aboutsummaryrefslogtreecommitdiff
path: root/gdb/config/i386/tm-i386.h
blob: 83704413c05cf65cb5ef6fe29db7ebe55f3b37bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/* Macro definitions for GDB on an Intel i[345]86.
   Copyright 1995, 1996, 1998, 1999, 2000, 2001
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#ifndef TM_I386_H
#define TM_I386_H 1

#include "regcache.h"

/* Forward declarations for prototypes.  */
struct frame_info;
struct frame_saved_regs;
struct value;
struct type;

#define TARGET_BYTE_ORDER LITTLE_ENDIAN

/* The format used for `long double' on almost all i386 targets is the
   i387 extended floating-point format.  In fact, of all targets in the
   GCC 2.95 tree, only OSF/1 does it different, and insists on having
   a `long double' that's not `long' at all.  */

#define TARGET_LONG_DOUBLE_FORMAT &floatformat_i387_ext

/* Although the i386 extended floating-point has only 80 significant
   bits, a `long double' actually takes up 96, probably to enforce
   alignment.  */

#define TARGET_LONG_DOUBLE_BIT 96

/* Used for example in valprint.c:print_floating() to enable checking
   for NaN's */

#define IEEE_FLOAT (1)

/* Number of traps that happen between exec'ing the shell to run an
   inferior, and when we finally get to the inferior code.  This is 2
   on most implementations. */

#define START_INFERIOR_TRAPS_EXPECTED 2

/* Offset from address of function to start of its code.
   Zero on most machines.  */

#define FUNCTION_START_OFFSET 0

/* Advance PC across any function entry prologue instructions to reach some
   "real" code.  */

#define SKIP_PROLOGUE(frompc)   (i386_skip_prologue (frompc))

extern int i386_skip_prologue (int);

/* Immediately after a function call, return the saved pc.  Can't always go
   through the frames for this because on some machines the new frame is not
   set up until the new function executes some instructions.  */

#define SAVED_PC_AFTER_CALL(frame) \
     (read_memory_unsigned_integer (read_register (SP_REGNUM), 4))

/* Stack grows downward.  */

#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))

/* Sequence of bytes for breakpoint instruction.  */

#define BREAKPOINT {0xcc}

/* Amount PC must be decremented by after a breakpoint.  This is often the
   number of bytes in BREAKPOINT but not always. */

#define DECR_PC_AFTER_BREAK 1

/* Say how long (ordinary) registers are.  This is a piece of bogosity
   used in push_word and a few other places; REGISTER_RAW_SIZE is the
   real way to know how big a register is.  */

#define REGISTER_SIZE 4

/* This register file is parameterized by two macros:
   HAVE_I387_REGS --- register file should include i387 registers
   HAVE_SSE_REGS  --- register file should include SSE registers
   If HAVE_SSE_REGS is #defined, then HAVE_I387_REGS must also be #defined.
   
   However, GDB code should not test those macros with #ifdef, since
   that makes code which is annoying to multi-arch.  Instead, GDB code
   should check the values of NUM_GREGS, NUM_FREGS, and NUM_SSE_REGS,
   which will eventually get mapped onto architecture vector entries.

   It's okay to use the macros in tm-*.h files, though, since those
   files will get completely replaced when we multi-arch anyway.  */

/* Number of general registers, present on every 32-bit x86 variant.  */
#define NUM_GREGS (16)

/* Number of floating-point unit registers.  */
#ifdef HAVE_I387_REGS
#define NUM_FREGS (16)
#else
#define NUM_FREGS (0)
#endif

/* Number of SSE registers.  */
#ifdef HAVE_SSE_REGS
#define NUM_SSE_REGS (9)
#else
#define NUM_SSE_REGS (0)
#endif

#define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SSE_REGS)

/* Largest number of registers we could have in any configuration.  */
#define MAX_NUM_REGS (16 + 16 + 9)

/* Initializer for an array of names of registers.  There should be at least
   NUM_REGS strings in this initializer.  Any excess ones are simply ignored.
   The order of the first 8 registers must match the compiler's numbering
   scheme (which is the same as the 386 scheme) and also regmap in the various
   *-nat.c files. */

#define REGISTER_NAMES { "eax",   "ecx",    "edx",   "ebx",	\
			 "esp",   "ebp",    "esi",   "edi",	\
			 "eip",   "eflags", "cs",    "ss",	\
			 "ds",    "es",     "fs",    "gs",	\
			 "st0",   "st1",    "st2",   "st3",	\
			 "st4",   "st5",    "st6",   "st7",	\
			 "fctrl", "fstat",  "ftag",  "fiseg",	\
                         "fioff", "foseg",  "fooff", "fop",	\
			 "xmm0",  "xmm1",   "xmm2",  "xmm3",	\
			 "xmm4",  "xmm5",   "xmm6",  "xmm7",	\
                         "mxcsr"				\
		       }

/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

#define FP_REGNUM 5		/* (ebp) Contains address of executing stack
				   frame */
#define SP_REGNUM 4		/* (usp) Contains address of top of stack */
#define PC_REGNUM 8		/* (eip) Contains program counter */
#define PS_REGNUM 9		/* (ps)  Contains processor status */

