the object does not support writing.
@end table

@item qXfer:@var{object}:@var{operation}:@dots{}
Requests of this form may be added in the future.  When a stub does
not recognize the @var{object} keyword, or its support for
@var{object} does not recognize the @var{operation} keyword, the stub
must respond with an empty packet.

@item qAttached:@var{pid}
@cindex query attached, remote request
@cindex @samp{qAttached} packet
Return an indication of whether the remote server attached to an
existing process or created a new process.  When the multiprocess
protocol extensions are supported (@pxref{multiprocess extensions}),
@var{pid} is an integer in hexadecimal format identifying the target
process.  Otherwise, @value{GDBN} will omit the @var{pid} field and
the query packet will be simplified as @samp{qAttached}.

This query is used, for example, to know whether the remote process
should be detached or killed when a @value{GDBN} session is ended with
the @code{quit} command.

Reply:
@table @samp
@item 1
The remote server attached to an existing process.
@item 0
The remote server created a new process.
@item E @var{NN}
A badly formed request or an error was encountered.
@end table

@item Qbtrace:bts
Enable branch tracing for the current thread using bts tracing.

Reply:
@table @samp
@item OK
Branch tracing has been enabled.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@item Qbtrace:off
Disable branch tracing for the current thread.

Reply:
@table @samp
@item OK
Branch tracing has been disabled.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@end table

@node Architecture-Specific Protocol Details
@section Architecture-Specific Protocol Details

This section describes how the remote protocol is applied to specific
target architectures.  Also see @ref{Standard Target Features}, for
details of XML target descriptions for each architecture.

@menu
* ARM-Specific Protocol Details::
* MIPS-Specific Protocol Details::
@end menu

@node ARM-Specific Protocol Details
@subsection @acronym{ARM}-specific Protocol Details

@menu
* ARM Breakpoint Kinds::
@end menu

@node ARM Breakpoint Kinds
@subsubsection @acronym{ARM} Breakpoint Kinds
@cindex breakpoint kinds, @acronym{ARM}

These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.

@table @r

@item 2
16-bit Thumb mode breakpoint.

@item 3
32-bit Thumb mode (Thumb-2) breakpoint.

@item 4
32-bit @acronym{ARM} mode breakpoint.

@end table

@node MIPS-Specific Protocol Details
@subsection @acronym{MIPS}-specific Protocol Details

@menu
* MIPS Register packet Format::
* MIPS Breakpoint Kinds::
@end menu

@node MIPS Register packet Format
@subsubsection @acronym{MIPS} Register Packet Format
@cindex register packet format, @acronym{MIPS}

The following @code{g}/@code{G} packets have previously been defined.
In the below, some thirty-two bit registers are transferred as
sixty-four bits.  Those registers should be zero/sign extended (which?)
to fill the space allocated.  Register bytes are transferred in target
byte order.  The two nibbles within a register byte are transferred
most-significant -- least-significant.

@table @r

@item MIPS32
All registers are transferred as thirty-two bit quantities in the order:
32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
registers; fsr; fir; fp.

@item MIPS64
All registers are transferred as sixty-four bit quantities (including
thirty-two bit registers such as @code{sr}).  The ordering is the same
as @code{MIPS32}.

@end table

@node MIPS Breakpoint Kinds
@subsubsection @acronym{MIPS} Breakpoint Kinds
@cindex breakpoint kinds, @acronym{MIPS}

These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.

@table @r

@item 2
16-bit @acronym{MIPS16} mode breakpoint.

@item 3
16-bit @acronym{microMIPS} mode breakpoint.

@item 4
32-bit standard @acronym{MIPS} mode breakpoint.

@item 5
32-bit @acronym{microMIPS} mode breakpoint.

@end table

@node Tracepoint Packets
@section Tracepoint Packets
@cindex tracepoint packets
@cindex packets, tracepoint

Here we describe the packets @value{GDBN} uses to implement
tracepoints (@pxref{Tracepoints}).

@table @samp

@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}[:F@var{flen}][:X@var{len},@var{bytes}]@r{[}-@r{]}
@cindex @samp{QTDP} packet
Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
the tracepoint is disabled.  @var{step} is the tracepoint's step
count, and @var{pass} is its pass count.  If an @samp{F} is present,
then the tracepoint is to be a fast tracepoint, and the @var{flen} is
the number of bytes that the target should copy elsewhere to make room
for the tracepoint.  If an @samp{X} is present, it introduces a
tracepoint condition, which consists of a hexadecimal length, followed
by a comma and hex-encoded bytes, in a manner similar to action
encodings as described below.  If the trailing @samp{-} is present,
further @samp{QTDP} packets will follow to specify this tracepoint's
actions.

Replies:
@table @samp
@item OK
The packet was understood and carried out.
@item qRelocInsn
@xref{Tracepoint Packets,,Relocate instruction reply packet}.
@item  @w{}
The packet was not recognized.
@end table

@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
Define actions to be taken when a tracepoint is hit.  @var{n} and
@var{addr} must be the same as in the initial @samp{QTDP} packet for
this tracepoint.  This packet may only be sent immediately after
another @samp{QTDP} packet that ended with a @samp{-}.  If the
trailing @samp{-} is present, further @samp{QTDP} packets will follow,
specifying more actions for this tracepoint.

In the series of action packets for a given tracepoint, at most one
can have an @samp{S} before its first @var{action}.  If such a packet
is sent, it and the following packets define ``while-stepping''
actions.  Any prior packets define ordinary actions --- that is, those
taken when the tracepoint is first hit.  If no action packet has an
@samp{S}, then all the packets in the series specify ordinary
tracepoint actions.

The @samp{@var{action}@dots{}} portion of the packet is a series of
actions, concatenated without separators.  Each action has one of the
following forms:

@table @samp

@item R @var{mask}
Collect the registers whose bits are set in @var{mask}.  @var{mask} is
a hexadecimal number whose @var{i}'th bit is set if register number
@var{i} should be collected.  (The least significant bit is numbered
zero.)  Note that @var{mask} may be any number of digits long; it may
not fit in a 32-bit word.

@item M @var{basereg},@var{offset},@var{len}
Collect @var{len} bytes of memory starting at the address in register
number @var{basereg}, plus @var{offset}.  If @var{basereg} is
@samp{-1}, then the range has a fixed address: @var{offset} is the
address of the lowest byte to collect.  The @var{basereg},
@var{offset}, and @var{len} parameters are all unsigned hexadecimal
values (the @samp{-1} value for @var{basereg} is a special case).

@item X @var{len},@var{expr}
Evaluate @var{expr}, whose length is @var{len}, and collect memory as
it directs.  @var{expr} is an agent expression, as described in
@ref{Agent Expressions}.  Each byte of the expression is encoded as a
two-digit hex number in the packet; @var{len} is the number of bytes
in the expression (and thus one-half the number of hex digits in the
packet).

@end table

Any number of actions may be packed together in a single @samp{QTDP}
packet, as long as the packet does not exceed the maximum packet
length (400 bytes, for many stubs).  There may be only one @samp{R}
action per tracepoint, and it must precede any @samp{M} or @samp{X}
actions.  Any registers referred to by @samp{M} and @samp{X} actions
must be collected by a preceding @samp{R} action.  (The
``while-stepping'' actions are treated as if they were attached to a
separate tracepoint, as far as these restrictions are concerned.)

Replies:
@table @samp
@item OK
The packet was understood and carried out.
@item qRelocInsn
@xref{Tracepoint Packets,,Relocate instruction reply packet}.
@item  @w{}
The packet was not recognized.
@end table

@item QTDPsrc:@var{n}:@var{addr}:@var{type}:@var{start}:@var{slen}:@var{bytes}
@cindex @samp{QTDPsrc} packet
Specify a source string of tracepoint @var{n} at address @var{addr}.
This is useful to get accurate reproduction of the tracepoints
originally downloaded at the beginning of the trace run.  @var{type}
is the name of the tracepoint part, such as @samp{cond} for the
tracepoint's conditional expression (see below for a list of types), while
@var{bytes} is the string, encoded in hexadecimal.

@var{start} is the offset of the @var{bytes} within the overall source
string, while @var{slen} is the total length of the source string.
This is intended for handling source strings that are longer than will
fit in a single packet.
@c Add detailed example when this info is moved into a dedicated
@c tracepoint descriptions section.

The available string types are @samp{at} for the location,
@samp{cond} for the conditional, and @samp{cmd} for an action command.
@value{GDBN} sends a separate packet for each command in the action
list, in the same order in which the commands are stored in the list.

The target does not need to do anything with source strings except
report them back as part of the replies to the @samp{qTfP}/@samp{qTsP}
query packets.

Although this packet is optional, and @value{GDBN} will only send it
if the target replies with @samp{TracepointSource} @xref{General
Query Packets}, it makes both disconnected tracing and trace files
much easier to use.  Otherwise the user must be careful that the
tracepoints in effect while looking at trace frames are identical to
the ones in effect during the trace run; even a small discrepancy
could cause @samp{tdump} not to work, or a particular trace frame not
be found.

@item QTDV:@var{n}:@var{value}
@cindex define trace state variable, remote request
@cindex @samp{QTDV} packet
Create a new trace state variable, number @var{n}, with an initial
value of @var{value}, which is a 64-bit signed integer.  Both @var{n}
and @var{value} are encoded as hexadecimal values. @value{GDBN} has
the option of not using this packet for initial values of zero; the
target should simply create the trace state variables as they are
mentioned in expressions.

@item QTFrame:@var{n}
@cindex @samp{QTFrame} packet
Select the @var{n}'th tracepoint frame from the buffer, and use the
register and memory contents recorded there to answer subsequent
request packets from @value{GDBN}.

A successful reply from the stub indicates that the stub has found the
requested frame.  The response is a series of parts, concatenated
without separators, describing the frame we selected.  Each part has
one of the following forms:

@table @samp
@item F @var{f}
The selected frame is number @var{n} in the trace frame buffer;
@var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
was no frame matching the criteria in the request packet.

@item T @var{t}
The selected trace frame records a hit of tracepoint number @var{t};
@var{t} is a hexadecimal number.

@end table

@item QTFrame:pc:@var{addr}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame whose PC is @var{addr};
@var{addr} is a hexadecimal number.

@item QTFrame:tdp:@var{t}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame that is a hit of tracepoint @var{t}; @var{t}
is a hexadecimal number.

@item QTFrame:range:@var{start}:@var{end}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame whose PC is between @var{start} (inclusive)
and @var{end} (inclusive); @var{start} and @var{end} are hexadecimal
numbers.

@item QTFrame:outside:@var{start}:@var{end}
Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
frame @emph{outside} the given range of addresses (exclusive).

@item qTMinFTPILen
@cindex @samp{qTMinFTPILen} packet
This packet requests the minimum length of instruction at which a fast
tracepoint (@pxref{Set Tracepoints}) may be placed.  For instance, on
the 32-bit x86 architecture, it is possible to use a 4-byte jump, but
it depends on the target system being able to create trampolines in
the first 64K of memory, which might or might not be possible for that
system.  So the reply to this packet will be 4 if it is able to
arrange for that.

Replies:

@table @samp
@item 0
The minimum instruction length is currently unknown.
@item @var{length}
The minimum instruction length is @var{length}, where @var{length} is greater
or equal to 1.  @var{length} is a hexadecimal number.  A reply of 1 means
that a fast tracepoint may be placed on any instruction regardless of size.
@item E
An error has occurred.
@item @w{}
An empty reply indicates that the request is not supported by the stub.
@end table

@item QTStart
@cindex @samp{QTStart} packet
Begin the tracepoint experiment.  Begin collecting data from
tracepoint hits in the trace frame buffer.  This packet supports the
@samp{qRelocInsn} reply (@pxref{Tracepoint Packets,,Relocate
instruction reply packet}).

@item QTStop
@cindex @samp{QTStop} packet
End the tracepoint experiment.  Stop collecting trace frames.

@item QTEnable:@var{n}:@var{addr}
@anchor{QTEnable}
@cindex @samp{QTEnable} packet
Enable tracepoint @var{n} at address @var{addr} in a started tracepoint
experiment.  If the tracepoint was previously disabled, then collection
of data from it will resume.

@item QTDisable:@var{n}:@var{addr}
@anchor{QTDisable}
@cindex @samp{QTDisable} packet
Disable tracepoint @var{n} at address @var{addr} in a started tracepoint
experiment.  No more data will be collected from the tracepoint unless
@samp{QTEnable:@var{n}:@var{addr}} is subsequently issued.

@item QTinit
@cindex @samp{QTinit} packet
Clear the table of tracepoints, and empty the trace frame buffer.

@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
@cindex @samp{QTro} packet
Establish the given ranges of memory as ``transparent''.  The stub
will answer requests for these ranges from memory's current contents,
if they were not collected as part of the tracepoint hit.

@value{GDBN} uses this to mark read-only regions of memory, like those
containing program code.  Since these areas never change, they should
still have the same contents they did when the tracepoint was hit, so
there's no reason for the stub to refuse to provide their contents.

@item QTDisconnected:@var{value}
@cindex @samp{QTDisconnected} packet
Set the choice to what to do with the tracing run when @value{GDBN}
disconnects from the target.  A @var{value} of 1 directs the target to
continue the tracing run, while 0 tells the target to stop tracing if
@value{GDBN} is no longer in the picture.

@item qTStatus
@cindex @samp{qTStatus} packet
Ask the stub if there is a trace experiment running right now.

The reply has the form:

@table @samp

@item T@var{running}@r{[};@var{field}@r{]}@dots{}
@var{running} is a single digit @code{1} if the trace is presently
running, or @code{0} if not.  It is followed by semicolon-separated
optional fields that an agent may use to report additional status.

@end table

If the trace is not running, the agent may report any of several
explanations as one of the optional fields:

@table @samp

@item tnotrun:0
No trace has been run yet.

@item tstop[:@var{text}]:0
The trace was stopped by a user-originated stop command.  The optional
@var{text} field is a user-supplied string supplied as part of the
stop command (for instance, an explanation of why the trace was
stopped manually).  It is hex-encoded.

@item tfull:0
The trace stopped because the trace buffer filled up.

@item tdisconnected:0
The trace stopped because @value{GDBN} disconnected from the target.

@item tpasscount:@var{tpnum}
The trace stopped because tracepoint @var{tpnum} exceeded its pass count.

@item terror:@var{text}:@var{tpnum}
The trace stopped because tracepoint @var{tpnum} had an error.  The
string @var{text} is available to describe the nature of the error
(for instance, a divide by zero in the condition expression).
@var{text} is hex encoded.

@item tunknown:0
The trace stopped for some other reason.

@end table

Additional optional fields supply statistical and other information.
Although not required, they are extremely useful for users monitoring
the progress of a trace run.  If a trace has stopped, and these
numbers are reported, they must reflect the state of the just-stopped
trace.

@table @samp

@item tframes:@var{n}
The number of trace frames in the buffer.

@item tcreated:@var{n}
The total number of trace frames created during the run. This may
be larger than the trace frame count, if the buffer is circular.

@item tsize:@var{n}
The total size of the trace buffer, in bytes.

@item tfree:@var{n}
The number of bytes still unused in the buffer.

@item circular:@var{n}
The value of the circular trace buffer flag.  @code{1} means that the
trace buffer is circular and old trace frames will be discarded if
necessary to make room, @code{0} means that the trace buffer is linear
and may fill up.

@item disconn:@var{n}
The value of the disconnected tracing flag.  @code{1} means that
tracing will continue after @value{GDBN} disconnects, @code{0} means
that the trace run will stop.

