aboutsummaryrefslogtreecommitdiff
path: root/gdb/arm-xdep.c
blob: 48c416d32ef451472c1b57c34b0c73adaa0000e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* Acorn Risc Machine host machine support.
   Copyright (C) 1988, 1989, 1991 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "arm-opcode.h"

#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <machine/reg.h>

#define N_TXTADDR(hdr) 0x8000
#define N_DATADDR(hdr) (hdr.a_text + 0x8000)

#include "gdbcore.h"

#include <sys/user.h>		/* After a.out.h  */
#include <sys/file.h>
#include "gdb_stat.h"

#include <errno.h>

void
fetch_inferior_registers (regno)
     int regno;			/* Original value discarded */
{
  register unsigned int regaddr;
  char buf[MAX_REGISTER_RAW_SIZE];
  register int i;

  struct user u;
  unsigned int offset = (char *) &u.u_ar0 - (char *) &u;
  offset = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0)
    - KERNEL_U_ADDR;

  registers_fetched ();

  for (regno = 0; regno < 16; regno++)
    {
      regaddr = offset + regno * 4;
      *(int *) &buf[0] = ptrace (PT_READ_U, inferior_pid,
				 (PTRACE_ARG3_TYPE) regaddr, 0);
      if (regno == PC_REGNUM)
	*(int *) &buf[0] = GET_PC_PART (*(int *) &buf[0]);
      supply_register (regno, buf);
    }
  *(int *) &buf[0] = ptrace (PT_READ_U, inferior_pid,
			     (PTRACE_ARG3_TYPE) (offset + PC * 4), 0);
  supply_register (PS_REGNUM, buf);	/* set virtual register ps same as pc */

  /* read the floating point registers */
  offset = (char *) &u.u_fp_regs - (char *) &u;
  *(int *) buf = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0);
  supply_register (FPS_REGNUM, buf);
  for (regno = 16; regno < 24; regno++)
    {
      regaddr = offset + 4 + 12 * (regno - 16);
      for (i = 0; i < 12; i += sizeof (int))
	 *(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
				      (PTRACE_ARG3_TYPE) (regaddr + i), 0);
      supply_register (regno, buf);
    }
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (regno)
     int regno;
{
  register unsigned int regaddr;
  char buf[80];

  struct user u;
  unsigned long value;
  unsigned int offset = (char *) &u.u_ar0 - (char *) &u;
  offset = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0)
    - KERNEL_U_ADDR;

  if (regno >= 0)
    {
      if (regno >= 16)
	return;
      regaddr = offset + 4 * regno;
      errno = 0;
      value = read_register (regno);
      if (regno == PC_REGNUM)
	value = SET_PC_PART (read_register (PS_REGNUM), value);
      ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, value);
      if (errno != 0)
	{
	  sprintf (buf, "writing register number %d", regno);
	  perror_with_name (buf);
	}
    }
  else
    for (regno = 0; regno < 15; regno++)
      {
	regaddr = offset + regno * 4;
	errno = 0;
	value = read_register (regno);
	if (regno == PC_REGNUM)
	  value = SET_PC_PART (read_register (PS_REGNUM), value);
	ptrace (6, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, value);
	if (errno != 0)
	  {
	    sprintf (buf, "writing all regs, number %d", regno);
	    perror_with_name (buf);
	  }
      }
}

/* Work with core dump and executable files, for GDB. 
   This code would be in corefile.c if it weren't machine-dependent. */

/* Structure to describe the chain of shared libraries used
   by the execfile.
   e.g. prog shares Xt which shares X11 which shares c. */

struct shared_library
{
  struct exec_header header;
  char name[SHLIBLEN];
  CORE_ADDR text_start;		/* CORE_ADDR of 1st byte of text, this file */
  long data_offset;		/* offset of data section in file */
  int chan;			/* file descriptor for the file */
  struct shared_library *shares;	/* library this one shares */
};
static struct shared_library *shlib = 0;

/* Hook for `exec_file_command' command to call.  */

extern void (*exec_file_display_hook) ();

static CORE_ADDR unshared_text_start;

