aboutsummaryrefslogtreecommitdiff
path: root/gdb/dbxread.c
blob: 007e7682e095ca581d46d71e0a3a86cff085dfd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
/* Read dbx symbol tables and convert to internal format, for GDB.
   Copyright (C) 1986, 1987 Free Software Foundation, Inc.

GDB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the GDB General Public License for full details.

Everyone is granted permission to copy, modify and redistribute GDB,
but only under the conditions described in the GDB General Public
License.  A copy of this license is supposed to have been given to you
along with GDB so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

In other words, go ahead and share GDB, but don't try to stop
anyone else from sharing it farther.  Help stamp out software hoarding!
*/

#include "param.h"

#ifdef READ_DBX_FORMAT

#include <a.out.h>
#include <stab.h>
#include <stdio.h>
#include <obstack.h>
#include <sys/param.h>
#include <sys/file.h>
#include "defs.h"
#include "initialize.h"
#include "symtab.h"

static void add_symbol_to_list ();
static void read_dbx_symtab ();
static void process_one_symbol ();
static struct type *read_type ();
static struct type *read_range_type ();
static struct type *read_enum_type ();
static struct type *read_struct_type ();
static long read_number ();
static void finish_block ();
static struct blockvector *make_blockvector ();
static struct symbol *define_symbol ();
static void start_subfile ();
static int hashname ();
static void hash_symsegs ();
extern struct symtab *read_symsegs ();

START_FILE

/* Chain of symtabs made from reading the file's symsegs.
   These symtabs do not go into symtab_list themselves,
   but the information is copied from them when appropriate
   to make the symtabs that will exist permanently.  */

static struct symtab *symseg_chain;

/* Symseg symbol table for the file whose data we are now processing.
   It is one of those in symseg_chain.  Or 0, for a compilation that
   has no symseg.  */

static struct symtab *current_symseg;

/* Name of source file whose symbol data we are now processing.
   This comes from a symbol of type N_SO.  */

static char *last_source_file;

/* Core address of start of text of current source file.
   This too comes from the N_SO symbol.  */

static CORE_ADDR last_source_start_addr;

/* End of the text segment of the executable file,
   as found in the symbol _etext.  */

static CORE_ADDR end_of_text_addr;

/* The list of sub-source-files within the current individual compilation.
   Each file gets its own symtab with its own linetable and associated info,
   but they all share one blockvector.  */

struct subfile
{
  struct subfile *next;
  char *name;
  struct linetable *line_vector;
  int line_vector_length;
  int line_vector_index;
  int prev_line_number;
};

static struct subfile *subfiles;

static struct subfile *current_subfile;

/* The addresses of the symbol table stream and the string table
   of the object file we are reading (as copied into core).  */

static FILE *nlist_stream_global;
static int nlist_size_global;
static char *stringtab_global;

/* The index in nlist_global of the last dbx symbol to be processed.  */

static int symnum;

/* Vector of types defined so far, indexed by their dbx type numbers.
   (In newer sun systems, dbx uses a pair of numbers in parens,
    as in "(SUBFILENUM,NUMWITHINSUBFILE)".  Then these numbers must be
    translated through the type_translations hash table to get
    the index into the type vector.)  */

static struct typevector *type_vector;

/* Number of elements allocated for type_vector currently.  */

static int type_vector_length;

/* Vector of line number information.  */

static struct linetable *line_vector;

/* Index of next entry to go in line_vector_index.  */

static int line_vector_index;

/* Last line number recorded in the line vector.  */

static int prev_line_number;

/* Number of elements allocated for line_vector currently.  */

static int line_vector_length;

/* Chain of global symbols whose values are not known yet.
   They are chained thru the SYMBOL_VALUE, since we don't
   have the correct data for that slot yet.  */

#define HASHSIZE 127
static struct symbol *global_sym_chain[HASHSIZE];

/* Record the symbols defined for each context in a list.
   We don't create a struct block for the context until we
   know how long to make it.  */

struct pending
{
  struct pending *next;
  struct symbol *symbol;
};

/* Here are the three lists that symbols are put on.  */

struct pending *file_symbols;	/* static at top level, and types */

struct pending *global_symbols;	/* global functions and variables */

struct pending *local_symbols;	/* everything local to lexical context */

/* List of unclosed lexical contexts
   (that will become blocks, eventually).  */

struct context_stack
{
  struct context_stack *next;
  struct pending *locals;
  struct pending_block *old_blocks;
  struct symbol *name;
  CORE_ADDR start_addr;
  int depth;
};

struct context_stack *context_stack;

/* Nonzero if within a function (so symbols should be local,
   if nothing says specifically).  */

int within_function;

/* List of blocks already made (lexical contexts already closed).
   This is used at the end to make the blockvector.  */

struct pending_block
{
  struct pending_block *next;
  struct block *block;
};

struct pending_block *pending_blocks;

extern CORE_ADDR first_object_file_end;	/* From blockframe.c */

/* File name symbols were loaded from.  */

static char *symfile;

/* Support for Sun changes to dbx symbol format */

/* For each identified header file, we have a table of types defined
   in that header file.

   header_files maps header file names to their type tables.
   It is a vector of n_header_files elements.
   Each element describes one header file.
   It contains a vector of types.

   Sometimes it can happen that the same header file produces
   different results when included in different places.
   This can result from conditionals or from different
   things done before including the file.
   When this happens, there are multiple entries for the file in this table,
   one entry for each distinct set of results.
   The entries are distinguished by the INSTANCE field.
   The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
   used to match header-file references to their corresponding data.  */

struct header_file
{
  char *name;			/* Name of header file */
  int instance;			/* Numeric code distinguishing instances
				   of one header file that produced
				   different results when included.
				   It comes from the N_BINCL or N_EXCL.  */
  struct type **vector;		/* Pointer to vector of types */
  int length;			/* Allocated length (# elts) of that vector */
};

static struct header_file *header_files;

static int n_header_files;

static int n_allocated_header_files;

/* Within each object file, various header files are assigned numbers.
   A type is defined or referred to with a pair of numbers
   (FILENUM,TYPENUM) where FILENUM is the number of the header file
   and TYPENUM is the number within that header file.
   TYPENUM is the index within the vector of types for that header file.