/* These registers are present only if HAVE_I387_REGS is #defined.
   We promise that FP0 .. FP7 will always be consecutive register numbers.  */
#define FP0_REGNUM   16		/* first FPU floating-point register */
#define FP7_REGNUM   23		/* last  FPU floating-point register */

/* All of these control registers (except for FCOFF and FDOFF) are
   sixteen bits long (at most) in the FPU, but are zero-extended to
   thirty-two bits in GDB's register file.  This makes it easier to
   compute the size of the control register file, and somewhat easier
   to convert to and from the FSAVE instruction's 32-bit format.  */
#define FIRST_FPU_CTRL_REGNUM 24
#define FCTRL_REGNUM 24	        /* FPU control word */
#define FPC_REGNUM   24		/* old name for FCTRL_REGNUM */
#define FSTAT_REGNUM 25		/* FPU status word */
#define FTAG_REGNUM  26		/* FPU register tag word */
#define FCS_REGNUM   27		/* FPU instruction's code segment selector
				   16 bits, called "FPU Instruction Pointer
				   Selector" in the x86 manuals  */
#define FCOFF_REGNUM 28		/* FPU instruction's offset within segment
				   ("Fpu Code OFFset") */
#define FDS_REGNUM   29		/* FPU operand's data segment */
#define FDOFF_REGNUM 30		/* FPU operand's offset within segment */
#define FOP_REGNUM   31		/* FPU opcode, bottom eleven bits */
#define LAST_FPU_CTRL_REGNUM 31

/* These registers are present only if HAVE_SSE_REGS is #defined.
   We promise that XMM0 .. XMM7 will always have consecutive reg numbers. */
#define XMM0_REGNUM  32		/* first SSE data register */
#define XMM7_REGNUM  39		/* last  SSE data register */
#define MXCSR_REGNUM 40		/* Streaming SIMD Extension control/status */

#define IS_FP_REGNUM(n) (FP0_REGNUM <= (n) && (n) <= FP7_REGNUM)
#define IS_SSE_REGNUM(n) (XMM0_REGNUM <= (n) && (n) <= XMM7_REGNUM)

#define FPU_REG_RAW_SIZE (10)

/* Sizes of individual register sets.  These cover the entire register
   file, so summing up the sizes of those portions actually present
   yields REGISTER_BYTES.  */
#define SIZEOF_GREGS (NUM_GREGS * 4)
#define SIZEOF_FPU_REGS (8 * FPU_REG_RAW_SIZE)
#define SIZEOF_FPU_CTRL_REGS \
  ((LAST_FPU_CTRL_REGNUM - FIRST_FPU_CTRL_REGNUM + 1) * 4)
#define SIZEOF_SSE_REGS (8 * 16 + 4)


/* Total amount of space needed to store our copies of the machine's register
   state, the array `registers'. */
#ifdef HAVE_SSE_REGS
#define REGISTER_BYTES \
  (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS)
#else
#ifdef HAVE_I387_REGS
#define REGISTER_BYTES (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS)
#else
#define REGISTER_BYTES (SIZEOF_GREGS)
#endif
#endif

/* Index within `registers' of the first byte of the space for register N. */
#define REGISTER_BYTE(n) (i386_register_byte[(n)])
extern int i386_register_byte[];

/* Number of bytes of storage in the actual machine representation for
   register N.  */
#define REGISTER_RAW_SIZE(n) (i386_register_raw_size[(n)])
extern int i386_register_raw_size[];

/* Largest value REGISTER_RAW_SIZE can have.  */
#define MAX_REGISTER_RAW_SIZE 16

/* Number of bytes of storage in the program's representation
   for register N. */
#define REGISTER_VIRTUAL_SIZE(n) (i386_register_virtual_size[(n)])
extern int i386_register_virtual_size[];

/* Largest value REGISTER_VIRTUAL_SIZE can have.  */
#define MAX_REGISTER_VIRTUAL_SIZE 16

/* Return the GDB type object for the "standard" data type of data in 
   register N.  Perhaps si and di should go here, but potentially they
   could be used for things other than address.  */

#define REGISTER_VIRTUAL_TYPE(N)				\
  (((N) == PC_REGNUM || (N) == FP_REGNUM || (N) == SP_REGNUM)	\
   ? lookup_pointer_type (builtin_type_void)			\
   : IS_FP_REGNUM(N) ? builtin_type_long_double			\
   : IS_SSE_REGNUM(N) ? builtin_type_v4sf			\
   : builtin_type_int)

/* REGISTER_CONVERTIBLE(N) is true iff register N's virtual format is
   different from its raw format.  Note that this definition assumes
   that the host supports IEEE 32-bit floats, since it doesn't say
   that SSE registers need conversion.  Even if we can't find a
   counterexample, this is still sloppy.  */
#define REGISTER_CONVERTIBLE(n) (IS_FP_REGNUM (n))

/* Convert data from raw format for register REGNUM in buffer FROM to
   virtual format with type TYPE in buffer TO.  */

