1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
// OBSOLETE /* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
// OBSOLETE with Weitek 1167 and i387 support.
// OBSOLETE
// OBSOLETE Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 2003 Free
// OBSOLETE Software Foundation, Inc.
// OBSOLETE
// OBSOLETE Symmetry version by Jay Vosburgh (fubar@sequent.com).
// OBSOLETE
// OBSOLETE This file is part of GDB.
// OBSOLETE
// OBSOLETE This program is free software; you can redistribute it and/or modify
// OBSOLETE it under the terms of the GNU General Public License as published by
// OBSOLETE the Free Software Foundation; either version 2 of the License, or
// OBSOLETE (at your option) any later version.
// OBSOLETE
// OBSOLETE This program is distributed in the hope that it will be useful,
// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// OBSOLETE GNU General Public License for more details.
// OBSOLETE
// OBSOLETE You should have received a copy of the GNU General Public License
// OBSOLETE along with this program; if not, write to the Free Software
// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE Boston, MA 02111-1307, USA. */
// OBSOLETE
// OBSOLETE #ifndef TM_SYMMETRY_H
// OBSOLETE #define TM_SYMMETRY_H 1
// OBSOLETE
// OBSOLETE #include "regcache.h"
// OBSOLETE #include "doublest.h"
// OBSOLETE
// OBSOLETE /* I don't know if this will work for cross-debugging, even if you do get
// OBSOLETE a copy of the right include file. */
// OBSOLETE #include <machine/reg.h>
// OBSOLETE
// OBSOLETE #include "i386/tm-i386.h"
// OBSOLETE
// OBSOLETE /* Amount PC must be decremented by after a breakpoint. This is often the
// OBSOLETE number of bytes in BREAKPOINT but not always (such as now). */
// OBSOLETE
// OBSOLETE #undef DECR_PC_AFTER_BREAK
// OBSOLETE #define DECR_PC_AFTER_BREAK 0
// OBSOLETE
// OBSOLETE /* Number of machine registers */
// OBSOLETE
// OBSOLETE #undef NUM_REGS
// OBSOLETE #define NUM_REGS 49
// OBSOLETE
// OBSOLETE /* Initializer for an array of names of registers.
// OBSOLETE There should be NUM_REGS strings in this initializer. */
// OBSOLETE
// OBSOLETE /* Initializer for an array of names of registers. There should be at least
// OBSOLETE NUM_REGS strings in this initializer. Any excess ones are simply ignored.
// OBSOLETE Symmetry registers are in this weird order to match the register numbers
// OBSOLETE in the symbol table entries. If you change the order, things will probably
// OBSOLETE break mysteriously for no apparent reason. Also note that the st(0)...
// OBSOLETE st(7) 387 registers are represented as st0...st7. */
// OBSOLETE
// OBSOLETE #undef REGISTER_NAME
// OBSOLETE #define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
// OBSOLETE "ebx", "esi", "edi", "st2", "st3", \
// OBSOLETE "st4", "st5", "st6", "st7", "esp", \
// OBSOLETE "ebp", "eip", "eflags","fp1", "fp2", \
// OBSOLETE "fp3", "fp4", "fp5", "fp6", "fp7", \
// OBSOLETE "fp8", "fp9", "fp10", "fp11", "fp12", \
// OBSOLETE "fp13", "fp14", "fp15", "fp16", "fp17", \
// OBSOLETE "fp18", "fp19", "fp20", "fp21", "fp22", \
// OBSOLETE "fp23", "fp24", "fp25", "fp26", "fp27", \
// OBSOLETE "fp28", "fp29", "fp30", "fp31" }
// OBSOLETE
// OBSOLETE /* Register numbers of various important registers.