   FILENUM == 1 is special; it refers to the main source of the object file,
   and not to any header file.  FILENUM != 1 is interpreted by looking it up
   in the following table, which contains indices in header_files.  */

static int *this_object_header_files;

static int n_this_object_header_files;

static int n_allocated_this_object_header_files;

/* When a header file is getting special overriding definitions
   for one source file, record here the header_files index
   of its normal definition vector.
   At other times, this is -1.  */

static int header_file_prev_index;

/* At the start of reading dbx symbols, allocate our tables.  */

static void
init_header_files ()
{
  n_allocated_header_files = 10;
  header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
  n_header_files = 0;

  n_allocated_this_object_header_files = 10;
  this_object_header_files = (int *) xmalloc (10 * sizeof (int));
}

/* At the end of reading dbx symbols, free our tables.  */

static void
free_header_files ()
{
  register int i;
  for (i = 0; i < n_header_files; i++)
    free (header_files[i].name);
  free (header_files);
  free (this_object_header_files);
}

/* Called at the start of each object file's symbols.
   Clear out the mapping of header file numbers to header files.  */

static void
new_object_header_files ()
{
  /* Leave FILENUM of 0 free for builtin types and this file's types.  */
  n_this_object_header_files = 1;
  header_file_prev_index = -1;
}

/* Add header file number I for this object file
   at the next successive FILENUM.  */

static void
add_this_object_header_file (i)
     int i;
{
  if (n_this_object_header_files == n_allocated_this_object_header_files)
    {
      n_allocated_this_object_header_files *= 2;
      this_object_header_files
	= (int *) xrealloc (this_object_header_files,
			    n_allocated_this_object_header_files * sizeof (int));
    }

  this_object_header_files[n_this_object_header_files++] = i;
}

/* Add to this file an "old" header file, one already seen in
   a previous object file.  NAME is the header file's name.
   INSTANCE is its instance code, to select among multiple
   symbol tables for the same header file.  */

static void
add_old_header_file (name, instance)
     char *name;
     int instance;
{
  register struct header_file *p = header_files;
  register int i;

  for (i = 0; i < n_header_files; i++)
    if (!strcmp (p[i].name, name) && instance == p[i].instance)
      {
	add_this_object_header_file (i);
	return;
      }
  error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
	 symnum);
}

/* Add to this file a "new" header file: definitions for its types follow.
   NAME is the header file's name.
   Most often this happens only once for each distinct header file,
   but not necessarily.  If it happens more than once, INSTANCE has
   a different value each time, and references to the header file
   use INSTANCE values to select among them.

   dbx output contains "begin" and "end" markers for each new header file,
   but at this level we just need to know which files there have been;
   so we record the file when its "begin" is seen and ignore the "end".  */

static void
add_new_header_file (name, instance)
     char *name;
     int instance;
{
  register int i;
  register struct header_file *p = header_files;
  header_file_prev_index = -1;

#if 0
  /* This code was used before I knew about the instance codes.
     My first hypothesis is that it is not necessary now
     that instance codes are handled.  */

  /* Has this header file a previous definition?
     If so, make a new entry anyway so that this use in this source file
     gets a separate entry.  Later source files get the old entry.
     Record here the index of the old entry, so that any type indices
     not previously defined can get defined in the old entry as
     well as in the new one.  */

  for (i = 0; i < n_header_files; i++)
    if (!strcmp (p[i].name, name))
      {
	header_file_prev_index = i;
      }

#endif

  /* Make sure there is room for one more header file.  */

  if (n_header_files == n_allocated_header_files)
    {
      n_allocated_header_files *= 2;
      header_files
	= (struct header_file *) xrealloc (header_files, n_allocated_header_files * sizeof (struct header_file));
    }

  /* Create an entry for this header file.  */

  i = n_header_files++;
  header_files[i].name = name;
  header_files[i].instance = instance;
  header_files[i].length = 10;
  header_files[i].vector
    = (struct type **) xmalloc (10 * sizeof (struct type *));
  bzero (header_files[i].vector, 10 * sizeof (struct type *));

  add_this_object_header_file (i);
}

/* Look up a dbx type-number pair.  Return the address of the slot
   where the type for that number-pair is stored.
   The number-pair is in TYPENUMS.

   This can be used for finding the type associated with that pair
   or for associating a new type with the pair.  */

static struct type **
dbx_lookup_type (typenums)
     int typenums[2];
{
  register int filenum = typenums[0], index = typenums[1];

  if (filenum < 0 || filenum >= n_this_object_header_files)
    error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
	   filenum, index, symnum);

  if (filenum == 0)
    {
      /* Type is defined outside of header files.
	 Find it in this object file's type vector.  */
      if (index >= type_vector_length)
	{
	  type_vector_length *= 2;
	  type_vector = (struct typevector *)
	    xrealloc (type_vector, sizeof (struct typevector) + type_vector_length * sizeof (struct type *));
	  bzero (&type_vector->type[type_vector_length / 2],
		 type_vector_length * sizeof (struct type *) / 2);
	}
      return &type_vector->type[index];
    }
  else
    {
      register int real_filenum = this_object_header_files[filenum];
      register struct header_file *f;

      if (real_filenum >= n_header_files)
	abort ();

      f = &header_files[real_filenum];

      if (index >= f->length)
	{
	  f->length *= 2;
	  f->vector = (struct type **)
	    xrealloc (f->vector, f->length * sizeof (struct type *));
	  bzero (&f->vector[f->length / 2],
		 f->length * sizeof (struct type *) / 2);
	}
      return &f->vector[index];
    }
}

/* Make sure there is a type allocated for type numbers TYPENUMS
   and return the type object.
   This can create an empty (zeroed) type object.  */

static struct type *
dbx_alloc_type (typenums)
     int typenums[2];
{
  register struct type **type_addr = dbx_lookup_type (typenums);
  register struct type *type = *type_addr;

  /* If we are referring to a type not known at all yet,
     allocate an empty type for it.
     We will fill it in later if we find out how.  */
  if (type == 0)
    {
      type = (struct type *) obstack_alloc (symbol_obstack,
					    sizeof (struct type));
      bzero (type, sizeof (struct type));
      *type_addr = type;
    }
  return type;
}

#if 0
static struct type **
explicit_lookup_type (real_filenum, index)
     int real_filenum, index;
{
  register struct header_file *f = &header_files[real_filenum];

  if (index >= f->length)
    {
      f->length *= 2;
      f->vector = (struct type **)
	xrealloc (f->vector, f->length * sizeof (struct type *));
      bzero (&f->vector[f->length / 2],
	     f->length * sizeof (struct type *) / 2);
    }
  return &f->vector[index];
}
#endif

/* maintain the lists of symbols and blocks */

/* Add a symbol to one of the lists of symbols.  */
static void
add_symbol_to_list (symbol, listhead)
     struct symbol *symbol;
     struct pending **listhead;
{
  register struct pending *link
    = (struct pending *) xmalloc (sizeof (struct pending));

  link->next = *listhead;
  link->symbol = symbol;
  *listhead = link;
}

/* Take one of the lists of symbols and make a block from it.
   Put the block on the list of pending blocks.  */

static void
finish_block (symbol, listhead, old_blocks, start, end)
     struct symbol *symbol;
     struct pending **listhead;
     struct pending_block *old_blocks;
     CORE_ADDR start, end;
{
  register struct pending *next, *next1;
  register struct block *block;
  register struct pending_block *pblock;
  struct pending_block *opblock;
  register int i;

  /* Count the length of the list of symbols.  */

  for (next = *listhead, i = 0; next; next = next->next, i++);

  block = (struct block *) obstack_alloc (symbol_obstack,
					  sizeof (struct block) + (i - 1) * sizeof (struct symbol *));

  /* Copy the symbols into the block.  */

  BLOCK_NSYMS (block) = i;
  for (next = *listhead; next; next = next->next)
    BLOCK_SYM (block, --i) = next->symbol;

  BLOCK_START (block) = start;
  BLOCK_END (block) = end;
  BLOCK_SUPERBLOCK (block) = 0;	/* Filled in when containing block is made */

  /* Put the block in as the value of the symbol that names it.  */

  if (symbol)
    {
      SYMBOL_BLOCK_VALUE (symbol) = block;
      BLOCK_FUNCTION (block) = symbol;
    }
  else
    BLOCK_FUNCTION (block) = 0;