#define REGISTER_CONVERT_TO_VIRTUAL(regnum, type, from, to) \
  i386_register_convert_to_virtual ((regnum), (type), (from), (to))
extern void i386_register_convert_to_virtual (int regnum, struct type *type,
					      char *from, char *to);

/* Convert data from virtual format with type TYPE in buffer FROM to
   raw format for register REGNUM in buffer TO.  */

#define REGISTER_CONVERT_TO_RAW(type, regnum, from, to) \
  i386_register_convert_to_raw ((type), (regnum), (from), (to))
extern void i386_register_convert_to_raw (struct type *type, int regnum,
					  char *from, char *to);

/* Print out the i387 floating point state.  */
#ifdef HAVE_I387_REGS
extern void i387_float_info (void);
#define FLOAT_INFO { i387_float_info (); }
#endif


#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
  i386_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
extern CORE_ADDR i386_push_arguments (int nargs, struct value **args,
				      CORE_ADDR sp, int struct_return,
				      CORE_ADDR struct_addr);

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function.  */

#define STORE_STRUCT_RETURN(addr, sp) \
  i386_store_struct_return ((addr), (sp))
extern void i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);

/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

#define EXTRACT_RETURN_VALUE(type, regbuf, valbuf) \
  i386_extract_return_value ((type), (regbuf), (valbuf))
extern void i386_extract_return_value (struct type *type, char *regbuf,
				       char *valbuf);

/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */

#define STORE_RETURN_VALUE(type, valbuf) \
  i386_store_return_value ((type), (valbuf))
extern void i386_store_return_value (struct type *type, char *valbuf);

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR.  */

#define EXTRACT_STRUCT_VALUE_ADDRESS(regbuf) \
  i386_extract_struct_value_address ((regbuf))
extern CORE_ADDR i386_extract_struct_value_address (char *regbuf);

/* The following redefines make backtracing through sigtramp work.
   They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
   from the sigcontext structure which is pushed by the kernel on the
   user stack, along with a pointer to it.  */

/* Return the chain-pointer for FRAME.  In the case of the i386, the
   frame's nominal address is the address of a 4-byte word containing
   the calling frame's address.  */

#define FRAME_CHAIN(frame) i386_frame_chain ((frame))
extern CORE_ADDR i386_frame_chain (struct frame_info *frame);

/* A macro that tells us whether the function invocation represented
   by FI does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */

#define FRAMELESS_FUNCTION_INVOCATION(FI) \
     (((FI)->signal_handler_caller) ? 0 : frameless_look_for_prologue(FI))

/* Saved Pc.  Get it from sigcontext if within sigtramp.  */

#define FRAME_SAVED_PC(FRAME) \
  (((FRAME)->signal_handler_caller \
    ? sigtramp_saved_pc (FRAME) \
    : read_memory_unsigned_integer ((FRAME)->frame + 4, 4)) \
   )

extern CORE_ADDR sigtramp_saved_pc (struct frame_info *);

#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)

#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)

/* Return number of args passed to a frame.  Can return -1, meaning no way
   to tell, which is typical now that the C compiler delays popping them.  */

#define FRAME_NUM_ARGS(fi) (i386_frame_num_args(fi))

extern int i386_frame_num_args (struct frame_info *);

/* Return number of bytes at start of arglist that are not really args.  */

#define FRAME_ARGS_SKIP 8

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

extern void i386_frame_init_saved_regs (struct frame_info *);
#define FRAME_INIT_SAVED_REGS(FI) i386_frame_init_saved_regs (FI)



/* Things needed for making the inferior call functions.  */

/* "An argument's size is increased, if necessary, to make it a
   multiple of [32 bit] words.  This may require tail padding,
   depending on the size of the argument" - from the x86 ABI.  */
#define PARM_BOUNDARY 32

/* Push an empty stack frame, to record the current PC, etc.  */

#define PUSH_DUMMY_FRAME { i386_push_dummy_frame (); }

extern void i386_push_dummy_frame (void);

/* Discard from the stack the innermost frame, restoring all registers.  */

#define POP_FRAME  { i386_pop_frame (); }

extern void i386_pop_frame (void);


/* this is 
 *   call 11223344 (32 bit relative)
 *   int3
 */

#define CALL_DUMMY { 0x223344e8, 0xcc11 }

#define CALL_DUMMY_LENGTH 8

#define CALL_DUMMY_START_OFFSET 0	/* Start execution at beginning of dummy */

#define CALL_DUMMY_BREAKPOINT_OFFSET 5

/* Insert the specified number of args and function address
   into a call sequence of the above form stored at DUMMYNAME.  */

#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
  i386_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
extern void i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
				 int nargs, struct value **args,
				 struct type *type, int gcc_p);

/* FIXME: kettenis/2000-06-12: These do not belong here.  */
extern void print_387_control_word (unsigned int);
extern void print_387_status_word (unsigned int);

/* Offset from SP to first arg on stack at first instruction of a function */

#define SP_ARG0 (1 * 4)

#endif /* ifndef TM_I386_H */