/* extended header from exec file (for shared library info) */

static struct exec_header exec_header;

void
core_file_command (filename, from_tty)
     char *filename;
     int from_tty;
{
  int val;

  /* Discard all vestiges of any previous core file
     and mark data and stack spaces as empty.  */

  if (corefile)
    free (corefile);
  corefile = 0;

  if (corechan >= 0)
    close (corechan);
  corechan = -1;

  data_start = 0;
  data_end = 0;
  stack_start = STACK_END_ADDR;
  stack_end = STACK_END_ADDR;

  /* Now, if a new core file was specified, open it and digest it.  */

  if (filename)
    {
      filename = tilde_expand (filename);
      make_cleanup (free, filename);

      if (have_inferior_p ())
	error ("To look at a core file, you must kill the program with \"kill\".");
      corechan = open (filename, O_RDONLY, 0);
      if (corechan < 0)
	perror_with_name (filename);
      /* 4.2-style (and perhaps also sysV-style) core dump file.  */
      {
	struct user u;

	unsigned int reg_offset, fp_reg_offset;

	val = myread (corechan, &u, sizeof u);
	if (val < 0)
	  perror_with_name ("Not a core file: reading upage");
	if (val != sizeof u)
	  error ("Not a core file: could only read %d bytes", val);

	/* We are depending on exec_file_command having been called
	   previously to set exec_data_start.  Since the executable
	   and the core file share the same text segment, the address
	   of the data segment will be the same in both.  */
	data_start = exec_data_start;

	data_end = data_start + NBPG * u.u_dsize;
	stack_start = stack_end - NBPG * u.u_ssize;
	data_offset = NBPG * UPAGES;
	stack_offset = NBPG * (UPAGES + u.u_dsize);

	/* Some machines put an absolute address in here and some put
	   the offset in the upage of the regs.  */
	reg_offset = (int) u.u_ar0;
	if (reg_offset > NBPG * UPAGES)
	  reg_offset -= KERNEL_U_ADDR;
	fp_reg_offset = (char *) &u.u_fp_regs - (char *) &u;

	/* I don't know where to find this info.
	   So, for now, mark it as not available.  */
	N_SET_MAGIC (core_aouthdr, 0);

	/* Read the register values out of the core file and store
	   them where `read_register' will find them.  */

	{
	  register int regno;

	  for (regno = 0; regno < NUM_REGS; regno++)
	    {
	      char buf[MAX_REGISTER_RAW_SIZE];

	      if (regno < 16)
		val = lseek (corechan, reg_offset + 4 * regno, 0);
	      else if (regno < 24)
		val = lseek (corechan, fp_reg_offset + 4 + 12 * (regno - 24), 0);
	      else if (regno == 24)
		val = lseek (corechan, fp_reg_offset, 0);
	      else if (regno == 25)
		val = lseek (corechan, reg_offset + 4 * PC, 0);
	      if (val < 0
		  || (val = myread (corechan, buf, sizeof buf)) < 0)
		{
		  char *buffer = (char *) alloca (strlen (REGISTER_NAME (regno))
						  + 30);
		  strcpy (buffer, "Reading register ");
		  strcat (buffer, REGISTER_NAME (regno));

		  perror_with_name (buffer);
		}

	      if (regno == PC_REGNUM)
		*(int *) buf = GET_PC_PART (*(int *) buf);
	      supply_register (regno, buf);
	    }
	}
      }
      if (filename[0] == '/')
	corefile = savestring (filename, strlen (filename));
      else
	{
	  corefile = concat (current_directory, "/", filename, NULL);
	}

      flush_cached_frames ();
      select_frame (get_current_frame (), 0);
      validate_files ();
    }
  else if (from_tty)
    printf ("No core file now.\n");
}

#if 0
/* Work with core dump and executable files, for GDB. 
   This code would be in corefile.c if it weren't machine-dependent. */