  /* Now free the links of the list, and empty the list.  */

  for (next = *listhead; next; next = next1)
    {
      next1 = next->next;
      free (next);
    }
  *listhead = 0;

  /* Install this block as the superblock
     of all blocks made since the start of this scope
     that don't have superblocks yet.  */

  opblock = 0;
  for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
    {
      if (BLOCK_SUPERBLOCK (pblock->block) == 0)
	BLOCK_SUPERBLOCK (pblock->block) = block;
      opblock = pblock;
    }

  /* Record this block on the list of all blocks in the file.
     Put it after opblock, or at the beginning if opblock is 0.
     This puts the block in the list after all its subblocks.  */

  pblock = (struct pending_block *) xmalloc (sizeof (struct pending_block));
  pblock->block = block;
  if (opblock)
    {
      pblock->next = opblock->next;
      opblock->next = pblock;
    }
  else
    {
      pblock->next = pending_blocks;
      pending_blocks = pblock;
    }
}

static struct blockvector *
make_blockvector ()
{
  register struct pending_block *next, *next1;
  register struct blockvector *blockvector;
  register int i;

  /* Count the length of the list of blocks.  */

  for (next = pending_blocks, i = 0; next; next = next->next, i++);

  blockvector = (struct blockvector *) obstack_alloc (symbol_obstack, sizeof (struct blockvector) + (i - 1) * sizeof (struct block *));

  /* Copy the blocks into the blockvector.
     This is done in reverse order, which happens to put
     the blocks into the proper order (ascending starting address).
     finish_block has hair to insert each block into the list
     after its subblocks in order to make sure this is true.  */

  BLOCKVECTOR_NBLOCKS (blockvector) = i;
  for (next = pending_blocks; next; next = next->next)
    BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;

  /* Now free the links of the list, and empty the list.  */

  for (next = pending_blocks; next; next = next1)
    {
      next1 = next->next;
      free (next);
    }
  pending_blocks = 0;

  return blockvector;
}

/* Manage the vector of line numbers.  */

static
record_line (line, pc)
     int line;
     CORE_ADDR pc;
{
  /* Ignore the dummy line number in libg.o */

  if (line == 0xffff)
    return;

  /* Make sure line vector is big enough.  */

  if (line_vector_index + 1 >= line_vector_length)
    {
      line_vector_length *= 2;
      line_vector = (struct linetable *)
	xrealloc (line_vector,
		  sizeof (struct linetable) + line_vector_length * sizeof (int));
      current_subfile->line_vector = line_vector;
    }

  /* If this line is not continguous with previous one recorded,
     record a line-number entry for it.  */
  if (line != prev_line_number + 1)
    line_vector->item[line_vector_index++] = - line;
  prev_line_number = line;

  /* Record the core address of the line.  */
  line_vector->item[line_vector_index++] = pc;
}

/* Start a new symtab for a new source file.
   This is called when a dbx symbol of type N_SO is seen;
   it indicates the start of data for one original source file.  */

static void
start_symtab (name, start_addr)
     char *name;
     CORE_ADDR start_addr;
{
  register struct symtab *s;

  last_source_file = name;
  last_source_start_addr = start_addr;
  file_symbols = 0;
  global_symbols = 0;
  context_stack = 0;
  within_function = 0;

  new_object_header_files ();

  for (s = symseg_chain; s; s = s->next)
    if (s->ldsymoff == symnum * sizeof (struct nlist))
      break;
  current_symseg = s;

  type_vector_length = 160;
  type_vector = (struct typevector *) xmalloc (sizeof (struct typevector) + type_vector_length * sizeof (struct type *));
  bzero (type_vector->type, type_vector_length * sizeof (struct type *));

  /* Initialize the list of sub source files with one entry
     for this file (the top-level source file).  */

  subfiles = 0;
  current_subfile = 0;
  start_subfile (name);
}

/* Handle an N_SOL symbol, which indicates the start of
   code that came from an included (or otherwise merged-in)
   source file with a different name.  */

static void
start_subfile (name)
     char *name;
{
  register struct subfile *subfile;

  /* Save the current subfile's line vector data.  */

  if (current_subfile)
    {
      current_subfile->line_vector_index = line_vector_index;
      current_subfile->line_vector_length = line_vector_length;
      current_subfile->prev_line_number = prev_line_number;
    }

  /* See if this subfile is already known as a subfile of the
     current main source file.  */

  for (subfile = subfiles; subfile; subfile = subfile->next)
    {
      if (!strcmp (subfile->name, name))
	{
	  line_vector = subfile->line_vector;
	  line_vector_index = subfile->line_vector_index;
	  line_vector_length = subfile->line_vector_length;
	  prev_line_number = subfile->prev_line_number;
	  current_subfile = subfile;
	  return;
	}
    }

  /* This subfile is not known.  Add an entry for it.  */

  line_vector_index = 0;
  line_vector_length = 1000;
  prev_line_number = -2;	/* Force first line number to be explicit */
  line_vector = (struct linetable *)
    xmalloc (sizeof (struct linetable) + line_vector_length * sizeof (int));

  /* Make an entry for this subfile in the list of all subfiles
     of the current main source file.  */

  subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
  subfile->next = subfiles;
  subfile->name = savestring (name, strlen (name));
  subfile->line_vector = line_vector;
  subfiles = subfile;
  current_subfile = subfile;
}

/* Finish the symbol definitions for one main source file,
   close off all the lexical contexts for that file
   (creating struct block's for them), then make the struct symtab
   for that file and put it in the list of all such.

   END_ADDR is the address of the end of the file's text.  */

static void
end_symtab (end_addr)
     CORE_ADDR end_addr;
{
  register struct symtab *symtab;
  register struct context_stack *cstk;
  register struct blockvector *blockvector;
  register struct subfile *subfile;
  register struct linetable *lv;
  struct subfile *nextsub;

  /* Finish the lexical context of the last function in the file.  */

  if (context_stack)
    {
      cstk = context_stack;
      /* Make a block for the local symbols within.  */
      finish_block (cstk->name, &local_symbols, cstk->old_blocks,
		    cstk->start_addr, end_addr);
      free (cstk);
    }

  /* Finish defining all the blocks of this symtab.  */
  if (current_symseg == 0)
    {
      finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
      finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
      blockvector = make_blockvector ();
    }
  current_subfile->line_vector_index = line_vector_index;

  /* Now create the symtab objects proper, one for each subfile.  */
  /* (The main file is one of them.)  */

  for (subfile = subfiles; subfile; subfile = nextsub)
    {
      symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
      /* Fill in its components.  */
      if (current_symseg)
	{
	  bcopy (current_symseg, symtab, sizeof (struct symtab));
	  symtab->free_code = free_linetable;
	  symtab->free_ptr = 0;
	}
      else
	{
	  symtab->blockvector = blockvector;
	  type_vector->length = type_vector_length;
	  symtab->typevector = type_vector;
	  symtab->free_code = free_linetable;
	  if (subfile->next == 0)
	    symtab->free_ptr = (char *) type_vector;
	}
      symtab->filename = subfile->name;
      lv = subfile->line_vector;
      lv->nitems = subfile->line_vector_index;
      symtab->linetable = (struct linetable *)
	xrealloc (lv, sizeof (struct linetable) + lv->nitems * sizeof (int));
      symtab->nlines = 0;
      symtab->line_charpos = 0;