@end table

@item qTP:@var{tp}:@var{addr}
@cindex tracepoint status, remote request
@cindex @samp{qTP} packet
Ask the stub for the current state of tracepoint number @var{tp} at
address @var{addr}.

Replies:
@table @samp
@item V@var{hits}:@var{usage}
The tracepoint has been hit @var{hits} times so far during the trace
run, and accounts for @var{usage} in the trace buffer.  Note that
@code{while-stepping} steps are not counted as separate hits, but the
steps' space consumption is added into the usage number.

@end table

@item qTV:@var{var}
@cindex trace state variable value, remote request
@cindex @samp{qTV} packet
Ask the stub for the value of the trace state variable number @var{var}.

Replies:
@table @samp
@item V@var{value}
The value of the variable is @var{value}.  This will be the current
value of the variable if the user is examining a running target, or a
saved value if the variable was collected in the trace frame that the
user is looking at.  Note that multiple requests may result in
different reply values, such as when requesting values while the
program is running.

@item U
The value of the variable is unknown.  This would occur, for example,
if the user is examining a trace frame in which the requested variable
was not collected.
@end table

@item qTfP
@cindex @samp{qTfP} packet
@itemx qTsP
@cindex @samp{qTsP} packet
These packets request data about tracepoints that are being used by
the target.  @value{GDBN} sends @code{qTfP} to get the first piece
of data, and multiple @code{qTsP} to get additional pieces.  Replies
to these packets generally take the form of the @code{QTDP} packets
that define tracepoints. (FIXME add detailed syntax)

@item qTfV
@cindex @samp{qTfV} packet
@itemx qTsV
@cindex @samp{qTsV} packet
These packets request data about trace state variables that are on the
target.  @value{GDBN} sends @code{qTfV} to get the first vari of data,
and multiple @code{qTsV} to get additional variables.  Replies to
these packets follow the syntax of the @code{QTDV} packets that define
trace state variables.

@item qTfSTM
@itemx qTsSTM
@anchor{qTfSTM}
@anchor{qTsSTM}
@cindex @samp{qTfSTM} packet
@cindex @samp{qTsSTM} packet
These packets request data about static tracepoint markers that exist
in the target program.  @value{GDBN} sends @code{qTfSTM} to get the
first piece of data, and multiple @code{qTsSTM} to get additional
pieces.  Replies to these packets take the following form:

Reply:
@table @samp
@item m @var{address}:@var{id}:@var{extra}
A single marker
@item m @var{address}:@var{id}:@var{extra},@var{address}:@var{id}:@var{extra}@dots{}
a comma-separated list of markers
@item l
(lower case letter @samp{L}) denotes end of list.
@item E @var{nn}
An error occurred.  @var{nn} are hex digits.
@item @w{}
An empty reply indicates that the request is not supported by the
stub.
@end table

@var{address} is encoded in hex.
@var{id} and @var{extra} are strings encoded in hex.

In response to each query, the target will reply with a list of one or
more markers, separated by commas.  @value{GDBN} will respond to each
reply with a request for more markers (using the @samp{qs} form of the
query), until the target responds with @samp{l} (lower-case ell, for
@dfn{last}).

@item qTSTMat:@var{address}
@anchor{qTSTMat}
@cindex @samp{qTSTMat} packet
This packets requests data about static tracepoint markers in the
target program at @var{address}.  Replies to this packet follow the
syntax of the @samp{qTfSTM} and @code{qTsSTM} packets that list static
tracepoint markers.

@item QTSave:@var{filename}
@cindex @samp{QTSave} packet
This packet directs the target to save trace data to the file name
@var{filename} in the target's filesystem.  @var{filename} is encoded
as a hex string; the interpretation of the file name (relative vs
absolute, wild cards, etc) is up to the target.

@item qTBuffer:@var{offset},@var{len}
@cindex @samp{qTBuffer} packet
Return up to @var{len} bytes of the current contents of trace buffer,
starting at @var{offset}.  The trace buffer is treated as if it were
a contiguous collection of traceframes, as per the trace file format.
The reply consists as many hex-encoded bytes as the target can deliver
in a packet; it is not an error to return fewer than were asked for.
A reply consisting of just @code{l} indicates that no bytes are
available.

@item QTBuffer:circular:@var{value}
This packet directs the target to use a circular trace buffer if
@var{value} is 1, or a linear buffer if the value is 0.

@item QTBuffer:size:@var{size}
@anchor{QTBuffer-size}
@cindex @samp{QTBuffer size} packet
This packet directs the target to make the trace buffer be of size
@var{size} if possible.  A value of @code{-1} tells the target to
use whatever size it prefers.

@item QTNotes:@r{[}@var{type}:@var{text}@r{]}@r{[};@var{type}:@var{text}@r{]}@dots{}
@cindex @samp{QTNotes} packet
This packet adds optional textual notes to the trace run.  Allowable
types include @code{user}, @code{notes}, and @code{tstop}, the
@var{text} fields are arbitrary strings, hex-encoded.

@end table

@subsection Relocate instruction reply packet
When installing fast tracepoints in memory, the target may need to
relocate the instruction currently at the tracepoint address to a
different address in memory.  For most instructions, a simple copy is
enough, but, for example, call instructions that implicitly push the
return address on the stack, and relative branches or other
PC-relative instructions require offset adjustment, so that the effect
of executing the instruction at a different address is the same as if
it had executed in the original location.

In response to several of the tracepoint packets, the target may also
respond with a number of intermediate @samp{qRelocInsn} request
packets before the final result packet, to have @value{GDBN} handle
this relocation operation.  If a packet supports this mechanism, its
documentation will explicitly say so.  See for example the above
descriptions for the @samp{QTStart} and @samp{QTDP} packets.  The
format of the request is:

@table @samp
@item qRelocInsn:@var{from};@var{to}

This requests @value{GDBN} to copy instruction at address @var{from}
to address @var{to}, possibly adjusted so that executing the
instruction at @var{to} has the same effect as executing it at
@var{from}.  @value{GDBN} writes the adjusted instruction to target
memory starting at @var{to}.
@end table

Replies:
@table @samp
@item qRelocInsn:@var{adjusted_size}
Informs the stub the relocation is complete.  @var{adjusted_size} is
the length in bytes of resulting relocated instruction sequence.
@item E @var{NN}
A badly formed request was detected, or an error was encountered while
relocating the instruction.
@end table

@node Host I/O Packets
@section Host I/O Packets
@cindex Host I/O, remote protocol
@cindex file transfer, remote protocol

The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
operations on the far side of a remote link.  For example, Host I/O is
used to upload and download files to a remote target with its own
filesystem.  Host I/O uses the same constant values and data structure
layout as the target-initiated File-I/O protocol.  However, the
Host I/O packets are structured differently.  The target-initiated
protocol relies on target memory to store parameters and buffers.
Host I/O requests are initiated by @value{GDBN}, and the
target's memory is not involved.  @xref{File-I/O Remote Protocol
Extension}, for more details on the target-initiated protocol.

The Host I/O request packets all encode a single operation along with
its arguments.  They have this format:

@table @samp

@item vFile:@var{operation}: @var{parameter}@dots{}
@var{operation} is the name of the particular request; the target
should compare the entire packet name up to the second colon when checking
for a supported operation.  The format of @var{parameter} depends on
the operation.  Numbers are always passed in hexadecimal.  Negative
numbers have an explicit minus sign (i.e.@: two's complement is not
used).  Strings (e.g.@: filenames) are encoded as a series of
hexadecimal bytes.  The last argument to a system call may be a
buffer of escaped binary data (@pxref{Binary Data}).

@end table

The valid responses to Host I/O packets are:

@table @samp

@item F @var{result} [, @var{errno}] [; @var{attachment}]
@var{result} is the integer value returned by this operation, usually
non-negative for success and -1 for errors.  If an error has occured,
@var{errno} will be included in the result.  @var{errno} will have a
value defined by the File-I/O protocol (@pxref{Errno Values}).  For
operations which return data, @var{attachment} supplies the data as a
binary buffer.  Binary buffers in response packets are escaped in the
normal way (@pxref{Binary Data}).  See the individual packet
documentation for the interpretation of @var{result} and
@var{attachment}.

@item @w{}
An empty response indicates that this operation is not recognized.

@end table

These are the supported Host I/O operations:

@table @samp
@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
Open a file at @var{pathname} and return a file descriptor for it, or
return -1 if an error occurs.  @var{pathname} is a string,
@var{flags} is an integer indicating a mask of open flags
(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
of mode bits to use if the file is created (@pxref{mode_t Values}).
@xref{open}, for details of the open flags and mode values.

@item vFile:close: @var{fd}
Close the open file corresponding to @var{fd} and return 0, or
-1 if an error occurs.

@item vFile:pread: @var{fd}, @var{count}, @var{offset}
Read data from the open file corresponding to @var{fd}.  Up to
@var{count} bytes will be read from the file, starting at @var{offset}
relative to the start of the file.  The target may read fewer bytes;
common reasons include packet size limits and an end-of-file
condition.  The number of bytes read is returned.  Zero should only be
returned for a successful read at the end of the file, or if
@var{count} was zero.

The data read should be returned as a binary attachment on success.
If zero bytes were read, the response should include an empty binary
attachment (i.e.@: a trailing semicolon).  The return value is the
number of target bytes read; the binary attachment may be longer if
some characters were escaped.

@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
Write @var{data} (a binary buffer) to the open file corresponding
to @var{fd}.  Start the write at @var{offset} from the start of the
file.  Unlike many @code{write} system calls, there is no
separate @var{count} argument; the length of @var{data} in the
packet is used.  @samp{vFile:write} returns the number of bytes written,
which may be shorter than the length of @var{data}, or -1 if an
error occurred.

@item vFile:unlink: @var{pathname}
Delete the file at @var{pathname} on the target.  Return 0,
or -1 if an error occurs.  @var{pathname} is a string.

@item vFile:readlink: @var{filename}
Read value of symbolic link @var{filename} on the target.  Return
the number of bytes read, or -1 if an error occurs.

The data read should be returned as a binary attachment on success.
If zero bytes were read, the response should include an empty binary
attachment (i.e.@: a trailing semicolon).  The return value is the
number of target bytes read; the binary attachment may be longer if
some characters were escaped.

@end table

@node Interrupts
@section Interrupts
@cindex interrupts (remote protocol)

When a program on the remote target is running, @value{GDBN} may
attempt to interrupt it by sending a @samp{Ctrl-C}, @code{BREAK} or
a @code{BREAK} followed by @code{g},
control of which is specified via @value{GDBN}'s @samp{interrupt-sequence}.

The precise meaning of @code{BREAK} is defined by the transport
mechanism and may, in fact, be undefined.  @value{GDBN} does not
currently define a @code{BREAK} mechanism for any of the network
interfaces except for TCP, in which case @value{GDBN} sends the
@code{telnet} BREAK sequence.

@samp{Ctrl-C}, on the other hand, is defined and implemented for all
transport mechanisms.  It is represented by sending the single byte
@code{0x03} without any of the usual packet overhead described in
the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
transmitted as part of a packet, it is considered to be packet data
and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
(@pxref{X packet}), used for binary downloads, may include an unescaped
@code{0x03} as part of its packet.

@code{BREAK} followed by @code{g} is also known as Magic SysRq g.
When Linux kernel receives this sequence from serial port,
it stops execution and connects to gdb.

Stubs are not required to recognize these interrupt mechanisms and the
precise meaning associated with receipt of the interrupt is
implementation defined.  If the target supports debugging of multiple
threads and/or processes, it should attempt to interrupt all 
currently-executing threads and processes.
If the stub is successful at interrupting the
running program, it should send one of the stop
reply packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
of successfully stopping the program in all-stop mode, and a stop reply
for each stopped thread in non-stop mode.
Interrupts received while the
program is stopped are discarded.

@node Notification Packets
@section Notification Packets
@cindex notification packets
@cindex packets, notification

The @value{GDBN} remote serial protocol includes @dfn{notifications},
packets that require no acknowledgment.  Both the GDB and the stub
may send notifications (although the only notifications defined at
present are sent by the stub).  Notifications carry information
without incurring the round-trip latency of an acknowledgment, and so
are useful for low-impact communications where occasional packet loss
is not a problem.

A notification packet has the form @samp{% @var{data} #
@var{checksum}}, where @var{data} is the content of the notification,
and @var{checksum} is a checksum of @var{data}, computed and formatted
as for ordinary @value{GDBN} packets.  A notification's @var{data}
never contains @samp{$}, @samp{%} or @samp{#} characters.  Upon
receiving a notification, the recipient sends no @samp{+} or @samp{-}
to acknowledge the notification's receipt or to report its corruption.

Every notification's @var{data} begins with a name, which contains no
colon characters, followed by a colon character.

Recipients should silently ignore corrupted notifications and
notifications they do not understand.  Recipients should restart
timeout periods on receipt of a well-formed notification, whether or
not they understand it.

Senders should only send the notifications described here when this
protocol description specifies that they are permitted.  In the
future, we may extend the protocol to permit existing notifications in
new contexts; this rule helps older senders avoid confusing newer
recipients.

(Older versions of @value{GDBN} ignore bytes received until they see
the @samp{$} byte that begins an ordinary packet, so new stubs may
transmit notifications without fear of confusing older clients.  There
are no notifications defined for @value{GDBN} to send at the moment, but we
assume that most older stubs would ignore them, as well.)

Each notification is comprised of three parts:
@table @samp
@item @var{name}:@var{event}
The notification packet is sent by the side that initiates the
exchange (currently, only the stub does that), with @var{event}
carrying the specific information about the notification.
@var{name} is the name of the notification.
@item @var{ack}
The acknowledge sent by the other side, usually @value{GDBN}, to
acknowledge the exchange and request the event.
@end table

The purpose of an asynchronous notification mechanism is to report to
@value{GDBN} that something interesting happened in the remote stub.

The remote stub may send notification @var{name}:@var{event}
at any time, but @value{GDBN} acknowledges the notification when
appropriate.  The notification event is pending before @value{GDBN}
acknowledges.  Only one notification at a time may be pending; if
additional events occur before @value{GDBN} has acknowledged the
previous notification, they must be queued by the stub for later
synchronous transmission in response to @var{ack} packets from
@value{GDBN}.  Because the notification mechanism is unreliable,
the stub is permitted to resend a notification if it believes
@value{GDBN} may not have received it.

Specifically, notifications may appear when @value{GDBN} is not
otherwise reading input from the stub, or when @value{GDBN} is
expecting to read a normal synchronous response or a
@samp{+}/@samp{-} acknowledgment to a packet it has sent.
Notification packets are distinct from any other communication from
the stub so there is no ambiguity.

After receiving a notification, @value{GDBN} shall acknowledge it by
sending a @var{ack} packet as a regular, synchronous request to the
stub.  Such acknowledgment is not required to happen immediately, as
@value{GDBN} is permitted to send other, unrelated packets to the
stub first, which the stub should process normally.

Upon receiving a @var{ack} packet, if the stub has other queued
events to report to @value{GDBN}, it shall respond by sending a
normal @var{event}.  @value{GDBN} shall then send another @var{ack}
packet to solicit further responses; again, it is permitted to send
other, unrelated packets as well which the stub should process
normally.

If the stub receives a @var{ack} packet and there are no additional
@var{event} to report, the stub shall return an @samp{OK} response.
At this point, @value{GDBN} has finished processing a notification
and the stub has completed sending any queued events.  @value{GDBN}
won't accept any new notifications until the final @samp{OK} is
received .  If further notification events occur, the stub shall send
a new notification, @value{GDBN} shall accept the notification, and
the process shall be repeated.

