1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
/* Caching code. Typically used by remote back ends for
caching remote memory.
Copyright 1992-1993, 1995, 1998-1999 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "dcache.h"
#include "gdbcmd.h"
#include "gdb_string.h"
#include "gdbcore.h"
/*
The data cache could lead to incorrect results because it doesn't know
about volatile variables, thus making it impossible to debug
functions which use memory mapped I/O devices.
set remotecache 0
In those cases.
In general the dcache speeds up performance, some speed improvement
comes from the actual caching mechanism, but the major gain is in
the reduction of the remote protocol overhead; instead of reading
or writing a large area of memory in 4 byte requests, the cache
bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
Reducing the overhead to an eighth of what it was. This is very
obvious when displaying a large amount of data,
eg, x/200x 0
caching | no yes
----------------------------
first time | 4 sec 2 sec improvement due to chunking
second time | 4 sec 0 sec improvement due to caching
The cache structure is unusual, we keep a number of cache blocks
(DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
Within each line we remember the address of the line (always a
multiple of the LINE_SIZE) and a vector of bytes over the range.
There's another vector which contains the state of the bytes.
ENTRY_BAD means that the byte is just plain wrong, and has no
correspondence with anything else (as it would when the cache is
turned on, but nothing has been done to it.
ENTRY_DIRTY means that the byte has some data in it which should be
written out to the remote target one day, but contains correct
data. ENTRY_OK means that the data is the same in the cache as it
is in remote memory.
The ENTRY_DIRTY state is necessary because GDB likes to write large
lumps of memory in small bits. If the caching mechanism didn't
maintain the DIRTY information, then something like a two byte
write would mean that the entire cache line would have to be read,
the two bytes modified and then written out again. The alternative
would be to not read in the cache line in the first place, and just
write the two bytes directly into target memory. The trouble with
that is that it really nails performance, because of the remote
protocol overhead. This way, all those little writes are bundled
up into an entire cache line write in one go, without having to
read the cache line in the first place.
*/
/* This value regulates the number of cache blocks stored.
Smaller values reduce the time spent searching for a cache
line, and reduce memory requirements, but increase the risk
of a line not being in memory */
#define DCACHE_SIZE 64
/* This value regulates the size of a cache line. Smaller values
reduce the time taken to read a single byte, but reduce overall
throughput. */
#define LINE_SIZE_POWER (5)
#define LINE_SIZE (1 << LINE_SIZE_POWER)
/* Each cache block holds LINE_SIZE bytes of data
starting at a multiple-of-LINE_SIZE address. */
#define LINE_SIZE_MASK ((LINE_SIZE - 1))
#define XFORM(x) ((x) & LINE_SIZE_MASK)
#define MASK(x) ((x) & ~LINE_SIZE_MASK)
#define ENTRY_BAD 0 /* data at this byte is wrong */
#define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
#define ENTRY_OK 2 /* data at this byte is same as in memory */
struct dcache_block
{
struct dcache_block *p; /* next in list */
CORE_ADDR addr; /* Address for which data is recorded. */
char data[LINE_SIZE]; /* bytes at given address */
unsigned char state[LINE_SIZE]; /* what state the data is in */
/* whether anything in state is dirty - used to speed up the
dirty scan. */
int anydirty;
int refs;
};
struct dcache_struct
{
/* Function to actually read the target memory. */
memxferfunc read_memory;
/* Function to actually write the target memory */
memxferfunc write_memory;
/* free list */
struct dcache_block *free_head;
struct dcache_block *free_tail;
/* in use list */
struct dcache_block *valid_head;
struct dcache_block *valid_tail;
/* The cache itself. */
struct dcache_block *the_cache;
/* potentially, if the cache was enabled, and then turned off, and
then turned on again, the stuff in it could be stale, so this is
used to mark it */
int cache_has_stuff;
};
static int dcache_poke_byte (DCACHE * dcache, CORE_ADDR addr, char *ptr);
static int dcache_peek_byte (DCACHE * dcache, CORE_ADDR addr, char *ptr);
static struct dcache_block *dcache_hit (DCACHE * dcache, CORE_ADDR addr);
static int dcache_write_line (DCACHE * dcache, struct dcache_block *db);
static struct dcache_block *dcache_alloc (DCACHE * dcache, CORE_ADDR addr);
static int dcache_writeback (DCACHE * dcache);
static void dcache_info (char *exp, int tty);
void _initialize_dcache (void);
static int dcache_enabled_p = 0;
DCACHE *last_cache; /* Used by info dcache */
/* Free all the data cache blocks, thus discarding all cached data. */
void
dcache_flush (DCACHE *dcache)
{
int i;
dcache->valid_head = 0;
dcache->valid_tail = 0;
dcache->free_head = 0;
dcache->free_tail = 0;
for (i = 0; i < DCACHE_SIZE; i++)
{
struct dcache_block *db = dcache->the_cache + i;
if (!dcache->free_head)
dcache->free_head = db;
else
dcache->free_tail->p = db;
dcache->free_tail = db;
db->p = 0;
}
dcache->cache_has_stuff = 0;
return;
}
/* If addr is present in the dcache, return the address of the block
containing it. */
static struct dcache_block *
dcache_hit (DCACHE *dcache, CORE_ADDR addr)
{
register struct dcache_block *db;
/* Search all cache blocks for one that is at this address. */
db = dcache->valid_head;
while (db)
{
if (MASK (addr) == db->addr)
{
db->refs++;
return db;
}
db = db->p;
}
return NULL;
}
/* Make sure that anything in this line which needs to
be written is. */
static int
dcache_write_line (DCACHE *dcache, register struct dcache_block *db)
{
int s;
int e;
s = 0;
if (db->anydirty)
{
for (s = 0; s < LINE_SIZE; s++)
{
if (db->state[s] == ENTRY_DIRTY)
{
int len = 0;
for (e = s; e < LINE_SIZE; e++, len++)
if (db->state[e] != ENTRY_DIRTY)
break;
{
/* all bytes from s..s+len-1 need to
be written out */
int done = 0;
while (done < len)
{
int t = dcache->write_memory (db->addr + s + done,
db->data + s + done,
len - done);
if (t == 0)
return 0;
done += t;
}
memset (db->state + s, ENTRY_OK, len);
s = e;
}
}
}
db->anydirty = 0;
}
return 1;
}
/* Get a free cache block, put or keep it on the valid list,
and return its address. */
static struct dcache_block *
dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
{
register struct dcache_block *db;
if (dcache_enabled_p == 0)
abort ();
/* Take something from the free list */
db = dcache->free_head;
if (db)
{
dcache->free_head = db->p;
}
else
{
/* Nothing left on free list, so grab one from the valid list */
db = dcache->valid_head;
dcache->valid_head = db->p;
dcache_write_line (dcache, db);
}
db->addr = MASK(addr);
db->refs = 0;
db->anydirty = 0;
memset (db->state, ENTRY_BAD, sizeof (db->data));
/* append this line to end of valid list */
if (!dcache->valid_head)
dcache->valid_head = db;
else
dcache->valid_tail->p = db;
dcache->valid_tail = db;
db->p = 0;
return db;
}
/* Using the data cache DCACHE return the contents of the byte at
address ADDR in the remote machine.