      /* Link the new symtab into the list of such.  */
      symtab->next = symtab_list;
      symtab_list = symtab;

      nextsub = subfile->next;
      free (subfile);
    }

  type_vector = 0;
  type_vector_length = -1;
  line_vector = 0;
  line_vector_length = -1;
  last_source_file = 0;
}

#ifdef N_BINCL

/* Handle the N_BINCL and N_EINCL symbol types
   that act like N_SOL for switching source files
   (different subfiles, as we call them) within one object file,
   but using a stack rather than in an arbitrary order.  */

struct subfile_stack
{
  struct subfile_stack *next;
  char *name;
  int prev_index;
};

struct subfile_stack *subfile_stack;

static void
push_subfile ()
{
  register struct subfile_stack *tem
    = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));

  tem->next = subfile_stack;
  subfile_stack = tem;
  if (current_subfile == 0 || current_subfile->name == 0)
    abort ();
  tem->name = current_subfile->name;
  tem->prev_index = header_file_prev_index;
}

static char *
pop_subfile ()
{
  register char *name;
  register struct subfile_stack *link = subfile_stack;

  if (link == 0)
    abort ();

  name = link->name;
  subfile_stack = link->next;
  header_file_prev_index = link->prev_index;
  free (link);

  return name;
}
#endif /* Have N_BINCL */

/* Accumulate the misc functions in bunches of 127.
   At the end, copy them all into one newly allocated structure.  */

#define MISC_BUNCH_SIZE 127

struct misc_bunch
{
  struct misc_bunch *next;
  struct misc_function contents[MISC_BUNCH_SIZE];
};

/* Bunch currently being filled up.
   The next field points to chain of filled bunches.  */

static struct misc_bunch *misc_bunch;

/* Number of slots filled in current bunch.  */

static int misc_bunch_index;

/* Total number of misc functions recorded so far.  */

static int misc_count;

static void
init_misc_functions ()
{
  misc_count = 0;
  misc_bunch = 0;
  misc_bunch_index = MISC_BUNCH_SIZE;
}

static void
record_misc_function (name, address)
     char *name;
     CORE_ADDR address;
{
  register struct misc_bunch *new;

  if (misc_bunch_index == MISC_BUNCH_SIZE)
    {
      new = (struct misc_bunch *) xmalloc (sizeof (struct misc_bunch));
      misc_bunch_index = 0;
      new->next = misc_bunch;
      misc_bunch = new;
    }
  misc_bunch->contents[misc_bunch_index].name = name;
  misc_bunch->contents[misc_bunch_index].address = address;
  misc_bunch_index++;
  misc_count++;
}

static int
compare_misc_functions (fn1, fn2)
     struct misc_function *fn1, *fn2;
{
  /* Return a signed result based on unsigned comparisons
     so that we sort into unsigned numeric order.  */
  if (fn1->address < fn2->address)
    return -1;
  if (fn1->address > fn2->address)
    return 1;
  return 0;
}

static void
discard_misc_bunches ()
{
  register struct misc_bunch *next;

  while (misc_bunch)
    {
      next = misc_bunch->next;
      free (misc_bunch);
      misc_bunch = next;
    }
}

static void
condense_misc_bunches ()
{
  register int i, j;
  register struct misc_bunch *bunch;
#ifdef NAMES_HAVE_UNDERSCORE
  int offset = 1;
#else
  int offset = 0;
#endif

  misc_function_vector
    = (struct misc_function *)
      xmalloc (misc_count * sizeof (struct misc_function));

  j = 0;
  bunch = misc_bunch;
  while (bunch)
    {
      for (i = 0; i < misc_bunch_index; i++)
	{
	  misc_function_vector[j] = bunch->contents[i];
	  misc_function_vector[j].name
	    = concat (misc_function_vector[j].name
		      + (misc_function_vector[j].name[0] == '_' ? offset : 0),
		      "", "");
	  j++;
	}
      bunch = bunch->next;
      misc_bunch_index = MISC_BUNCH_SIZE;
    }

  misc_function_count = j;

  /* Sort the misc functions by address.  */

  qsort (misc_function_vector, j, sizeof (struct misc_function),
	 compare_misc_functions);
}

/* Call sort_syms to sort alphabetically
   the symbols of each block of each symtab.  */

static int
compare_symbols (s1, s2)
     struct symbol **s1, **s2;
{
  /* Names that are less should come first.  */
  register int namediff = strcmp (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2));
  if (namediff != 0) return namediff;
  /* For symbols of the same name, registers should come first.  */
  return ((SYMBOL_CLASS (*s2) == LOC_REGISTER)
	  - (SYMBOL_CLASS (*s1) == LOC_REGISTER));
}

static void
sort_syms ()
{
  register struct symtab *s;
  register int i, nbl;
  register struct blockvector *bv;
  register struct block *b;

  for (s = symtab_list; s; s = s->next)
    {
      bv = BLOCKVECTOR (s);
      nbl = BLOCKVECTOR_NBLOCKS (bv);
      for (i = 0; i < nbl; i++)
	{
	  b = BLOCKVECTOR_BLOCK (bv, i);
	  qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
		 sizeof (struct symbol *), compare_symbols);
	}
    }
}

/* This is the symbol-file command.  Read the file, analyze its symbols,
   and add a struct symtab to symtab_list.  */

void
symbol_file_command (name)
     char *name;
{
  register int desc;
  struct exec hdr;
  struct nlist *nlist;
  char *stringtab;
  long buffer;
  register int val;
  extern void close ();
  struct cleanup *old_chain;

  dont_repeat ();

  if (name == 0)
    {
      if (symtab_list && !query ("Discard symbol table? ", 0))
	error ("Not confirmed.");
      free_all_symtabs ();
      return;
    }

  if (symtab_list && !query ("Load new symbol table from \"%s\"? ", name))
    error ("Not confirmed.");

  if (symfile)
    free (symfile);
  symfile = 0;

  {
    char *absolute_name;
    desc = openp (getenv ("PATH"), 1, name, O_RDONLY, 0, &absolute_name);
    if (desc < 0)
      perror_with_name (name);
    else
      name = absolute_name;
  }

  old_chain = make_cleanup (close, desc);
  make_cleanup (free_current_contents, &name);

  val = myread (desc, &hdr, sizeof hdr);
  if (val < 0)
    perror_with_name (name);

  if (N_BADMAG (hdr))
    error ("File \"%s\" not in executable format.", name);

  if (hdr.a_syms == 0)
    {
      free_all_symtabs ();
      printf ("%s does not have a symbol-table.\n", name);
      fflush (stdout);
      return;
    }

  /* Now read the string table, all at once.  */
  val = lseek (desc, N_SYMOFF (hdr) + hdr.a_syms, 0);
  if (val < 0)
    perror_with_name (name);
  val = myread (desc, &buffer, sizeof buffer);
  if (val < 0)
    perror_with_name (name);
  stringtab = (char *) alloca (buffer);
  bcopy (&buffer, stringtab, sizeof buffer);
  val = myread (desc, stringtab + sizeof buffer, buffer - sizeof buffer);
  if (val < 0)
    perror_with_name (name);