The process of asynchronous notification can be illustrated by the
following example:
@smallexample
<- @code{%%Stop:T0505:98e7ffbf;04:4ce6ffbf;08:b1b6e54c;thread:p7526.7526;core:0;}
@code{...}
-> @code{vStopped}
<- @code{T0505:68f37db7;04:40f37db7;08:63850408;thread:p7526.7528;core:0;}
-> @code{vStopped}
<- @code{T0505:68e3fdb6;04:40e3fdb6;08:63850408;thread:p7526.7529;core:0;}
-> @code{vStopped}
<- @code{OK}
@end smallexample

The following notifications are defined:
@multitable @columnfractions 0.12 0.12 0.38 0.38

@item Notification
@tab Ack
@tab Event
@tab Description

@item Stop
@tab vStopped
@tab @var{reply}.  The @var{reply} has the form of a stop reply, as
described in @ref{Stop Reply Packets}.  Refer to @ref{Remote Non-Stop},
for information on how these notifications are acknowledged by 
@value{GDBN}.
@tab Report an asynchronous stop event in non-stop mode.

@end multitable

@node Remote Non-Stop
@section Remote Protocol Support for Non-Stop Mode

@value{GDBN}'s remote protocol supports non-stop debugging of
multi-threaded programs, as described in @ref{Non-Stop Mode}.  If the stub
supports non-stop mode, it should report that to @value{GDBN} by including
@samp{QNonStop+} in its @samp{qSupported} response (@pxref{qSupported}).

@value{GDBN} typically sends a @samp{QNonStop} packet only when
establishing a new connection with the stub.  Entering non-stop mode
does not alter the state of any currently-running threads, but targets
must stop all threads in any already-attached processes when entering
all-stop mode.  @value{GDBN} uses the @samp{?} packet as necessary to
probe the target state after a mode change.

In non-stop mode, when an attached process encounters an event that
would otherwise be reported with a stop reply, it uses the
asynchronous notification mechanism (@pxref{Notification Packets}) to
inform @value{GDBN}.  In contrast to all-stop mode, where all threads
in all processes are stopped when a stop reply is sent, in non-stop
mode only the thread reporting the stop event is stopped.  That is,
when reporting a @samp{S} or @samp{T} response to indicate completion
of a step operation, hitting a breakpoint, or a fault, only the
affected thread is stopped; any other still-running threads continue
to run.  When reporting a @samp{W} or @samp{X} response, all running
threads belonging to other attached processes continue to run.

In non-stop mode, the target shall respond to the @samp{?} packet as
follows.  First, any incomplete stop reply notification/@samp{vStopped} 
sequence in progress is abandoned.  The target must begin a new
sequence reporting stop events for all stopped threads, whether or not
it has previously reported those events to @value{GDBN}.  The first
stop reply is sent as a synchronous reply to the @samp{?} packet, and
subsequent stop replies are sent as responses to @samp{vStopped} packets
using the mechanism described above.  The target must not send
asynchronous stop reply notifications until the sequence is complete.
If all threads are running when the target receives the @samp{?} packet,
or if the target is not attached to any process, it shall respond
@samp{OK}.

@node Packet Acknowledgment
@section Packet Acknowledgment

@cindex acknowledgment, for @value{GDBN} remote
@cindex packet acknowledgment, for @value{GDBN} remote
By default, when either the host or the target machine receives a packet,
the first response expected is an acknowledgment: either @samp{+} (to indicate
the package was received correctly) or @samp{-} (to request retransmission).
This mechanism allows the @value{GDBN} remote protocol to operate over
unreliable transport mechanisms, such as a serial line.

In cases where the transport mechanism is itself reliable (such as a pipe or
TCP connection), the @samp{+}/@samp{-} acknowledgments are redundant.
It may be desirable to disable them in that case to reduce communication
overhead, or for other reasons.  This can be accomplished by means of the
@samp{QStartNoAckMode} packet; @pxref{QStartNoAckMode}.

When in no-acknowledgment mode, neither the stub nor @value{GDBN} shall send or
expect @samp{+}/@samp{-} protocol acknowledgments.  The packet
and response format still includes the normal checksum, as described in
@ref{Overview}, but the checksum may be ignored by the receiver.

If the stub supports @samp{QStartNoAckMode} and prefers to operate in
no-acknowledgment mode, it should report that to @value{GDBN}
by including @samp{QStartNoAckMode+} in its response to @samp{qSupported};
@pxref{qSupported}.
If @value{GDBN} also supports @samp{QStartNoAckMode} and it has not been
disabled via the @code{set remote noack-packet off} command
(@pxref{Remote Configuration}),
@value{GDBN} may then send a @samp{QStartNoAckMode} packet to the stub.
Only then may the stub actually turn off packet acknowledgments.
@value{GDBN} sends a final @samp{+} acknowledgment of the stub's @samp{OK}
response, which can be safely ignored by the stub.

Note that @code{set remote noack-packet} command only affects negotiation
between @value{GDBN} and the stub when subsequent connections are made;
it does not affect the protocol acknowledgment state for any current
connection.
Since @samp{+}/@samp{-} acknowledgments are enabled by default when a
new connection is established,
there is also no protocol request to re-enable the acknowledgments
for the current connection, once disabled.

@node Examples
@section Examples

Example sequence of a target being re-started.  Notice how the restart
does not get any direct output:

@smallexample
-> @code{R00}
<- @code{+}
@emph{target restarts}
-> @code{?}
<- @code{+}
<- @code{T001:1234123412341234}
-> @code{+}
@end smallexample

Example sequence of a target being stepped by a single instruction:

@smallexample
-> @code{G1445@dots{}}
<- @code{+}
-> @code{s}
<- @code{+}
@emph{time passes}
<- @code{T001:1234123412341234}
-> @code{+}
-> @code{g}
<- @code{+}
<- @code{1455@dots{}}
-> @code{+}
@end smallexample

@node File-I/O Remote Protocol Extension
@section File-I/O Remote Protocol Extension
@cindex File-I/O remote protocol extension

@menu
* File-I/O Overview::
* Protocol Basics::
* The F Request Packet::
* The F Reply Packet::
* The Ctrl-C Message::
* Console I/O::
* List of Supported Calls::
* Protocol-specific Representation of Datatypes::
* Constants::
* File-I/O Examples::
@end menu

@node File-I/O Overview
@subsection File-I/O Overview
@cindex file-i/o overview

The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
target to use the host's file system and console I/O to perform various
system calls.  System calls on the target system are translated into a
remote protocol packet to the host system, which then performs the needed
actions and returns a response packet to the target system.
This simulates file system operations even on targets that lack file systems.

The protocol is defined to be independent of both the host and target systems.
It uses its own internal representation of datatypes and values.  Both
@value{GDBN} and the target's @value{GDBN} stub are responsible for
translating the system-dependent value representations into the internal
protocol representations when data is transmitted.

The communication is synchronous.  A system call is possible only when 
@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
the target is stopped to allow deterministic access to the target's
memory.  Therefore File-I/O is not interruptible by target signals.  On
the other hand, it is possible to interrupt File-I/O by a user interrupt 
(@samp{Ctrl-C}) within @value{GDBN}.

The target's request to perform a host system call does not finish
the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
after finishing the system call, the target returns to continuing the
previous activity (continue, step).  No additional continue or step
request from @value{GDBN} is required.

@smallexample
(@value{GDBP}) continue
  <- target requests 'system call X'
  target is stopped, @value{GDBN} executes system call
  -> @value{GDBN} returns result
  ... target continues, @value{GDBN} returns to wait for the target
  <- target hits breakpoint and sends a Txx packet
@end smallexample

The protocol only supports I/O on the console and to regular files on 
the host file system.  Character or block special devices, pipes,
named pipes, sockets or any other communication method on the host
system are not supported by this protocol.

File I/O is not supported in non-stop mode.

@node Protocol Basics
@subsection Protocol Basics
@cindex protocol basics, file-i/o

The File-I/O protocol uses the @code{F} packet as the request as well
as reply packet.  Since a File-I/O system call can only occur when
@value{GDBN} is waiting for a response from the continuing or stepping target, 
the File-I/O request is a reply that @value{GDBN} has to expect as a result
of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
This @code{F} packet contains all information needed to allow @value{GDBN}
to call the appropriate host system call:

@itemize @bullet
@item
A unique identifier for the requested system call.

@item
All parameters to the system call.  Pointers are given as addresses
in the target memory address space.  Pointers to strings are given as
pointer/length pair.  Numerical values are given as they are.
Numerical control flags are given in a protocol-specific representation.

@end itemize

At this point, @value{GDBN} has to perform the following actions.

@itemize @bullet
@item
If the parameters include pointer values to data needed as input to a 
system call, @value{GDBN} requests this data from the target with a
standard @code{m} packet request.  This additional communication has to be
expected by the target implementation and is handled as any other @code{m}
packet.

@item
@value{GDBN} translates all value from protocol representation to host
representation as needed.  Datatypes are coerced into the host types.

@item
@value{GDBN} calls the system call.

@item
It then coerces datatypes back to protocol representation.

@item
If the system call is expected to return data in buffer space specified
by pointer parameters to the call, the data is transmitted to the
target using a @code{M} or @code{X} packet.  This packet has to be expected
by the target implementation and is handled as any other @code{M} or @code{X}
packet.

@end itemize

Eventually @value{GDBN} replies with another @code{F} packet which contains all
necessary information for the target to continue.  This at least contains

@itemize @bullet
@item
Return value.

@item
@code{errno}, if has been changed by the system call.

@item
``Ctrl-C'' flag.

@end itemize

After having done the needed type and value coercion, the target continues
the latest continue or step action.

@node The F Request Packet
@subsection The @code{F} Request Packet
@cindex file-i/o request packet
@cindex @code{F} request packet

The @code{F} request packet has the following format:

@table @samp
@item F@var{call-id},@var{parameter@dots{}}

@var{call-id} is the identifier to indicate the host system call to be called.
This is just the name of the function.

@var{parameter@dots{}} are the parameters to the system call.  
Parameters are hexadecimal integer values, either the actual values in case
of scalar datatypes, pointers to target buffer space in case of compound
datatypes and unspecified memory areas, or pointer/length pairs in case
of string parameters.  These are appended to the @var{call-id} as a 
comma-delimited list.  All values are transmitted in ASCII
string representation, pointer/length pairs separated by a slash.

@end table



@node The F Reply Packet
@subsection The @code{F} Reply Packet
@cindex file-i/o reply packet
@cindex @code{F} reply packet

The @code{F} reply packet has the following format:

@table @samp

@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}

@var{retcode} is the return code of the system call as hexadecimal value.

@var{errno} is the @code{errno} set by the call, in protocol-specific
representation.
This parameter can be omitted if the call was successful.

@var{Ctrl-C flag} is only sent if the user requested a break.  In this
case, @var{errno} must be sent as well, even if the call was successful.
The @var{Ctrl-C flag} itself consists of the character @samp{C}:

@smallexample
F0,0,C
@end smallexample

@noindent
or, if the call was interrupted before the host call has been performed:

@smallexample
F-1,4,C
@end smallexample

@noindent
assuming 4 is the protocol-specific representation of @code{EINTR}.

@end table


@node The Ctrl-C Message
@subsection The @samp{Ctrl-C} Message
@cindex ctrl-c message, in file-i/o protocol

If the @samp{Ctrl-C} flag is set in the @value{GDBN}
reply packet (@pxref{The F Reply Packet}),
the target should behave as if it had
gotten a break message.  The meaning for the target is ``system call
interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
(as with a break message) and return to @value{GDBN} with a @code{T02}
packet.

It's important for the target to know in which
state the system call was interrupted.  There are two possible cases:

@itemize @bullet
@item
The system call hasn't been performed on the host yet.

@item
The system call on the host has been finished.

@end itemize

These two states can be distinguished by the target by the value of the
returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
call hasn't been performed.  This is equivalent to the @code{EINTR} handling
on POSIX systems.  In any other case, the target may presume that the
system call has been finished --- successfully or not --- and should behave
as if the break message arrived right after the system call.

@value{GDBN} must behave reliably.  If the system call has not been called
yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
@code{errno} in the packet.  If the system call on the host has been finished
before the user requests a break, the full action must be finished by
@value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
The @code{F} packet may only be sent when either nothing has happened
or the full action has been completed.

@node Console I/O
@subsection Console I/O
@cindex console i/o as part of file-i/o

By default and if not explicitly closed by the target system, the file
descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
on the @value{GDBN} console is handled as any other file output operation
(@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
by @value{GDBN} so that after the target read request from file descriptor
0 all following typing is buffered until either one of the following
conditions is met:

@itemize @bullet
@item
The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
@code{read}
system call is treated as finished.

@item
The user presses @key{RET}.  This is treated as end of input with a trailing
newline.

@item
The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
character (neither newline nor @samp{Ctrl-D}) is appended to the input.

@end itemize

If the user has typed more characters than fit in the buffer given to
the @code{read} call, the trailing characters are buffered in @value{GDBN} until
either another @code{read(0, @dots{})} is requested by the target, or debugging
is stopped at the user's request.


@node List of Supported Calls
@subsection List of Supported Calls
@cindex list of supported file-i/o calls

@menu
* open::
* close::
* read::
* write::
* lseek::
* rename::
* unlink::
* stat/fstat::
* gettimeofday::
* isatty::
* system::
@end menu

@node open
@unnumberedsubsubsec open
@cindex open, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
@end smallexample

@item Request:
@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}

@noindent
@var{flags} is the bitwise @code{OR} of the following values:

@table @code
@item O_CREAT
If the file does not exist it will be created.  The host
rules apply as far as file ownership and time stamps
are concerned.

@item O_EXCL
When used with @code{O_CREAT}, if the file already exists it is
an error and open() fails.

@item O_TRUNC
If the file already exists and the open mode allows
writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
truncated to zero length.

@item O_APPEND
The file is opened in append mode.

@item O_RDONLY
The file is opened for reading only.

@item O_WRONLY
The file is opened for writing only.

@item O_RDWR
The file is opened for reading and writing.
@end table

@noindent
Other bits are silently ignored.


@noindent
@var{mode} is the bitwise @code{OR} of the following values:

@table @code
@item S_IRUSR
User has read permission.

@item S_IWUSR
User has write permission.

@item S_IRGRP
Group has read permission.

@item S_IWGRP
Group has write permission.

@item S_IROTH
Others have read permission.

@item S_IWOTH
Others have write permission.
@end table

@noindent
Other bits are silently ignored.


@item Return value:
@code{open} returns the new file descriptor or -1 if an error
occurred.

@item Errors:

@table @code
@item EEXIST
@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.

@item EISDIR
@var{pathname} refers to a directory.

@item EACCES
The requested access is not allowed.

@item ENAMETOOLONG
@var{pathname} was too long.

@item ENOENT
A directory component in @var{pathname} does not exist.

@item ENODEV
@var{pathname} refers to a device, pipe, named pipe or socket.

@item EROFS
@var{pathname} refers to a file on a read-only filesystem and
write access was requested.

@item EFAULT
@var{pathname} is an invalid pointer value.

@item ENOSPC
No space on device to create the file.

@item EMFILE
The process already has the maximum number of files open.

@item ENFILE
The limit on the total number of files open on the system
has been reached.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node close
@unnumberedsubsubsec close
@cindex close, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int close(int fd);
@end smallexample

@item Request:
@samp{Fclose,@var{fd}}

@item Return value:
@code{close} returns zero on success, or -1 if an error occurred.

