1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
|
/* Common target dependent code for GDB on ARM systems.
Copyright (C) 1988-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include <ctype.h> /* XXX for isupper (). */
#include "frame.h"
#include "inferior.h"
#include "infrun.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "dis-asm.h" /* For register styles. */
#include "disasm.h"
#include "regcache.h"
#include "reggroups.h"
#include "doublest.h"
#include "value.h"
#include "arch-utils.h"
#include "osabi.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "objfiles.h"
#include "dwarf2-frame.h"
#include "gdbtypes.h"
#include "prologue-value.h"
#include "remote.h"
#include "target-descriptions.h"
#include "user-regs.h"
#include "observer.h"
#include "arch/arm.h"
#include "arch/arm-get-next-pcs.h"
#include "arm-tdep.h"
#include "gdb/sim-arm.h"
#include "elf-bfd.h"
#include "coff/internal.h"
#include "elf/arm.h"
#include "vec.h"
#include "record.h"
#include "record-full.h"
#include <algorithm>
#include "features/arm/arm-with-m.c"
#include "features/arm/arm-with-m-fpa-layout.c"
#include "features/arm/arm-with-m-vfp-d16.c"
#include "features/arm/arm-with-iwmmxt.c"
#include "features/arm/arm-with-vfpv2.c"
#include "features/arm/arm-with-vfpv3.c"
#include "features/arm/arm-with-neon.c"
#if GDB_SELF_TEST
#include "selftest.h"
#endif
static int arm_debug;
/* Macros for setting and testing a bit in a minimal symbol that marks
it as Thumb function. The MSB of the minimal symbol's "info" field
is used for this purpose.
MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
#define MSYMBOL_SET_SPECIAL(msym) \
MSYMBOL_TARGET_FLAG_1 (msym) = 1
#define MSYMBOL_IS_SPECIAL(msym) \
MSYMBOL_TARGET_FLAG_1 (msym)
/* Per-objfile data used for mapping symbols. */
static const struct objfile_data *arm_objfile_data_key;
struct arm_mapping_symbol
{
bfd_vma value;
char type;
};
typedef struct arm_mapping_symbol arm_mapping_symbol_s;
DEF_VEC_O(arm_mapping_symbol_s);
struct arm_per_objfile
{
VEC(arm_mapping_symbol_s) **section_maps;
};
/* The list of available "set arm ..." and "show arm ..." commands. */
static struct cmd_list_element *setarmcmdlist = NULL;
static struct cmd_list_element *showarmcmdlist = NULL;
/* The type of floating-point to use. Keep this in sync with enum
arm_float_model, and the help string in _initialize_arm_tdep. */
static const char *const fp_model_strings[] =
{
"auto",
"softfpa",
"fpa",
"softvfp",
"vfp",
NULL
};
/* A variable that can be configured by the user. */
static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
static const char *current_fp_model = "auto";
/* The ABI to use. Keep this in sync with arm_abi_kind. */
static const char *const arm_abi_strings[] =
{
"auto",
"APCS",
"AAPCS",
NULL
};
/* A variable that can be configured by the user. */
static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
static const char *arm_abi_string = "auto";
/* The execution mode to assume. */
static const char *const arm_mode_strings[] =
{
"auto",
"arm",
"thumb",
NULL
};
static const char *arm_fallback_mode_string = "auto";
static const char *arm_force_mode_string = "auto";
/* The standard register names, and all the valid aliases for them. Note
that `fp', `sp' and `pc' are not added in this alias list, because they
have been added as builtin user registers in
std-regs.c:_initialize_frame_reg. */
static const struct
{
const char *name;
int regnum;
} arm_register_aliases[] = {
/* Basic register numbers. */
{ "r0", 0 },
{ "r1", 1 },
{ "r2", 2 },
{ "r3", 3 },
{ "r4", 4 },
{ "r5", 5 },
{ "r6", 6 },
{ "r7", 7 },
{ "r8", 8 },
{ "r9", 9 },
{ "r10", 10 },
{ "r11", 11 },
{ "r12", 12 },
{ "r13", 13 },
{ "r14", 14 },
{ "r15", 15 },
/* Synonyms (argument and variable registers). */
{ "a1", 0 },
{ "a2", 1 },
{ "a3", 2 },
{ "a4", 3 },
{ "v1", 4 },
{ "v2", 5 },
{ "v3", 6 },
{ "v4", 7 },
{ "v5", 8 },
{ "v6", 9 },
{ "v7", 10 },
{ "v8", 11 },
/* Other platform-specific names for r9. */
{ "sb", 9 },
{ "tr", 9 },
/* Special names. */
{ "ip", 12 },
{ "lr", 14 },
/* Names used by GCC (not listed in the ARM EABI). */
{ "sl", 10 },
/* A special name from the older ATPCS. */
{ "wr", 7 },
};
static const char *const arm_register_names[] =
{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
"r4", "r5", "r6", "r7", /* 4 5 6 7 */
"r8", "r9", "r10", "r11", /* 8 9 10 11 */
"r12", "sp", "lr", "pc", /* 12 13 14 15 */
"f0", "f1", "f2", "f3", /* 16 17 18 19 */
"f4", "f5", "f6", "f7", /* 20 21 22 23 */
"fps", "cpsr" }; /* 24 25 */
/* Holds the current set of options to be passed to the disassembler. */
static char *arm_disassembler_options;
/* Valid register name styles. */
static const char **valid_disassembly_styles;
/* Disassembly style to use. Default to "std" register names. */
static const char *disassembly_style;
/* This is used to keep the bfd arch_info in sync with the disassembly
style. */
static void set_disassembly_style_sfunc(char *, int,
struct cmd_list_element *);
static void show_disassembly_style_sfunc (struct ui_file *, int,
struct cmd_list_element *,
const char *);
static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int regnum, gdb_byte *buf);
static void arm_neon_quad_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int regnum, const gdb_byte *buf);
static CORE_ADDR
arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
/* get_next_pcs operations. */
static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
arm_get_next_pcs_read_memory_unsigned_integer,
arm_get_next_pcs_syscall_next_pc,
arm_get_next_pcs_addr_bits_remove,
arm_get_next_pcs_is_thumb,
NULL,
};
struct arm_prologue_cache
{
/* The stack pointer at the time this frame was created; i.e. the
caller's stack pointer when this function was called. It is used
to identify this frame. */
CORE_ADDR prev_sp;
/* The frame base for this frame is just prev_sp - frame size.