#ifdef READ_GDB_SYMSEGS
  /* That puts us at the symsegs.  Read them.  */
  symseg_chain = read_symsegs (desc, name);
  hash_symsegs ();
#else
  /* Where people are using the 4.2 ld program, must not check for
     symsegs, because that ld puts randonm garbage at the end of
     the output file and that would trigger an error message.  */
  symseg_chain = 0;
#endif

  /* Position to read the symbol table.  Do not read it all at once. */
  val = lseek (desc, N_SYMOFF (hdr), 0);
  if (val < 0)
    perror_with_name (name);

  printf ("Reading symbol data from %s...", name);
  fflush (stdout);

  /* Throw away the old symbol table.  */

  free_all_symtabs ();

  init_misc_functions ();
  make_cleanup (discard_misc_bunches, 0);
  init_header_files ();
  make_cleanup (free_header_files, 0);

  /* Now that the symbol table data of the executable file are all in core,
     process them and define symbols accordingly.  Closes desc.  */

  read_dbx_symtab (desc, stringtab, hdr.a_syms / sizeof (struct nlist));

  /* Sort symbols alphabetically within each block.  */

  sort_syms ();

  /* Go over the misc functions and install them in vector.  */

  condense_misc_bunches ();

  /* Don't allow char * to have a typename (else would get caddr_t.)  */

  TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;

  /* Make a default for file to list.  */

  select_source_symtab (symtab_list);

  symfile = savestring (name, strlen (name));

  do_cleanups (old_chain);

  /* Free the symtabs made by read_symsegs, but not their contents,
     which have been copied into symtabs on symtab_list.  */
  while (symseg_chain)
    {
      register struct symtab *s = symseg_chain->next;
      free (symseg_chain);
      symseg_chain = s;
    }

  printf ("done.\n");
  fflush (stdout);
}

/* Return name of file symbols were loaded from, or 0 if none..  */

char *
get_sym_file ()
{
  return symfile;
}

/* Given pointers to a a.out symbol table in core containing  dbx style data,
   analyze them and create struct symtab's describing the symbols.
   NLISTLEN is the number of symbols in the symbol table.
   We read them one at a time using stdio.
   All symbol names are given as offsets relative to STRINGTAB.  */

static void
read_dbx_symtab (desc, stringtab, nlistlen)
     int desc;
     register char *stringtab;
     register int nlistlen;
{
  FILE *stream = fdopen (desc, "r");
  struct nlist buf;
  register char *namestring;
  register struct symbol *sym, *prev;
  int hash;
  int num_object_files = 0;

#ifdef N_BINCL
  subfile_stack = 0;
#endif

  nlist_stream_global = stream;
  nlist_size_global = nlistlen;
  stringtab_global = stringtab;
  last_source_file = 0;
  bzero (global_sym_chain, sizeof global_sym_chain);

  for (symnum = 0; symnum < nlistlen; symnum++)
    {
      fread (&buf, sizeof buf, 1, stream);
      namestring = buf.n_un.n_strx ? buf.n_un.n_strx + stringtab : "";
      if (buf.n_type & N_STAB)
	process_one_symbol (buf.n_type, buf.n_desc,
			    buf.n_value, namestring);
      /* A static text symbol whose name ends in ".o"
	 can only mean the start of another object file.
	 So end the symtab of the source file we have been processing.
	 This is how we avoid counting the libraries as part
	 or the last source file.
	 Also this way we find end of first object file (crt0).  */
      else if (buf.n_type == N_TEXT
	       && !strcmp (namestring + strlen (namestring) - 2, ".o"))
	{
	  if (num_object_files++ == 1)
	    first_object_file_end = buf.n_value;
	  if (last_source_file)
	    end_symtab (buf.n_value);
	}
      else if (buf.n_type & N_EXT || buf.n_type == N_TEXT)
	{
	  int used_up = 0;

	  /* Record the location of _etext.  */
	  if (buf.n_type == (N_TEXT | N_EXT)
	      && !strcmp (namestring, "_etext"))
	    end_of_text_addr = buf.n_value;

	  /* Global symbol: see if we came across a dbx definition
	     for a corresponding symbol.  If so, store the value.
	     Remove syms from the chain when their values are stored,
	     but search the whole chain, as there may be several syms
	     from different files with the same name.  */
	  if (buf.n_type & N_EXT)
	    {
	      prev = 0;
#ifdef NAMES_HAVE_UNDERSCORE
	      hash = hashname (namestring + 1);
#else /* not NAMES_HAVE_UNDERSCORE */
	      hash = hashname (namestring);
#endif /* not NAMES_HAVE_UNDERSCORE */
	      for (sym = global_sym_chain[hash];
		   sym;)
		{
		  if (
#ifdef NAMES_HAVE_UNDERSCORE
		      *namestring == '_'
		      && namestring[1] == SYMBOL_NAME (sym)[0]
		      &&
		      !strcmp (namestring + 2, SYMBOL_NAME (sym) + 1)
#else /* NAMES_HAVE_UNDERSCORE */
		      namestring[0] == SYMBOL_NAME (sym)[0]
		      &&
		      !strcmp (namestring + 1, SYMBOL_NAME (sym) + 1)
#endif /* NAMES_HAVE_UNDERSCORE */
		      )
		    {
		      if (prev)
			SYMBOL_VALUE (prev) = SYMBOL_VALUE (sym);
		      else
			global_sym_chain[hash]
			  = (struct symbol *) SYMBOL_VALUE (sym);
		      SYMBOL_VALUE (sym) = buf.n_value;
		      if (prev)
			sym = (struct symbol *) SYMBOL_VALUE (prev);
		      else
			sym = global_sym_chain[hash];

		      used_up = 1;
		    }
		  else
		    {
		      prev = sym;
		      sym = (struct symbol *) SYMBOL_VALUE (sym);
		    }
		}
	    }

	  /* Defined global or text symbol: record as a misc function
	     if it didn't give its address to a debugger symbol above.  */
	  if (buf.n_type <= (N_TYPE | N_EXT)
	      && buf.n_type != N_EXT
	      && ! used_up)
	    record_misc_function (namestring, buf.n_value);
	}
    }

  if (last_source_file)
    end_symtab (end_of_text_addr);

  fclose (stream);
}

/* dbx allows the text of a symbol name to be continued into the
   next symbol name!  When such a continuation is encountered
   (a \ at the end of the text of a name)
   call this function to get the continuation.  */

static char *
next_symbol_text ()
{
  struct nlist buf;
  fread (&buf, sizeof buf, 1, nlist_stream_global);
  symnum++;
  return buf.n_un.n_strx + stringtab_global;
}

static int
hashname (name)
     char *name;
{
  register char *p = name;
  register int total = p[0];
  register int c;

  c = p[1];
  total += c << 2;
  if (c)
    {
      c = p[2];
      total += c << 4;
      if (c)
	total += p[3] << 6;
    }
  
  return total % HASHSIZE;
}

/* Put all appropriate global symbols in the symseg data
   onto the hash chains so that their addresses will be stored
   when seen later in loader global symbols.  */

static void
hash_symsegs ()
{
  /* Look at each symbol in each block in each symseg symtab.  */
  struct symtab *s;
  for (s = symseg_chain; s; s = s->next)
    {
      register int n;
      for (n = BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)) - 1; n >= 0; n--)
	{
	  register struct block *b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), n);
	  register int i;
	  for (i = BLOCK_NSYMS (b) - 1; i >= 0; i--)
	    {
	      register struct symbol *sym = BLOCK_SYM (b, i);