@item Errors:

@table @code
@item EBADF
@var{fd} isn't a valid open file descriptor.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node read
@unnumberedsubsubsec read
@cindex read, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int read(int fd, void *buf, unsigned int count);
@end smallexample

@item Request:
@samp{Fread,@var{fd},@var{bufptr},@var{count}}

@item Return value:
On success, the number of bytes read is returned.
Zero indicates end of file.  If count is zero, read
returns zero as well.  On error, -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid file descriptor or is not open for
reading.

@item EFAULT
@var{bufptr} is an invalid pointer value.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node write
@unnumberedsubsubsec write
@cindex write, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int write(int fd, const void *buf, unsigned int count);
@end smallexample

@item Request:
@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}

@item Return value:
On success, the number of bytes written are returned.
Zero indicates nothing was written.  On error, -1
is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid file descriptor or is not open for
writing.

@item EFAULT
@var{bufptr} is an invalid pointer value.

@item EFBIG
An attempt was made to write a file that exceeds the
host-specific maximum file size allowed.

@item ENOSPC
No space on device to write the data.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node lseek
@unnumberedsubsubsec lseek
@cindex lseek, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
long lseek (int fd, long offset, int flag);
@end smallexample

@item Request:
@samp{Flseek,@var{fd},@var{offset},@var{flag}}

@var{flag} is one of:

@table @code
@item SEEK_SET
The offset is set to @var{offset} bytes.

@item SEEK_CUR
The offset is set to its current location plus @var{offset}
bytes.

@item SEEK_END
The offset is set to the size of the file plus @var{offset}
bytes.
@end table

@item Return value:
On success, the resulting unsigned offset in bytes from
the beginning of the file is returned.  Otherwise, a
value of -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid open file descriptor.

@item ESPIPE
@var{fd} is associated with the @value{GDBN} console.

@item EINVAL
@var{flag} is not a proper value.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node rename
@unnumberedsubsubsec rename
@cindex rename, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int rename(const char *oldpath, const char *newpath);
@end smallexample

@item Request:
@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EISDIR
@var{newpath} is an existing directory, but @var{oldpath} is not a
directory.

@item EEXIST
@var{newpath} is a non-empty directory.

@item EBUSY
@var{oldpath} or @var{newpath} is a directory that is in use by some
process.

@item EINVAL
An attempt was made to make a directory a subdirectory
of itself.

@item ENOTDIR
A  component used as a directory in @var{oldpath} or new
path is not a directory.  Or @var{oldpath} is a directory
and @var{newpath} exists but is not a directory.

@item EFAULT
@var{oldpathptr} or @var{newpathptr} are invalid pointer values.

@item EACCES
No access to the file or the path of the file.

@item ENAMETOOLONG

@var{oldpath} or @var{newpath} was too long.

@item ENOENT
A directory component in @var{oldpath} or @var{newpath} does not exist.

@item EROFS
The file is on a read-only filesystem.

@item ENOSPC
The device containing the file has no room for the new
directory entry.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node unlink
@unnumberedsubsubsec unlink
@cindex unlink, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int unlink(const char *pathname);
@end smallexample

@item Request:
@samp{Funlink,@var{pathnameptr}/@var{len}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EACCES
No access to the file or the path of the file.

@item EPERM
The system does not allow unlinking of directories.

@item EBUSY
The file @var{pathname} cannot be unlinked because it's
being used by another process.

@item EFAULT
@var{pathnameptr} is an invalid pointer value.

@item ENAMETOOLONG
@var{pathname} was too long.

@item ENOENT
A directory component in @var{pathname} does not exist.

@item ENOTDIR
A component of the path is not a directory.

@item EROFS
The file is on a read-only filesystem.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node stat/fstat
@unnumberedsubsubsec stat/fstat
@cindex fstat, file-i/o system call
@cindex stat, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int stat(const char *pathname, struct stat *buf);
int fstat(int fd, struct stat *buf);
@end smallexample

@item Request:
@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
@samp{Ffstat,@var{fd},@var{bufptr}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid open file.

@item ENOENT
A directory component in @var{pathname} does not exist or the
path is an empty string.

@item ENOTDIR
A component of the path is not a directory.

@item EFAULT
@var{pathnameptr} is an invalid pointer value.

@item EACCES
No access to the file or the path of the file.

@item ENAMETOOLONG
@var{pathname} was too long.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node gettimeofday
@unnumberedsubsubsec gettimeofday
@cindex gettimeofday, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int gettimeofday(struct timeval *tv, void *tz);
@end smallexample

@item Request:
@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}

@item Return value:
On success, 0 is returned, -1 otherwise.

@item Errors:

@table @code
@item EINVAL
@var{tz} is a non-NULL pointer.

@item EFAULT
@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
@end table

@end table

@node isatty
@unnumberedsubsubsec isatty
@cindex isatty, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int isatty(int fd);
@end smallexample

@item Request:
@samp{Fisatty,@var{fd}}

@item Return value:
Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.

@item Errors:

@table @code
@item EINTR
The call was interrupted by the user.
@end table

@end table

Note that the @code{isatty} call is treated as a special case: it returns
1 to the target if the file descriptor is attached
to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
would require implementing @code{ioctl} and would be more complex than
needed.


@node system
@unnumberedsubsubsec system
@cindex system, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int system(const char *command);
@end smallexample

@item Request:
@samp{Fsystem,@var{commandptr}/@var{len}}

@item Return value:
If @var{len} is zero, the return value indicates whether a shell is
available.  A zero return value indicates a shell is not available.
For non-zero @var{len}, the value returned is -1 on error and the
return status of the command otherwise.  Only the exit status of the
command is returned, which is extracted from the host's @code{system}
return value by calling @code{WEXITSTATUS(retval)}.  In case
@file{/bin/sh} could not be executed, 127 is returned.

@item Errors:

@table @code
@item EINTR
The call was interrupted by the user.
@end table

@end table

@value{GDBN} takes over the full task of calling the necessary host calls 
to perform the @code{system} call.  The return value of @code{system} on 
the host is simplified before it's returned
to the target.  Any termination signal information from the child process 
is discarded, and the return value consists
entirely of the exit status of the called command.

Due to security concerns, the @code{system} call is by default refused
by @value{GDBN}.  The user has to allow this call explicitly with the
@code{set remote system-call-allowed 1} command.

@table @code
@item set remote system-call-allowed
@kindex set remote system-call-allowed
Control whether to allow the @code{system} calls in the File I/O
protocol for the remote target.  The default is zero (disabled).

@item show remote system-call-allowed
@kindex show remote system-call-allowed
Show whether the @code{system} calls are allowed in the File I/O
protocol.
@end table

@node Protocol-specific Representation of Datatypes
@subsection Protocol-specific Representation of Datatypes
@cindex protocol-specific representation of datatypes, in file-i/o protocol

@menu
* Integral Datatypes::
* Pointer Values::
* Memory Transfer::
* struct stat::
* struct timeval::
@end menu

@node Integral Datatypes
@unnumberedsubsubsec Integral Datatypes
@cindex integral datatypes, in file-i/o protocol

The integral datatypes used in the system calls are @code{int}, 
@code{unsigned int}, @code{long}, @code{unsigned long},
@code{mode_t}, and @code{time_t}.  

@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
implemented as 32 bit values in this protocol.

@code{long} and @code{unsigned long} are implemented as 64 bit types.

@xref{Limits}, for corresponding MIN and MAX values (similar to those
in @file{limits.h}) to allow range checking on host and target.

@code{time_t} datatypes are defined as seconds since the Epoch.

All integral datatypes transferred as part of a memory read or write of a
structured datatype e.g.@: a @code{struct stat} have to be given in big endian
byte order.

@node Pointer Values
@unnumberedsubsubsec Pointer Values
@cindex pointer values, in file-i/o protocol

Pointers to target data are transmitted as they are.  An exception
is made for pointers to buffers for which the length isn't
transmitted as part of the function call, namely strings.  Strings
are transmitted as a pointer/length pair, both as hex values, e.g.@:

@smallexample
@code{1aaf/12}
@end smallexample

@noindent
which is a pointer to data of length 18 bytes at position 0x1aaf.
The length is defined as the full string length in bytes, including
the trailing null byte.  For example, the string @code{"hello world"}
at address 0x123456 is transmitted as

@smallexample
@code{123456/d}
@end smallexample

@node Memory Transfer
@unnumberedsubsubsec Memory Transfer
@cindex memory transfer, in file-i/o protocol

Structured data which is transferred using a memory read or write (for
example, a @code{struct stat}) is expected to be in a protocol-specific format 
with all scalar multibyte datatypes being big endian.  Translation to
this representation needs to be done both by the target before the @code{F} 
packet is sent, and by @value{GDBN} before 
it transfers memory to the target.  Transferred pointers to structured
data should point to the already-coerced data at any time.


@node struct stat
@unnumberedsubsubsec struct stat
@cindex struct stat, in file-i/o protocol

The buffer of type @code{struct stat} used by the target and @value{GDBN} 
is defined as follows:

@smallexample
struct stat @{
    unsigned int  st_dev;      /* device */
    unsigned int  st_ino;      /* inode */
    mode_t        st_mode;     /* protection */
    unsigned int  st_nlink;    /* number of hard links */
    unsigned int  st_uid;      /* user ID of owner */
    unsigned int  st_gid;      /* group ID of owner */
    unsigned int  st_rdev;     /* device type (if inode device) */
    unsigned long st_size;     /* total size, in bytes */
    unsigned long st_blksize;  /* blocksize for filesystem I/O */
    unsigned long st_blocks;   /* number of blocks allocated */
    time_t        st_atime;    /* time of last access */
    time_t        st_mtime;    /* time of last modification */
    time_t        st_ctime;    /* time of last change */
@};
@end smallexample

The integral datatypes conform to the definitions given in the
appropriate section (see @ref{Integral Datatypes}, for details) so this
structure is of size 64 bytes.

The values of several fields have a restricted meaning and/or
range of values.

@table @code

@item st_dev
A value of 0 represents a file, 1 the console.

@item st_ino
No valid meaning for the target.  Transmitted unchanged.

@item st_mode
Valid mode bits are described in @ref{Constants}.  Any other
bits have currently no meaning for the target.

@item st_uid
@itemx st_gid
@itemx st_rdev
No valid meaning for the target.  Transmitted unchanged.

@item st_atime
@itemx st_mtime
@itemx st_ctime
These values have a host and file system dependent
accuracy.  Especially on Windows hosts, the file system may not
support exact timing values.
@end table

The target gets a @code{struct stat} of the above representation and is
responsible for coercing it to the target representation before
continuing.

Note that due to size differences between the host, target, and protocol
representations of @code{struct stat} members, these members could eventually
get truncated on the target.

@node struct timeval
@unnumberedsubsubsec struct timeval
@cindex struct timeval, in file-i/o protocol

The buffer of type @code{struct timeval} used by the File-I/O protocol
is defined as follows:

@smallexample
struct timeval @{
    time_t tv_sec;  /* second */
    long   tv_usec; /* microsecond */
@};
@end smallexample

The integral datatypes conform to the definitions given in the
appropriate section (see @ref{Integral Datatypes}, for details) so this
structure is of size 8 bytes.

@node Constants
@subsection Constants
@cindex constants, in file-i/o protocol

The following values are used for the constants inside of the
protocol.  @value{GDBN} and target are responsible for translating these
values before and after the call as needed.

@menu
* Open Flags::
* mode_t Values::
* Errno Values::
* Lseek Flags::
* Limits::
@end menu

@node Open Flags
@unnumberedsubsubsec Open Flags
@cindex open flags, in file-i/o protocol

All values are given in hexadecimal representation.

@smallexample
  O_RDONLY        0x0
  O_WRONLY        0x1
  O_RDWR          0x2
  O_APPEND        0x8
  O_CREAT       0x200
  O_TRUNC       0x400
  O_EXCL        0x800
@end smallexample

@node mode_t Values
@unnumberedsubsubsec mode_t Values
@cindex mode_t values, in file-i/o protocol

All values are given in octal representation.

@smallexample
  S_IFREG       0100000
  S_IFDIR        040000
  S_IRUSR          0400
  S_IWUSR          0200
  S_IXUSR          0100
  S_IRGRP           040
  S_IWGRP           020
  S_IXGRP           010
  S_IROTH            04
  S_IWOTH            02
  S_IXOTH            01
@end smallexample

@node Errno Values
@unnumberedsubsubsec Errno Values
@cindex errno values, in file-i/o protocol

All values are given in decimal representation.

@smallexample
  EPERM           1
  ENOENT          2
  EINTR           4
  EBADF           9
  EACCES         13
  EFAULT         14
  EBUSY          16
  EEXIST         17
  ENODEV         19
  ENOTDIR        20
  EISDIR         21
  EINVAL         22
  ENFILE         23
  EMFILE         24
  EFBIG          27
  ENOSPC         28
  ESPIPE         29
  EROFS          30
  ENAMETOOLONG   91
  EUNKNOWN       9999
@end smallexample

  @code{EUNKNOWN} is used as a fallback error value if a host system returns
  any error value not in the list of supported error numbers.

@node Lseek Flags
@unnumberedsubsubsec Lseek Flags
@cindex lseek flags, in file-i/o protocol

@smallexample
  SEEK_SET      0
  SEEK_CUR      1
  SEEK_END      2
@end smallexample

@node Limits
@unnumberedsubsubsec Limits
@cindex limits, in file-i/o protocol

All values are given in decimal representation.

@smallexample
  INT_MIN       -2147483648
  INT_MAX        2147483647
  UINT_MAX       4294967295
  LONG_MIN      -9223372036854775808
  LONG_MAX       9223372036854775807
  ULONG_MAX      18446744073709551615
@end smallexample

@node File-I/O Examples
@subsection File-I/O Examples
@cindex file-i/o examples

Example sequence of a write call, file descriptor 3, buffer is at target
address 0x1234, 6 bytes should be written:

@smallexample
<- @code{Fwrite,3,1234,6}
@emph{request memory read from target}
-> @code{m1234,6}
<- XXXXXX
@emph{return "6 bytes written"}
-> @code{F6}
@end smallexample

Example sequence of a read call, file descriptor 3, buffer is at target
address 0x1234, 6 bytes should be read:

@smallexample
<- @code{Fread,3,1234,6}
@emph{request memory write to target}
-> @code{X1234,6:XXXXXX}
@emph{return "6 bytes read"}
-> @code{F6}
@end smallexample

Example sequence of a read call, call fails on the host due to invalid
file descriptor (@code{EBADF}):

@smallexample
<- @code{Fread,3,1234,6}
-> @code{F-1,9}
@end smallexample

Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
host is called:

@smallexample
<- @code{Fread,3,1234,6}
-> @code{F-1,4,C}
<- @code{T02}
@end smallexample

Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
host is called:

@smallexample
<- @code{Fread,3,1234,6}
-> @code{X1234,6:XXXXXX}
<- @code{T02}
@end smallexample

@node Library List Format
@section Library List Format
@cindex library list format, remote protocol

On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
same process as your application to manage libraries.  In this case,
@value{GDBN} can use the loader's symbol table and normal memory
operations to maintain a list of shared libraries.  On other
platforms, the operating system manages loaded libraries.
@value{GDBN} can not retrieve the list of currently loaded libraries
through memory operations, so it uses the @samp{qXfer:libraries:read}
packet (@pxref{qXfer library list read}) instead.  The remote stub
queries the target's operating system and reports which libraries
are loaded.

The @samp{qXfer:libraries:read} packet returns an XML document which
lists loaded libraries and their offsets.  Each library has an
associated name and one or more segment or section base addresses,
which report where the library was loaded in memory.

For the common case of libraries that are fully linked binaries, the
library should have a list of segments.  If the target supports
dynamic linking of a relocatable object file, its library XML element
should instead include a list of allocated sections.  The segment or
section bases are start addresses, not relocation offsets; they do not
depend on the library's link-time base addresses.