// OBSOLETE Note that some of these values are "real" register numbers,
// OBSOLETE and correspond to the general registers of the machine,
// OBSOLETE and some are "phony" register numbers which are too large
// OBSOLETE to be actual register numbers as far as the user is concerned
// OBSOLETE but do serve to get the desired values when passed to read_register. */
// OBSOLETE
// OBSOLETE #define EAX_REGNUM 0
// OBSOLETE #define EDX_REGNUM 1
// OBSOLETE #define ECX_REGNUM 2
// OBSOLETE #define ST0_REGNUM 3
// OBSOLETE #define ST1_REGNUM 4
// OBSOLETE #define EBX_REGNUM 5
// OBSOLETE #define ESI_REGNUM 6
// OBSOLETE #define EDI_REGNUM 7
// OBSOLETE #define ST2_REGNUM 8
// OBSOLETE #define ST3_REGNUM 9
// OBSOLETE
// OBSOLETE #define ST4_REGNUM 10
// OBSOLETE #define ST5_REGNUM 11
// OBSOLETE #define ST6_REGNUM 12
// OBSOLETE #define ST7_REGNUM 13
// OBSOLETE
// OBSOLETE #define FP1_REGNUM 18 /* first 1167 register */
// OBSOLETE /* Get %fp2 - %fp31 by addition, since they are contiguous */
// OBSOLETE
// OBSOLETE #undef SP_REGNUM
// OBSOLETE #define SP_REGNUM 14 /* (usp) Contains address of top of stack */
// OBSOLETE #define ESP_REGNUM 14
// OBSOLETE #undef FP_REGNUM
// OBSOLETE #define FP_REGNUM 15 /* (ebp) Contains address of executing stack frame */
// OBSOLETE #define EBP_REGNUM 15
// OBSOLETE #undef PC_REGNUM
// OBSOLETE #define PC_REGNUM 16 /* (eip) Contains program counter */
// OBSOLETE #define EIP_REGNUM 16
// OBSOLETE #undef PS_REGNUM
// OBSOLETE #define PS_REGNUM 17 /* (ps) Contains processor status */
// OBSOLETE #define EFLAGS_REGNUM 17
// OBSOLETE
// OBSOLETE /*
// OBSOLETE * Following macro translates i386 opcode register numbers to Symmetry
// OBSOLETE * register numbers. This is used by i386_frame_find_saved_regs.
// OBSOLETE *
// OBSOLETE * %eax %ecx %edx %ebx %esp %ebp %esi %edi
// OBSOLETE * i386 0 1 2 3 4 5 6 7
// OBSOLETE * Symmetry 0 2 1 5 14 15 6 7
// OBSOLETE *
// OBSOLETE */
// OBSOLETE #define I386_REGNO_TO_SYMMETRY(n) \
// OBSOLETE ((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
// OBSOLETE
// OBSOLETE /* The magic numbers below are offsets into u_ar0 in the user struct.
// OBSOLETE * They live in <machine/reg.h>. Gdb calls this macro with blockend
// OBSOLETE * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
// OBSOLETE * saved in the u area (along with a few others that aren't useful
// OBSOLETE * here. See <machine/reg.h>).
// OBSOLETE */
// OBSOLETE
// OBSOLETE #define REGISTER_U_ADDR(addr, blockend, regno) \
// OBSOLETE { struct user foo; /* needed for finding fpu regs */ \
// OBSOLETE switch (regno) { \
// OBSOLETE case 0: \
// OBSOLETE addr = blockend + EAX * sizeof(int); break; \
// OBSOLETE case 1: \
// OBSOLETE addr = blockend + EDX * sizeof(int); break; \
// OBSOLETE case 2: \
// OBSOLETE addr = blockend + ECX * sizeof(int); break; \
// OBSOLETE case 3: /* st(0) */ \
// OBSOLETE addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 4: /* st(1) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 5: \
// OBSOLETE addr = blockend + EBX * sizeof(int); break; \
// OBSOLETE case 6: \
// OBSOLETE addr = blockend + ESI * sizeof(int); break; \
// OBSOLETE case 7: \
// OBSOLETE addr = blockend + EDI * sizeof(int); break; \
// OBSOLETE case 8: /* st(2) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 9: /* st(3) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 10: /* st(4) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 11: /* st(5) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 12: /* st(6) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 13: /* st(7) */ \
// OBSOLETE addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
// OBSOLETE break; \
// OBSOLETE case 14: \
// OBSOLETE addr = blockend + ESP * sizeof(int); break; \
// OBSOLETE case 15: \
// OBSOLETE addr = blockend + EBP * sizeof(int); break; \
// OBSOLETE case 16: \
// OBSOLETE addr = blockend + EIP * sizeof(int); break; \
// OBSOLETE case 17: \
// OBSOLETE addr = blockend + FLAGS * sizeof(int); break; \
// OBSOLETE case 18: /* fp1 */ \
// OBSOLETE case 19: /* fp2 */ \
// OBSOLETE case 20: /* fp3 */ \
// OBSOLETE case 21: /* fp4 */ \
// OBSOLETE case 22: /* fp5 */ \
// OBSOLETE case 23: /* fp6 */ \
// OBSOLETE case 24: /* fp7 */ \
// OBSOLETE case 25: /* fp8 */ \
// OBSOLETE case 26: /* fp9 */ \
// OBSOLETE case 27: /* fp10 */ \
// OBSOLETE case 28: /* fp11 */ \
// OBSOLETE case 29: /* fp12 */ \