	      /* Put the symbol on a chain if its value is an address
		 that is figured out by the loader.  */

	      if (SYMBOL_CLASS (sym) == LOC_EXTERNAL)
		{
		  register int hash = hashname (SYMBOL_NAME (sym));
		  SYMBOL_VALUE (sym) = (int) global_sym_chain[hash];
		  global_sym_chain[hash] = sym;
		  SYMBOL_CLASS (sym) = LOC_STATIC;
		}
	    }
	}
    }
}

static void
process_one_symbol (type, desc, value, name)
     int type, desc;
     CORE_ADDR value;
     char *name;
{
  register struct context_stack *new;
  
  /* Something is wrong if we see real data before
     seeing a source file name.  */
  
#ifdef N_NSYMS
  if (type == N_NSYMS) return;
#endif

  if (type != N_SO && last_source_file == 0)
    error ("Invalid symbol data: does not start by identifying a source file.");

  switch (type)
    {
    case N_FUN:
    case N_FNAME:
      /* Either of these types of symbols indicates the start of
	 a new function.  We must process its "name" normally for dbx,
	 but also record the start of a new lexical context, and possibly
	 also the end of the lexical context for the previous function.  */
      new = context_stack;
      within_function = 1;
      if (new)
	{
	  /* Make a block for the local symbols within.  */
	  finish_block (new->name, &local_symbols, new->old_blocks,
			new->start_addr, value);
	}
      else
	{
	  new = (struct context_stack *) xmalloc (sizeof (struct context_stack));
	  new->next = 0;
	  new->depth = -1;
	  context_stack = new;
	}
      new->locals = 0;
      new->old_blocks = pending_blocks;
      new->start_addr = value;
      new->name = define_symbol (value, name, desc);
      local_symbols = 0;
      break;

    case N_LBRAC:
      /* This "symbol" just indicates the start of an inner lexical
	 context within a function.  */
      new = (struct context_stack *) xmalloc (sizeof (struct context_stack));
      new->depth = desc;
      new->next = context_stack;
      context_stack = new;
      new->locals = local_symbols;
      new->old_blocks = pending_blocks;
      new->start_addr = value;
      new->name = 0;
      local_symbols = 0;
      break;

    case N_RBRAC:
      /* This "symbol" just indicates the end of an inner lexical
	 context that was started with N_RBRAC.  */
      new = context_stack;
      if (new == 0 || desc != new->depth)
	error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
      local_symbols = new->locals;
      context_stack = new->next;
      /* If this is not the outermost LBRAC...RBRAC pair in the
	 function, its local symbols preceded it, and are the ones
	 just recovered from the context stack.  Defined the block for them.

	 If this is the outermost LBRAC...RBRAC pair, there is no
	 need to do anything; leave the symbols that preceded it
	 to be attached to the function's own block.  */
      if (local_symbols && context_stack->next)
	{
	  /* Muzzle a compiler bug that makes end > start.  */
	  if (new->start_addr > value)
	    new->start_addr = value;
	  /* Make a block for the local symbols within.  */
	  finish_block (0, &local_symbols, new->old_blocks,
			new->start_addr + last_source_start_addr,
			value + last_source_start_addr);
	}
      free (new);
      break;

    case N_FN:
      /* This kind of symbol supposedly indicates the start
	 of an object file.  In fact this type does not appear.  */
      break;

    case N_SO:
      /* This type of symbol indicates the start of data
	 for one source file.
	 Finish the symbol table of the previous source file
	 (if any) and start accumulating a new symbol table.  */
      if (last_source_file)
	end_symtab (value);
      start_symtab (name, value);
      break;

    case N_SOL:
      /* This type of symbol indicates the start of data for
	 a sub-source-file, one whose contents were copied or
	 included in the compilation of the main source file
	 (whose name was given in the N_SO symbol.)  */
      start_subfile (name);
      break;

#ifdef N_BINCL
    case N_BINCL:
      push_subfile ();
      add_new_header_file (name, value);
      start_subfile (name);
      break;

    case N_EINCL:
      start_subfile (pop_subfile ());
      break;

    case N_EXCL:
      add_old_header_file (name, value);
      break;
#endif /* have N_BINCL */

    case N_SLINE:
      /* This type of "symbol" really just records
	 one line-number -- core-address correspondence.
	 Enter it in the line list for this symbol table.  */
      record_line (desc, value);
      break;

    default:
      if (name)
	define_symbol (value, name, desc);
    }
}

static struct symbol *
define_symbol (value, string, desc)
     int value;
     char *string;
     int desc;
{
  register struct symbol *sym
    = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
  char *p = (char *) index (string, ':');
  int deftype;
  register int i;

  bzero (sym, sizeof (struct symbol));
  SYMBOL_NAME (sym) = obstack_copy0 (symbol_obstack, string, p - string);
  p++;
  /* Determine the type of name being defined.  */
  if ((*p >= '0' && *p <= '9') || *p == '(')
    deftype = 'l';
  else
    deftype = *p++;

  /* c is a special case, not followed by a type-number.
     SYMBOL:c=iVALUE for an integer constant symbol.
     SYMBOL:c=rVALUE for a floating constant symbol.  */
  if (deftype == 'c')
    {
      if (*p++ != '=')
	error ("Invalid symbol data at symtab pos %d.", symnum);
      switch (*p++)
	{
	case 'r':
	  {
	    double d = atof (p);
	    char *value;

	    SYMBOL_TYPE (sym) = builtin_type_double;
	    value = (char *) obstack_alloc (symbol_obstack, sizeof (double));
	    bcopy (&d, value, sizeof (double));
	    SYMBOL_VALUE_BYTES (sym) = value;
	    SYMBOL_CLASS (sym) = LOC_CONST;
	  }
	  break;
	case 'i':
	  {
	    SYMBOL_TYPE (sym) = builtin_type_int;
	    SYMBOL_VALUE (sym) = atoi (p);
	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
	  }
	  break;
	default:
	  error ("Invalid symbol data at symtab pos %d.", symnum);
	}
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      return sym;
    }

  /* Now usually comes a number that says which data type,
     and possibly more stuff to define the type
     (all of which is handled by read_type)  */

  if (deftype == 'p' && *p == 'F')
    /* pF is a two-letter code that means a function parameter in Fortran.
       The type-number specifies the type of the return value.
       Translate it into a pointer-to-function type.  */
    {
      p++;
      SYMBOL_TYPE (sym)
	= lookup_pointer_type (lookup_function_type (read_type (&p)));
    }
  else
    SYMBOL_TYPE (sym) = read_type (&p);

  switch (deftype)
    {
    case 'f':
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      break;

    case 'F':
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &global_symbols);
      break;

    case 'G':
      /* For a class G (global) symbol, it appears that the
	 value is not correct.  It is necessary to search for the
	 corresponding linker definition to find the value.
	 These definitions appear at the end of the namelist.  */
      i = hashname (SYMBOL_NAME (sym));
      SYMBOL_VALUE (sym) = (int) global_sym_chain[i];
      global_sym_chain[i] = sym;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &global_symbols);
      break;

