aboutsummaryrefslogtreecommitdiff
path: root/gdb/d10v-tdep.c
blob: f15eeaa80554680a4a03d04a37a631fe2725a253 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
/* Target-dependent code for Mitsubishi D10V, for GDB.

   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
   Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/*  Contributed by Martin Hunt, hunt@cygnus.com */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "remote.h"
#include "floatformat.h"
#include "gdb/sim-d10v.h"
#include "sim-regno.h"

#include "gdb_assert.h"

struct gdbarch_tdep
  {
    int a0_regnum;
    int nr_dmap_regs;
    unsigned long (*dmap_register) (int nr);
    unsigned long (*imap_register) (int nr);
  };

/* These are the addresses the D10V-EVA board maps data and
   instruction memory to. */

enum memspace {
  DMEM_START  = 0x2000000,
  IMEM_START  = 0x1000000,
  STACK_START = 0x200bffe
};

/* d10v register names. */

enum
  {
    R0_REGNUM = 0,
    R3_REGNUM = 3,
    _FP_REGNUM = 11,
    LR_REGNUM = 13,
    _SP_REGNUM = 15,
    PSW_REGNUM = 16,
    _PC_REGNUM = 18,
    NR_IMAP_REGS = 2,
    NR_A_REGS = 2,
    TS2_NUM_REGS = 37,
    TS3_NUM_REGS = 42,
    /* d10v calling convention. */
    ARG1_REGNUM = R0_REGNUM,
    ARGN_REGNUM = R3_REGNUM,
    RET1_REGNUM = R0_REGNUM,
  };

#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)

/* Local functions */

extern void _initialize_d10v_tdep (void);

static CORE_ADDR d10v_read_sp (void);

static CORE_ADDR d10v_read_fp (void);

static void d10v_eva_prepare_to_trace (void);

static void d10v_eva_get_trace_data (void);

static CORE_ADDR
d10v_stack_align (CORE_ADDR len)
{
  return (len + 1) & ~1;
}

/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   and TYPE is the type (which is known to be struct, union or array).

   The d10v returns anything less than 8 bytes in size in
   registers. */

static int
d10v_use_struct_convention (int gcc_p, struct type *type)
{
  long alignment;
  int i;
  /* The d10v only passes a struct in a register when that structure
     has an alignment that matches the size of a register. */
  /* If the structure doesn't fit in 4 registers, put it on the
     stack. */
  if (TYPE_LENGTH (type) > 8)
    return 1;
  /* If the struct contains only one field, don't put it on the stack
     - gcc can fit it in one or more registers. */
  if (TYPE_NFIELDS (type) == 1)
    return 0;
  alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
  for (i = 1; i < TYPE_NFIELDS (type); i++)
    {
      /* If the alignment changes, just assume it goes on the
         stack. */
      if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
	return 1;
    }
  /* If the alignment is suitable for the d10v's 16 bit registers,
     don't put it on the stack. */
  if (alignment == 2 || alignment == 4)
    return 0;
  return 1;
}


static const unsigned char *
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] =
  {0x2f, 0x90, 0x5e, 0x00};
  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Map the REG_NR onto an ascii name.  Return NULL or an empty string
   when the reg_nr isn't valid. */

enum ts2_regnums
  {
    TS2_IMAP0_REGNUM = 32,
    TS2_DMAP_REGNUM = 34,
    TS2_NR_DMAP_REGS = 1,
    TS2_A0_REGNUM = 35
  };

static const char *
d10v_ts2_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
    "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
    "imap0", "imap1", "dmap", "a0", "a1"
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

enum ts3_regnums
  {
    TS3_IMAP0_REGNUM = 36,
    TS3_DMAP0_REGNUM = 38,
    TS3_NR_DMAP_REGS = 4,
    TS3_A0_REGNUM = 32
  };

static const char *
d10v_ts3_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
    "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
    "a0", "a1",
    "spi", "spu",
    "imap0", "imap1",
    "dmap0", "dmap1", "dmap2", "dmap3"
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

/* Access the DMAP/IMAP registers in a target independent way.

   Divide the D10V's 64k data space into four 16k segments:
   0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and 
   0xc000 -- 0xffff.

   On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
   0x7fff) always map to the on-chip data RAM, and the fourth always
   maps to I/O space.  The third (0x8000 - 0xbfff) can be mapped into
   unified memory or instruction memory, under the control of the
   single DMAP register.

   On the TS3, there are four DMAP registers, each of which controls
   one of the segments.  */

static unsigned long
d10v_ts2_dmap_register (int reg_nr)
{
  switch (reg_nr)
    {
    case 0:
    case 1:
      return 0x2000;
    case 2:
      return read_register (TS2_DMAP_REGNUM);
    default:
      return 0;
    }
}

static unsigned long
d10v_ts3_dmap_register (int reg_nr)
{
  return read_register (TS3_DMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_dmap_register (int reg_nr)
{
  return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
}

static unsigned long
d10v_ts2_imap_register (int reg_nr)
{
  return read_register (TS2_IMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_ts3_imap_register (int reg_nr)
{
  return read_register (TS3_IMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_imap_register (int reg_nr)
{
  return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
}

