aboutsummaryrefslogtreecommitdiff
path: root/gdb/blockframe.c
blob: 7b920442709800179ec66ec8204e1c29458c97c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/* Get info from stack frames; convert between frames, blocks,
   functions and pc values.

   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
   1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
   Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "block.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "frame.h"
#include "gdbcore.h"
#include "value.h"		/* for read_register */
#include "target.h"		/* for target_has_stack */
#include "inferior.h"		/* for read_pc */
#include "annotate.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "dummy-frame.h"

/* Prototypes for exported functions. */

void _initialize_blockframe (void);

/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
   targets.  If FRAME_CHAIN_VALID returns zero it means that the given
   frame is the outermost one and has no caller. */

int
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
  return ((chain) != 0
	  && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
}

/* Use the alternate method of avoiding running up off the end of the
   frame chain or following frames back into the startup code.  See
   the comments in objfiles.h. */

int
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
  return ((chain) != 0
	  && !inside_main_func ((thisframe)->pc)
	  && !inside_entry_func ((thisframe)->pc));
}

/* A very simple method of determining a valid frame */

int
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
  return ((chain) != 0);
}

/* Is ADDR inside the startup file?  Note that if your machine
   has a way to detect the bottom of the stack, there is no need
   to call this function from FRAME_CHAIN_VALID; the reason for
   doing so is that some machines have no way of detecting bottom
   of stack. 

   A PC of zero is always considered to be the bottom of the stack. */

int
inside_entry_file (CORE_ADDR addr)
{
  if (addr == 0)
    return 1;
  if (symfile_objfile == 0)
    return 0;
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      /* Do not stop backtracing if the pc is in the call dummy
         at the entry point.  */
      /* FIXME: Won't always work with zeros for the last two arguments */
      if (PC_IN_CALL_DUMMY (addr, 0, 0))
	return 0;
    }
  return (addr >= symfile_objfile->ei.entry_file_lowpc &&
	  addr < symfile_objfile->ei.entry_file_highpc);
}

/* Test a specified PC value to see if it is in the range of addresses
   that correspond to the main() function.  See comments above for why
   we might want to do this.

   Typically called from FRAME_CHAIN_VALID.

   A PC of zero is always considered to be the bottom of the stack. */

int
inside_main_func (CORE_ADDR pc)
{
  if (pc == 0)
    return 1;
  if (symfile_objfile == 0)
    return 0;

  /* If the addr range is not set up at symbol reading time, set it up now.
     This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
     it is unable to set it up and symbol reading time. */

  if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
      symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
    {
      struct symbol *mainsym;

      mainsym = lookup_symbol_linkage (main_name ());
      if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
	{
	  symfile_objfile->ei.main_func_lowpc =
	    BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
	  symfile_objfile->ei.main_func_highpc =
	    BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
	}
    }
  return (symfile_objfile->ei.main_func_lowpc <= pc &&
	  symfile_objfile->ei.main_func_highpc > pc);
}

/* Test a specified PC value to see if it is in the range of addresses
   that correspond to the process entry point function.  See comments
   in objfiles.h for why we might want to do this.

   Typically called from FRAME_CHAIN_VALID.

   A PC of zero is always considered to be the bottom of the stack. */

int
inside_entry_func (CORE_ADDR pc)
{
  if (pc == 0)
    return 1;
  if (symfile_objfile == 0)
    return 0;
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      /* Do not stop backtracing if the pc is in the call dummy
         at the entry point.  */
      /* FIXME: Won't always work with zeros for the last two arguments */
      if (PC_IN_CALL_DUMMY (pc, 0, 0))
	return 0;
    }
  return (symfile_objfile->ei.entry_func_lowpc <= pc &&
	  symfile_objfile->ei.entry_func_highpc > pc);
}