      /* This case is faked by a conditional above,
	 when there is no code letter in the dbx data.
	 Dbx data never actually contains 'l'.  */
    case 'l':
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      break;

    case 'p':
      SYMBOL_CLASS (sym) = LOC_ARG;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      /* DESC == 0 implies compiled with GCC.
	 In this case, if it says `short', believe it.  */
      if (desc == 0)
	break;
      /* If PCC says a parameter is a short or a char,
	 it is really an int.  */
      if (SYMBOL_TYPE (sym) == builtin_type_char
	  || SYMBOL_TYPE (sym) == builtin_type_short)
	SYMBOL_TYPE (sym) = builtin_type_int;
      else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
	       || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
	SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
      break;

    case 'r':
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      break;

    case 'S':
      /* Static symbol at top level of file */
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      break;

    case 't':
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
	  && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
	TYPE_NAME (SYMBOL_TYPE (sym)) = concat (SYMBOL_NAME (sym), "", "");
      add_symbol_to_list (sym, &file_symbols);
      break;

    case 'T':
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
	  && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
	TYPE_NAME (SYMBOL_TYPE (sym))
	  = concat ("",
		    (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
		     ? "enum "
		     : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
			? "struct " : "union ")),
		    SYMBOL_NAME (sym));
      add_symbol_to_list (sym, &file_symbols);
      break;

    case 'V':
    case 'v':
      /* Static symbol of local scope */
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE (sym) = value;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      break;

    default:
      error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
    }
  return sym;
}

/* Read a number by which a type is referred to in dbx data,
   or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
   Just a single number N is equivalent to (0,N).
   Return the two numbers by storing them in the vector TYPENUMS.
   TYPENUMS will then be used as an argument to dbx_lookup_type.  */

static void
read_type_number (pp, typenums)
     register char **pp;
     register int *typenums;
{
  if (**pp == '(')
    {
      (*pp)++;
      typenums[0] = read_number (pp, ',');
      typenums[1] = read_number (pp, ')');
    }
  else
    {
      typenums[0] = 0;
      typenums[1] = read_number (pp, 0);
    }
}

/* Read a dbx type reference or definition;
   return the type that is meant.
   This can be just a number, in which case it references
   a type already defined and placed in type_vector.
   Or the number can be followed by an =, in which case
   it means to define a new type according to the text that
   follows the =.  */

static
struct type *
read_type (pp)
     register char **pp;
{
  register struct type *type = 0;
  register int n;
  struct type *type1;
  int typenums[2];
  int xtypenums[2];

  read_type_number (pp, typenums);

  /* Detect random reference to type not yet defined.
     Allocate a type object but leave it zeroed.  */
  if (**pp != '=')
    return dbx_alloc_type (typenums);

  *pp += 2;
  switch ((*pp)[-1])
    {
    case 'x':
      type = dbx_alloc_type (typenums);
      /* Set the type code according to the following letter.  */
      switch ((*pp)[0])
	{
	case 's':
	  TYPE_CODE (type) = TYPE_CODE_STRUCT;
	  break;
	case 'u':
	  TYPE_CODE (type) = TYPE_CODE_UNION;
	  break;
	case 'e':
	  TYPE_CODE (type) = TYPE_CODE_ENUM;
	  break;
	}
      /* Skip the name the cross-ref points to.  */
      *pp = (char *) index (*pp, ',');
      /* Just allocate the type and leave it zero if nothing known */
      return dbx_alloc_type (typenums);

    case '0':
    case '1':
    case '2':
    case '3':
    case '4':
    case '5':
    case '6':
    case '7':
    case '8':
    case '9':
    case '(':
      (*pp)--;
      read_type_number (pp, xtypenums);
      type = *dbx_lookup_type (xtypenums);
      if (type == 0)
	type = builtin_type_void;
      *dbx_lookup_type (typenums) = type;
      break;
      
    case '*':
      type = dbx_alloc_type (typenums);
      smash_to_pointer_type (type, read_type (pp));
      break;

    case 'f':
      type = dbx_alloc_type (typenums);
      smash_to_function_type (type, read_type (pp));
      break;

    case 'r':
      type = read_range_type (pp, typenums);
      *dbx_lookup_type (typenums) = type;
      break;

    case 'e':
      type = dbx_alloc_type (typenums);
      type = read_enum_type (pp, type);
      *dbx_lookup_type (typenums) = type;
      break;

    case 's':
      type = dbx_alloc_type (typenums);
      type = read_struct_type (pp, type);
      break;

    case 'u':
      type = dbx_alloc_type (typenums);
      type = read_struct_type (pp, type);
      TYPE_CODE (type) = TYPE_CODE_UNION;
      break;

    case 'a':
      /* Define an array type.  */
      type = dbx_alloc_type (typenums);

      /* dbx expresses array types in terms of a range type for the index,
	 and that range type is specified right inside the array type spec
	 making ar1;MIN;MAX;VALTYPE  */
      if (!strncmp (*pp, "r1;0;", 5))
	(*pp) += 5;
      else if (!strncmp (*pp, "r(0,1);0;", 9))
	(*pp) += 9;
      else break;

      TYPE_CODE (type) = TYPE_CODE_ARRAY;
      /* In Fortran, an upper bound may be T... meaning a parameter specifies
	 the length of the data.  In this case, just pretend the bound is 1.
	 This happens only for array parameters, which are really passed
	 as pointers anyway, and we will translate them into such.  */
      if (**pp == 'T')
	{
	  n = 1;
	  while (**pp != ';')
	    (*pp)++;
	}
      else
	n = read_number (pp, ';') + 1;
      TYPE_TARGET_TYPE (type) = read_type (pp);
      TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type)) * n;
      break;

    default:
      error ("Invalid symbol data: unrecognized type-code `%c' at symtab pos %d.",
	     (*pp)[-1], symnum);
    }

  if (type == 0)
    abort ();

#if 0
  /* If this is an overriding temporary alteration for a header file's
     contents, and this type number is unknown in the global definition,
     put this type into the global definition at this type number.  */
  if (header_file_prev_index >= 0)
    {
      register struct type **tp
        = explicit_lookup_type (header_file_prev_index, typenums[1]);
      if (*tp == 0)
	*tp = type;
    }
#endif
  return type;
}

/* This page contains subroutines of read_type.  */

/* Read the description of a structure (or union type)
   and return an object describing the type.  */

static struct type *
read_struct_type (pp, type)
     char **pp;
     register struct type *type;
{
  struct nextfield
    {
      struct nextfield *next;
      struct field field;
    };

  register struct nextfield *list = 0;
  struct nextfield *new;
  int totalsize;
  char *name;
  register char *p;
  int nfields = 0;
  register int n;

  TYPE_CODE (type) = TYPE_CODE_STRUCT;

  /* First comes the total size in bytes.  */

  TYPE_LENGTH (type) = read_number (pp, 0);

  /* Now come the fields, as NAME:TYPENUM,BITPOS,BITSIZE; for each one.
     At the end, we see a semicolon instead of a field.  */

  while (**pp != ';')
    {
      /* Check for and handle cretinous dbx symbol name continuation!  */
      if (**pp == '\\')
	*pp = next_symbol_text ();

      /* Get space to record the next field's data.  */
      new = (struct nextfield *) alloca (sizeof (struct nextfield));
      new->next = list;
      list = new;