@value{GDBN} must be linked with the Expat library to support XML
library lists.  @xref{Expat}.

A simple memory map, with one loaded library relocated by a single
offset, looks like this:

@smallexample
<library-list>
  <library name="/lib/libc.so.6">
    <segment address="0x10000000"/>
  </library>
</library-list>
@end smallexample

Another simple memory map, with one loaded library with three
allocated sections (.text, .data, .bss), looks like this:

@smallexample
<library-list>
  <library name="sharedlib.o">
    <section address="0x10000000"/>
    <section address="0x20000000"/>
    <section address="0x30000000"/>
  </library>
</library-list>
@end smallexample

The format of a library list is described by this DTD:

@smallexample
<!-- library-list: Root element with versioning -->
<!ELEMENT library-list  (library)*>
<!ATTLIST library-list  version CDATA   #FIXED  "1.0">
<!ELEMENT library       (segment*, section*)>
<!ATTLIST library       name    CDATA   #REQUIRED>
<!ELEMENT segment       EMPTY>
<!ATTLIST segment       address CDATA   #REQUIRED>
<!ELEMENT section       EMPTY>
<!ATTLIST section       address CDATA   #REQUIRED>
@end smallexample

In addition, segments and section descriptors cannot be mixed within a
single library element, and you must supply at least one segment or
section for each library.

@node Library List Format for SVR4 Targets
@section Library List Format for SVR4 Targets
@cindex library list format, remote protocol

On SVR4 platforms @value{GDBN} can use the symbol table of a dynamic loader
(e.g.@: @file{ld.so}) and normal memory operations to maintain a list of
shared libraries.  Still a special library list provided by this packet is
more efficient for the @value{GDBN} remote protocol.

The @samp{qXfer:libraries-svr4:read} packet returns an XML document which lists
loaded libraries and their SVR4 linker parameters.  For each library on SVR4
target, the following parameters are reported:

@itemize @minus
@item
@code{name}, the absolute file name from the @code{l_name} field of
@code{struct link_map}.
@item
@code{lm} with address of @code{struct link_map} used for TLS
(Thread Local Storage) access.
@item
@code{l_addr}, the displacement as read from the field @code{l_addr} of
@code{struct link_map}.  For prelinked libraries this is not an absolute
memory address.  It is a displacement of absolute memory address against
address the file was prelinked to during the library load.
@item
@code{l_ld}, which is memory address of the @code{PT_DYNAMIC} segment
@end itemize

Additionally the single @code{main-lm} attribute specifies address of
@code{struct link_map} used for the main executable.  This parameter is used
for TLS access and its presence is optional.

@value{GDBN} must be linked with the Expat library to support XML
SVR4 library lists.  @xref{Expat}.

A simple memory map, with two loaded libraries (which do not use prelink),
looks like this:

@smallexample
<library-list-svr4 version="1.0" main-lm="0xe4f8f8">
  <library name="/lib/ld-linux.so.2" lm="0xe4f51c" l_addr="0xe2d000"
           l_ld="0xe4eefc"/>
  <library name="/lib/libc.so.6" lm="0xe4fbe8" l_addr="0x154000"
           l_ld="0x152350"/>
</library-list-svr>
@end smallexample

The format of an SVR4 library list is described by this DTD:

@smallexample
<!-- library-list-svr4: Root element with versioning -->
<!ELEMENT library-list-svr4  (library)*>
<!ATTLIST library-list-svr4  version CDATA   #FIXED  "1.0">
<!ATTLIST library-list-svr4  main-lm CDATA   #IMPLIED>
<!ELEMENT library            EMPTY>
<!ATTLIST library            name    CDATA   #REQUIRED>
<!ATTLIST library            lm      CDATA   #REQUIRED>
<!ATTLIST library            l_addr  CDATA   #REQUIRED>
<!ATTLIST library            l_ld    CDATA   #REQUIRED>
@end smallexample

@node Memory Map Format
@section Memory Map Format
@cindex memory map format

To be able to write into flash memory, @value{GDBN} needs to obtain a
memory map from the target.  This section describes the format of the
memory map.

The memory map is obtained using the @samp{qXfer:memory-map:read}
(@pxref{qXfer memory map read}) packet and is an XML document that
lists memory regions.

@value{GDBN} must be linked with the Expat library to support XML
memory maps.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE memory-map
          PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
                 "http://sourceware.org/gdb/gdb-memory-map.dtd">
<memory-map>
    region...
</memory-map>
@end smallexample

Each region can be either:

@itemize

@item
A region of RAM starting at @var{addr} and extending for @var{length}
bytes from there:

@smallexample
<memory type="ram" start="@var{addr}" length="@var{length}"/>
@end smallexample


@item
A region of read-only memory:

@smallexample
<memory type="rom" start="@var{addr}" length="@var{length}"/>
@end smallexample


@item
A region of flash memory, with erasure blocks @var{blocksize}
bytes in length:

@smallexample
<memory type="flash" start="@var{addr}" length="@var{length}">
  <property name="blocksize">@var{blocksize}</property>
</memory>
@end smallexample

@end itemize

Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
packets to write to addresses in such ranges.

The formal DTD for memory map format is given below:

@smallexample
<!-- ................................................... -->
<!-- Memory Map XML DTD ................................ -->
<!-- File: memory-map.dtd .............................. -->
<!-- .................................... .............. -->
<!-- memory-map.dtd -->
<!-- memory-map: Root element with versioning -->
<!ELEMENT memory-map (memory | property)>
<!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
<!ELEMENT memory (property)>
<!-- memory: Specifies a memory region,
             and its type, or device. -->
<!ATTLIST memory        type    CDATA   #REQUIRED
                        start   CDATA   #REQUIRED
                        length  CDATA   #REQUIRED
                        device  CDATA   #IMPLIED>
<!-- property: Generic attribute tag -->
<!ELEMENT property (#PCDATA | property)*>
<!ATTLIST property      name    CDATA   #REQUIRED>
@end smallexample

@node Thread List Format
@section Thread List Format
@cindex thread list format

To efficiently update the list of threads and their attributes,
@value{GDBN} issues the @samp{qXfer:threads:read} packet
(@pxref{qXfer threads read}) and obtains the XML document with
the following structure:

@smallexample
<?xml version="1.0"?>
<threads>
    <thread id="id" core="0">
    ... description ...
    </thread>
</threads>
@end smallexample

Each @samp{thread} element must have the @samp{id} attribute that
identifies the thread (@pxref{thread-id syntax}).  The
@samp{core} attribute, if present, specifies which processor core
the thread was last executing on.  The content of the of @samp{thread}
element is interpreted as human-readable auxilliary information.

@node Traceframe Info Format
@section Traceframe Info Format
@cindex traceframe info format

To be able to know which objects in the inferior can be examined when
inspecting a tracepoint hit, @value{GDBN} needs to obtain the list of
memory ranges, registers and trace state variables that have been
collected in a traceframe.

This list is obtained using the @samp{qXfer:traceframe-info:read}
(@pxref{qXfer traceframe info read}) packet and is an XML document.

@value{GDBN} must be linked with the Expat library to support XML
traceframe info discovery.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE traceframe-info
          PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
                 "http://sourceware.org/gdb/gdb-traceframe-info.dtd">
<traceframe-info>
   block...
</traceframe-info>
@end smallexample

Each traceframe block can be either:

@itemize

@item
A region of collected memory starting at @var{addr} and extending for
@var{length} bytes from there:

@smallexample
<memory start="@var{addr}" length="@var{length}"/>
@end smallexample

@item
A block indicating trace state variable numbered @var{number} has been
collected:

@smallexample
<tvar id="@var{number}"/>
@end smallexample

@end itemize

The formal DTD for the traceframe info format is given below:

@smallexample
<!ELEMENT traceframe-info  (memory | tvar)* >
<!ATTLIST traceframe-info  version CDATA   #FIXED  "1.0">

<!ELEMENT memory        EMPTY>
<!ATTLIST memory        start   CDATA   #REQUIRED
                        length  CDATA   #REQUIRED>
<!ELEMENT tvar>
<!ATTLIST tvar          id      CDATA   #REQUIRED>
@end smallexample

@node Branch Trace Format
@section Branch Trace Format
@cindex branch trace format

In order to display the branch trace of an inferior thread,
@value{GDBN} needs to obtain the list of branches.  This list is
represented as list of sequential code blocks that are connected via
branches.  The code in each block has been executed sequentially.

This list is obtained using the @samp{qXfer:btrace:read}
(@pxref{qXfer btrace read}) packet and is an XML document.

@value{GDBN} must be linked with the Expat library to support XML
traceframe info discovery.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE btrace
          PUBLIC "+//IDN gnu.org//DTD GDB Branch Trace V1.0//EN"
                 "http://sourceware.org/gdb/gdb-btrace.dtd">
<btrace>
   block...
</btrace>
@end smallexample

@itemize

@item
A block of sequentially executed instructions starting at @var{begin}
and ending at @var{end}:

@smallexample
<block begin="@var{begin}" end="@var{end}"/>
@end smallexample

@end itemize

The formal DTD for the branch trace format is given below:

@smallexample
<!ELEMENT btrace  (block)* >
<!ATTLIST btrace  version CDATA   #FIXED "1.0">

<!ELEMENT block        EMPTY>
<!ATTLIST block        begin  CDATA   #REQUIRED
                       end    CDATA   #REQUIRED>
@end smallexample

@include agentexpr.texi

@node Target Descriptions
@appendix Target Descriptions
@cindex target descriptions

One of the challenges of using @value{GDBN} to debug embedded systems
is that there are so many minor variants of each processor
architecture in use.  It is common practice for vendors to start with
a standard processor core --- ARM, PowerPC, or @acronym{MIPS}, for example ---
and then make changes to adapt it to a particular market niche.  Some
architectures have hundreds of variants, available from dozens of
vendors.  This leads to a number of problems:

@itemize @bullet
@item
With so many different customized processors, it is difficult for
the @value{GDBN} maintainers to keep up with the changes.
@item
Since individual variants may have short lifetimes or limited
audiences, it may not be worthwhile to carry information about every
variant in the @value{GDBN} source tree.
@item
When @value{GDBN} does support the architecture of the embedded system
at hand, the task of finding the correct architecture name to give the
@command{set architecture} command can be error-prone.
@end itemize

To address these problems, the @value{GDBN} remote protocol allows a
target system to not only identify itself to @value{GDBN}, but to
actually describe its own features.  This lets @value{GDBN} support
processor variants it has never seen before --- to the extent that the
descriptions are accurate, and that @value{GDBN} understands them.

@value{GDBN} must be linked with the Expat library to support XML
target descriptions.  @xref{Expat}.

@menu
* Retrieving Descriptions::         How descriptions are fetched from a target.
* Target Description Format::       The contents of a target description.
* Predefined Target Types::         Standard types available for target
                                    descriptions.
* Standard Target Features::        Features @value{GDBN} knows about.
@end menu

@node Retrieving Descriptions
@section Retrieving Descriptions

Target descriptions can be read from the target automatically, or
specified by the user manually.  The default behavior is to read the
description from the target.  @value{GDBN} retrieves it via the remote
protocol using @samp{qXfer} requests (@pxref{General Query Packets,
qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
@samp{target.xml}.  The contents of the @samp{target.xml} annex are an
XML document, of the form described in @ref{Target Description
Format}.

Alternatively, you can specify a file to read for the target description.
If a file is set, the target will not be queried.  The commands to
specify a file are:

@table @code
@cindex set tdesc filename
@item set tdesc filename @var{path}
Read the target description from @var{path}.

@cindex unset tdesc filename
@item unset tdesc filename
Do not read the XML target description from a file.  @value{GDBN}
will use the description supplied by the current target.

@cindex show tdesc filename
@item show tdesc filename
Show the filename to read for a target description, if any.
@end table


@node Target Description Format
@section Target Description Format
@cindex target descriptions, XML format

A target description annex is an @uref{http://www.w3.org/XML/, XML}
document which complies with the Document Type Definition provided in
the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
means you can use generally available tools like @command{xmllint} to
check that your feature descriptions are well-formed and valid.
However, to help people unfamiliar with XML write descriptions for
their targets, we also describe the grammar here.

Target descriptions can identify the architecture of the remote target
and (for some architectures) provide information about custom register
sets.  They can also identify the OS ABI of the remote target.
@value{GDBN} can use this information to autoconfigure for your
target, or to warn you if you connect to an unsupported target.

Here is a simple target description:

@smallexample
<target version="1.0">
  <architecture>i386:x86-64</architecture>
</target>
@end smallexample

@noindent
This minimal description only says that the target uses
the x86-64 architecture.

A target description has the following overall form, with [ ] marking
optional elements and @dots{} marking repeatable elements.  The elements
are explained further below.

@smallexample
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target version="1.0">
  @r{[}@var{architecture}@r{]}
  @r{[}@var{osabi}@r{]}
  @r{[}@var{compatible}@r{]}
  @r{[}@var{feature}@dots{}@r{]}
</target>
@end smallexample

@noindent
The description is generally insensitive to whitespace and line
breaks, under the usual common-sense rules.  The XML version
declaration and document type declaration can generally be omitted
(@value{GDBN} does not require them), but specifying them may be
useful for XML validation tools.  The @samp{version} attribute for
@samp{<target>} may also be omitted, but we recommend
including it; if future versions of @value{GDBN} use an incompatible
revision of @file{gdb-target.dtd}, they will detect and report
the version mismatch.

@subsection Inclusion
@cindex target descriptions, inclusion
@cindex XInclude
@ifnotinfo
@cindex <xi:include>
@end ifnotinfo

It can sometimes be valuable to split a target description up into
several different annexes, either for organizational purposes, or to
share files between different possible target descriptions.  You can
divide a description into multiple files by replacing any element of
the target description with an inclusion directive of the form:

@smallexample
<xi:include href="@var{document}"/>
@end smallexample

@noindent
When @value{GDBN} encounters an element of this form, it will retrieve
the named XML @var{document}, and replace the inclusion directive with
the contents of that document.  If the current description was read
using @samp{qXfer}, then so will be the included document;
@var{document} will be interpreted as the name of an annex.  If the
current description was read from a file, @value{GDBN} will look for
@var{document} as a file in the same directory where it found the
original description.

@subsection Architecture
@cindex <architecture>

An @samp{<architecture>} element has this form:

@smallexample
  <architecture>@var{arch}</architecture>
@end smallexample

@var{arch} is one of the architectures from the set accepted by
@code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).

@subsection OS ABI
@cindex @code{<osabi>}

This optional field was introduced in @value{GDBN} version 7.0.
Previous versions of @value{GDBN} ignore it.

An @samp{<osabi>} element has this form:

@smallexample
  <osabi>@var{abi-name}</osabi>
@end smallexample

@var{abi-name} is an OS ABI name from the same selection accepted by
@w{@code{set osabi}} (@pxref{ABI, ,Configuring the Current ABI}).

@subsection Compatible Architecture
@cindex @code{<compatible>}

This optional field was introduced in @value{GDBN} version 7.0.
Previous versions of @value{GDBN} ignore it.

A @samp{<compatible>} element has this form:

@smallexample
  <compatible>@var{arch}</compatible>
@end smallexample

@var{arch} is one of the architectures from the set accepted by
@code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).