FRAMESIZE is the distance from the frame pointer to the
initial stack pointer. */
int framesize;
/* The register used to hold the frame pointer for this frame. */
int framereg;
/* Saved register offsets. */
struct trad_frame_saved_reg *saved_regs;
};
static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR prologue_start,
CORE_ADDR prologue_end,
struct arm_prologue_cache *cache);
/* Architecture version for displaced stepping. This effects the behaviour of
certain instructions, and really should not be hard-wired. */
#define DISPLACED_STEPPING_ARCH_VERSION 5
/* Set to true if the 32-bit mode is in use. */
int arm_apcs_32 = 1;
/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
int
arm_psr_thumb_bit (struct gdbarch *gdbarch)
{
if (gdbarch_tdep (gdbarch)->is_m)
return XPSR_T;
else
return CPSR_T;
}
/* Determine if the processor is currently executing in Thumb mode. */
int
arm_is_thumb (struct regcache *regcache)
{
ULONGEST cpsr;
ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
return (cpsr & t_bit) != 0;
}
/* Determine if FRAME is executing in Thumb mode. */
int
arm_frame_is_thumb (struct frame_info *frame)
{
CORE_ADDR cpsr;
ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
/* Every ARM frame unwinder can unwind the T bit of the CPSR, either
directly (from a signal frame or dummy frame) or by interpreting
the saved LR (from a prologue or DWARF frame). So consult it and
trust the unwinders. */
cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
return (cpsr & t_bit) != 0;
}
/* Callback for VEC_lower_bound. */
static inline int
arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
const struct arm_mapping_symbol *rhs)
{
return lhs->value < rhs->value;
}
/* Search for the mapping symbol covering MEMADDR. If one is found,
return its type. Otherwise, return 0. If START is non-NULL,
set *START to the location of the mapping symbol. */
static char
arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
{
struct obj_section *sec;
/* If there are mapping symbols, consult them. */
sec = find_pc_section (memaddr);
if (sec != NULL)
{
struct arm_per_objfile *data;
VEC(arm_mapping_symbol_s) *map;
struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
0 };
unsigned int idx;
data = (struct arm_per_objfile *) objfile_data (sec->objfile,
arm_objfile_data_key);
if (data != NULL)
{
map = data->section_maps[sec->the_bfd_section->index];
if (!VEC_empty (arm_mapping_symbol_s, map))
{
struct arm_mapping_symbol *map_sym;
idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
arm_compare_mapping_symbols);
/* VEC_lower_bound finds the earliest ordered insertion
point. If the following symbol starts at this exact
address, we use that; otherwise, the preceding
mapping symbol covers this address. */
if (idx < VEC_length (arm_mapping_symbol_s, map))
{
map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
if (map_sym->value == map_key.value)
{
if (start)
*start = map_sym->value + obj_section_addr (sec);
return map_sym->type;
}
}
if (idx > 0)
{
map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
if (start)
*start = map_sym->value + obj_section_addr (sec);
return map_sym->type;
}
}
}
}
return 0;
}
/* Determine if the program counter specified in MEMADDR is in a Thumb
function. This function should be called for addresses unrelated to
any executing frame; otherwise, prefer arm_frame_is_thumb. */
int
arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
{
struct bound_minimal_symbol sym;
char type;
struct displaced_step_closure* dsc
= get_displaced_step_closure_by_addr(memaddr);
/* If checking the mode of displaced instruction in copy area, the mode
should be determined by instruction on the original address. */
if (dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: check mode of %.8lx instead of %.8lx\n",
(unsigned long) dsc->insn_addr,
(unsigned long) memaddr);
memaddr = dsc->insn_addr;
}
/* If bit 0 of the address is set, assume this is a Thumb address. */
if (IS_THUMB_ADDR (memaddr))
return 1;
/* If the user wants to override the symbol table, let him. */
if (strcmp (arm_force_mode_string, "arm") == 0)
return 0;
if (strcmp (arm_force_mode_string, "thumb") == 0)
return 1;
/* ARM v6-M and v7-M are always in Thumb mode. */
if (gdbarch_tdep (gdbarch)->is_m)
return 1;
/* If there are mapping symbols, consult them. */
type = arm_find_mapping_symbol (memaddr, NULL);
if (type)
return type == 't';
/* Thumb functions have a "special" bit set in minimal symbols. */
sym = lookup_minimal_symbol_by_pc (memaddr);
if (sym.minsym)
return (MSYMBOL_IS_SPECIAL (sym.minsym));
/* If the user wants to override the fallback mode, let them. */
if (strcmp (arm_fallback_mode_string, "arm") == 0)
return 0;
if (strcmp (arm_fallback_mode_string, "thumb") == 0)
return 1;
/* If we couldn't find any symbol, but we're talking to a running
target, then trust the current value of $cpsr. This lets
"display/i $pc" always show the correct mode (though if there is
a symbol table we will not reach here, so it still may not be
displayed in the mode it will be executed). */
if (target_has_registers)
return arm_frame_is_thumb (get_current_frame ());
/* Otherwise we're out of luck; we assume ARM. */
return 0;
}
/* Determine if the address specified equals any of these magic return
values, called EXC_RETURN, defined by the ARM v6-M and v7-M
architectures.