/* MAP GDB's internal register numbering (determined by the layout fo
   the REGISTER_BYTE array) onto the simulator's register
   numbering. */

static int
d10v_ts2_register_sim_regno (int nr)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (nr >= 0 && nr < NUM_REGS);
  if (nr >= TS2_IMAP0_REGNUM
      && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
    return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
  if (nr == TS2_DMAP_REGNUM)
    return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
  if (nr >= TS2_A0_REGNUM
      && nr < TS2_A0_REGNUM + NR_A_REGS)
    return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
  return nr;
}

static int
d10v_ts3_register_sim_regno (int nr)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (nr >= 0 && nr < NUM_REGS);
  if (nr >= TS3_IMAP0_REGNUM
      && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
    return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
  if (nr >= TS3_DMAP0_REGNUM
      && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
    return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
  if (nr >= TS3_A0_REGNUM
      && nr < TS3_A0_REGNUM + NR_A_REGS)
    return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
  return nr;
}

/* Index within `registers' of the first byte of the space for
   register REG_NR.  */

static int
d10v_register_byte (int reg_nr)
{
  if (reg_nr < A0_REGNUM)
    return (reg_nr * 2);
  else if (reg_nr < (A0_REGNUM + NR_A_REGS))
    return (A0_REGNUM * 2
	    + (reg_nr - A0_REGNUM) * 8);
  else
    return (A0_REGNUM * 2
	    + NR_A_REGS * 8
	    + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
}

/* Number of bytes of storage in the actual machine representation for
   register REG_NR.  */

static int
d10v_register_raw_size (int reg_nr)
{
  if (reg_nr < A0_REGNUM)
    return 2;
  else if (reg_nr < (A0_REGNUM + NR_A_REGS))
    return 8;
  else
    return 2;
}

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

static struct type *
d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr == PC_REGNUM)
    return builtin_type_void_func_ptr;
  if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
    return builtin_type_void_data_ptr;
  else if (reg_nr >= A0_REGNUM
      && reg_nr < (A0_REGNUM + NR_A_REGS))
    return builtin_type_int64;
  else
    return builtin_type_int16;
}

static int
d10v_daddr_p (CORE_ADDR x)
{
  return (((x) & 0x3000000) == DMEM_START);
}

static int
d10v_iaddr_p (CORE_ADDR x)
{
  return (((x) & 0x3000000) == IMEM_START);
}

static CORE_ADDR
d10v_make_daddr (CORE_ADDR x)
{
  return ((x) | DMEM_START);
}

static CORE_ADDR
d10v_make_iaddr (CORE_ADDR x)
{
  if (d10v_iaddr_p (x))
    return x;	/* Idempotency -- x is already in the IMEM space. */
  else
    return (((x) << 2) | IMEM_START);
}

static CORE_ADDR
d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
  return (((x) >> 2) & 0xffff);
}

static CORE_ADDR
d10v_convert_daddr_to_raw (CORE_ADDR x)
{
  return ((x) & 0xffff);
}

static void
d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
  /* Is it a code address?  */
  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
    {
      store_unsigned_integer (buf, TYPE_LENGTH (type), 
                              d10v_convert_iaddr_to_raw (addr));
    }
  else
    {
      /* Strip off any upper segment bits.  */
      store_unsigned_integer (buf, TYPE_LENGTH (type), 
                              d10v_convert_daddr_to_raw (addr));
    }
}

static CORE_ADDR
d10v_pointer_to_address (struct type *type, const void *buf)
{
  CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));

  /* Is it a code address?  */
  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
      || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
    return d10v_make_iaddr (addr);
  else
    return d10v_make_daddr (addr);
}

/* Don't do anything if we have an integer, this way users can type 'x
   <addr>' w/o having gdb outsmart them.  The internal gdb conversions
   to the correct space are taken care of in the pointer_to_address
   function.  If we don't do this, 'x $fp' wouldn't work.  */
static CORE_ADDR
d10v_integer_to_address (struct type *type, void *buf)
{
  LONGEST val;
  val = unpack_long (type, buf);
  return val;
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  

   Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */

static void
d10v_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  /* Only char return values need to be shifted right within the first
     regnum.  */
  if (TYPE_LENGTH (type) == 1
      && TYPE_CODE (type) == TYPE_CODE_INT)
    {
      bfd_byte tmp[2];
      tmp[1] = *(bfd_byte *)valbuf;
      regcache_cooked_write (regcache, RET1_REGNUM, tmp);
    }
  else
    {
      int reg;
      /* A structure is never more than 8 bytes long.  See
         use_struct_convention().  */
      gdb_assert (TYPE_LENGTH (type) <= 8);
      /* Write out most registers, stop loop before trying to write
         out any dangling byte at the end of the buffer.  */
      for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
	{
	  regcache_cooked_write (regcache, RET1_REGNUM + reg,
				 (bfd_byte *) valbuf + reg * 2);
	}
      /* Write out any dangling byte at the end of the buffer.  */
      if ((reg * 2) + 1 == TYPE_LENGTH (type))
	regcache_cooked_write_part (regcache, reg, 0, 1,
				    (bfd_byte *) valbuf + reg * 2);
    }
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

static CORE_ADDR
d10v_extract_struct_value_address (struct regcache *regcache)
{
  ULONGEST addr;
  regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
  return (addr | DMEM_START);
}

/* Immediately after a function call, return the saved pc.  We can't
   use frame->return_pc beause that is determined by reading R13 off
   the stack and that may not be written yet. */

static CORE_ADDR
d10v_saved_pc_after_call (struct frame_info *frame)
{
  return ((read_register (LR_REGNUM) << 2)
	  | IMEM_START);
}

static int
check_prologue (unsigned short op)
{
  /* st  rn, @-sp */
  if ((op & 0x7E1F) == 0x6C1F)
    return 1;