A @samp{<compatible>} element is used to specify that the target
is able to run binaries in some other than the main target architecture
given by the @samp{<architecture>} element.  For example, on the
Cell Broadband Engine, the main architecture is @code{powerpc:common}
or @code{powerpc:common64}, but the system is able to run binaries
in the @code{spu} architecture as well.  The way to describe this
capability with @samp{<compatible>} is as follows:

@smallexample
  <architecture>powerpc:common</architecture>
  <compatible>spu</compatible>
@end smallexample

@subsection Features
@cindex <feature>

Each @samp{<feature>} describes some logical portion of the target
system.  Features are currently used to describe available CPU
registers and the types of their contents.  A @samp{<feature>} element
has this form:

@smallexample
<feature name="@var{name}">
  @r{[}@var{type}@dots{}@r{]}
  @var{reg}@dots{}
</feature>
@end smallexample

@noindent
Each feature's name should be unique within the description.  The name
of a feature does not matter unless @value{GDBN} has some special
knowledge of the contents of that feature; if it does, the feature
should have its standard name.  @xref{Standard Target Features}.

@subsection Types

Any register's value is a collection of bits which @value{GDBN} must
interpret.  The default interpretation is a two's complement integer,
but other types can be requested by name in the register description.
Some predefined types are provided by @value{GDBN} (@pxref{Predefined
Target Types}), and the description can define additional composite types.

Each type element must have an @samp{id} attribute, which gives
a unique (within the containing @samp{<feature>}) name to the type.
Types must be defined before they are used.

@cindex <vector>
Some targets offer vector registers, which can be treated as arrays
of scalar elements.  These types are written as @samp{<vector>} elements,
specifying the array element type, @var{type}, and the number of elements,
@var{count}:

@smallexample
<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
@end smallexample

@cindex <union>
If a register's value is usefully viewed in multiple ways, define it
with a union type containing the useful representations.  The
@samp{<union>} element contains one or more @samp{<field>} elements,
each of which has a @var{name} and a @var{type}:

@smallexample
<union id="@var{id}">
  <field name="@var{name}" type="@var{type}"/>
  @dots{}
</union>
@end smallexample

@cindex <struct>
If a register's value is composed from several separate values, define
it with a structure type.  There are two forms of the @samp{<struct>}
element; a @samp{<struct>} element must either contain only bitfields
or contain no bitfields.  If the structure contains only bitfields,
its total size in bytes must be specified, each bitfield must have an
explicit start and end, and bitfields are automatically assigned an
integer type.  The field's @var{start} should be less than or
equal to its @var{end}, and zero represents the least significant bit.

@smallexample
<struct id="@var{id}" size="@var{size}">
  <field name="@var{name}" start="@var{start}" end="@var{end}"/>
  @dots{}
</struct>
@end smallexample

If the structure contains no bitfields, then each field has an
explicit type, and no implicit padding is added.

@smallexample
<struct id="@var{id}">
  <field name="@var{name}" type="@var{type}"/>
  @dots{}
</struct>
@end smallexample

@cindex <flags>
If a register's value is a series of single-bit flags, define it with
a flags type.  The @samp{<flags>} element has an explicit @var{size}
and contains one or more @samp{<field>} elements.  Each field has a
@var{name}, a @var{start}, and an @var{end}.  Only single-bit flags
are supported.

@smallexample
<flags id="@var{id}" size="@var{size}">
  <field name="@var{name}" start="@var{start}" end="@var{end}"/>
  @dots{}
</flags>
@end smallexample

@subsection Registers
@cindex <reg>

Each register is represented as an element with this form:

@smallexample
<reg name="@var{name}"
     bitsize="@var{size}"
     @r{[}regnum="@var{num}"@r{]}
     @r{[}save-restore="@var{save-restore}"@r{]}
     @r{[}type="@var{type}"@r{]}
     @r{[}group="@var{group}"@r{]}/>
@end smallexample

@noindent
The components are as follows:

@table @var

@item name
The register's name; it must be unique within the target description.

@item bitsize
The register's size, in bits.

@item regnum
The register's number.  If omitted, a register's number is one greater
than that of the previous register (either in the current feature or in
a preceding feature); the first register in the target description
defaults to zero.  This register number is used to read or write
the register; e.g.@: it is used in the remote @code{p} and @code{P}
packets, and registers appear in the @code{g} and @code{G} packets
in order of increasing register number.

@item save-restore
Whether the register should be preserved across inferior function
calls; this must be either @code{yes} or @code{no}.  The default is
@code{yes}, which is appropriate for most registers except for
some system control registers; this is not related to the target's
ABI.

@item type
The type of the register.  @var{type} may be a predefined type, a type
defined in the current feature, or one of the special types @code{int}
and @code{float}.  @code{int} is an integer type of the correct size
for @var{bitsize}, and @code{float} is a floating point type (in the
architecture's normal floating point format) of the correct size for
@var{bitsize}.  The default is @code{int}.

@item group
The register group to which this register belongs.  @var{group} must
be either @code{general}, @code{float}, or @code{vector}.  If no
@var{group} is specified, @value{GDBN} will not display the register
in @code{info registers}.

@end table

@node Predefined Target Types
@section Predefined Target Types
@cindex target descriptions, predefined types

Type definitions in the self-description can build up composite types
from basic building blocks, but can not define fundamental types.  Instead,
standard identifiers are provided by @value{GDBN} for the fundamental
types.  The currently supported types are:

@table @code

@item int8
@itemx int16
@itemx int32
@itemx int64
@itemx int128
Signed integer types holding the specified number of bits.

@item uint8
@itemx uint16
@itemx uint32
@itemx uint64
@itemx uint128
Unsigned integer types holding the specified number of bits.

@item code_ptr
@itemx data_ptr
Pointers to unspecified code and data.  The program counter and
any dedicated return address register may be marked as code
pointers; printing a code pointer converts it into a symbolic
address.  The stack pointer and any dedicated address registers
may be marked as data pointers.

@item ieee_single
Single precision IEEE floating point.

@item ieee_double
Double precision IEEE floating point.

@item arm_fpa_ext
The 12-byte extended precision format used by ARM FPA registers.

@item i387_ext
The 10-byte extended precision format used by x87 registers.

@item i386_eflags
32bit @sc{eflags} register used by x86.

@item i386_mxcsr
32bit @sc{mxcsr} register used by x86.

@end table

@node Standard Target Features
@section Standard Target Features
@cindex target descriptions, standard features

A target description must contain either no registers or all the
target's registers.  If the description contains no registers, then
@value{GDBN} will assume a default register layout, selected based on
the architecture.  If the description contains any registers, the
default layout will not be used; the standard registers must be
described in the target description, in such a way that @value{GDBN}
can recognize them.

This is accomplished by giving specific names to feature elements
which contain standard registers.  @value{GDBN} will look for features
with those names and verify that they contain the expected registers;
if any known feature is missing required registers, or if any required
feature is missing, @value{GDBN} will reject the target
description.  You can add additional registers to any of the
standard features --- @value{GDBN} will display them just as if
they were added to an unrecognized feature.

This section lists the known features and their expected contents.
Sample XML documents for these features are included in the
@value{GDBN} source tree, in the directory @file{gdb/features}.

Names recognized by @value{GDBN} should include the name of the
company or organization which selected the name, and the overall
architecture to which the feature applies; so e.g.@: the feature
containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.

The names of registers are not case sensitive for the purpose
of recognizing standard features, but @value{GDBN} will only display
registers using the capitalization used in the description.

@menu
* AArch64 Features::
* ARM Features::
* i386 Features::
* MIPS Features::
* M68K Features::
* Nios II Features::
* PowerPC Features::
* S/390 and System z Features::
* TIC6x Features::
@end menu


@node AArch64 Features
@subsection AArch64 Features
@cindex target descriptions, AArch64 features

The @samp{org.gnu.gdb.aarch64.core} feature is required for AArch64
targets.  It should contain registers @samp{x0} through @samp{x30},
@samp{sp}, @samp{pc}, and @samp{cpsr}.

The @samp{org.gnu.gdb.aarch64.fpu} feature is optional.  If present,
it should contain registers @samp{v0} through @samp{v31}, @samp{fpsr},
and @samp{fpcr}.

@node ARM Features
@subsection ARM Features
@cindex target descriptions, ARM features

The @samp{org.gnu.gdb.arm.core} feature is required for non-M-profile
ARM targets.
It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
@samp{lr}, @samp{pc}, and @samp{cpsr}.

For M-profile targets (e.g. Cortex-M3), the @samp{org.gnu.gdb.arm.core}
feature is replaced by @samp{org.gnu.gdb.arm.m-profile}.  It should contain
registers @samp{r0} through @samp{r13}, @samp{sp}, @samp{lr}, @samp{pc},
and @samp{xpsr}.

The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
should contain registers @samp{f0} through @samp{f7} and @samp{fps}.

The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
it should contain at least registers @samp{wR0} through @samp{wR15} and
@samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},
@samp{wCSSF}, and @samp{wCASF} registers are optional.

The @samp{org.gnu.gdb.arm.vfp} feature is optional.  If present, it
should contain at least registers @samp{d0} through @samp{d15}.  If
they are present, @samp{d16} through @samp{d31} should also be included.
@value{GDBN} will synthesize the single-precision registers from
halves of the double-precision registers.

The @samp{org.gnu.gdb.arm.neon} feature is optional.  It does not
need to contain registers; it instructs @value{GDBN} to display the
VFP double-precision registers as vectors and to synthesize the
quad-precision registers from pairs of double-precision registers.
If this feature is present, @samp{org.gnu.gdb.arm.vfp} must also
be present and include 32 double-precision registers.

@node i386 Features
@subsection i386 Features
@cindex target descriptions, i386 features

The @samp{org.gnu.gdb.i386.core} feature is required for i386/amd64
targets.  It should describe the following registers:

@itemize @minus
@item
@samp{eax} through @samp{edi} plus @samp{eip} for i386
@item
@samp{rax} through @samp{r15} plus @samp{rip} for amd64
@item
@samp{eflags}, @samp{cs}, @samp{ss}, @samp{ds}, @samp{es},
@samp{fs}, @samp{gs}
@item 
@samp{st0} through @samp{st7}
@item 
@samp{fctrl}, @samp{fstat}, @samp{ftag}, @samp{fiseg}, @samp{fioff},
@samp{foseg}, @samp{fooff} and @samp{fop}
@end itemize

The register sets may be different, depending on the target.

The @samp{org.gnu.gdb.i386.sse} feature is optional.  It should
describe registers:

@itemize @minus
@item
@samp{xmm0} through @samp{xmm7} for i386
@item
@samp{xmm0} through @samp{xmm15} for amd64
@item 
@samp{mxcsr}
@end itemize

The @samp{org.gnu.gdb.i386.avx} feature is optional and requires the
@samp{org.gnu.gdb.i386.sse} feature.  It should
describe the upper 128 bits of @sc{ymm} registers:

@itemize @minus
@item
@samp{ymm0h} through @samp{ymm7h} for i386
@item
@samp{ymm0h} through @samp{ymm15h} for amd64
@end itemize

The @samp{org.gnu.gdb.i386.linux} feature is optional.  It should
describe a single register, @samp{orig_eax}.

@node MIPS Features
@subsection @acronym{MIPS} Features
@cindex target descriptions, @acronym{MIPS} features

The @samp{org.gnu.gdb.mips.cpu} feature is required for @acronym{MIPS} targets.
It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
@samp{hi}, and @samp{pc}.  They may be 32-bit or 64-bit depending
on the target.

The @samp{org.gnu.gdb.mips.cp0} feature is also required.  It should
contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
registers.  They may be 32-bit or 64-bit depending on the target.

The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
it may be optional in a future version of @value{GDBN}.  It should
contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
@samp{fir}.  They may be 32-bit or 64-bit depending on the target.

The @samp{org.gnu.gdb.mips.dsp} feature is optional.  It should
contain registers @samp{hi1} through @samp{hi3}, @samp{lo1} through
@samp{lo3}, and @samp{dspctl}.  The @samp{dspctl} register should
be 32-bit and the rest may be 32-bit or 64-bit depending on the target.

The @samp{org.gnu.gdb.mips.linux} feature is optional.  It should
contain a single register, @samp{restart}, which is used by the
Linux kernel to control restartable syscalls.

@node M68K Features
@subsection M68K Features
@cindex target descriptions, M68K features

@table @code
@item @samp{org.gnu.gdb.m68k.core}
@itemx @samp{org.gnu.gdb.coldfire.core}
@itemx @samp{org.gnu.gdb.fido.core}
One of those features must be always present. 
The feature that is present determines which flavor of m68k is
used.  The feature that is present should contain registers
@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
@samp{sp}, @samp{ps} and @samp{pc}.

@item @samp{org.gnu.gdb.coldfire.fp}
This feature is optional.  If present, it should contain registers
@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
@samp{fpiaddr}.
@end table

@node Nios II Features
@subsection Nios II Features
@cindex target descriptions, Nios II features

The @samp{org.gnu.gdb.nios2.cpu} feature is required for Nios II
targets.  It should contain the 32 core registers (@samp{zero},
@samp{at}, @samp{r2} through @samp{r23}, @samp{et} through @samp{ra}),
@samp{pc}, and the 16 control registers (@samp{status} through
@samp{mpuacc}).

@node PowerPC Features
@subsection PowerPC Features
@cindex target descriptions, PowerPC features

The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
targets.  It should contain registers @samp{r0} through @samp{r31},
@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
@samp{xer}.  They may be 32-bit or 64-bit depending on the target.

The @samp{org.gnu.gdb.power.fpu} feature is optional.  It should
contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.

The @samp{org.gnu.gdb.power.altivec} feature is optional.  It should
contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
and @samp{vrsave}.

The @samp{org.gnu.gdb.power.vsx} feature is optional.  It should
contain registers @samp{vs0h} through @samp{vs31h}.  @value{GDBN}
will combine these registers with the floating point registers
(@samp{f0} through @samp{f31}) and the altivec registers (@samp{vr0}
through @samp{vr31}) to present the 128-bit wide registers @samp{vs0}
through @samp{vs63}, the set of vector registers for POWER7.

The @samp{org.gnu.gdb.power.spe} feature is optional.  It should
contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
@samp{spefscr}.  SPE targets should provide 32-bit registers in
@samp{org.gnu.gdb.power.core} and provide the upper halves in
@samp{ev0h} through @samp{ev31h}.  @value{GDBN} will combine
these to present registers @samp{ev0} through @samp{ev31} to the
user.

@node S/390 and System z Features
@subsection S/390 and System z Features
@cindex target descriptions, S/390 features
@cindex target descriptions, System z features

The @samp{org.gnu.gdb.s390.core} feature is required for S/390 and
System z targets.  It should contain the PSW and the 16 general
registers.  In particular, System z targets should provide the 64-bit
registers @samp{pswm}, @samp{pswa}, and @samp{r0} through @samp{r15}.
S/390 targets should provide the 32-bit versions of these registers.
A System z target that runs in 31-bit addressing mode should provide
32-bit versions of @samp{pswm} and @samp{pswa}, as well as the general
register's upper halves @samp{r0h} through @samp{r15h}, and their
lower halves @samp{r0l} through @samp{r15l}.

The @samp{org.gnu.gdb.s390.fpr} feature is required.  It should
contain the 64-bit registers @samp{f0} through @samp{f15}, and
@samp{fpc}.

The @samp{org.gnu.gdb.s390.acr} feature is required.  It should
contain the 32-bit registers @samp{acr0} through @samp{acr15}.

The @samp{org.gnu.gdb.s390.linux} feature is optional.  It should
contain the register @samp{orig_r2}, which is 64-bit wide on System z
targets and 32-bit otherwise.  In addition, the feature may contain
the @samp{last_break} register, whose width depends on the addressing
mode, as well as the @samp{system_call} register, which is always
32-bit wide.