/* Structure to describe the chain of shared libraries used
   by the execfile.
   e.g. prog shares Xt which shares X11 which shares c. */

struct shared_library
{
  struct exec_header header;
  char name[SHLIBLEN];
  CORE_ADDR text_start;		/* CORE_ADDR of 1st byte of text, this file */
  long data_offset;		/* offset of data section in file */
  int chan;			/* file descriptor for the file */
  struct shared_library *shares;	/* library this one shares */
};
static struct shared_library *shlib = 0;

/* Hook for `exec_file_command' command to call.  */

extern void (*exec_file_display_hook) ();

static CORE_ADDR unshared_text_start;

/* extended header from exec file (for shared library info) */

static struct exec_header exec_header;

void
exec_file_command (filename, from_tty)
     char *filename;
     int from_tty;
{
  int val;

  /* Eliminate all traces of old exec file.
     Mark text segment as empty.  */

  if (execfile)
    free (execfile);
  execfile = 0;
  data_start = 0;
  data_end -= exec_data_start;
  text_start = 0;
  unshared_text_start = 0;
  text_end = 0;
  exec_data_start = 0;
  exec_data_end = 0;
  if (execchan >= 0)
    close (execchan);
  execchan = -1;
  if (shlib)
    {
      close_shared_library (shlib);
      shlib = 0;
    }

  /* Now open and digest the file the user requested, if any.  */

  if (filename)
    {
      filename = tilde_expand (filename);
      make_cleanup (free, filename);

      execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
			&execfile);
      if (execchan < 0)
	perror_with_name (filename);

      {
	struct stat st_exec;

#ifdef HEADER_SEEK_FD
	HEADER_SEEK_FD (execchan);
#endif

	val = myread (execchan, &exec_header, sizeof exec_header);
	exec_aouthdr = exec_header.a_exec;

	if (val < 0)
	  perror_with_name (filename);

	text_start = 0x8000;

	/* Look for shared library if needed */
	if (exec_header.a_exec.a_magic & MF_USES_SL)
	  shlib = open_shared_library (exec_header.a_shlibname, text_start);

	text_offset = N_TXTOFF (exec_aouthdr);
	exec_data_offset = N_TXTOFF (exec_aouthdr) + exec_aouthdr.a_text;

	if (shlib)
	  {
	    unshared_text_start = shared_text_end (shlib) & ~0x7fff;
	    stack_start = shlib->header.a_exec.a_sldatabase;
	    stack_end = STACK_END_ADDR;
	  }
	else
	  unshared_text_start = 0x8000;
	text_end = unshared_text_start + exec_aouthdr.a_text;

	exec_data_start = unshared_text_start + exec_aouthdr.a_text;
	exec_data_end = exec_data_start + exec_aouthdr.a_data;

	data_start = exec_data_start;
	data_end += exec_data_start;

	fstat (execchan, &st_exec);
	exec_mtime = st_exec.st_mtime;
      }

      validate_files ();
    }
  else if (from_tty)
    printf ("No executable file now.\n");

  /* Tell display code (if any) about the changed file name.  */
  if (exec_file_display_hook)
    (*exec_file_display_hook) (filename);
}
#endif

#if 0
/* Read from the program's memory (except for inferior processes).
   This function is misnamed, since it only reads, never writes; and
   since it will use the core file and/or executable file as necessary.

   It should be extended to write as well as read, FIXME, for patching files.

   Return 0 if address could be read, EIO if addresss out of bounds.  */

int
xfer_core_file (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
{
  register int i;
  register int val;
  int xferchan;
  char **xferfile;
  int fileptr;
  int returnval = 0;

  while (len > 0)
    {
      xferfile = 0;
      xferchan = 0;

      /* Determine which file the next bunch of addresses reside in,
         and where in the file.  Set the file's read/write pointer
         to point at the proper place for the desired address
         and set xferfile and xferchan for the correct file.

         If desired address is nonexistent, leave them zero.

         i is set to the number of bytes that can be handled
         along with the next address.