  /* st2w  rn, @-sp */
  if ((op & 0x7E3F) == 0x6E1F)
    return 1;

  /* subi  sp, n */
  if ((op & 0x7FE1) == 0x01E1)
    return 1;

  /* mv  r11, sp */
  if (op == 0x417E)
    return 1;

  /* nop */
  if (op == 0x5E00)
    return 1;

  /* st  rn, @sp */
  if ((op & 0x7E1F) == 0x681E)
    return 1;

  /* st2w  rn, @sp */
  if ((op & 0x7E3F) == 0x3A1E)
    return 1;

  return 0;
}

static CORE_ADDR
d10v_skip_prologue (CORE_ADDR pc)
{
  unsigned long op;
  unsigned short op1, op2;
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;

  /* If we have line debugging information, then the end of the */
  /* prologue should the first assembly instruction of  the first source line */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
	return sal.end;
    }

  if (target_read_memory (pc, (char *) &op, 4))
    return pc;			/* Can't access it -- assume no prologue. */

  while (1)
    {
      op = (unsigned long) read_memory_integer (pc, 4);
      if ((op & 0xC0000000) == 0xC0000000)
	{
	  /* long instruction */
	  if (((op & 0x3FFF0000) != 0x01FF0000) &&	/* add3 sp,sp,n */
	      ((op & 0x3F0F0000) != 0x340F0000) &&	/* st  rn, @(offset,sp) */
	      ((op & 0x3F1F0000) != 0x350F0000))	/* st2w  rn, @(offset,sp) */
	    break;
	}
      else
	{
	  /* short instructions */
	  if ((op & 0xC0000000) == 0x80000000)
	    {
	      op2 = (op & 0x3FFF8000) >> 15;
	      op1 = op & 0x7FFF;
	    }
	  else
	    {
	      op1 = (op & 0x3FFF8000) >> 15;
	      op2 = op & 0x7FFF;
	    }
	  if (check_prologue (op1))
	    {
	      if (!check_prologue (op2))
		{
		  /* if the previous opcode was really part of the prologue */
		  /* and not just a NOP, then we want to break after both instructions */
		  if (op1 != 0x5E00)
		    pc += 4;
		  break;
		}
	    }
	  else
	    break;
	}
      pc += 4;
    }
  return pc;
}

struct d10v_unwind_cache
{
  CORE_ADDR return_pc;
  /* The frame's base.  Used when constructing a frame ID.  */
  CORE_ADDR base;
  int size;
  CORE_ADDR *saved_regs;
  /* How far the SP and r11 (FP) have been offset from the start of
     the stack frame (as defined by the previous frame's stack
     pointer).  */
  LONGEST sp_offset;
  LONGEST r11_offset;
  int uses_frame;
  void **regs;
};

static int
prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
		    CORE_ADDR addr)
{
  int n;

  /* st  rn, @-sp */
  if ((op & 0x7E1F) == 0x6C1F)
    {
      n = (op & 0x1E0) >> 5;
      info->sp_offset -= 2;
      info->saved_regs[n] = info->sp_offset;
      return 1;
    }

  /* st2w  rn, @-sp */
  else if ((op & 0x7E3F) == 0x6E1F)
    {
      n = (op & 0x1E0) >> 5;
      info->sp_offset -= 4;
      info->saved_regs[n] = info->sp_offset;
      info->saved_regs[n + 1] = info->sp_offset + 2;
      return 1;
    }

  /* subi  sp, n */
  if ((op & 0x7FE1) == 0x01E1)
    {
      n = (op & 0x1E) >> 1;
      if (n == 0)
	n = 16;
      info->sp_offset -= n;
      return 1;
    }

  /* mv  r11, sp */
  if (op == 0x417E)
    {
      info->uses_frame = 1;
      info->r11_offset = info->sp_offset;
      return 1;
    }

  /* st  rn, @r11 */
  if ((op & 0x7E1F) == 0x6816)
    {
      n = (op & 0x1E0) >> 5;
      info->saved_regs[n] = info->r11_offset;
      return 1;
    }

  /* nop */
  if (op == 0x5E00)
    return 1;

  /* st  rn, @sp */
  if ((op & 0x7E1F) == 0x681E)
    {
      n = (op & 0x1E0) >> 5;
      info->saved_regs[n] = info->sp_offset;
      return 1;
    }

  /* st2w  rn, @sp */
  if ((op & 0x7E3F) == 0x3A1E)
    {
      n = (op & 0x1E0) >> 5;
      info->saved_regs[n] = info->sp_offset;
      info->saved_regs[n + 1] = info->sp_offset + 2;
      return 1;
    }

  return 0;
}

/* Put here the code to store, into fi->saved_regs, the addresses of
   the saved registers of frame described by FRAME_INFO.  This
   includes special registers such as pc and fp saved in special ways
   in the stack frame.  sp is even more special: the address we return
   for it IS the sp for the next frame. */

struct d10v_unwind_cache *
d10v_frame_unwind_cache (struct frame_info *next_frame,
			 void **this_prologue_cache)
{
  CORE_ADDR pc;
  ULONGEST prev_sp;
  ULONGEST this_base;
  unsigned long op;
  unsigned short op1, op2;
  int i;
  struct d10v_unwind_cache *info;

  if ((*this_prologue_cache))
    return (*this_prologue_cache);

  info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
  (*this_prologue_cache) = info;
  info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);