Returns 0 on error. */
static int
dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
{
register struct dcache_block *db = dcache_hit (dcache, addr);
int ok = 1;
int done = 0;
if (db == 0
|| db->state[XFORM (addr)] == ENTRY_BAD)
{
if (db)
{
dcache_write_line (dcache, db);
}
else
db = dcache_alloc (dcache, addr);
immediate_quit++;
while (done < LINE_SIZE)
{
int try =
(*dcache->read_memory)
(db->addr + done,
db->data + done,
LINE_SIZE - done);
if (try == 0)
return 0;
done += try;
}
immediate_quit--;
memset (db->state, ENTRY_OK, sizeof (db->data));
db->anydirty = 0;
}
*ptr = db->data[XFORM (addr)];
return ok;
}
/* Writeback any dirty lines to the remote. */
static int
dcache_writeback (DCACHE *dcache)
{
struct dcache_block *db;
db = dcache->valid_head;
while (db)
{
if (!dcache_write_line (dcache, db))
return 0;
db = db->p;
}
return 1;
}
/* Write the byte at PTR into ADDR in the data cache.
Return zero on write error.
*/
static int
dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
{
register struct dcache_block *db = dcache_hit (dcache, addr);
if (!db)
{
db = dcache_alloc (dcache, addr);
}
db->data[XFORM (addr)] = *ptr;
db->state[XFORM (addr)] = ENTRY_DIRTY;
db->anydirty = 1;
return 1;
}
/* Initialize the data cache. */
DCACHE *
dcache_init (memxferfunc reading, memxferfunc writing)
{
int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
DCACHE *dcache;
dcache = (DCACHE *) xmalloc (sizeof (*dcache));
dcache->read_memory = reading;
dcache->write_memory = writing;
dcache->the_cache = (struct dcache_block *) xmalloc (csize);
memset (dcache->the_cache, 0, csize);
dcache_flush (dcache);
last_cache = dcache;
return dcache;
}
/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
nonzero.
Returns length of data written or read; 0 for error.
This routine is indended to be called by remote_xfer_ functions. */
int
dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
int should_write)
{
int i;
if (dcache_enabled_p)
{
int (*xfunc) (DCACHE * dcache, CORE_ADDR addr, char *ptr);
xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
for (i = 0; i < len; i++)
{
if (!xfunc (dcache, memaddr + i, myaddr + i))
return 0;
}
dcache->cache_has_stuff = 1;
dcache_writeback (dcache);
}
else
{
memxferfunc xfunc;
xfunc = should_write ? dcache->write_memory : dcache->read_memory;
if (dcache->cache_has_stuff)
dcache_flush (dcache);
len = xfunc (memaddr, myaddr, len);
}
return len;
}
static void
dcache_info (char *exp, int tty)
{
struct dcache_block *p;
if (!dcache_enabled_p)
{
printf_filtered ("Dcache not enabled\n");
return;
}
printf_filtered ("Dcache enabled, line width %d, depth %d\n",
LINE_SIZE, DCACHE_SIZE);
if (last_cache)
{
printf_filtered ("Cache state:\n");
for (p = last_cache->valid_head; p; p = p->p)
{
int j;
printf_filtered ("Line at %s, referenced %d times\n",
paddr (p->addr), p->refs);
for (j = 0; j < LINE_SIZE; j++)
printf_filtered ("%02x", p->data[j] & 0xFF);
printf_filtered ("\n");
for (j = 0; j < LINE_SIZE; j++)
printf_filtered (" %2x", p->state[j]);
printf_filtered ("\n");
}
}
}
/* Turn dcache on or off. */
void
set_dcache_state (int what)
{
dcache_enabled_p = !!what;
}
void
_initialize_dcache (void)
{
add_show_from_set
(add_set_cmd ("remotecache", class_support, var_boolean,
(char *) &dcache_enabled_p,
"\
Set cache use for remote targets.\n\
When on, use data caching for remote targets. For many remote targets\n\
this option can offer better throughput for reading target memory.\n\
Unfortunately, gdb does not currently know anything about volatile\n\
registers and thus data caching will produce incorrect results with\n\
volatile registers are in use. By default, this option is off.",
&setlist),
&showlist);
add_info ("dcache", dcache_info,
"Print information on the dcache performance.");
}
|