aboutsummaryrefslogtreecommitdiff
path: root/gdb/bcache.h
blob: 6c3a63d2ba882ff4814b66cbb077323f3da78b12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/* Include file cached obstack implementation.
   Written by Fred Fish <fnf@cygnus.com>
   Rewritten by Jim Blandy <jimb@cygnus.com>

   Copyright 1999, 2000, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#ifndef BCACHE_H
#define BCACHE_H 1

/* A bcache is a data structure for factoring out duplication in
   read-only structures.  You give the bcache some string of bytes S.
   If the bcache already contains a copy of S, it hands you back a
   pointer to its copy.  Otherwise, it makes a fresh copy of S, and
   hands you back a pointer to that.  In either case, you can throw
   away your copy of S, and use the bcache's.

   The "strings" in question are arbitrary strings of bytes --- they
   can contain zero bytes.  You pass in the length explicitly when you
   call the bcache function.

   This means that you can put ordinary C objects in a bcache.
   However, if you do this, remember that structs can contain `holes'
   between members, added for alignment.  These bytes usually contain
   garbage.  If you try to bcache two objects which are identical from
   your code's point of view, but have different garbage values in the
   structure's holes, then the bcache will treat them as separate
   strings, and you won't get the nice elimination of duplicates you
   were hoping for.  So, remember to memset your structures full of
   zeros before bcaching them!

   You shouldn't modify the strings you get from a bcache, because:

   - You don't necessarily know who you're sharing space with.  If I
   stick eight bytes of text in a bcache, and then stick an eight-byte
   structure in the same bcache, there's no guarantee those two
   objects don't actually comprise the same sequence of bytes.  If
   they happen to, the bcache will use a single byte string for both
   of them.  Then, modifying the structure will change the string.  In
   bizarre ways.

   - Even if you know for some other reason that all that's okay,
   there's another problem.  A bcache stores all its strings in a hash
   table.  If you modify a string's contents, you will probably change
   its hash value.  This means that the modified string is now in the
   wrong place in the hash table, and future bcache probes will never
   find it.  So by mutating a string, you give up any chance of
   sharing its space with future duplicates.


   Size of bcache VS hashtab:

   For bcache, the most critical cost is size (or more exactly the
   overhead added by the bcache).  It turns out that the bcache is
   remarkably efficient.

   Assuming a 32-bit system (the hash table slots are 4 bytes),
   ignoring alignment, and limit strings to 255 bytes (1 byte length)
   we get ...

   bcache: This uses a separate linked list to track the hash chain.
   The numbers show roughly 100% occupancy of the hash table and an
   average chain length of 4.  Spreading the slot cost over the 4
   chain elements:

   4 (slot) / 4 (chain length) + 1 (length) + 4 (chain) = 6 bytes

   hashtab: This uses a more traditional re-hash algorithm where the
   chain is maintained within the hash table.  The table occupancy is
   kept below 75% but we'll assume its perfect:

   4 (slot) x 4/3 (occupancy) +  1 (length) = 6 1/3 bytes

   So a perfect hashtab has just slightly larger than an average
   bcache.

   It turns out that an average hashtab is far worse.  Two things
   hurt:

   - Hashtab's occupancy is more like 50% (it ranges between 38% and
   75%) giving a per slot cost of 4x2 vs 4x4/3.

   - the string structure needs to be aligned to 8 bytes which for
   hashtab wastes 7 bytes, while for bcache wastes only 3.

   This gives:

   hashtab: 4 x 2 + 1 + 7 = 16 bytes

   bcache 4 / 4 + 1 + 4 + 3 = 9 bytes

   The numbers of GDB debugging GDB support this.  ~40% vs ~70% overhead.


   Speed of bcache VS hashtab (the half hash hack):

   While hashtab has a typical chain length of 1, bcache has a chain
   length of round 4.  This means that the bcache will require
   something like double the number of compares after that initial
   hash.  In both cases the comparison takes the form:

   a.length == b.length && memcmp (a.data, b.data, a.length) == 0

   That is lengths are checked before doing the memcmp.

   For GDB debugging GDB, it turned out that all lengths were 24 bytes
   (no C++ so only psymbols were cached) and hence, all compares
   required a call to memcmp.  As a hack, two bytes of padding
   (mentioned above) are used to store the upper 16 bits of the
   string's hash value and then that is used in the comparison vis:

   a.half_hash == b.half_hash && a.length == b.length && memcmp
   (a.data, b.data, a.length)

   The numbers from GDB debugging GDB show this to be a remarkable
   100% effective (only necessary length and memcmp tests being
   performed).

   Mind you, looking at the wall clock, the same GDB debugging GDB
   showed only marginal speed up (0.780 vs 0.773s).  Seems GDB is too
   busy doing something else :-(
  
*/


struct bcache;

/* Find a copy of the LENGTH bytes at ADDR in BCACHE.  If BCACHE has
   never seen those bytes before, add a copy of them to BCACHE.  In
   either case, return a pointer to BCACHE's copy of that string.  */
extern void *bcache (const void *addr, int length, struct bcache *bcache);

/* Free all the storage used by BCACHE.  */
extern void bcache_xfree (struct bcache *bcache);

/* Create a new bcache object.  */
extern struct bcache *bcache_xmalloc (void);

/* Print statistics on BCACHE's memory usage and efficacity at
   eliminating duplication.  TYPE should be a string describing the
   kind of data BCACHE holds.  Statistics are printed using
   `printf_filtered' and its ilk.  */
extern void print_bcache_statistics (struct bcache *bcache, char *type);
extern int bcache_memory_used (struct bcache *bcache);

/* The hash function */
extern unsigned long hash(const void *addr, int length);

#endif /* BCACHE_H */