From ARMv6-M Reference Manual B1.5.8
Table B1-5 Exception return behavior
EXC_RETURN Return To Return Stack
0xFFFFFFF1 Handler mode Main
0xFFFFFFF9 Thread mode Main
0xFFFFFFFD Thread mode Process
From ARMv7-M Reference Manual B1.5.8
Table B1-8 EXC_RETURN definition of exception return behavior, no FP
EXC_RETURN Return To Return Stack
0xFFFFFFF1 Handler mode Main
0xFFFFFFF9 Thread mode Main
0xFFFFFFFD Thread mode Process
Table B1-9 EXC_RETURN definition of exception return behavior, with
FP
EXC_RETURN Return To Return Stack Frame Type
0xFFFFFFE1 Handler mode Main Extended
0xFFFFFFE9 Thread mode Main Extended
0xFFFFFFED Thread mode Process Extended
0xFFFFFFF1 Handler mode Main Basic
0xFFFFFFF9 Thread mode Main Basic
0xFFFFFFFD Thread mode Process Basic
For more details see "B1.5.8 Exception return behavior"
in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
static int
arm_m_addr_is_magic (CORE_ADDR addr)
{
switch (addr)
{
/* Values from Tables in B1.5.8 the EXC_RETURN definitions of
the exception return behavior. */
case 0xffffffe1:
case 0xffffffe9:
case 0xffffffed:
case 0xfffffff1:
case 0xfffffff9:
case 0xfffffffd:
/* Address is magic. */
return 1;
default:
/* Address is not magic. */
return 0;
}
}
/* Remove useless bits from addresses in a running program. */
static CORE_ADDR
arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
{
/* On M-profile devices, do not strip the low bit from EXC_RETURN
(the magic exception return address). */
if (gdbarch_tdep (gdbarch)->is_m
&& arm_m_addr_is_magic (val))
return val;
if (arm_apcs_32)
return UNMAKE_THUMB_ADDR (val);
else
return (val & 0x03fffffc);
}
/* Return 1 if PC is the start of a compiler helper function which
can be safely ignored during prologue skipping. IS_THUMB is true
if the function is known to be a Thumb function due to the way it
is being called. */
static int
skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
struct bound_minimal_symbol msym;
msym = lookup_minimal_symbol_by_pc (pc);
if (msym.minsym != NULL
&& BMSYMBOL_VALUE_ADDRESS (msym) == pc
&& MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
{
const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
/* The GNU linker's Thumb call stub to foo is named
__foo_from_thumb. */
if (strstr (name, "_from_thumb") != NULL)
name += 2;
/* On soft-float targets, __truncdfsf2 is called to convert promoted
arguments to their argument types in non-prototyped
functions. */
if (startswith (name, "__truncdfsf2"))
return 1;
if (startswith (name, "__aeabi_d2f"))
return 1;
/* Internal functions related to thread-local storage. */
if (startswith (name, "__tls_get_addr"))
return 1;
if (startswith (name, "__aeabi_read_tp"))
return 1;
}
else
{
/* If we run against a stripped glibc, we may be unable to identify
special functions by name. Check for one important case,
__aeabi_read_tp, by comparing the *code* against the default
implementation (this is hand-written ARM assembler in glibc). */
if (!is_thumb
&& read_code_unsigned_integer (pc, 4, byte_order_for_code)
== 0xe3e00a0f /* mov r0, #0xffff0fff */
&& read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
== 0xe240f01f) /* sub pc, r0, #31 */
return 1;
}
return 0;
}
/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
the first 16-bit of instruction, and INSN2 is the second 16-bit of
instruction. */
#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
((bits ((insn1), 0, 3) << 12) \
| (bits ((insn1), 10, 10) << 11) \
| (bits ((insn2), 12, 14) << 8) \
| bits ((insn2), 0, 7))
/* Extract the immediate from instruction movw/movt of encoding A. INSN is
the 32-bit instruction. */
#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
((bits ((insn), 16, 19) << 12) \
| bits ((insn), 0, 11))
/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
static unsigned int
thumb_expand_immediate (unsigned int imm)
{
unsigned int count = imm >> 7;
if (count < 8)
switch (count / 2)
{
case 0:
return imm & 0xff;
case 1:
return (imm & 0xff) | ((imm & 0xff) << 16);
case 2:
return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
case 3:
return (imm & 0xff) | ((imm & 0xff) << 8)
| ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
}
return (0x80 | (imm & 0x7f)) << (32 - count);
}
/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
epilogue, 0 otherwise. */
static int
thumb_instruction_restores_sp (unsigned short insn)
{
return (insn == 0x46bd /* mov sp, r7 */
|| (insn & 0xff80) == 0xb000 /* add sp, imm */
|| (insn & 0xfe00) == 0xbc00); /* pop <registers> */
}
/* Analyze a Thumb prologue, looking for a recognizable stack frame
and frame pointer. Scan until we encounter a store that could
clobber the stack frame unexpectedly, or an unknown instruction.