  info->size = 0;
  info->return_pc = 0;
  info->sp_offset = 0;

  pc = get_pc_function_start (frame_pc_unwind (next_frame));

  info->uses_frame = 0;
  while (1)
    {
      op = (unsigned long) read_memory_integer (pc, 4);
      if ((op & 0xC0000000) == 0xC0000000)
	{
	  /* long instruction */
	  if ((op & 0x3FFF0000) == 0x01FF0000)
	    {
	      /* add3 sp,sp,n */
	      short n = op & 0xFFFF;
	      info->sp_offset += n;
	    }
	  else if ((op & 0x3F0F0000) == 0x340F0000)
	    {
	      /* st  rn, @(offset,sp) */
	      short offset = op & 0xFFFF;
	      short n = (op >> 20) & 0xF;
	      info->saved_regs[n] = info->sp_offset + offset;
	    }
	  else if ((op & 0x3F1F0000) == 0x350F0000)
	    {
	      /* st2w  rn, @(offset,sp) */
	      short offset = op & 0xFFFF;
	      short n = (op >> 20) & 0xF;
	      info->saved_regs[n] = info->sp_offset + offset;
	      info->saved_regs[n + 1] = info->sp_offset + offset + 2;
	    }
	  else
	    break;
	}
      else
	{
	  /* short instructions */
	  if ((op & 0xC0000000) == 0x80000000)
	    {
	      op2 = (op & 0x3FFF8000) >> 15;
	      op1 = op & 0x7FFF;
	    }
	  else
	    {
	      op1 = (op & 0x3FFF8000) >> 15;
	      op2 = op & 0x7FFF;
	    }
	  if (!prologue_find_regs (info, op1, pc) 
	      || !prologue_find_regs (info, op2, pc))
	    break;
	}
      pc += 4;
    }

  info->size = -info->sp_offset;

  /* Compute the frame's base, and the previous frame's SP.  */
  if (info->uses_frame)
    {
      /* The SP was moved to the FP.  This indicates that a new frame
         was created.  Get THIS frame's FP value by unwinding it from
         the next frame.  */
      frame_unwind_unsigned_register (next_frame, FP_REGNUM, &this_base);
      /* The FP points at the last saved register.  Adjust the FP back
         to before the first saved register giving the SP.  */
      prev_sp = this_base + info->size;
    }
  else if (info->saved_regs[SP_REGNUM])
    {
      /* The SP was saved (which is very unusual), the frame base is
	 just the PREV's frame's TOP-OF-STACK.  */
      this_base = read_memory_unsigned_integer (info->saved_regs[SP_REGNUM], 
						register_size (current_gdbarch,
							       SP_REGNUM));
      prev_sp = this_base;
    }
  else
    {
      /* Assume that the FP is this frame's SP but with that pushed
         stack space added back.  */
      frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
      prev_sp = this_base + info->size;
    }

  info->base = d10v_make_daddr (this_base);
  prev_sp = d10v_make_daddr (prev_sp);

  /* Adjust all the saved registers so that they contain addresses and
     not offsets.  */
  for (i = 0; i < NUM_REGS - 1; i++)
    if (info->saved_regs[i])
      {
	info->saved_regs[i] = (prev_sp + info->saved_regs[i]);
      }

  if (info->saved_regs[LR_REGNUM])
    {
      CORE_ADDR return_pc 
	= read_memory_unsigned_integer (info->saved_regs[LR_REGNUM], 
					register_size (current_gdbarch, LR_REGNUM));
      info->return_pc = d10v_make_iaddr (return_pc);
    }
  else
    {
      ULONGEST return_pc;
      frame_unwind_unsigned_register (next_frame, LR_REGNUM, &return_pc);
      info->return_pc = d10v_make_iaddr (return_pc);
    }

  /* The SP_REGNUM is special.  Instead of the address of the SP, the
     previous frame's SP value is saved.  */
  info->saved_regs[SP_REGNUM] = prev_sp;

  return info;
}

static void
d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			   struct frame_info *frame, int regnum, int all)
{
  if (regnum >= 0)
    {
      default_print_registers_info (gdbarch, file, frame, regnum, all);
      return;
    }

  {
    ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
    frame_read_unsigned_register (frame, PC_REGNUM, &pc);
    frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
    frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
    frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
    frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
    fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
		     (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
		     (long) rpt_s, (long) rpt_e, (long) rpt_c);
  }

  {
    int group;
    for (group = 0; group < 16; group += 8)
      {
	int r;
	fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
	for (r = group; r < group + 8; r++)
	  {
	    ULONGEST tmp;
	    frame_read_unsigned_register (frame, r, &tmp);
	    fprintf_filtered (file, " %04lx", (long) tmp);
	  }
	fprintf_filtered (file, "\n");
      }
  }

  /* Note: The IMAP/DMAP registers don't participate in function
     calls.  Don't bother trying to unwind them.  */

  {
    int a;
    for (a = 0; a < NR_IMAP_REGS; a++)
      {
	if (a > 0)
	  fprintf_filtered (file, "    ");
	fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
      }
    if (NR_DMAP_REGS == 1)
      /* Registers DMAP0 and DMAP1 are constant.  Just return dmap2.  */
      fprintf_filtered (file, "    DMAP %04lx\n", d10v_dmap_register (2));
    else
      {
	for (a = 0; a < NR_DMAP_REGS; a++)
	  {
	    fprintf_filtered (file, "    DMAP%d %04lx", a, d10v_dmap_register (a));
	  }
	fprintf_filtered (file, "\n");
      }
  }