/* Return nonzero if the function for this frame lacks a prologue.  Many
   machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
   function.  */

int
frameless_look_for_prologue (struct frame_info *frame)
{
  CORE_ADDR func_start, after_prologue;

  func_start = get_pc_function_start (frame->pc);
  if (func_start)
    {
      func_start += FUNCTION_START_OFFSET;
      /* This is faster, since only care whether there *is* a
         prologue, not how long it is.  */
      return PROLOGUE_FRAMELESS_P (func_start);
    }
  else if (frame->pc == 0)
    /* A frame with a zero PC is usually created by dereferencing a
       NULL function pointer, normally causing an immediate core dump
       of the inferior. Mark function as frameless, as the inferior
       has no chance of setting up a stack frame.  */
    return 1;
  else
    /* If we can't find the start of the function, we don't really
       know whether the function is frameless, but we should be able
       to get a reasonable (i.e. best we can do under the
       circumstances) backtrace by saying that it isn't.  */
    return 0;
}

/* return the address of the PC for the given FRAME, ie the current PC value
   if FRAME is the innermost frame, or the address adjusted to point to the
   call instruction if not.  */

CORE_ADDR
frame_address_in_block (struct frame_info *frame)
{
  CORE_ADDR pc = frame->pc;

  /* If we are not in the innermost frame, and we are not interrupted
     by a signal, frame->pc points to the instruction following the
     call. As a consequence, we need to get the address of the previous
     instruction. Unfortunately, this is not straightforward to do, so
     we just use the address minus one, which is a good enough
     approximation.  */
  if (frame->next != 0 && frame->next->signal_handler_caller == 0)
    --pc;

  return pc;
}

/* Return the innermost lexical block in execution
   in a specified stack frame.  The frame address is assumed valid.

   If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
   address we used to choose the block.  We use this to find a source
   line, to decide which macro definitions are in scope.

   The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
   PC, and may not really be a valid PC at all.  For example, in the
   caller of a function declared to never return, the code at the
   return address will never be reached, so the call instruction may
   be the very last instruction in the block.  So the address we use
   to choose the block is actually one byte before the return address
   --- hopefully pointing us at the call instruction, or its delay
   slot instruction.  */

struct block *
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
{
  const CORE_ADDR pc = frame_address_in_block (frame);

  if (addr_in_block)
    *addr_in_block = pc;

  return block_for_pc (pc);
}

struct block *
get_current_block (CORE_ADDR *addr_in_block)
{
  CORE_ADDR pc = read_pc ();

  if (addr_in_block)
    *addr_in_block = pc;

  return block_for_pc (pc);
}

CORE_ADDR
get_pc_function_start (CORE_ADDR pc)
{
  register struct block *bl;
  register struct symbol *symbol;
  register struct minimal_symbol *msymbol;
  CORE_ADDR fstart;

  if ((bl = block_for_pc (pc)) != NULL &&
      (symbol = block_function (bl)) != NULL)
    {
      bl = SYMBOL_BLOCK_VALUE (symbol);
      fstart = BLOCK_START (bl);
    }
  else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
    {
      fstart = SYMBOL_VALUE_ADDRESS (msymbol);
      if (!find_pc_section (fstart))
	return 0;
    }
  else
    {
      fstart = 0;
    }
  return (fstart);
}

/* Return the symbol for the function executing in frame FRAME.  */

struct symbol *
get_frame_function (struct frame_info *frame)
{
  register struct block *bl = get_frame_block (frame, 0);
  if (bl == 0)
    return 0;
  return block_function (bl);
}


/* Return the blockvector immediately containing the innermost lexical block
   containing the specified pc value and section, or 0 if there is none.
   PINDEX is a pointer to the index value of the block.  If PINDEX
   is NULL, we don't pass this information back to the caller.  */

struct blockvector *
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
			 int *pindex, struct symtab *symtab)
{
  register struct block *b;
  register int bot, top, half;
  struct blockvector *bl;

  if (symtab == 0)		/* if no symtab specified by caller */
    {
      /* First search all symtabs for one whose file contains our pc */
      if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
	return 0;
    }

  bl = BLOCKVECTOR (symtab);
  b = BLOCKVECTOR_BLOCK (bl, 0);