Return the last address which is definitely safe to skip for an
initial breakpoint. */
static CORE_ADDR
thumb_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR start, CORE_ADDR limit,
struct arm_prologue_cache *cache)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
int i;
pv_t regs[16];
CORE_ADDR offset;
CORE_ADDR unrecognized_pc = 0;
for (i = 0; i < 16; i++)
regs[i] = pv_register (i, 0);
pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
while (start < limit)
{
unsigned short insn;
insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
{
int regno;
int mask;
if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
break;
/* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
whether to save LR (R14). */
mask = (insn & 0xff) | ((insn & 0x100) << 6);
/* Calculate offsets of saved R0-R7 and LR. */
for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
if (mask & (1 << regno))
{
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
-4);
stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
}
}
else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
{
offset = (insn & 0x7f) << 2; /* get scaled offset */
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
-offset);
}
else if (thumb_instruction_restores_sp (insn))
{
/* Don't scan past the epilogue. */
break;
}
else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
(insn & 0xff) << 2);
else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
&& pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
bits (insn, 6, 8));
else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
&& pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
bits (insn, 0, 7));
else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
&& pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
&& pv_is_constant (regs[bits (insn, 3, 5)]))
regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
regs[bits (insn, 6, 8)]);
else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
&& pv_is_constant (regs[bits (insn, 3, 6)]))
{
int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
int rm = bits (insn, 3, 6);
regs[rd] = pv_add (regs[rd], regs[rm]);
}
else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
{
int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
int src_reg = (insn & 0x78) >> 3;
regs[dst_reg] = regs[src_reg];
}
else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
{
/* Handle stores to the stack. Normally pushes are used,
but with GCC -mtpcs-frame, there may be other stores
in the prologue to create the frame. */
int regno = (insn >> 8) & 0x7;
pv_t addr;
offset = (insn & 0xff) << 2;
addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
if (stack.store_would_trash (addr))
break;
stack.store (addr, 4, regs[regno]);
}
else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
{
int rd = bits (insn, 0, 2);
int rn = bits (insn, 3, 5);
pv_t addr;
offset = bits (insn, 6, 10) << 2;
addr = pv_add_constant (regs[rn], offset);
if (stack.store_would_trash (addr))
break;
stack.store (addr, 4, regs[rd]);
}
else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
|| (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
&& pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
/* Ignore stores of argument registers to the stack. */
;
else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
&& pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
/* Ignore block loads from the stack, potentially copying
parameters from memory. */
;
else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
|| ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
&& pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
/* Similarly ignore single loads from the stack. */
;
else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
|| (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
/* Skip register copies, i.e. saves to another register
instead of the stack. */
;
else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
/* Recognize constant loads; even with small stacks these are necessary
on Thumb. */
regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
{
/* Constant pool loads, for the same reason. */
unsigned int constant;
CORE_ADDR loc;
loc = start + 4 + bits (insn, 0, 7) * 4;
constant = read_memory_unsigned_integer (loc, 4, byte_order);
regs[bits (insn, 8, 10)] = pv_constant (constant);
}
else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
{
unsigned short inst2;
inst2 = read_code_unsigned_integer (start + 2, 2,
byte_order_for_code);
if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
{
/* BL, BLX. Allow some special function calls when
skipping the prologue; GCC generates these before
storing arguments to the stack. */
CORE_ADDR nextpc;
int j1, j2, imm1, imm2;
imm1 = sbits (insn, 0, 10);
imm2 = bits (inst2, 0, 10);
j1 = bit (inst2, 13);
j2 = bit (inst2, 11);
offset = ((imm1 << 12) + (imm2 << 1));
offset ^= ((!j2) << 22) | ((!j1) << 23);
nextpc = start + 4 + offset;
/* For BLX make sure to clear the low bits. */
if (bit (inst2, 12) == 0)
nextpc = nextpc & 0xfffffffc;
if (!skip_prologue_function (gdbarch, nextpc,
bit (inst2, 12) != 0))
break;
}
else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
{ registers } */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
{
pv_t addr = regs[bits (insn, 0, 3)];
int regno;
if (stack.store_would_trash (addr))
break;
/* Calculate offsets of saved registers. */
for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
if (inst2 & (1 << regno))
{
addr = pv_add_constant (addr, -4);
stack.store (addr, 4, regs[regno]);
}
if (insn & 0x0020)
regs[bits (insn, 0, 3)] = addr;
}
else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
[Rn, #+/-imm]{!} */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
{
int regno1 = bits (inst2, 12, 15);
int regno2 = bits (inst2, 8, 11);
pv_t addr = regs[bits (insn, 0, 3)];
offset = inst2 & 0xff;
if (insn & 0x0080)
addr = pv_add_constant (addr, offset);
else
addr = pv_add_constant (addr, -offset);
if (stack.store_would_trash (addr))
break;
stack.store (addr, 4, regs[regno1]);
stack.store (pv_add_constant (addr, 4),
4, regs[regno2]);
if (insn & 0x0020)
regs[bits (insn, 0, 3)] = addr;
}
else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
&& (inst2 & 0x0c00) == 0x0c00
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
{
int regno = bits (inst2, 12, 15);
pv_t addr = regs[bits (insn, 0, 3)];
offset = inst2 & 0xff;
if (inst2 & 0x0200)
addr = pv_add_constant (addr, offset);
else
addr = pv_add_constant (addr, -offset);
if (stack.store_would_trash (addr))
break;
stack.store (addr, 4, regs[regno]);
if (inst2 & 0x0100)
regs[bits (insn, 0, 3)] = addr;
}
else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
{
int regno = bits (inst2, 12, 15);
pv_t addr;
offset = inst2 & 0xfff;
addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
if (stack.store_would_trash (addr))
break;
stack.store (addr, 4, regs[regno]);
}
else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Ignore stores of argument registers to the stack. */
;
else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
&& (inst2 & 0x0d00) == 0x0c00
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Ignore stores of argument registers to the stack. */
;
else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