  {
    char *num = alloca (max_register_size (gdbarch));
    int a;
    fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
    for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
      {
	int i;
	fprintf_filtered (file, "  ");
	frame_register_read (frame, a, num);
	for (i = 0; i < max_register_size (current_gdbarch); i++)
	  {
	    fprintf_filtered (file, "%02x", (num[i] & 0xff));
	  }
      }
  }
  fprintf_filtered (file, "\n");
}

static void
show_regs (char *args, int from_tty)
{
  d10v_print_registers_info (current_gdbarch, gdb_stdout,
			     get_current_frame (), -1, 1);
}

static CORE_ADDR
d10v_read_pc (ptid_t ptid)
{
  ptid_t save_ptid;
  CORE_ADDR pc;
  CORE_ADDR retval;

  save_ptid = inferior_ptid;
  inferior_ptid = ptid;
  pc = (int) read_register (PC_REGNUM);
  inferior_ptid = save_ptid;
  retval = d10v_make_iaddr (pc);
  return retval;
}

static void
d10v_write_pc (CORE_ADDR val, ptid_t ptid)
{
  ptid_t save_ptid;

  save_ptid = inferior_ptid;
  inferior_ptid = ptid;
  write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
  inferior_ptid = save_ptid;
}

static CORE_ADDR
d10v_read_sp (void)
{
  return (d10v_make_daddr (read_register (SP_REGNUM)));
}

static CORE_ADDR
d10v_read_fp (void)
{
  return (d10v_make_daddr (read_register (FP_REGNUM)));
}

/* When arguments must be pushed onto the stack, they go on in reverse
   order.  The below implements a FILO (stack) to do this. */

struct stack_item
{
  int len;
  struct stack_item *prev;
  void *data;
};

static struct stack_item *push_stack_item (struct stack_item *prev,
					   void *contents, int len);
static struct stack_item *
push_stack_item (struct stack_item *prev, void *contents, int len)
{
  struct stack_item *si;
  si = xmalloc (sizeof (struct stack_item));
  si->data = xmalloc (len);
  si->len = len;
  si->prev = prev;
  memcpy (si->data, contents, len);
  return si;
}

static struct stack_item *pop_stack_item (struct stack_item *si);
static struct stack_item *
pop_stack_item (struct stack_item *si)
{
  struct stack_item *dead = si;
  si = si->prev;
  xfree (dead->data);
  xfree (dead);
  return si;
}


static CORE_ADDR
d10v_push_dummy_call (struct gdbarch *gdbarch, struct regcache *regcache,
		      CORE_ADDR dummy_addr, int nargs, struct value **args,
		      CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
{
  int i;
  int regnum = ARG1_REGNUM;
  struct stack_item *si = NULL;
  long val;

  /* Set the return address.  For the d10v, the return breakpoint is
     always at DUMMY_ADDR.  */
  regcache_cooked_write_unsigned (regcache, LR_REGNUM,
				  d10v_convert_iaddr_to_raw (dummy_addr));

  /* If STRUCT_RETURN is true, then the struct return address (in
     STRUCT_ADDR) will consume the first argument-passing register.
     Both adjust the register count and store that value.  */
  if (struct_return)
    {
      regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
      regnum++;
    }

  /* Fill in registers and arg lists */
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = check_typedef (VALUE_TYPE (arg));
      char *contents = VALUE_CONTENTS (arg);
      int len = TYPE_LENGTH (type);
      int aligned_regnum = (regnum + 1) & ~1;

      /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
      if (len <= 2 && regnum <= ARGN_REGNUM)
	/* fits in a single register, do not align */
	{
	  val = extract_unsigned_integer (contents, len);
	  regcache_cooked_write_unsigned (regcache, regnum++, val);
	}
      else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
	/* value fits in remaining registers, store keeping left
	   aligned */
	{
	  int b;
	  regnum = aligned_regnum;
	  for (b = 0; b < (len & ~1); b += 2)
	    {
	      val = extract_unsigned_integer (&contents[b], 2);
	      regcache_cooked_write_unsigned (regcache, regnum++, val);
	    }
	  if (b < len)
	    {
	      val = extract_unsigned_integer (&contents[b], 1);
	      regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
	    }
	}
      else
	{
	  /* arg will go onto stack */
	  regnum = ARGN_REGNUM + 1;
	  si = push_stack_item (si, contents, len);
	}
    }

  while (si)
    {
      sp = (sp - si->len) & ~1;
      write_memory (sp, si->data, si->len);
      si = pop_stack_item (si);
    }

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, SP_REGNUM,
				  d10v_convert_daddr_to_raw (sp));

  return sp;
}


/* Given a return value in `regbuf' with a type `valtype', 
   extract and copy its value into `valbuf'.  */

static void
d10v_extract_return_value (struct type *type, struct regcache *regcache,
			   void *valbuf)
{
  int len;
#if 0
  printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type), 
	 TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, 
	 (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), 
					 register_size (current_gdbarch, RET1_REGNUM)));
#endif
  if (TYPE_LENGTH (type) == 1)
    {
      ULONGEST c;
      regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
      store_unsigned_integer (valbuf, 1, c);
    }
  else
    {
      /* For return values of odd size, the first byte is in the
	 least significant part of the first register.  The
	 remaining bytes in remaining registers. Interestingly, when
	 such values are passed in, the last byte is in the most
	 significant byte of that same register - wierd. */
      int reg = RET1_REGNUM;
      int off = 0;
      if (TYPE_LENGTH (type) & 1)
	{
	  regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
				     (bfd_byte *)valbuf + off);
	  off++;
	  reg++;
	}
      /* Transfer the remaining registers.  */
      for (; off < TYPE_LENGTH (type); reg++, off += 2)
	{
	  regcache_cooked_read (regcache, RET1_REGNUM + reg,
				(bfd_byte *) valbuf + off);
	}
    }
}