  /* Then search that symtab for the smallest block that wins.  */
  /* Use binary search to find the last block that starts before PC.  */

  bot = 0;
  top = BLOCKVECTOR_NBLOCKS (bl);

  while (top - bot > 1)
    {
      half = (top - bot + 1) >> 1;
      b = BLOCKVECTOR_BLOCK (bl, bot + half);
      if (BLOCK_START (b) <= pc)
	bot += half;
      else
	top = bot + half;
    }

  /* Now search backward for a block that ends after PC.  */

  while (bot >= 0)
    {
      b = BLOCKVECTOR_BLOCK (bl, bot);
      if (BLOCK_END (b) > pc)
	{
	  if (pindex)
	    *pindex = bot;
	  return bl;
	}
      bot--;
    }
  return 0;
}

/* Return the blockvector immediately containing the innermost lexical block
   containing the specified pc value, or 0 if there is none.
   Backward compatibility, no section.  */

struct blockvector *
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
{
  return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
				  pindex, NULL);
}

/* Return the innermost lexical block containing the specified pc value
   in the specified section, or 0 if there is none.  */

struct block *
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
{
  register struct blockvector *bl;
  int index;

  bl = blockvector_for_pc_sect (pc, section, &index, NULL);
  if (bl)
    return BLOCKVECTOR_BLOCK (bl, index);
  return 0;
}

/* Return the innermost lexical block containing the specified pc value,
   or 0 if there is none.  Backward compatibility, no section.  */

struct block *
block_for_pc (register CORE_ADDR pc)
{
  return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}

/* Return the function containing pc value PC in section SECTION.
   Returns 0 if function is not known.  */

struct symbol *
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
{
  register struct block *b = block_for_pc_sect (pc, section);
  if (b == 0)
    return 0;
  return block_function (b);
}

/* Return the function containing pc value PC.
   Returns 0 if function is not known.  Backward compatibility, no section */

struct symbol *
find_pc_function (CORE_ADDR pc)
{
  return find_pc_sect_function (pc, find_pc_mapped_section (pc));
}

/* These variables are used to cache the most recent result
 * of find_pc_partial_function. */

static CORE_ADDR cache_pc_function_low = 0;
static CORE_ADDR cache_pc_function_high = 0;
static char *cache_pc_function_name = 0;
static struct sec *cache_pc_function_section = NULL;

/* Clear cache, e.g. when symbol table is discarded. */

void
clear_pc_function_cache (void)
{
  cache_pc_function_low = 0;
  cache_pc_function_high = 0;
  cache_pc_function_name = (char *) 0;
  cache_pc_function_section = NULL;
}

/* Finds the "function" (text symbol) that is smaller than PC but
   greatest of all of the potential text symbols in SECTION.  Sets
   *NAME and/or *ADDRESS conditionally if that pointer is non-null.
   If ENDADDR is non-null, then set *ENDADDR to be the end of the
   function (exclusive), but passing ENDADDR as non-null means that
   the function might cause symbols to be read.  This function either
   succeeds or fails (not halfway succeeds).  If it succeeds, it sets
   *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
   If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
   returns 0.  */

int
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
			       CORE_ADDR *address, CORE_ADDR *endaddr)
{
  struct partial_symtab *pst;
  struct symbol *f;
  struct minimal_symbol *msymbol;
  struct partial_symbol *psb;
  struct obj_section *osect;
  int i;
  CORE_ADDR mapped_pc;

  mapped_pc = overlay_mapped_address (pc, section);

  if (mapped_pc >= cache_pc_function_low
      && mapped_pc < cache_pc_function_high
      && section == cache_pc_function_section)
    goto return_cached_value;

  /* If sigtramp is in the u area, it counts as a function (especially
     important for step_1).  */
  if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
    {
      cache_pc_function_low = SIGTRAMP_START (mapped_pc);
      cache_pc_function_high = SIGTRAMP_END (mapped_pc);
      cache_pc_function_name = "<sigtramp>";
      cache_pc_function_section = section;
      goto return_cached_value;
    }

  msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
  pst = find_pc_sect_psymtab (mapped_pc, section);
  if (pst)
    {
      /* Need to read the symbols to get a good value for the end address.  */
      if (endaddr != NULL && !pst->readin)
	{
	  /* Need to get the terminal in case symbol-reading produces
	     output.  */
	  target_terminal_ours_for_output ();
	  PSYMTAB_TO_SYMTAB (pst);
	}

