1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
/* Parameters for execution on a Fujitsu FR30 processor.
Copyright 1999, Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#define FR30_GENREGS 16
#define FR30_DEDICATEDREGS 8
#define FR30_REGSIZE 4 /* bytes */
#define NUM_REGS (FR30_GENREGS + FR30_DEDICATEDREGS)
#define REGISTER_BYTES ((FR30_GENREGS + FR30_DEDICATEDREGS)*FR30_REGSIZE)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) * FR30_REGSIZE)
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES \
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
"r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"pc", "ps", "tbr", "rp", "ssp", "usp", "mdh", "mdl" }
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Stack grows downward. */
#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
#define TARGET_BYTE_ORDER BIG_ENDIAN
#define R0_REGNUM 0
#define R1_REGNUM 1
#define R2_REGNUM 2
#define R3_REGNUM 3
#define R4_REGNUM 4
#define R5_REGNUM 5
#define R6_REGNUM 6
#define R7_REGNUM 7
#define R8_REGNUM 8
#define R9_REGNUM 9
#define R10_REGNUM 10
#define R11_REGNUM 11
#define R12_REGNUM 12
#define R13_REGNUM 13
#define FP_REGNUM 14 /* Frame pointer */
#define SP_REGNUM 15 /* Stack pointer */
#define PC_REGNUM 16 /* Program counter */
#define RP_REGNUM 19 /* Return pointer */
#define FIRST_ARGREG R4_REGNUM /* first arg (or struct ret val addr) */
#define LAST_ARGREG R7_REGNUM /* fourth (or third arg) */
#define RETVAL_REG R4_REGNUM /* return vaue */
/* Say how long (ordinary) registers are. This is a piece of bogosity
used in push_word and a few other places; REGISTER_RAW_SIZE is the
real way to know how big a register is. */
#define REGISTER_SIZE FR30_REGSIZE
/* Number of bytes of storage in the actual machine representation
for register N. */
#define REGISTER_RAW_SIZE(N) FR30_REGSIZE
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE FR30_REGSIZE
/* Number of bytes of storage in the program's representation
for register N. */
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE FR30_REGSIZE
extern void fr30_pop_frame PARAMS ((void));
#define POP_FRAME fr30_pop_frame()
#define USE_GENERIC_DUMMY_FRAMES 1
#define CALL_DUMMY {0}
#define CALL_DUMMY_START_OFFSET (0)
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)
#define CALL_DUMMY_LOCATION AT_ENTRY_POINT
#define FIX_CALL_DUMMY(DUMMY, START, FUNADDR, NARGS, ARGS, TYPE, GCCP)
#define CALL_DUMMY_ADDRESS() entry_point_address ()
#define PUSH_RETURN_ADDRESS(PC, SP) (write_register(RP_REGNUM, CALL_DUMMY_ADDRESS()), SP)
#define PUSH_DUMMY_FRAME generic_push_dummy_frame ()
/* Number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 0
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(REG) builtin_type_int
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
memcpy (VALBUF, REGBUF + REGISTER_BYTE(RETVAL_REG) + \
(TYPE_LENGTH(TYPE) < 4 ? 4 - TYPE_LENGTH(TYPE) : 0), TYPE_LENGTH (TYPE))
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
extract_address (REGBUF + REGISTER_BYTE (RETVAL_REG), \
REGISTER_RAW_SIZE (RETVAL_REG))
#define STORE_STRUCT_RETURN(ADDR, SP) \
{ write_register (RETVAL_REG, (ADDR)); }
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(fi) (-1)
/* Forward decls for prototypes */
struct frame_info;
struct frame_saved_regs;
struct type;
struct value;
#define EXTRA_FRAME_INFO \
struct frame_saved_regs fsr; \
int framesize; \
int frameoffset; \
int framereg;
extern CORE_ADDR fr30_frame_chain PARAMS ((struct frame_info * fi));
#define FRAME_CHAIN(fi) fr30_frame_chain (fi)
extern CORE_ADDR fr30_frame_saved_pc PARAMS ((struct frame_info *));
#define FRAME_SAVED_PC(fi) (fr30_frame_saved_pc (fi))
#define SAVED_PC_AFTER_CALL(fi) read_register (RP_REGNUM)
extern CORE_ADDR fr30_skip_prologue PARAMS ((CORE_ADDR pc));
#define SKIP_PROLOGUE(pc) (fr30_skip_prologue (pc))
/* Write into appropriate registers a function return value of type
TYPE, given in virtual format. VALBUF is in the target byte order;
it's typically the VALUE_CONTENTS of some struct value, and those
are in the target's byte order. */
extern void fr30_store_return_value PARAMS ((struct type * type, char *valbuf));
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
(fr30_store_return_value ((TYPE), (VALBUF)))
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_FIND_SAVED_REGS(fi, regaddr) regaddr = fi->fsr
/* Use INT #BREAKPOINT_INTNUM instruction for breakpoint */
#define FR30_BREAKOP 0x1f /* opcode, type D instruction */
#define BREAKPOINT_INTNUM 9 /* one of the reserved traps */
#define BREAKPOINT {FR30_BREAKOP, BREAKPOINT_INTNUM}
/* Define this for Wingdb */
#define TARGET_FR30
/* IEEE format floating point */
#define IEEE_FLOAT (1)
/* Define other aspects of the stack frame. */
/* An expression that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. */
extern int fr30_frameless_function_invocation PARAMS ((struct frame_info * frame));
#define FRAMELESS_FUNCTION_INVOCATION(FI) (fr30_frameless_function_invocation (FI));
extern void fr30_init_extra_frame_info PARAMS ((struct frame_info * fi));
#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) fr30_init_extra_frame_info (fi)
#define FRAME_CHAIN_VALID(FP, FI) generic_file_frame_chain_valid (FP, FI)
extern CORE_ADDR
fr30_push_arguments PARAMS ((int nargs, struct value ** args, CORE_ADDR sp,
int struct_return,
CORE_ADDR struct_addr));
#define PUSH_ARGUMENTS(NARGS, ARGS, SP, STRUCT_RETURN, STRUCT_ADDR) \
(fr30_push_arguments (NARGS, ARGS, SP, STRUCT_RETURN, STRUCT_ADDR))
#define PC_IN_CALL_DUMMY(PC, SP, FP) generic_pc_in_call_dummy (PC, SP, FP)
/* Fujitsu's ABI requires all structs to be passed using a pointer.
That is obviously not very efficient, so I am leaving the definitions
to make gdb work with GCC style struct passing, in case we decide
to go for better performance, rather than for compatibility with
Fujitsu (just change STRUCT_ALWAYS_BY_ADDR to 0) */
#define STRUCT_ALWAYS_BY_ADDR 1
#if(STRUCT_ALWAYS_BY_ADDR)
#define REG_STRUCT_HAS_ADDR(gcc_p,type) 1
#else
/* more standard GCC (optimized) */
#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
((TYPE_LENGTH(type) > 4) && (TYPE_LENGTH(type) & 0x3))
#endif
/* alway return struct by value by input pointer */
#define USE_STRUCT_CONVENTION(GCC_P, TYPE) 1
/* The stack should always be aligned on a four-word boundary. */
#define STACK_ALIGN(len) (((len) + 3) & ~3)
/* I think the comment about this in value_arg_coerce is wrong; this
should be true on any system where you can rely on the prototyping
information. When this is true, value_arg_coerce will promote
floats to doubles iff the function is not prototyped. */
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) (1)
|