/* Translate a GDB virtual ADDR/LEN into a format the remote target
   understands.  Returns number of bytes that can be transfered
   starting at TARG_ADDR.  Return ZERO if no bytes can be transfered
   (segmentation fault).  Since the simulator knows all about how the
   VM system works, we just call that to do the translation. */

static void
remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
				    CORE_ADDR *targ_addr, int *targ_len)
{
  long out_addr;
  long out_len;
  out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
				     &out_addr,
				     d10v_dmap_register,
				     d10v_imap_register);
  *targ_addr = out_addr;
  *targ_len = out_len;
}


/* The following code implements access to, and display of, the D10V's
   instruction trace buffer.  The buffer consists of 64K or more
   4-byte words of data, of which each words includes an 8-bit count,
   an 8-bit segment number, and a 16-bit instruction address.

   In theory, the trace buffer is continuously capturing instruction
   data that the CPU presents on its "debug bus", but in practice, the
   ROMified GDB stub only enables tracing when it continues or steps
   the program, and stops tracing when the program stops; so it
   actually works for GDB to read the buffer counter out of memory and
   then read each trace word.  The counter records where the tracing
   stops, but there is no record of where it started, so we remember
   the PC when we resumed and then search backwards in the trace
   buffer for a word that includes that address.  This is not perfect,
   because you will miss trace data if the resumption PC is the target
   of a branch.  (The value of the buffer counter is semi-random, any
   trace data from a previous program stop is gone.)  */

/* The address of the last word recorded in the trace buffer.  */

#define DBBC_ADDR (0xd80000)

/* The base of the trace buffer, at least for the "Board_0".  */

#define TRACE_BUFFER_BASE (0xf40000)

static void trace_command (char *, int);

static void untrace_command (char *, int);

static void trace_info (char *, int);

static void tdisassemble_command (char *, int);

static void display_trace (int, int);

/* True when instruction traces are being collected.  */

static int tracing;

/* Remembered PC.  */

static CORE_ADDR last_pc;

/* True when trace output should be displayed whenever program stops.  */

static int trace_display;

/* True when trace listing should include source lines.  */

static int default_trace_show_source = 1;

struct trace_buffer
  {
    int size;
    short *counts;
    CORE_ADDR *addrs;
  }
trace_data;

static void
trace_command (char *args, int from_tty)
{
  /* Clear the host-side trace buffer, allocating space if needed.  */
  trace_data.size = 0;
  if (trace_data.counts == NULL)
    trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
  if (trace_data.addrs == NULL)
    trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));

  tracing = 1;

  printf_filtered ("Tracing is now on.\n");
}

static void
untrace_command (char *args, int from_tty)
{
  tracing = 0;

  printf_filtered ("Tracing is now off.\n");
}

static void
trace_info (char *args, int from_tty)
{
  int i;

  if (trace_data.size)
    {
      printf_filtered ("%d entries in trace buffer:\n", trace_data.size);

      for (i = 0; i < trace_data.size; ++i)
	{
	  printf_filtered ("%d: %d instruction%s at 0x%s\n",
			   i,
			   trace_data.counts[i],
			   (trace_data.counts[i] == 1 ? "" : "s"),
			   paddr_nz (trace_data.addrs[i]));
	}
    }
  else
    printf_filtered ("No entries in trace buffer.\n");

  printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
}

/* Print the instruction at address MEMADDR in debugged memory,
   on STREAM.  Returns length of the instruction, in bytes.  */

static int
print_insn (CORE_ADDR memaddr, struct ui_file *stream)
{
  /* If there's no disassembler, something is very wrong.  */
  if (tm_print_insn == NULL)
    internal_error (__FILE__, __LINE__,
		    "print_insn: no disassembler");

  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    tm_print_insn_info.endian = BFD_ENDIAN_BIG;
  else
    tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
  return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
}

static void
d10v_eva_prepare_to_trace (void)
{
  if (!tracing)
    return;

  last_pc = read_register (PC_REGNUM);
}

/* Collect trace data from the target board and format it into a form
   more useful for display.  */

static void
d10v_eva_get_trace_data (void)
{
  int count, i, j, oldsize;
  int trace_addr, trace_seg, trace_cnt, next_cnt;
  unsigned int last_trace, trace_word, next_word;
  unsigned int *tmpspace;

  if (!tracing)
    return;

  tmpspace = xmalloc (65536 * sizeof (unsigned int));

  last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;

  /* Collect buffer contents from the target, stopping when we reach
     the word recorded when execution resumed.  */

  count = 0;
  while (last_trace > 0)
    {
      QUIT;
      trace_word =
	read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
      trace_addr = trace_word & 0xffff;
      last_trace -= 4;
      /* Ignore an apparently nonsensical entry.  */
      if (trace_addr == 0xffd5)
	continue;
      tmpspace[count++] = trace_word;
      if (trace_addr == last_pc)
	break;
      if (count > 65535)
	break;
    }