      if (pst->readin)
	{
	  /* Checking whether the msymbol has a larger value is for the
	     "pathological" case mentioned in print_frame_info.  */
	  f = find_pc_sect_function (mapped_pc, section);
	  if (f != NULL
	      && (msymbol == NULL
		  || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
		      >= SYMBOL_VALUE_ADDRESS (msymbol))))
	    {
	      cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
	      cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
	      cache_pc_function_name = SYMBOL_NAME (f);
	      cache_pc_function_section = section;
	      goto return_cached_value;
	    }
	}
      else
	{
	  /* Now that static symbols go in the minimal symbol table, perhaps
	     we could just ignore the partial symbols.  But at least for now
	     we use the partial or minimal symbol, whichever is larger.  */
	  psb = find_pc_sect_psymbol (pst, mapped_pc, section);

	  if (psb
	      && (msymbol == NULL ||
		  (SYMBOL_VALUE_ADDRESS (psb)
		   >= SYMBOL_VALUE_ADDRESS (msymbol))))
	    {
	      /* This case isn't being cached currently. */
	      if (address)
		*address = SYMBOL_VALUE_ADDRESS (psb);
	      if (name)
		*name = SYMBOL_NAME (psb);
	      /* endaddr non-NULL can't happen here.  */
	      return 1;
	    }
	}
    }

  /* Not in the normal symbol tables, see if the pc is in a known section.
     If it's not, then give up.  This ensures that anything beyond the end
     of the text seg doesn't appear to be part of the last function in the
     text segment.  */

  osect = find_pc_sect_section (mapped_pc, section);

  if (!osect)
    msymbol = NULL;

  /* Must be in the minimal symbol table.  */
  if (msymbol == NULL)
    {
      /* No available symbol.  */
      if (name != NULL)
	*name = 0;
      if (address != NULL)
	*address = 0;
      if (endaddr != NULL)
	*endaddr = 0;
      return 0;
    }

  cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
  cache_pc_function_name = SYMBOL_NAME (msymbol);
  cache_pc_function_section = section;

  /* Use the lesser of the next minimal symbol in the same section, or
     the end of the section, as the end of the function.  */

  /* Step over other symbols at this same address, and symbols in
     other sections, to find the next symbol in this section with
     a different address.  */

  for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
    {
      if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
	  && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
	break;
    }

  if (SYMBOL_NAME (msymbol + i) != NULL
      && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
    cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
  else
    /* We got the start address from the last msymbol in the objfile.
       So the end address is the end of the section.  */
    cache_pc_function_high = osect->endaddr;

 return_cached_value:

  if (address)
    {
      if (pc_in_unmapped_range (pc, section))
	*address = overlay_unmapped_address (cache_pc_function_low, section);
      else
	*address = cache_pc_function_low;
    }

  if (name)
    *name = cache_pc_function_name;

  if (endaddr)
    {
      if (pc_in_unmapped_range (pc, section))
	{
	  /* Because the high address is actually beyond the end of
	     the function (and therefore possibly beyond the end of
	     the overlay), we must actually convert (high - 1) and
	     then add one to that. */

	  *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
						   section);
	}
      else
	*endaddr = cache_pc_function_high;
    }

  return 1;
}

/* Backward compatibility, no section argument.  */

int
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
			  CORE_ADDR *endaddr)
{
  asection *section;

  section = find_pc_overlay (pc);
  return find_pc_sect_partial_function (pc, section, name, address, endaddr);
}

/* Return the innermost stack frame executing inside of BLOCK,
   or NULL if there is no such frame.  If BLOCK is NULL, just return NULL.  */

struct frame_info *
block_innermost_frame (const struct block *block)
{
  struct frame_info *frame;
  register CORE_ADDR start;
  register CORE_ADDR end;
  CORE_ADDR calling_pc;

  if (block == NULL)
    return NULL;

  start = BLOCK_START (block);
  end = BLOCK_END (block);

  frame = NULL;
  while (1)
    {
      frame = get_prev_frame (frame);
      if (frame == NULL)
	return NULL;
      calling_pc = frame_address_in_block (frame);
      if (calling_pc >= start && calling_pc < end)
	return frame;
    }
}

