aboutsummaryrefslogtreecommitdiff
path: root/gdb/config/d10v/tm-d10v.h
blob: 3b1cffeec54d32188a469571f5dd19efe65de618 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/* Target-specific definition for the Mitsubishi D10V
   Copyright (C) 1996 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/* Contributed by Martin Hunt, hunt@cygnus.com */

#define GDB_TARGET_IS_D10V

/* Define the bit, byte, and word ordering of the machine.  */

#define TARGET_BYTE_ORDER	BIG_ENDIAN

/* Offset from address of function to start of its code.
   Zero on most machines.  */

#define FUNCTION_START_OFFSET 0

/* Advance PC across any function entry prologue instructions
   to reach some "real" code.  */

extern CORE_ADDR d10v_skip_prologue ();
#define SKIP_PROLOGUE(ip) \
    {(ip) = d10v_skip_prologue(ip);}

#define SAVED_PC_AFTER_CALL(frame) (read_register(LR_REGNUM) << 2 )

/* Stack grows downward.  */
#define INNER_THAN <

/* for a breakpoint, use "dbt || nop" */
#define BREAKPOINT {0x2f, 0x90, 0x5e, 0x00} 

/* If your kernel resets the pc after the trap happens you may need to
   define this before including this file.  */
#define DECR_PC_AFTER_BREAK 4

#define REGISTER_NAMES \
{ "r0", "r1", "r2", "r3", "r4", "r5",  "r6", "r7", \
    "r8", "r9", "r10","r11","r12", "r13", "r14","sp",\
    "psw","bpsw","pc","bpc", "cr4", "cr5", "cr6", "rpt_c",\
    "rpt_s","rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",\
    "a0", "a1"\
    }

#define NUM_REGS 34

/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

#define R0_REGNUM	0
#define LR_REGNUM 	13
#define SP_REGNUM 	15
#define FP_REGNUM	11
#define PC_REGNUM 	18
#define PSW_REGNUM 	16
#define A0_REGNUM 	32

/* Say how much memory is needed to store a copy of the register set */
#define REGISTER_BYTES    ((NUM_REGS-2)*2+16) 

/* Index within `registers' of the first byte of the space for
   register N.  */

#define REGISTER_BYTE(N)  \
( ((N) > A0_REGNUM) ? ( ((N)-A0_REGNUM)*8 + A0_REGNUM*2 ) : ((N) * 2) )

/* Number of bytes of storage in the actual machine representation
   for register N.  */

#define REGISTER_RAW_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 2 )

/* Number of bytes of storage in the program's representation
   for register N.  */   
#define REGISTER_VIRTUAL_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 2 )

/* Largest value REGISTER_RAW_SIZE can have.  */

#define MAX_REGISTER_RAW_SIZE 8

/* Largest value REGISTER_VIRTUAL_SIZE can have.  */

#define MAX_REGISTER_VIRTUAL_SIZE 8

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

#define REGISTER_VIRTUAL_TYPE(N) \
( ((N) < A0_REGNUM ) ? builtin_type_short : builtin_type_long_long)


/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. 

   We store structs through a pointer passed in R2 */

#define STORE_STRUCT_RETURN(ADDR, SP) \
    { write_register (2, (ADDR));  }


/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  

   Things always get returned in R2/R3 */

#define STORE_RETURN_VALUE(TYPE,VALBUF) \
  write_register_bytes (REGISTER_BYTE(2), VALBUF, TYPE_LENGTH (TYPE))


/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))


/* Define other aspects of the stack frame. 
   we keep a copy of the worked out return pc lying around, since it
   is a useful bit of info */

#define EXTRA_FRAME_INFO \
    CORE_ADDR return_pc; \
    int dummy; \
    int size;

#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
    d10v_init_extra_frame_info(fromleaf, fi) 

/* A macro that tells us whether the function invocation represented
   by FI does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */

#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
  (FRAMELESS) = frameless_look_for_prologue(FI)

#define FRAME_CHAIN(FRAME)       d10v_frame_chain(FRAME)
#define FRAME_SAVED_PC(FRAME)    ((FRAME)->return_pc)   
#define FRAME_ARGS_ADDRESS(fi)   (fi)->frame
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame

/* Set VAL to the number of args passed to frame described by FI.
   Can set VAL to -1, meaning no way to tell.  */

/* We can't tell how many args there are */

#define FRAME_NUM_ARGS(val,fi) (val = -1)

/* Return number of bytes at start of arglist that are not really args.  */

#define FRAME_ARGS_SKIP 0

/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs)	    \
   d10v_frame_find_saved_regs(frame_info, &(frame_saved_regs))

#define NAMES_HAVE_UNDERSCORE
      
/* 
DUMMY FRAMES.  Need these to support inferior function calls.  They work
like this on D10V:  First we set a breakpoint at 0 or __start.  Then we push
all the registers onto the stack.  Then put the function arguments in the proper
registers and set r13 to our breakpoint address.  Finally call the function directly.
When it hits the breakpoint, clear the break point and pop the old register contents
off the stack.
*/

#define CALL_DUMMY		{ }  
#define PUSH_DUMMY_FRAME
#define CALL_DUMMY_START_OFFSET	0	
#define CALL_DUMMY_LOCATION	AT_ENTRY_POINT
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)

extern CORE_ADDR d10v_call_dummy_address PARAMS ((void));
#define CALL_DUMMY_ADDRESS() d10v_call_dummy_address()

#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
d10v_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)

#define PC_IN_CALL_DUMMY(pc, sp, frame_address)			\
  ((pc>>2) >= CALL_DUMMY_ADDRESS ()				\
   && (pc>>2) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK))

#ifdef __STDC__		/* Forward decls for prototypes */
struct type;
struct value;
#endif
extern void d10v_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
					   int, struct value **,
					   struct type *, int));
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
    sp = d10v_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
extern CORE_ADDR d10v_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));


/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
d10v_extract_return_value(TYPE, REGBUF, VALBUF)
  extern void
d10v_extract_return_value PARAMS ((struct type *, char *, char *));


/* Discard from the stack the innermost frame,
   restoring all saved registers.  */
#define POP_FRAME d10v_pop_frame();

#define REGISTER_SIZE 2

#ifdef CC_HAS_LONG_LONG
#  define LONGEST long long
#else
#  define LONGEST long
#endif 

void d10v_write_register_pid PARAMS (( int regno, LONGEST val, int pid));
CORE_ADDR d10v_read_register_pid PARAMS ((int regno, int pid));

#define TARGET_READ_PC(pid)		d10v_read_register_pid (PC_REGNUM, pid)
#define TARGET_WRITE_PC(val,pid)	d10v_write_register_pid (PC_REGNUM, val, pid)

/* Number of bits in the appropriate type */
#define TARGET_INT_BIT (2 * TARGET_CHAR_BIT)
#define TARGET_PTR_BIT (2 * TARGET_CHAR_BIT)
#define TARGET_DOUBLE_BIT (4 * TARGET_CHAR_BIT)
#define TARGET_LONG_DOUBLE_BIT (8 * TARGET_CHAR_BIT)