  /* Move the data to the host-side trace buffer, adjusting counts to
     include the last instruction executed and transforming the address
     into something that GDB likes.  */

  for (i = 0; i < count; ++i)
    {
      trace_word = tmpspace[i];
      next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
      trace_addr = trace_word & 0xffff;
      next_cnt = (next_word >> 24) & 0xff;
      j = trace_data.size + count - i - 1;
      trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
      trace_data.counts[j] = next_cnt + 1;
    }

  oldsize = trace_data.size;
  trace_data.size += count;

  xfree (tmpspace);

  if (trace_display)
    display_trace (oldsize, trace_data.size);
}

static void
tdisassemble_command (char *arg, int from_tty)
{
  int i, count;
  CORE_ADDR low, high;

  if (!arg)
    {
      low = 0;
      high = trace_data.size;
    }
  else
    { 
      char *space_index = strchr (arg, ' ');
      if (space_index == NULL)
	{
	  low = parse_and_eval_address (arg);
	  high = low + 5;
	}
      else
	{
	  /* Two arguments.  */
	  *space_index = '\0';
	  low = parse_and_eval_address (arg);
	  high = parse_and_eval_address (space_index + 1);
	  if (high < low)
	    high = low;
	}
    }

  printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));

  display_trace (low, high);

  printf_filtered ("End of trace dump.\n");
  gdb_flush (gdb_stdout);
}

static void
display_trace (int low, int high)
{
  int i, count, trace_show_source, first, suppress;
  CORE_ADDR next_address;

  trace_show_source = default_trace_show_source;
  if (!have_full_symbols () && !have_partial_symbols ())
    {
      trace_show_source = 0;
      printf_filtered ("No symbol table is loaded.  Use the \"file\" command.\n");
      printf_filtered ("Trace will not display any source.\n");
    }

  first = 1;
  suppress = 0;
  for (i = low; i < high; ++i)
    {
      next_address = trace_data.addrs[i];
      count = trace_data.counts[i];
      while (count-- > 0)
	{
	  QUIT;
	  if (trace_show_source)
	    {
	      struct symtab_and_line sal, sal_prev;

	      sal_prev = find_pc_line (next_address - 4, 0);
	      sal = find_pc_line (next_address, 0);

	      if (sal.symtab)
		{
		  if (first || sal.line != sal_prev.line)
		    print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
		  suppress = 0;
		}
	      else
		{
		  if (!suppress)
		    /* FIXME-32x64--assumes sal.pc fits in long.  */
		    printf_filtered ("No source file for address %s.\n",
				 local_hex_string ((unsigned long) sal.pc));
		  suppress = 1;
		}
	    }
	  first = 0;
	  print_address (next_address, gdb_stdout);
	  printf_filtered (":");
	  printf_filtered ("\t");
	  wrap_here ("    ");
	  next_address = next_address + print_insn (next_address, gdb_stdout);
	  printf_filtered ("\n");
	  gdb_flush (gdb_stdout);
	}
    }
}

static CORE_ADDR
d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;
  frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
  return d10v_make_iaddr (pc);
}

/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct.  */

static void
d10v_frame_this_id (struct frame_info *next_frame,
		    void **this_prologue_cache,
		    struct frame_id *this_id)
{
  struct d10v_unwind_cache *info
    = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
  CORE_ADDR base;
  CORE_ADDR pc;

  /* Start with a NULL frame ID.  */
  (*this_id) = null_frame_id;

  /* The PC is easy.  */
  pc = frame_pc_unwind (next_frame);

  /* This is meant to halt the backtrace at "_start".  Make sure we
     don't halt it at a generic dummy frame. */
  if (pc == IMEM_START || pc <= IMEM_START || inside_entry_file (pc))
    return;

  /* Hopefully the prologue analysis either correctly determined the
     frame's base (which is the SP from the previous frame), or set
     that base to "NULL".  */
  base = info->base;
  if (base == STACK_START || base == 0)
    return;

  /* Check that we're not going round in circles with the same frame
     ID (but avoid applying the test to sentinel frames which do go
     round in circles).  Can't use frame_id_eq() as that doesn't yet
     compare the frame's PC value.  */
  if (frame_relative_level (next_frame) >= 0
      && get_frame_type (next_frame) != DUMMY_FRAME
      && get_frame_id (next_frame).pc == pc
      && get_frame_id (next_frame).base == base)
    return;

  this_id->base = base;
  this_id->pc = pc;
}

static void
saved_regs_unwinder (struct frame_info *next_frame,
		     CORE_ADDR *this_saved_regs,
		     int regnum, int *optimizedp,
		     enum lval_type *lvalp, CORE_ADDR *addrp,
		     int *realnump, void *bufferp)
{
  if (this_saved_regs[regnum] != 0)
    {
      if (regnum == SP_REGNUM)
	{
	  /* SP register treated specially.  */
	  *optimizedp = 0;
	  *lvalp = not_lval;
	  *addrp = 0;
	  *realnump = -1;
	  if (bufferp != NULL)
	    store_address (bufferp, register_size (current_gdbarch, regnum),
			   this_saved_regs[regnum]);
	}
      else
	{
	  /* Any other register is saved in memory, fetch it but cache
	     a local copy of its value.  */
	  *optimizedp = 0;
	  *lvalp = lval_memory;
	  *addrp = this_saved_regs[regnum];
	  *realnump = -1;
	  if (bufferp != NULL)
	    {
	      /* Read the value in from memory.  */
	      read_memory (this_saved_regs[regnum], bufferp,
			   register_size (current_gdbarch, regnum));
	    }
	}
      return;
    }