The @samp{org.gnu.gdb.s390.tdb} feature is optional.  It should
contain the 64-bit registers @samp{tdb0}, @samp{tac}, @samp{tct},
@samp{atia}, and @samp{tr0} through @samp{tr15}.

@node TIC6x Features
@subsection TMS320C6x Features
@cindex target descriptions, TIC6x features
@cindex target descriptions, TMS320C6x features
The @samp{org.gnu.gdb.tic6x.core} feature is required for TMS320C6x
targets.  It should contain registers @samp{A0} through @samp{A15},
registers @samp{B0} through @samp{B15}, @samp{CSR} and @samp{PC}.

The @samp{org.gnu.gdb.tic6x.gp} feature is optional.  It should
contain registers @samp{A16} through @samp{A31} and @samp{B16}
through @samp{B31}.

The @samp{org.gnu.gdb.tic6x.c6xp} feature is optional.  It should
contain registers @samp{TSR}, @samp{ILC} and @samp{RILC}.

@node Operating System Information
@appendix Operating System Information
@cindex operating system information

@menu
* Process list::
@end menu

Users of @value{GDBN} often wish to obtain information about the state of
the operating system running on the target---for example the list of
processes, or the list of open files.  This section describes the
mechanism that makes it possible.  This mechanism is similar to the 
target features mechanism (@pxref{Target Descriptions}), but focuses
on a different aspect of target.

Operating system information is retrived from the target via the
remote protocol, using @samp{qXfer} requests (@pxref{qXfer osdata
read}).  The object name in the request should be @samp{osdata}, and
the @var{annex} identifies the data to be fetched.

@node Process list
@appendixsection Process list
@cindex operating system information, process list

When requesting the process list, the @var{annex} field in the
@samp{qXfer} request should be @samp{processes}.  The returned data is
an XML document.  The formal syntax of this document is defined in
@file{gdb/features/osdata.dtd}.

An example document is:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "osdata.dtd">
<osdata type="processes">
  <item>
    <column name="pid">1</column>
    <column name="user">root</column>
    <column name="command">/sbin/init</column>
    <column name="cores">1,2,3</column>
  </item>
</osdata>
@end smallexample

Each item should include a column whose name is @samp{pid}.  The value
of that column should identify the process on the target.  The
@samp{user} and @samp{command} columns are optional, and will be
displayed by @value{GDBN}.  The @samp{cores} column, if present,
should contain a comma-separated list of cores that this process
is running on.  Target may provide additional columns,
which @value{GDBN} currently ignores.

@node Trace File Format
@appendix Trace File Format
@cindex trace file format

The trace file comes in three parts: a header, a textual description
section, and a trace frame section with binary data.

The header has the form @code{\x7fTRACE0\n}.  The first byte is
@code{0x7f} so as to indicate that the file contains binary data,
while the @code{0} is a version number that may have different values
in the future.

The description section consists of multiple lines of @sc{ascii} text
separated by newline characters (@code{0xa}).  The lines may include a
variety of optional descriptive or context-setting information, such
as tracepoint definitions or register set size.  @value{GDBN} will
ignore any line that it does not recognize.  An empty line marks the end
of this section.

@c FIXME add some specific types of data

The trace frame section consists of a number of consecutive frames.
Each frame begins with a two-byte tracepoint number, followed by a
four-byte size giving the amount of data in the frame.  The data in
the frame consists of a number of blocks, each introduced by a
character indicating its type (at least register, memory, and trace
state variable).  The data in this section is raw binary, not a
hexadecimal or other encoding; its endianness matches the target's
endianness.

@c FIXME bi-arch may require endianness/arch info in description section

@table @code
@item R @var{bytes}
Register block.  The number and ordering of bytes matches that of a
@code{g} packet in the remote protocol.  Note that these are the
actual bytes, in target order and @value{GDBN} register order, not a
hexadecimal encoding.

@item M @var{address} @var{length} @var{bytes}...
Memory block.  This is a contiguous block of memory, at the 8-byte
address @var{address}, with a 2-byte length @var{length}, followed by
@var{length} bytes.

@item V @var{number} @var{value}
Trace state variable block.  This records the 8-byte signed value
@var{value} of trace state variable numbered @var{number}.

@end table

Future enhancements of the trace file format may include additional types
of blocks.

@node Index Section Format
@appendix @code{.gdb_index} section format
@cindex .gdb_index section format
@cindex index section format

This section documents the index section that is created by @code{save
gdb-index} (@pxref{Index Files}).  The index section is
DWARF-specific; some knowledge of DWARF is assumed in this
description.

The mapped index file format is designed to be directly
@code{mmap}able on any architecture.  In most cases, a datum is
represented using a little-endian 32-bit integer value, called an
@code{offset_type}.  Big endian machines must byte-swap the values
before using them.  Exceptions to this rule are noted.  The data is
laid out such that alignment is always respected.

A mapped index consists of several areas, laid out in order.

@enumerate
@item
The file header.  This is a sequence of values, of @code{offset_type}
unless otherwise noted:

@enumerate
@item
The version number, currently 8.  Versions 1, 2 and 3 are obsolete.
Version 4 uses a different hashing function from versions 5 and 6.
Version 6 includes symbols for inlined functions, whereas versions 4
and 5 do not.  Version 7 adds attributes to the CU indices in the
symbol table.  Version 8 specifies that symbols from DWARF type units
(@samp{DW_TAG_type_unit}) refer to the type unit's symbol table and not the
compilation unit (@samp{DW_TAG_comp_unit}) using the type.

@value{GDBN} will only read version 4, 5, or 6 indices
by specifying @code{set use-deprecated-index-sections on}.
GDB has a workaround for potentially broken version 7 indices so it is
currently not flagged as deprecated.

@item
The offset, from the start of the file, of the CU list.

@item
The offset, from the start of the file, of the types CU list.  Note
that this area can be empty, in which case this offset will be equal
to the next offset.

@item
The offset, from the start of the file, of the address area.

@item
The offset, from the start of the file, of the symbol table.

@item
The offset, from the start of the file, of the constant pool.
@end enumerate

@item
The CU list.  This is a sequence of pairs of 64-bit little-endian
values, sorted by the CU offset.  The first element in each pair is
the offset of a CU in the @code{.debug_info} section.  The second
element in each pair is the length of that CU.  References to a CU
elsewhere in the map are done using a CU index, which is just the
0-based index into this table.  Note that if there are type CUs, then
conceptually CUs and type CUs form a single list for the purposes of
CU indices.

@item
The types CU list.  This is a sequence of triplets of 64-bit
little-endian values.  In a triplet, the first value is the CU offset,
the second value is the type offset in the CU, and the third value is
the type signature.  The types CU list is not sorted.

@item
The address area.  The address area consists of a sequence of address
entries.  Each address entry has three elements:

@enumerate
@item
The low address.  This is a 64-bit little-endian value.

@item
The high address.  This is a 64-bit little-endian value.  Like
@code{DW_AT_high_pc}, the value is one byte beyond the end.

@item
The CU index.  This is an @code{offset_type} value.
@end enumerate

@item
The symbol table.  This is an open-addressed hash table.  The size of
the hash table is always a power of 2.

Each slot in the hash table consists of a pair of @code{offset_type}
values.  The first value is the offset of the symbol's name in the
constant pool.  The second value is the offset of the CU vector in the
constant pool.

If both values are 0, then this slot in the hash table is empty.  This
is ok because while 0 is a valid constant pool index, it cannot be a
valid index for both a string and a CU vector.

The hash value for a table entry is computed by applying an
iterative hash function to the symbol's name.  Starting with an
initial value of @code{r = 0}, each (unsigned) character @samp{c} in
the string is incorporated into the hash using the formula depending on the
index version:

@table @asis
@item Version 4
The formula is @code{r = r * 67 + c - 113}.

@item Versions 5 to 7
The formula is @code{r = r * 67 + tolower (c) - 113}.
@end table

The terminating @samp{\0} is not incorporated into the hash.

The step size used in the hash table is computed via
@code{((hash * 17) & (size - 1)) | 1}, where @samp{hash} is the hash
value, and @samp{size} is the size of the hash table.  The step size
is used to find the next candidate slot when handling a hash
collision.

The names of C@t{++} symbols in the hash table are canonicalized.  We
don't currently have a simple description of the canonicalization
algorithm; if you intend to create new index sections, you must read
the code.

@item
The constant pool.  This is simply a bunch of bytes.  It is organized
so that alignment is correct: CU vectors are stored first, followed by
strings.

A CU vector in the constant pool is a sequence of @code{offset_type}
values.  The first value is the number of CU indices in the vector.
Each subsequent value is the index and symbol attributes of a CU in
the CU list.  This element in the hash table is used to indicate which
CUs define the symbol and how the symbol is used.
See below for the format of each CU index+attributes entry.

A string in the constant pool is zero-terminated.
@end enumerate

Attributes were added to CU index values in @code{.gdb_index} version 7.
If a symbol has multiple uses within a CU then there is one
CU index+attributes value for each use.

The format of each CU index+attributes entry is as follows
(bit 0 = LSB):

@table @asis

@item Bits 0-23
This is the index of the CU in the CU list.
@item Bits 24-27
These bits are reserved for future purposes and must be zero.
@item Bits 28-30
The kind of the symbol in the CU.

@table @asis
@item 0
This value is reserved and should not be used.
By reserving zero the full @code{offset_type} value is backwards compatible
with previous versions of the index.
@item 1
The symbol is a type.
@item 2
The symbol is a variable or an enum value.
@item 3
The symbol is a function.
@item 4
Any other kind of symbol.
@item 5,6,7
These values are reserved.
@end table

@item Bit 31
This bit is zero if the value is global and one if it is static.

The determination of whether a symbol is global or static is complicated.
The authorative reference is the file @file{dwarf2read.c} in
@value{GDBN} sources.

@end table

This pseudo-code describes the computation of a symbol's kind and
global/static attributes in the index.

@smallexample
is_external = get_attribute (die, DW_AT_external);
language = get_attribute (cu_die, DW_AT_language);
switch (die->tag)
  @{
  case DW_TAG_typedef:
  case DW_TAG_base_type:
  case DW_TAG_subrange_type:
    kind = TYPE;
    is_static = 1;
    break;
  case DW_TAG_enumerator:
    kind = VARIABLE;
    is_static = (language != CPLUS && language != JAVA);
    break;
  case DW_TAG_subprogram:
    kind = FUNCTION;
    is_static = ! (is_external || language == ADA);
    break;
  case DW_TAG_constant:
    kind = VARIABLE;
    is_static = ! is_external;
    break;
  case DW_TAG_variable:
    kind = VARIABLE;
    is_static = ! is_external;
    break;
  case DW_TAG_namespace:
    kind = TYPE;
    is_static = 0;
    break;
  case DW_TAG_class_type:
  case DW_TAG_interface_type:
  case DW_TAG_structure_type:
  case DW_TAG_union_type:
  case DW_TAG_enumeration_type:
    kind = TYPE;
    is_static = (language != CPLUS && language != JAVA);
    break;
  default:
    assert (0);
  @}
@end smallexample

@node Man Pages
@appendix Manual pages
@cindex Man pages

@menu
* gdb man::                     The GNU Debugger man page
* gdbserver man::               Remote Server for the GNU Debugger man page
* gcore man::                   Generate a core file of a running program
* gdbinit man::                 gdbinit scripts
@end menu

@node gdb man
@heading gdb man

@c man title gdb The GNU Debugger

@c man begin SYNOPSIS gdb
gdb [@option{-help}] [@option{-nh}] [@option{-nx}] [@option{-q}]
[@option{-batch}] [@option{-cd=}@var{dir}] [@option{-f}]
[@option{-b}@w{ }@var{bps}]
    [@option{-tty=}@var{dev}] [@option{-s} @var{symfile}]
[@option{-e}@w{ }@var{prog}] [@option{-se}@w{ }@var{prog}]
[@option{-c}@w{ }@var{core}] [@option{-p}@w{ }@var{procID}]
    [@option{-x}@w{ }@var{cmds}] [@option{-d}@w{ }@var{dir}]
[@var{prog}|@var{prog} @var{procID}|@var{prog} @var{core}]
@c man end

@c man begin DESCRIPTION gdb
The purpose of a debugger such as @value{GDBN} is to allow you to see what is
going on ``inside'' another program while it executes -- or what another
program was doing at the moment it crashed.

@value{GDBN} can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

@itemize @bullet
@item
Start your program, specifying anything that might affect its behavior.

@item
Make your program stop on specified conditions.

@item
Examine what has happened, when your program has stopped.

@item
Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.
@end itemize

You can use @value{GDBN} to debug programs written in C, C@t{++}, Fortran and
Modula-2.

@value{GDBN} is invoked with the shell command @code{gdb}.  Once started, it reads
commands from the terminal until you tell it to exit with the @value{GDBN}
command @code{quit}.  You can get online help from @value{GDBN} itself
by using the command @code{help}.

You can run @code{gdb} with no arguments or options; but the most
usual way to start @value{GDBN} is with one argument or two, specifying an
executable program as the argument:

@smallexample
gdb program
@end smallexample

You can also start with both an executable program and a core file specified:

@smallexample
gdb program core
@end smallexample

You can, instead, specify a process ID as a second argument, if you want
to debug a running process:

@smallexample
gdb program 1234
gdb -p 1234
@end smallexample

@noindent
would attach @value{GDBN} to process @code{1234} (unless you also have a file
named @file{1234}; @value{GDBN} does check for a core file first).
With option @option{-p} you can omit the @var{program} filename.

Here are some of the most frequently needed @value{GDBN} commands:

@c pod2man highlights the right hand side of the @item lines.
@table @env
@item break [@var{file}:]@var{functiop}
Set a breakpoint at @var{function} (in @var{file}).

@item run [@var{arglist}]
Start your program (with @var{arglist}, if specified).

@item bt
Backtrace: display the program stack.

@item print @var{expr}
Display the value of an expression.

@item c
Continue running your program (after stopping, e.g. at a breakpoint).

@item next
Execute next program line (after stopping); step @emph{over} any
function calls in the line.

@item edit [@var{file}:]@var{function}
look at the program line where it is presently stopped.

@item list [@var{file}:]@var{function}
type the text of the program in the vicinity of where it is presently stopped.

@item step
Execute next program line (after stopping); step @emph{into} any
function calls in the line.

@item help [@var{name}]
Show information about @value{GDBN} command @var{name}, or general information
about using @value{GDBN}.

@item quit
Exit from @value{GDBN}.
@end table

@ifset man
For full details on @value{GDBN},
see @cite{Using GDB: A Guide to the GNU Source-Level Debugger},
by Richard M. Stallman and Roland H. Pesch.  The same text is available online
as the @code{gdb} entry in the @code{info} program.
@end ifset
@c man end

@c man begin OPTIONS gdb
Any arguments other than options specify an executable
file and core file (or process ID); that is, the first argument
encountered with no
associated option flag is equivalent to a @option{-se} option, and the second,
if any, is equivalent to a @option{-c} option if it's the name of a file.
Many options have
both long and short forms; both are shown here.  The long forms are also
recognized if you truncate them, so long as enough of the option is
present to be unambiguous.  (If you prefer, you can flag option
arguments with @option{+} rather than @option{-}, though we illustrate the
more usual convention.)

All the options and command line arguments you give are processed
in sequential order.  The order makes a difference when the @option{-x}
option is used.

@table @env
@item -help
@itemx -h
List all options, with brief explanations.

@item -symbols=@var{file}
@itemx -s @var{file}
Read symbol table from file @var{file}.

@item -write
Enable writing into executable and core files.

@item -exec=@var{file}
@itemx -e @var{file}
Use file @var{file} as the executable file to execute when
appropriate, and for examining pure data in conjunction with a core
dump.