{ registers } */
&& (inst2 & 0x8000) == 0x0000
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Ignore block loads from the stack, potentially copying
parameters from memory. */
;
else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
[Rn, #+/-imm] */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Similarly ignore dual loads from the stack. */
;
else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
&& (inst2 & 0x0d00) == 0x0c00
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Similarly ignore single loads from the stack. */
;
else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
&& pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
/* Similarly ignore single loads from the stack. */
;
else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
&& (inst2 & 0x8000) == 0x0000)
{
unsigned int imm = ((bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
regs[bits (inst2, 8, 11)]
= pv_add_constant (regs[bits (insn, 0, 3)],
thumb_expand_immediate (imm));
}
else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
&& (inst2 & 0x8000) == 0x0000)
{
unsigned int imm = ((bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
regs[bits (inst2, 8, 11)]
= pv_add_constant (regs[bits (insn, 0, 3)], imm);
}
else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
&& (inst2 & 0x8000) == 0x0000)
{
unsigned int imm = ((bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
regs[bits (inst2, 8, 11)]
= pv_add_constant (regs[bits (insn, 0, 3)],
- (CORE_ADDR) thumb_expand_immediate (imm));
}
else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
&& (inst2 & 0x8000) == 0x0000)
{
unsigned int imm = ((bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
regs[bits (inst2, 8, 11)]
= pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
}
else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
{
unsigned int imm = ((bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
regs[bits (inst2, 8, 11)]
= pv_constant (thumb_expand_immediate (imm));
}
else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
{
unsigned int imm
= EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
regs[bits (inst2, 8, 11)] = pv_constant (imm);
}
else if (insn == 0xea5f /* mov.w Rd,Rm */
&& (inst2 & 0xf0f0) == 0)
{
int dst_reg = (inst2 & 0x0f00) >> 8;
int src_reg = inst2 & 0xf;
regs[dst_reg] = regs[src_reg];
}
else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
{
/* Constant pool loads. */
unsigned int constant;
CORE_ADDR loc;
offset = bits (inst2, 0, 11);
if (insn & 0x0080)
loc = start + 4 + offset;
else
loc = start + 4 - offset;
constant = read_memory_unsigned_integer (loc, 4, byte_order);
regs[bits (inst2, 12, 15)] = pv_constant (constant);
}
else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
{
/* Constant pool loads. */
unsigned int constant;
CORE_ADDR loc;
offset = bits (inst2, 0, 7) << 2;
if (insn & 0x0080)
loc = start + 4 + offset;
else
loc = start + 4 - offset;
constant = read_memory_unsigned_integer (loc, 4, byte_order);
regs[bits (inst2, 12, 15)] = pv_constant (constant);
constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
regs[bits (inst2, 8, 11)] = pv_constant (constant);
}
else if (thumb2_instruction_changes_pc (insn, inst2))
{
/* Don't scan past anything that might change control flow. */
break;
}
else
{
/* The optimizer might shove anything into the prologue,
so we just skip what we don't recognize. */
unrecognized_pc = start;
}
start += 2;
}
else if (thumb_instruction_changes_pc (insn))
{
/* Don't scan past anything that might change control flow. */
break;
}
else
{
/* The optimizer might shove anything into the prologue,
so we just skip what we don't recognize. */
unrecognized_pc = start;
}
start += 2;
}
if (arm_debug)
fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
paddress (gdbarch, start));
if (unrecognized_pc == 0)
unrecognized_pc = start;
if (cache == NULL)
return unrecognized_pc;
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
{
/* Frame pointer is fp. Frame size is constant. */
cache->framereg = ARM_FP_REGNUM;
cache->framesize = -regs[ARM_FP_REGNUM].k;
}
else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
{
/* Frame pointer is r7. Frame size is constant. */
cache->framereg = THUMB_FP_REGNUM;
cache->framesize = -regs[THUMB_FP_REGNUM].k;
}
else
{
/* Try the stack pointer... this is a bit desperate. */
cache->framereg = ARM_SP_REGNUM;
cache->framesize = -regs[ARM_SP_REGNUM].k;
}
for (i = 0; i < 16; i++)
if (stack.find_reg (gdbarch, i, &offset))
cache->saved_regs[i].addr = offset;
return unrecognized_pc;
}
/* Try to analyze the instructions starting from PC, which load symbol
__stack_chk_guard. Return the address of instruction after loading this
symbol, set the dest register number to *BASEREG, and set the size of
instructions for loading symbol in OFFSET. Return 0 if instructions are
not recognized. */
static CORE_ADDR
arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
unsigned int *destreg, int *offset)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
int is_thumb = arm_pc_is_thumb (gdbarch, pc);
unsigned int low, high, address;
address = 0;
if (is_thumb)
{
unsigned short insn1
= read_code_unsigned_integer (pc, 2, byte_order_for_code);
if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
{
*destreg = bits (insn1, 8, 10);
*offset = 2;
address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
address = read_memory_unsigned_integer (address, 4,
byte_order_for_code);
}
else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
{
unsigned short insn2
= read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
insn1
= read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
insn2
= read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
/* movt Rd, #const */
if ((insn1 & 0xfbc0) == 0xf2c0)
{
high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
*destreg = bits (insn2, 8, 11);
*offset = 8;
address = (high << 16 | low);
}
}
}
else
{
unsigned int insn
= read_code_unsigned_integer (pc, 4, byte_order_for_code);
if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
{
address = bits (insn, 0, 11) + pc + 8;
address = read_memory_unsigned_integer (address, 4,
byte_order_for_code);
*destreg = bits (insn, 12, 15);
*offset = 4;
}
else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
{
low = EXTRACT_MOVW_MOVT_IMM_A (insn);
insn
= read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
{
high = EXTRACT_MOVW_MOVT_IMM_A (insn);
*destreg = bits (insn, 12, 15);
*offset = 8;
address = (high << 16 | low);
}
}
}
return address;
}
/* Try to skip a sequence of instructions used for stack protector. If PC
points to the first instruction of this sequence, return the address of
first instruction after this sequence, otherwise, return original PC.
On arm, this sequence of instructions is composed of mainly three steps,
Step 1: load symbol __stack_chk_guard,
Step 2: load from address of __stack_chk_guard,
Step 3: store it to somewhere else.
Usually, instructions on step 2 and step 3 are the same on various ARM
architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
instructions in step 1 vary from different ARM architectures. On ARMv7,
they are,
movw Rn, #:lower16:__stack_chk_guard
movt Rn, #:upper16:__stack_chk_guard
On ARMv5t, it is,
ldr Rn, .Label
....