      /* Read the data.  */
      p = *pp;
      while (*p != ':') p++;
      list->field.name = savestring (*pp, p - *pp);
      *pp = p + 1;
      list->field.type = read_type (pp);
      if (**pp != ',')
	error ("Invalid symbol data: bad structure-type format at symtab pos %d.",
	       symnum);
      (*pp)++;			/* Skip the comma.  */
      list->field.bitpos = read_number (pp, ',');
      list->field.bitsize = read_number (pp, ';');
      /* Detect an unpacked field and mark it as such.
	 dbx gives a bit size for all fields.
	 Also detect forward refs to structures and unions,
	 and treat enums as if they had the width of ints.  */
      if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
	   || TYPE_CODE (list->field.type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (list->field.type) == TYPE_CODE_UNION
	   || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
	       && list->field.bitsize == 8 * TYPE_LENGTH (builtin_type_int)))
	  &&
	  list->field.bitpos % 8 == 0)
	list->field.bitsize = 0;
      nfields++;
    }

  (*pp)++;			/* Skip the terminating ';'.  */

  /* Now create the vector of fields, and record how big it is.  */

  TYPE_NFIELDS (type) = nfields;
  TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
						       sizeof (struct field) * nfields);

  /* Copy the saved-up fields into the field vector.  */

  for (n = nfields; list; list = list->next)
    TYPE_FIELD (type, --n) = list->field;

  return type;
}

/* Read a definition of an enumeration type,
   and create and return a suitable type object.
   Also defines the symbols that represent the values of the type.  */

static struct type *
read_enum_type (pp, type)
     register char **pp;
     register struct type *type;
{
  register char *p;
  char *name;
  register long n;
  register struct symbol *sym;
  int nsyms = 0;
  struct pending **symlist;
  struct pending *osyms, *syms;

  if (within_function)
    symlist = &local_symbols;
  else
    symlist = &file_symbols;
  osyms = *symlist;

  /* Read the value-names and their values.
     The input syntax is NAME:VALUE,NAME:VALUE, and so on.
     A semicolon instead of a NAME means the end.  */
  while (**pp && **pp != ';')
    {
      /* Check for and handle cretinous dbx symbol name continuation!  */
      if (**pp == '\\')
	*pp = next_symbol_text ();

      p = *pp;
      while (*p != ':') p++;
      name = savestring (*pp, p - *pp);
      *pp = p + 1;
      n = read_number (pp, ',');
      
      sym = (struct symbol *) xmalloc (sizeof (struct symbol));
      bzero (sym, sizeof (struct symbol));
      SYMBOL_NAME (sym) = name;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_VALUE (sym) = n;
      add_symbol_to_list (sym, symlist);
      nsyms++;
    }

  (*pp)++;			/* Skip the semicolon.  */

  /* Now fill in the fields of the type-structure.  */

  TYPE_LENGTH (type) = sizeof (int);
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  TYPE_NFIELDS (type) = nsyms;
  TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);

  /* Find the symbols for the values and put them into the type.
     The symbols can be found in the symlist that we put them on
     to cause them to be defined.  osyms contains the old value
     of that symlist; everything up to there was defined by us.  */

  for (syms = *symlist, n = nsyms; syms != osyms; syms = syms->next)
    {
      SYMBOL_TYPE (syms->symbol) = type;
      TYPE_FIELD_NAME (type, --n) = SYMBOL_NAME (syms->symbol);
      TYPE_FIELD_VALUE (type, n) = SYMBOL_VALUE (syms->symbol);
      TYPE_FIELD_BITPOS (type, n) = 0;
      TYPE_FIELD_BITSIZE (type, n) = 0;
    }

  return type;
}
  
static struct type *
read_range_type (pp, typenums)
     char **pp;
     int typenums[2];
{
  char *errp = *pp;
  int rangenums[2];
  int n1, n2, n3;

  /* First comes a type we are a subrange of.
     In practice it is usually 0, 1 or the type being defined.  */
  read_type_number (pp, rangenums);
  n1 = rangenums[1];

  /* A semicolon should now follow; skip it.  */
  if (**pp == ';')
    (*pp)++;

  /* The remaining two operands are usually lower and upper bounds
     of the range.  But in some special cases they mean something else.  */
  n2 = read_number (pp, ';');
  n3 = read_number (pp, ';');

  /* A type defined as a subrange of itself, with bounds both 0, is void.  */
  if (rangenums[0] == typenums[0] && rangenums[1] == typenums[1]
      && n2 == 0 && n3 == 0)
    return builtin_type_void;

  /* If n3 is zero and n2 is not, we want a floating type,
     and n2 is the width in bytes.

     Fortran programs appear to use this for complex types also,
     and they give no way to distinguish between double and single-complex!
     We don't have complex types, so we would lose on all fortran files!
     So return type `double' for all of those.  It won't work right
     for the complex values, but at least it makes the file loadable.  */

  if (n3 == 0 && n2 > 0)
    {
      if (n2 == sizeof (float))
	return builtin_type_float;
      return builtin_type_double;
    }

  /* If the upper bound is -1, it must really be an unsigned int.  */

  else if (n2 == 0 && n3 == -1)
    {
      if (sizeof (int) == sizeof (long))
	return builtin_type_unsigned_int;
      else
	return builtin_type_unsigned_long;
    }

  /* Detect unsigned subranges of int.  Int is normally 1.
     Note that `char' is usually given bounds of 0 to 127,
     and would therefore appear unsigned; but it is described
     as a subrange of itself, so we reject it here.  */

  else if (n2 == 0 && n1 == 1)
    {
      /* an unsigned type */
      if (n3 == (1 << (8 * sizeof (int))) - 1)
	return builtin_type_unsigned_int;
      if (n3 == (1 << (8 * sizeof (short))) - 1)
	return builtin_type_unsigned_short;
      if (n3 == (1 << (8 * sizeof (char))) - 1)
	return builtin_type_unsigned_char;
    }
  else
    {
      /* a signed type */
      if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
	return builtin_type_int;
      if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
	 return builtin_type_long;
      if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
	return builtin_type_short;
      if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
	return builtin_type_char;
    }
  error ("Invalid symbol data: range type spec %s at symtab pos %d.",
	 errp - 1, symnum);
}

/* Read a number from the string pointed to by *PP.
   The value of *PP is advanced over the number.
   If END is nonzero, the character that ends the
   number must match END, or an error happens;
   and that character is skipped if it does match.
   If END is zero, *PP is left pointing to that character.  */

static long
read_number (pp, end)
     char **pp;
     int end;
{
  register char *p = *pp;
  register long n = 0;
  register int c;
  int sign = 1;

  /* Handle an optional leading minus sign.  */

  if (*p == '-')
    {
      sign = -1;
      p++;
    }

  /* Read the digits, as far as they go.  */

  while ((c = *p++) >= '0' && c <= '9')
    {
      n *= 10;
      n += c - '0';
    }
  if (end)
    {
      if (c != end)
	error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
    }
  else
    --p;

  *pp = p;
  return n * sign;
}

static
initialize ()
{
  symfile = 0;

  add_com ("symbol-file", class_files, symbol_file_command,
	   "Load symbol table (in dbx format) from executable file FILE.");
}

END_FILE

#endif /* READ_DBX_FORMAT */