@item -se=@var{file}
Read symbol table from file @var{file} and use it as the executable
file.

@item -core=@var{file}
@itemx -c @var{file}
Use file @var{file} as a core dump to examine.

@item -command=@var{file}
@itemx -x @var{file}
Execute @value{GDBN} commands from file @var{file}.

@item -ex @var{command}
Execute given @value{GDBN} @var{command}.

@item -directory=@var{directory}
@itemx -d @var{directory}
Add @var{directory} to the path to search for source files.

@item -nh
Do not execute commands from @file{~/.gdbinit}.

@item -nx
@itemx -n
Do not execute commands from any @file{.gdbinit} initialization files.

@item -quiet
@itemx -q
``Quiet''.  Do not print the introductory and copyright messages.  These
messages are also suppressed in batch mode.

@item -batch
Run in batch mode.  Exit with status @code{0} after processing all the command
files specified with @option{-x} (and @file{.gdbinit}, if not inhibited).
Exit with nonzero status if an error occurs in executing the @value{GDBN}
commands in the command files.

Batch mode may be useful for running @value{GDBN} as a filter, for example to
download and run a program on another computer; in order to make this
more useful, the message

@smallexample
Program exited normally.
@end smallexample

@noindent
(which is ordinarily issued whenever a program running under @value{GDBN} control
terminates) is not issued when running in batch mode.

@item -cd=@var{directory}
Run @value{GDBN} using @var{directory} as its working directory,
instead of the current directory.

@item -fullname
@itemx -f
Emacs sets this option when it runs @value{GDBN} as a subprocess.  It tells
@value{GDBN} to output the full file name and line number in a standard,
recognizable fashion each time a stack frame is displayed (which
includes each time the program stops).  This recognizable format looks
like two @samp{\032} characters, followed by the file name, line number
and character position separated by colons, and a newline.  The
Emacs-to-@value{GDBN} interface program uses the two @samp{\032}
characters as a signal to display the source code for the frame.

@item -b @var{bps}
Set the line speed (baud rate or bits per second) of any serial
interface used by @value{GDBN} for remote debugging.

@item -tty=@var{device}
Run using @var{device} for your program's standard input and output.
@end table
@c man end

@c man begin SEEALSO gdb
@ifset man
The full documentation for @value{GDBN} is maintained as a Texinfo manual.
If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
documentation are properly installed at your site, the command

@smallexample
info gdb
@end smallexample

@noindent
should give you access to the complete manual.

@cite{Using GDB: A Guide to the GNU Source-Level Debugger},
Richard M. Stallman and Roland H. Pesch, July 1991.
@end ifset
@c man end

@node gdbserver man
@heading gdbserver man

@c man title gdbserver Remote Server for the GNU Debugger
@format
@c man begin SYNOPSIS gdbserver
gdbserver @var{comm} @var{prog} [@var{args}@dots{}]

gdbserver --attach @var{comm} @var{pid}

gdbserver --multi @var{comm}
@c man end
@end format

@c man begin DESCRIPTION gdbserver
@command{gdbserver} is a program that allows you to run @value{GDBN} on a different machine
than the one which is running the program being debugged.

@ifclear man
@subheading Usage (server (target) side)
@end ifclear
@ifset man
Usage (server (target) side):
@end ifset

First, you need to have a copy of the program you want to debug put onto
the target system.  The program can be stripped to save space if needed, as
@command{gdbserver} doesn't care about symbols.  All symbol handling is taken care of by
the @value{GDBN} running on the host system.

To use the server, you log on to the target system, and run the @command{gdbserver}
program.  You must tell it (a) how to communicate with @value{GDBN}, (b) the name of
your program, and (c) its arguments.  The general syntax is:

@smallexample
target> gdbserver @var{comm} @var{program} [@var{args} ...]
@end smallexample

For example, using a serial port, you might say:

@smallexample
@ifset man
@c @file would wrap it as F</dev/com1>.
target> gdbserver /dev/com1 emacs foo.txt
@end ifset
@ifclear man
target> gdbserver @file{/dev/com1} emacs foo.txt
@end ifclear
@end smallexample

This tells @command{gdbserver} to debug emacs with an argument of foo.txt, and
to communicate with @value{GDBN} via @file{/dev/com1}.  @command{gdbserver} now
waits patiently for the host @value{GDBN} to communicate with it.

To use a TCP connection, you could say:

@smallexample
target> gdbserver host:2345 emacs foo.txt
@end smallexample

This says pretty much the same thing as the last example, except that we are
going to communicate with the @code{host} @value{GDBN} via TCP.  The @code{host:2345} argument means
that we are expecting to see a TCP connection from @code{host} to local TCP port
2345.  (Currently, the @code{host} part is ignored.)  You can choose any number you
want for the port number as long as it does not conflict with any existing TCP
ports on the target system.  This same port number must be used in the host
@value{GDBN}s @code{target remote} command, which will be described shortly.  Note that if
you chose a port number that conflicts with another service, @command{gdbserver} will
print an error message and exit.

@command{gdbserver} can also attach to running programs.
This is accomplished via the @option{--attach} argument.  The syntax is:

@smallexample
target> gdbserver --attach @var{comm} @var{pid}
@end smallexample

@var{pid} is the process ID of a currently running process.  It isn't
necessary to point @command{gdbserver} at a binary for the running process.

To start @code{gdbserver} without supplying an initial command to run
or process ID to attach, use the @option{--multi} command line option.
In such case you should connect using @kbd{target extended-remote} to start
the program you want to debug.

@smallexample
target> gdbserver --multi @var{comm}
@end smallexample

@ifclear man
@subheading Usage (host side)
@end ifclear
@ifset man
Usage (host side):
@end ifset

You need an unstripped copy of the target program on your host system, since
@value{GDBN} needs to examine it's symbol tables and such.  Start up @value{GDBN} as you normally
would, with the target program as the first argument.  (You may need to use the
@option{--baud} option if the serial line is running at anything except 9600 baud.)
That is @code{gdb TARGET-PROG}, or @code{gdb --baud BAUD TARGET-PROG}.  After that, the only
new command you need to know about is @code{target remote}
(or @code{target extended-remote}).  Its argument is either
a device name (usually a serial device, like @file{/dev/ttyb}), or a @code{HOST:PORT}
descriptor.  For example:

@smallexample
@ifset man
@c @file would wrap it as F</dev/ttyb>.
(gdb) target remote /dev/ttyb
@end ifset
@ifclear man
(gdb) target remote @file{/dev/ttyb}
@end ifclear
@end smallexample

@noindent
communicates with the server via serial line @file{/dev/ttyb}, and:

@smallexample
(gdb) target remote the-target:2345
@end smallexample

@noindent
communicates via a TCP connection to port 2345 on host `the-target', where
you previously started up @command{gdbserver} with the same port number.  Note that for
TCP connections, you must start up @command{gdbserver} prior to using the `target remote'
command, otherwise you may get an error that looks something like
`Connection refused'.

@command{gdbserver} can also debug multiple inferiors at once,
described in
@ifset man
the @value{GDBN} manual in node @code{Inferiors and Programs}
-- shell command @code{info -f gdb -n 'Inferiors and Programs'}.
@end ifset
@ifclear man
@ref{Inferiors and Programs}.
@end ifclear
In such case use the @code{extended-remote} @value{GDBN} command variant:

@smallexample
(gdb) target extended-remote the-target:2345
@end smallexample

The @command{gdbserver} option @option{--multi} may or may not be used in such
case.
@c man end

@c man begin OPTIONS gdbserver
There are three different modes for invoking @command{gdbserver}:

@itemize @bullet

@item
Debug a specific program specified by its program name:

@smallexample
gdbserver @var{comm} @var{prog} [@var{args}@dots{}]
@end smallexample

The @var{comm} parameter specifies how should the server communicate
with @value{GDBN}; it is either a device name (to use a serial line),
a TCP port number (@code{:1234}), or @code{-} or @code{stdio} to use
stdin/stdout of @code{gdbserver}.  Specify the name of the program to
debug in @var{prog}.  Any remaining arguments will be passed to the
program verbatim.  When the program exits, @value{GDBN} will close the
connection, and @code{gdbserver} will exit.

@item
Debug a specific program by specifying the process ID of a running
program:

@smallexample
gdbserver --attach @var{comm} @var{pid}
@end smallexample

The @var{comm} parameter is as described above.  Supply the process ID
of a running program in @var{pid}; @value{GDBN} will do everything
else.  Like with the previous mode, when the process @var{pid} exits,
@value{GDBN} will close the connection, and @code{gdbserver} will exit.

@item
Multi-process mode -- debug more than one program/process:

@smallexample
gdbserver --multi @var{comm}
@end smallexample

In this mode, @value{GDBN} can instruct @command{gdbserver} which
command(s) to run.  Unlike the other 2 modes, @value{GDBN} will not
close the connection when a process being debugged exits, so you can
debug several processes in the same session.
@end itemize

In each of the modes you may specify these options:

@table @env

@item --help
List all options, with brief explanations.

@item --version
This option causes @command{gdbserver} to print its version number and exit.

@item --attach
@command{gdbserver} will attach to a running program.  The syntax is:

@smallexample
target> gdbserver --attach @var{comm} @var{pid}
@end smallexample

@var{pid} is the process ID of a currently running process.  It isn't
necessary to point @command{gdbserver} at a binary for the running process.

@item --multi
To start @code{gdbserver} without supplying an initial command to run
or process ID to attach, use this command line option.
Then you can connect using @kbd{target extended-remote} and start
the program you want to debug.  The syntax is:

@smallexample
target> gdbserver --multi @var{comm}
@end smallexample

@item --debug
Instruct @code{gdbserver} to display extra status information about the debugging
process.
This option is intended for @code{gdbserver} development and for bug reports to
the developers.

@item --remote-debug
Instruct @code{gdbserver} to display remote protocol debug output.
This option is intended for @code{gdbserver} development and for bug reports to
the developers.

@item --wrapper
Specify a wrapper to launch programs
for debugging.  The option should be followed by the name of the
wrapper, then any command-line arguments to pass to the wrapper, then
@kbd{--} indicating the end of the wrapper arguments.

@item --once
By default, @command{gdbserver} keeps the listening TCP port open, so that
additional connections are possible.  However, if you start @code{gdbserver}
with the @option{--once} option, it will stop listening for any further
connection attempts after connecting to the first @value{GDBN} session.

@c --disable-packet is not documented for users.

@c --disable-randomization and --no-disable-randomization are superseded by
@c QDisableRandomization.

@end table
@c man end

@c man begin SEEALSO gdbserver
@ifset man
The full documentation for @value{GDBN} is maintained as a Texinfo manual.
If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
documentation are properly installed at your site, the command

@smallexample
info gdb
@end smallexample

should give you access to the complete manual.

@cite{Using GDB: A Guide to the GNU Source-Level Debugger},
Richard M. Stallman and Roland H. Pesch, July 1991.
@end ifset
@c man end

@node gcore man
@heading gcore

@c man title gcore Generate a core file of a running program

@format
@c man begin SYNOPSIS gcore
gcore [-o @var{filename}] @var{pid}
@c man end
@end format

@c man begin DESCRIPTION gcore
Generate a core dump of a running program with process ID @var{pid}.
Produced file is equivalent to a kernel produced core file as if the process
crashed (and if @kbd{ulimit -c} were used to set up an appropriate core dump
limit).  Unlike after a crash, after @command{gcore} the program remains
running without any change.
@c man end

@c man begin OPTIONS gcore
@table @env
@item -o @var{filename}
The optional argument
@var{filename} specifies the file name where to put the core dump.
If not specified, the file name defaults to @file{core.@var{pid}},
where @var{pid} is the running program process ID.
@end table
@c man end

@c man begin SEEALSO gcore
@ifset man
The full documentation for @value{GDBN} is maintained as a Texinfo manual.
If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
documentation are properly installed at your site, the command

@smallexample
info gdb
@end smallexample

@noindent
should give you access to the complete manual.

@cite{Using GDB: A Guide to the GNU Source-Level Debugger},
Richard M. Stallman and Roland H. Pesch, July 1991.
@end ifset
@c man end

@node gdbinit man
@heading gdbinit

@c man title gdbinit GDB initialization scripts

@format
@c man begin SYNOPSIS gdbinit
@ifset SYSTEM_GDBINIT
@value{SYSTEM_GDBINIT}
@end ifset

~/.gdbinit

./.gdbinit
@c man end
@end format

@c man begin DESCRIPTION gdbinit
These files contain @value{GDBN} commands to automatically execute during
@value{GDBN} startup.  The lines of contents are canned sequences of commands,
described in
@ifset man
the @value{GDBN} manual in node @code{Sequences}
-- shell command @code{info -f gdb -n Sequences}.
@end ifset
@ifclear man
@ref{Sequences}.
@end ifclear

Please read more in
@ifset man
the @value{GDBN} manual in node @code{Startup}
-- shell command @code{info -f gdb -n Startup}.
@end ifset
@ifclear man
@ref{Startup}.
@end ifclear

@table @env
@ifset SYSTEM_GDBINIT
@item @value{SYSTEM_GDBINIT}
@end ifset
@ifclear SYSTEM_GDBINIT
@item (not enabled with @code{--with-system-gdbinit} during compilation)
@end ifclear
System-wide initialization file.  It is executed unless user specified
@value{GDBN} option @code{-nx} or @code{-n}.
See more in
@ifset man
the @value{GDBN} manual in node @code{System-wide configuration}
-- shell command @code{info -f gdb -n 'System-wide configuration'}.
@end ifset
@ifclear man
@ref{System-wide configuration}.
@end ifclear

@item ~/.gdbinit
User initialization file.  It is executed unless user specified
@value{GDBN} options @code{-nx}, @code{-n} or @code{-nh}.

@item ./.gdbinit
Initialization file for current directory.  It may need to be enabled with
@value{GDBN} security command @code{set auto-load local-gdbinit}.
See more in
@ifset man
the @value{GDBN} manual in node @code{Init File in the Current Directory}
-- shell command @code{info -f gdb -n 'Init File in the Current Directory'}.
@end ifset
@ifclear man
@ref{Init File in the Current Directory}.
@end ifclear
@end table
@c man end

@c man begin SEEALSO gdbinit
@ifset man
gdb(1), @code{info -f gdb -n Startup}

The full documentation for @value{GDBN} is maintained as a Texinfo manual.
If the @code{info} and @code{gdb} programs and @value{GDBN}'s Texinfo
documentation are properly installed at your site, the command

@smallexample
info gdb
@end smallexample

should give you access to the complete manual.

@cite{Using GDB: A Guide to the GNU Source-Level Debugger},
Richard M. Stallman and Roland H. Pesch, July 1991.
@end ifset
@c man end

@include gpl.texi

@node GNU Free Documentation License
@appendix GNU Free Documentation License
@include fdl.texi

@node Concept Index
@unnumbered Concept Index

@printindex cp

@node Command and Variable Index
@unnumbered Command, Variable, and Function Index

@printindex fn

@tex
% I think something like @@colophon should be in texinfo.  In the
% meantime:
\long\def\colophon{\hbox to0pt{}\vfill
\centerline{The body of this manual is set in}
\centerline{\fontname\tenrm,}
\centerline{with headings in {\bf\fontname\tenbf}}
\centerline{and examples in {\tt\fontname\tentt}.}
\centerline{{\it\fontname\tenit\/},}
\centerline{{\bf\fontname\tenbf}, and}
\centerline{{\sl\fontname\tensl\/}}
\centerline{are used for emphasis.}\vfill}
\page\colophon
% Blame: doc@@cygnus.com, 1991.
@end tex

@bye