.Lable:
.word __stack_chk_guard
Since ldr/str is a very popular instruction, we can't use them as
'fingerprint' or 'signature' of stack protector sequence. Here we choose
sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
static CORE_ADDR
arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
unsigned int basereg;
struct bound_minimal_symbol stack_chk_guard;
int offset;
int is_thumb = arm_pc_is_thumb (gdbarch, pc);
CORE_ADDR addr;
/* Try to parse the instructions in Step 1. */
addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
&basereg, &offset);
if (!addr)
return pc;
stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
/* ADDR must correspond to a symbol whose name is __stack_chk_guard.
Otherwise, this sequence cannot be for stack protector. */
if (stack_chk_guard.minsym == NULL
|| !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
return pc;
if (is_thumb)
{
unsigned int destreg;
unsigned short insn
= read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
/* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
if ((insn & 0xf800) != 0x6800)
return pc;
if (bits (insn, 3, 5) != basereg)
return pc;
destreg = bits (insn, 0, 2);
insn = read_code_unsigned_integer (pc + offset + 2, 2,
byte_order_for_code);
/* Step 3: str Rd, [Rn, #immed], encoding T1. */
if ((insn & 0xf800) != 0x6000)
return pc;
if (destreg != bits (insn, 0, 2))
return pc;
}
else
{
unsigned int destreg;
unsigned int insn
= read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
/* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
if ((insn & 0x0e500000) != 0x04100000)
return pc;
if (bits (insn, 16, 19) != basereg)
return pc;
destreg = bits (insn, 12, 15);
/* Step 3: str Rd, [Rn, #immed], encoding A1. */
insn = read_code_unsigned_integer (pc + offset + 4,
4, byte_order_for_code);
if ((insn & 0x0e500000) != 0x04000000)
return pc;
if (bits (insn, 12, 15) != destreg)
return pc;
}
/* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
on arm. */
if (is_thumb)
return pc + offset + 4;
else
return pc + offset + 8;
}
/* Advance the PC across any function entry prologue instructions to
reach some "real" code.
The APCS (ARM Procedure Call Standard) defines the following
prologue:
mov ip, sp
[stmfd sp!, {a1,a2,a3,a4}]
stmfd sp!, {...,fp,ip,lr,pc}
[stfe f7, [sp, #-12]!]
[stfe f6, [sp, #-12]!]
[stfe f5, [sp, #-12]!]
[stfe f4, [sp, #-12]!]
sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
static CORE_ADDR
arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR func_addr, limit_pc;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
if (post_prologue_pc)
post_prologue_pc
= arm_skip_stack_protector (post_prologue_pc, gdbarch);
/* GCC always emits a line note before the prologue and another
one after, even if the two are at the same address or on the
same line. Take advantage of this so that we do not need to
know every instruction that might appear in the prologue. We
will have producer information for most binaries; if it is
missing (e.g. for -gstabs), assuming the GNU tools. */
if (post_prologue_pc
&& (cust == NULL
|| COMPUNIT_PRODUCER (cust) == NULL
|| startswith (COMPUNIT_PRODUCER (cust), "GNU ")
|| startswith (COMPUNIT_PRODUCER (cust), "clang ")))
return post_prologue_pc;
if (post_prologue_pc != 0)
{
CORE_ADDR analyzed_limit;
/* For non-GCC compilers, make sure the entire line is an
acceptable prologue; GDB will round this function's
return value up to the end of the following line so we
can not skip just part of a line (and we do not want to).
RealView does not treat the prologue specially, but does
associate prologue code with the opening brace; so this
lets us skip the first line if we think it is the opening
brace. */
if (arm_pc_is_thumb (gdbarch, func_addr))
analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
post_prologue_pc, NULL);
else
analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
post_prologue_pc, NULL);
if (analyzed_limit != post_prologue_pc)
return func_addr;
return post_prologue_pc;
}
}
/* Can't determine prologue from the symbol table, need to examine
instructions. */
/* Find an upper limit on the function prologue using the debug
information. If the debug information could not be used to provide
that bound, then use an arbitrary large number as the upper bound. */
/* Like arm_scan_prologue, stop no later than pc + 64. */
limit_pc = skip_prologue_using_sal (gdbarch, pc);
if (limit_pc == 0)
limit_pc = pc + 64; /* Magic. */
/* Check if this is Thumb code. */
if (arm_pc_is_thumb (gdbarch, pc))
return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
else
return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
}
/* *INDENT-OFF* */
/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
This function decodes a Thumb function prologue to determine:
1) the size of the stack frame
2) which registers are saved on it
3) the offsets of saved regs
4) the offset from the stack pointer to the frame pointer
A typical Thumb function prologue would create this stack frame
(offsets relative to FP)
old SP -> 24 stack parameters
20 LR
16 R7
R7 -> 0 local variables (16 bytes)
SP -> -12 additional stack space (12 bytes)
The frame size would thus be 36 bytes, and the frame offset would be
12 bytes. The frame register is R7.