/* Return the full FRAME which corresponds to the given CORE_ADDR
   or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */

struct frame_info *
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
{
  struct frame_info *frame = NULL;

  if (frame_addr == (CORE_ADDR) 0)
    return NULL;

  while (1)
    {
      frame = get_prev_frame (frame);
      if (frame == NULL)
	return NULL;
      if (FRAME_FP (frame) == frame_addr)
	return frame;
    }
}

#ifdef SIGCONTEXT_PC_OFFSET
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp.  */

CORE_ADDR
sigtramp_saved_pc (struct frame_info *frame)
{
  CORE_ADDR sigcontext_addr;
  char *buf;
  int ptrbytes = TYPE_LENGTH (builtin_type_void_func_ptr);
  int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;

  buf = alloca (ptrbytes);
  /* Get sigcontext address, it is the third parameter on the stack.  */
  if (frame->next)
    sigcontext_addr = read_memory_typed_address
      (FRAME_ARGS_ADDRESS (frame->next) + FRAME_ARGS_SKIP + sigcontext_offs,
       builtin_type_void_data_ptr);
  else
    sigcontext_addr = read_memory_typed_address
      (read_register (SP_REGNUM) + sigcontext_offs, builtin_type_void_data_ptr);

  /* Don't cause a memory_error when accessing sigcontext in case the stack
     layout has changed or the stack is corrupt.  */
  target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
  return extract_typed_address (buf, builtin_type_void_func_ptr);
}
#endif /* SIGCONTEXT_PC_OFFSET */


/* Are we in a call dummy?  The code below which allows DECR_PC_AFTER_BREAK
   below is for infrun.c, which may give the macro a pc without that
   subtracted out.  */

extern CORE_ADDR text_end;

int
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
				  CORE_ADDR frame_address)
{
  return ((pc) >= text_end - CALL_DUMMY_LENGTH
	  && (pc) <= text_end + DECR_PC_AFTER_BREAK);
}

int
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
				 CORE_ADDR frame_address)
{
  return ((pc) >= text_end
	  && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
}

/* Is the PC in a call dummy?  SP and FRAME_ADDRESS are the bottom and
   top of the stack frame which we are checking, where "bottom" and
   "top" refer to some section of memory which contains the code for
   the call dummy.  Calls to this macro assume that the contents of
   SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
   are the things to pass.

   This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
   have that meaning, but the 29k doesn't use ON_STACK.  This could be
   fixed by generalizing this scheme, perhaps by passing in a frame
   and adding a few fields, at least on machines which need them for
   PC_IN_CALL_DUMMY.

   Something simpler, like checking for the stack segment, doesn't work,
   since various programs (threads implementations, gcc nested function
   stubs, etc) may either allocate stack frames in another segment, or
   allocate other kinds of code on the stack.  */

int
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
{
  return (INNER_THAN ((sp), (pc))
	  && (frame_address != 0)
	  && INNER_THAN ((pc), (frame_address)));
}

int
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
				 CORE_ADDR frame_address)
{
  return ((pc) >= CALL_DUMMY_ADDRESS ()
	  && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
}


/* Function: frame_chain_valid 
   Returns true for a user frame or a call_function_by_hand dummy frame,
   and false for the CRT0 start-up frame.  Purpose is to terminate backtrace */

int
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
{
  if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
    return 1;			/* don't prune CALL_DUMMY frames */
  else				/* fall back to default algorithm (see frame.h) */
    return (fp != 0
	    && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
	    && !inside_entry_file (FRAME_SAVED_PC (fi)));
}

int
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
{
  if (USE_GENERIC_DUMMY_FRAMES
      && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
    return 1;			/* don't prune CALL_DUMMY frames */
  else				/* fall back to default algorithm (see frame.h) */
    return (fp != 0
	    && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
	    && !inside_main_func ((fi)->pc)
	    && !inside_entry_func ((fi)->pc));
}