  /* No luck, assume this and the next frame have the same register
     value.  If a value is needed, pass the request on down the chain;
     otherwise just return an indication that the value is in the same
     register as the next frame.  */
  frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
			 realnump, bufferp);
}


static void
d10v_frame_prev_register (struct frame_info *next_frame,
			  void **this_prologue_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *bufferp)
{
  struct d10v_unwind_cache *info
    = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
  if (regnum == PC_REGNUM)
    {
      /* The call instruction saves the caller's PC in LR.  The
	 function prologue of the callee may then save the LR on the
	 stack.  Find that possibly saved LR value and return it.  */
      saved_regs_unwinder (next_frame, info->saved_regs, LR_REGNUM, optimizedp,
			   lvalp, addrp, realnump, bufferp);
    }
  else
    {
      saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
			   lvalp, addrp, realnump, bufferp);
    }
}


static struct frame_unwind d10v_frame_unwind = {
  d10v_frame_this_id,
  d10v_frame_prev_register
};

const struct frame_unwind *
d10v_frame_p (CORE_ADDR pc)
{
  return &d10v_frame_unwind;
}

/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */

static struct frame_id
d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST base;
  struct frame_id id;
  id.pc = frame_pc_unwind (next_frame);
  frame_unwind_unsigned_register (next_frame, SP_REGNUM, &base);
  id.base = d10v_make_daddr (base);
  return id;
}

static gdbarch_init_ftype d10v_gdbarch_init;

static struct gdbarch *
d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST d10v_call_dummy_words[] =
  {0};
  struct gdbarch *gdbarch;
  int d10v_num_regs;
  struct gdbarch_tdep *tdep;
  gdbarch_register_name_ftype *d10v_register_name;
  gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;

  /* Find a candidate among the list of pre-declared architectures. */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided. */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_d10v_ts2:
      d10v_num_regs = 37;
      d10v_register_name = d10v_ts2_register_name;
      d10v_register_sim_regno = d10v_ts2_register_sim_regno;
      tdep->a0_regnum = TS2_A0_REGNUM;
      tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
      tdep->dmap_register = d10v_ts2_dmap_register;
      tdep->imap_register = d10v_ts2_imap_register;
      break;
    default:
    case bfd_mach_d10v_ts3:
      d10v_num_regs = 42;
      d10v_register_name = d10v_ts3_register_name;
      d10v_register_sim_regno = d10v_ts3_register_sim_regno;
      tdep->a0_regnum = TS3_A0_REGNUM;
      tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
      tdep->dmap_register = d10v_ts3_dmap_register;
      tdep->imap_register = d10v_ts3_imap_register;
      break;
    }

  set_gdbarch_read_pc (gdbarch, d10v_read_pc);
  set_gdbarch_write_pc (gdbarch, d10v_write_pc);
  set_gdbarch_read_fp (gdbarch, d10v_read_fp);
  set_gdbarch_read_sp (gdbarch, d10v_read_sp);

  set_gdbarch_num_regs (gdbarch, d10v_num_regs);
  set_gdbarch_sp_regnum (gdbarch, 15);
  set_gdbarch_fp_regnum (gdbarch, 11);
  set_gdbarch_pc_regnum (gdbarch, 18);
  set_gdbarch_register_name (gdbarch, d10v_register_name);
  set_gdbarch_register_size (gdbarch, 2);
  set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
  set_gdbarch_register_byte (gdbarch, d10v_register_byte);
  set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
  set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
  set_gdbarch_register_type (gdbarch, d10v_register_type);

  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
  set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
  set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
     double'' is 64 bits. */
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  switch (info.byte_order)
    {
    case BFD_ENDIAN_BIG:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
      set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
      set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
      break;
    case BFD_ENDIAN_LITTLE:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
      set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
      set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      "d10v_gdbarch_init: bad byte order for float format");
    }

  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);

  set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
  set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
  set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);

  set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 4);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);

  set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);

  set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_stack_align (gdbarch, d10v_stack_align);

  set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);

  set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);

  frame_unwind_append_predicate (gdbarch, d10v_frame_p);

  /* Methods for saving / extracting a dummy frame's ID.  */
  set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);

  /* Return the unwound PC value.  */
  set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);

  return gdbarch;
}

void
_initialize_d10v_tdep (void)
{
  register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);

  tm_print_insn = print_insn_d10v;

  target_resume_hook = d10v_eva_prepare_to_trace;
  target_wait_loop_hook = d10v_eva_get_trace_data;

  deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
		 "info registers");

  add_com ("itrace", class_support, trace_command,
	   "Enable tracing of instruction execution.");

  add_com ("iuntrace", class_support, untrace_command,
	   "Disable tracing of instruction execution.");

  add_com ("itdisassemble", class_vars, tdisassemble_command,
	   "Disassemble the trace buffer.\n\
Two optional arguments specify a range of trace buffer entries\n\
as reported by info trace (NOT addresses!).");

  add_info ("itrace", trace_info,
	    "Display info about the trace data buffer.");

  add_show_from_set (add_set_cmd ("itracedisplay", no_class,
				  var_integer, (char *) &trace_display,
			     "Set automatic display of trace.\n", &setlist),
		     &showlist);
  add_show_from_set (add_set_cmd ("itracesource", no_class,
			   var_integer, (char *) &default_trace_show_source,
		      "Set display of source code with trace.\n", &setlist),
		     &showlist);

}