The comments for thumb_skip_prolog() describe the algorithm we use
to detect the end of the prolog. */
/* *INDENT-ON* */
static void
thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
CORE_ADDR block_addr, struct arm_prologue_cache *cache)
{
CORE_ADDR prologue_start;
CORE_ADDR prologue_end;
if (find_pc_partial_function (block_addr, NULL, &prologue_start,
&prologue_end))
{
/* See comment in arm_scan_prologue for an explanation of
this heuristics. */
if (prologue_end > prologue_start + 64)
{
prologue_end = prologue_start + 64;
}
}
else
/* We're in the boondocks: we have no idea where the start of the
function is. */
return;
prologue_end = std::min (prologue_end, prev_pc);
thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
}
/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
otherwise. */
static int
arm_instruction_restores_sp (unsigned int insn)
{
if (bits (insn, 28, 31) != INST_NV)
{
if ((insn & 0x0df0f000) == 0x0080d000
/* ADD SP (register or immediate). */
|| (insn & 0x0df0f000) == 0x0040d000
/* SUB SP (register or immediate). */
|| (insn & 0x0ffffff0) == 0x01a0d000
/* MOV SP. */
|| (insn & 0x0fff0000) == 0x08bd0000
/* POP (LDMIA). */
|| (insn & 0x0fff0000) == 0x049d0000)
/* POP of a single register. */
return 1;
}
return 0;
}
/* Analyze an ARM mode prologue starting at PROLOGUE_START and
continuing no further than PROLOGUE_END. If CACHE is non-NULL,
fill it in. Return the first address not recognized as a prologue
instruction.
We recognize all the instructions typically found in ARM prologues,
plus harmless instructions which can be skipped (either for analysis
purposes, or a more restrictive set that can be skipped when finding
the end of the prologue). */
static CORE_ADDR
arm_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR prologue_start, CORE_ADDR prologue_end,
struct arm_prologue_cache *cache)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
int regno;
CORE_ADDR offset, current_pc;
pv_t regs[ARM_FPS_REGNUM];
CORE_ADDR unrecognized_pc = 0;
/* Search the prologue looking for instructions that set up the
frame pointer, adjust the stack pointer, and save registers.
Be careful, however, and if it doesn't look like a prologue,
don't try to scan it. If, for instance, a frameless function
begins with stmfd sp!, then we will tell ourselves there is
a frame, which will confuse stack traceback, as well as "finish"
and other operations that rely on a knowledge of the stack
traceback. */
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
regs[regno] = pv_register (regno, 0);
pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
for (current_pc = prologue_start;
current_pc < prologue_end;
current_pc += 4)
{
unsigned int insn
= read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
if (insn == 0xe1a0c00d) /* mov ip, sp */
{
regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
continue;
}
else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
&& pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
{
unsigned imm = insn & 0xff; /* immediate value */
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
int rd = bits (insn, 12, 15);
imm = (imm >> rot) | (imm << (32 - rot));
regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
continue;
}
else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
&& pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
{
unsigned imm = insn & 0xff; /* immediate value */
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
int rd = bits (insn, 12, 15);
imm = (imm >> rot) | (imm << (32 - rot));
regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
continue;
}
else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
[sp, #-4]! */
{
if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
break;
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
stack.store (regs[ARM_SP_REGNUM], 4,
regs[bits (insn, 12, 15)]);
continue;
}
else if ((insn & 0xffff0000) == 0xe92d0000)
/* stmfd sp!, {..., fp, ip, lr, pc}
or
stmfd sp!, {a1, a2, a3, a4} */
{
int mask = insn & 0xffff;
if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
break;
/* Calculate offsets of saved registers. */
for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
if (mask & (1 << regno))
{
regs[ARM_SP_REGNUM]
= pv_add_constant (regs[ARM_SP_REGNUM], -4);
stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
}
}
else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
|| (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
|| (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
{
/* No need to add this to saved_regs -- it's just an arg reg. */
continue;
}
else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
|| (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
|| (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
{
/* No need to add this to saved_regs -- it's just an arg reg. */
continue;
}
else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
{ registers } */
&& pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
{
/* No need to add this to saved_regs -- it's just arg regs. */
continue;
}
else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
{
unsigned imm = insn & 0xff; /* immediate value */
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
imm = (imm >> rot) | (imm << (32 - rot));
regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
}
else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
{
unsigned imm = insn & 0xff; /* immediate value */
unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
imm = (imm >> rot) | (imm << (32 - rot));
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
}
else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
[sp, -#c]! */
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
{
if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
break;
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]);
}
else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
[sp!] */
&& gdbarch_tdep (gdbarch)->have_fpa_registers)
{
int n_saved_fp_regs;
unsigned int fp_start_reg, fp_bound_reg;
if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
break;
if ((insn & 0x800) == 0x800) /* N0 is set */
{
if ((insn & 0x40000) == 0x40000) /* N1 is set */
n_saved_fp_regs = 3;
else
n_saved_fp_regs = 1;
}
else
{
if ((insn & 0x40000) == 0x40000) /* N1 is set */
n_saved_fp_regs = 2;
else
n_saved_fp_regs = 4;
}
fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
fp_bound_reg = fp_start_reg + n_saved_fp_regs;
for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
{
regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
stack.store (regs[ARM_SP_REGNUM], 12,
regs[fp_start_reg++]);
}
}
else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
{
/* Allow some special function calls when skipping the
prologue; GCC generates these before storing arguments to
the stack. */
CORE_ADDR dest = BranchDest (current_pc, insn);
if (skip_prologue_function (gdbarch, dest, 0))
continue;
else
break;
}
else if ((insn & 0xf0000000) != 0xe0000000)
break; /* Condition not true, exit early. */
else if (arm_instruction_changes_pc (insn))
/* Don't scan past anything that might change control flow. */
break;
else if (arm_instruction_restores_sp (insn))
{
/* Don't scan past the epilogue. */
break;
}