         We put the most likely tests first for efficiency.  */

      /* Note that if there is no core file
         data_start and data_end are equal.  */
      if (memaddr >= data_start && memaddr < data_end)
	{
	  i = min (len, data_end - memaddr);
	  fileptr = memaddr - data_start + data_offset;
	  xferfile = &corefile;
	  xferchan = corechan;
	}
      /* Note that if there is no core file
         stack_start and stack_end define the shared library data.  */
      else if (memaddr >= stack_start && memaddr < stack_end)
	{
	  if (corechan < 0)
	    {
	      struct shared_library *lib;
	      for (lib = shlib; lib; lib = lib->shares)
		if (memaddr >= lib->header.a_exec.a_sldatabase &&
		    memaddr < lib->header.a_exec.a_sldatabase +
		    lib->header.a_exec.a_data)
		  break;
	      if (lib)
		{
		  i = min (len, lib->header.a_exec.a_sldatabase +
			   lib->header.a_exec.a_data - memaddr);
		  fileptr = lib->data_offset + memaddr -
		    lib->header.a_exec.a_sldatabase;
		  xferfile = execfile;
		  xferchan = lib->chan;
		}
	    }
	  else
	    {
	      i = min (len, stack_end - memaddr);
	      fileptr = memaddr - stack_start + stack_offset;
	      xferfile = &corefile;
	      xferchan = corechan;
	    }
	}
      else if (corechan < 0
	       && memaddr >= exec_data_start && memaddr < exec_data_end)
	{
	  i = min (len, exec_data_end - memaddr);
	  fileptr = memaddr - exec_data_start + exec_data_offset;
	  xferfile = &execfile;
	  xferchan = execchan;
	}
      else if (memaddr >= text_start && memaddr < text_end)
	{
	  struct shared_library *lib;
	  for (lib = shlib; lib; lib = lib->shares)
	    if (memaddr >= lib->text_start &&
		memaddr < lib->text_start + lib->header.a_exec.a_text)
	      break;
	  if (lib)
	    {
	      i = min (len, lib->header.a_exec.a_text +
		       lib->text_start - memaddr);
	      fileptr = memaddr - lib->text_start + text_offset;
	      xferfile = &execfile;
	      xferchan = lib->chan;
	    }
	  else
	    {
	      i = min (len, text_end - memaddr);
	      fileptr = memaddr - unshared_text_start + text_offset;
	      xferfile = &execfile;
	      xferchan = execchan;
	    }
	}
      else if (memaddr < text_start)
	{
	  i = min (len, text_start - memaddr);
	}
      else if (memaddr >= text_end
	       && memaddr < (corechan >= 0 ? data_start : exec_data_start))
	{
	  i = min (len, data_start - memaddr);
	}
      else if (corechan >= 0
	       && memaddr >= data_end && memaddr < stack_start)
	{
	  i = min (len, stack_start - memaddr);
	}
      else if (corechan < 0 && memaddr >= exec_data_end)
	{
	  i = min (len, -memaddr);
	}
      else if (memaddr >= stack_end && stack_end != 0)
	{
	  i = min (len, -memaddr);
	}
      else
	{
	  /* Address did not classify into one of the known ranges.
	     This shouldn't happen; we catch the endpoints.  */
	  fatal ("Internal: Bad case logic in xfer_core_file.");
	}

      /* Now we know which file to use.
         Set up its pointer and transfer the data.  */
      if (xferfile)
	{
	  if (*xferfile == 0)
	    if (xferfile == &execfile)
	      error ("No program file to examine.");
	    else
	      error ("No core dump file or running program to examine.");
	  val = lseek (xferchan, fileptr, 0);
	  if (val < 0)
	    perror_with_name (*xferfile);
	  val = myread (xferchan, myaddr, i);
	  if (val < 0)
	    perror_with_name (*xferfile);
	}
      /* If this address is for nonexistent memory,
         read zeros if reading, or do nothing if writing.
         Actually, we never right.  */
      else
	{
	  memset (myaddr, '\0', i);
	  returnval = EIO;
	}

      memaddr += i;
      myaddr += i;
      len -= i;
    }
  return returnval;
}
#endif