// OBSOLETE case 30: /* fp13 */ \
// OBSOLETE case 31: /* fp14 */ \
// OBSOLETE case 32: /* fp15 */ \
// OBSOLETE case 33: /* fp16 */ \
// OBSOLETE case 34: /* fp17 */ \
// OBSOLETE case 35: /* fp18 */ \
// OBSOLETE case 36: /* fp19 */ \
// OBSOLETE case 37: /* fp20 */ \
// OBSOLETE case 38: /* fp21 */ \
// OBSOLETE case 39: /* fp22 */ \
// OBSOLETE case 40: /* fp23 */ \
// OBSOLETE case 41: /* fp24 */ \
// OBSOLETE case 42: /* fp25 */ \
// OBSOLETE case 43: /* fp26 */ \
// OBSOLETE case 44: /* fp27 */ \
// OBSOLETE case 45: /* fp28 */ \
// OBSOLETE case 46: /* fp29 */ \
// OBSOLETE case 47: /* fp30 */ \
// OBSOLETE case 48: /* fp31 */ \
// OBSOLETE addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
// OBSOLETE } \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Total amount of space needed to store our copies of the machine's
// OBSOLETE register state, the array `registers'. 10 i*86 registers, 8 i387
// OBSOLETE registers, and 31 Weitek 1167 registers */
// OBSOLETE
// OBSOLETE #undef REGISTER_BYTES
// OBSOLETE #define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
// OBSOLETE
// OBSOLETE /* Nonzero if register N requires conversion
// OBSOLETE from raw format to virtual format. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERTIBLE
// OBSOLETE #define REGISTER_CONVERTIBLE(N) \
// OBSOLETE (((N) < 3) ? 0 : \
// OBSOLETE ((N) < 5) ? 1 : \
// OBSOLETE ((N) < 8) ? 0 : \
// OBSOLETE ((N) < 14) ? 1 : \
// OBSOLETE 0)
// OBSOLETE
// OBSOLETE #include "floatformat.h"
// OBSOLETE
// OBSOLETE /* Convert data from raw format for register REGNUM in buffer FROM
// OBSOLETE to virtual format with type TYPE in buffer TO. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERT_TO_VIRTUAL
// OBSOLETE #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
// OBSOLETE { \
// OBSOLETE DOUBLEST val; \
// OBSOLETE floatformat_to_doublest (&floatformat_i387_ext, (FROM), &val); \
// OBSOLETE deprecated_store_floating ((TO), TYPE_LENGTH (TYPE), val); \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Convert data from virtual format with type TYPE in buffer FROM
// OBSOLETE to raw format for register REGNUM in buffer TO. */
// OBSOLETE
// OBSOLETE #undef REGISTER_CONVERT_TO_RAW
// OBSOLETE #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
// OBSOLETE { \
// OBSOLETE DOUBLEST val = deprecated_extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
// OBSOLETE floatformat_from_doublest (&floatformat_i387_ext, &val, (TO)); \
// OBSOLETE }
// OBSOLETE
// OBSOLETE /* Return the GDB type object for the "standard" data type
// OBSOLETE of data in register N. */
// OBSOLETE
// OBSOLETE #undef REGISTER_VIRTUAL_TYPE
// OBSOLETE #define REGISTER_VIRTUAL_TYPE(N) \
// OBSOLETE ((N < 3) ? builtin_type_int : \
// OBSOLETE (N < 5) ? builtin_type_double : \
// OBSOLETE (N < 8) ? builtin_type_int : \
// OBSOLETE (N < 14) ? builtin_type_double : \
// OBSOLETE builtin_type_int)
// OBSOLETE
// OBSOLETE /* Store the address of the place in which to copy the structure the
// OBSOLETE subroutine will return. This is called from call_function.
// OBSOLETE Native cc passes the address in eax, gcc (up to version 2.5.8)
// OBSOLETE passes it on the stack. gcc should be fixed in future versions to
// OBSOLETE adopt native cc conventions. */
// OBSOLETE
// OBSOLETE #undef DEPRECATED_PUSH_ARGUMENTS
// OBSOLETE #undef STORE_STRUCT_RETURN
// OBSOLETE #define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
// OBSOLETE
// OBSOLETE /* Extract from an array REGBUF containing the (raw) register state
// OBSOLETE a function return value of type TYPE, and copy that, in virtual format,
// OBSOLETE into VALBUF. */
// OBSOLETE
// OBSOLETE #undef DEPRECATED_EXTRACT_RETURN_VALUE
// OBSOLETE #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
// OBSOLETE symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
// OBSOLETE
// OBSOLETE /* The following redefines make backtracing through sigtramp work.
// OBSOLETE They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
// OBSOLETE from the sigcontext structure which is pushed by the kernel on the
// OBSOLETE user stack, along with a pointer to it. */
// OBSOLETE
// OBSOLETE #define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
// OBSOLETE
// OBSOLETE /* Offset to saved PC in sigcontext, from <signal.h>. */
// OBSOLETE #define SIGCONTEXT_PC_OFFSET 16
// OBSOLETE
// OBSOLETE #endif /* ifndef TM_SYMMETRY_H */
|