else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
&& pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
/* Ignore block loads from the stack, potentially copying
parameters from memory. */
continue;
else if ((insn & 0xfc500000) == 0xe4100000
&& pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
/* Similarly ignore single loads from the stack. */
continue;
else if ((insn & 0xffff0ff0) == 0xe1a00000)
/* MOV Rd, Rm. Skip register copies, i.e. saves to another
register instead of the stack. */
continue;
else
{
/* The optimizer might shove anything into the prologue, if
we build up cache (cache != NULL) from scanning prologue,
we just skip what we don't recognize and scan further to
make cache as complete as possible. However, if we skip
prologue, we'll stop immediately on unrecognized
instruction. */
unrecognized_pc = current_pc;
if (cache != NULL)
continue;
else
break;
}
}
if (unrecognized_pc == 0)
unrecognized_pc = current_pc;
if (cache)
{
int framereg, framesize;
/* The frame size is just the distance from the frame register
to the original stack pointer. */
if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
{
/* Frame pointer is fp. */
framereg = ARM_FP_REGNUM;
framesize = -regs[ARM_FP_REGNUM].k;
}
else
{
/* Try the stack pointer... this is a bit desperate. */
framereg = ARM_SP_REGNUM;
framesize = -regs[ARM_SP_REGNUM].k;
}
cache->framereg = framereg;
cache->framesize = framesize;
for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
if (stack.find_reg (gdbarch, regno, &offset))
cache->saved_regs[regno].addr = offset;
}
if (arm_debug)
fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
paddress (gdbarch, unrecognized_pc));
return unrecognized_pc;
}
static void
arm_scan_prologue (struct frame_info *this_frame,
struct arm_prologue_cache *cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR prologue_start, prologue_end;
CORE_ADDR prev_pc = get_frame_pc (this_frame);
CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
/* Assume there is no frame until proven otherwise. */
cache->framereg = ARM_SP_REGNUM;
cache->framesize = 0;
/* Check for Thumb prologue. */
if (arm_frame_is_thumb (this_frame))
{
thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
return;
}
/* Find the function prologue. If we can't find the function in
the symbol table, peek in the stack frame to find the PC. */
if (find_pc_partial_function (block_addr, NULL, &prologue_start,
&prologue_end))
{
/* One way to find the end of the prologue (which works well
for unoptimized code) is to do the following:
struct symtab_and_line sal = find_pc_line (prologue_start, 0);
if (sal.line == 0)
prologue_end = prev_pc;
else if (sal.end < prologue_end)
prologue_end = sal.end;
This mechanism is very accurate so long as the optimizer
doesn't move any instructions from the function body into the
prologue. If this happens, sal.end will be the last
instruction in the first hunk of prologue code just before
the first instruction that the scheduler has moved from
the body to the prologue.
In order to make sure that we scan all of the prologue
instructions, we use a slightly less accurate mechanism which
may scan more than necessary. To help compensate for this
lack of accuracy, the prologue scanning loop below contains
several clauses which'll cause the loop to terminate early if
an implausible prologue instruction is encountered.
The expression
prologue_start + 64
is a suitable endpoint since it accounts for the largest
possible prologue plus up to five instructions inserted by
the scheduler. */
if (prologue_end > prologue_start + 64)
{
prologue_end = prologue_start + 64; /* See above. */
}
}
else
{
/* We have no symbol information. Our only option is to assume this
function has a standard stack frame and the normal frame register.
Then, we can find the value of our frame pointer on entrance to
the callee (or at the present moment if this is the innermost frame).
The value stored there should be the address of the stmfd + 8. */
CORE_ADDR frame_loc;
ULONGEST return_value;
frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
&return_value))
return;
else
{
prologue_start = gdbarch_addr_bits_remove
(gdbarch, return_value) - 8;
prologue_end = prologue_start + 64; /* See above. */
}
}
if (prev_pc < prologue_end)
prologue_end = prev_pc;
arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
}
static struct arm_prologue_cache *
arm_make_prologue_cache (struct frame_info *this_frame)
{
int reg;
struct arm_prologue_cache *cache;
CORE_ADDR unwound_fp;
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
arm_scan_prologue (this_frame, cache);
unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
if (unwound_fp == 0)
return cache;
cache->prev_sp = unwound_fp + cache->framesize;
/* Calculate actual addresses of saved registers using offsets
determined by arm_scan_prologue. */
for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
if (trad_frame_addr_p (cache->saved_regs, reg))
cache->saved_regs[reg].addr += cache->prev_sp;
return cache;
}
/* Implementation of the stop_reason hook for arm_prologue frames. */
static enum unwind_stop_reason
arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
void **this_cache)
{
struct arm_prologue_cache *cache;
CORE_ADDR pc;
if (*this_cache == NULL)
*this_cache = arm_make_prologue_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* This is meant to halt the backtrace at "_start". */
pc = get_frame_pc (this_frame);
if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
return UNWIND_OUTERMOST;
/* If we've hit a wall, stop. */
if (cache->prev_sp == 0)
return UNWIND_OUTERMOST;
return UNWIND_NO_REASON;
}
/* Our frame ID for a normal frame is the current function's starting PC
and the caller's SP when we were called. */
static void
arm_prologue_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct arm_prologue_cache *cache;
struct frame_id id;
CORE_ADDR pc, func;
if (*this_cache == NULL)
*this_cache = arm_make_prologue_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* Use function start address as part of the frame ID. If we cannot
identify the start address (due to missing symbol information),
fall back to just using the current PC. */
pc = get_frame_pc (this_frame);
func = get_frame_func (this_frame);
if (!func)
func = pc;
id = frame_id_build (cache->prev_sp, func);
*this_id = id;
}
static struct value *
arm_prologue_prev_register (struct frame_info *this_frame,
void **this_cache,
int prev_regnum)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct arm_prologue_cache *cache;
if (*this_cache == NULL)
*this_cache = arm_make_prologue_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* If we are asked to unwind the PC, then we need to return the LR
instead. The prologue may save PC, but it will point into this
frame's prologue, not the next frame's resume location. Also
strip the saved T bit. A valid LR may have the low bit set, but
a valid PC never does. */
if (prev_regnum == ARM_PC_REGNUM)
{
CORE_ADDR lr;
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
return frame_unwind_got_constant (this_frame, prev_regnum,
arm_addr_bits_remove (gdbarch, lr));
}
/* SP is generally not saved to the stack, but this frame is
identified by the next frame's stack pointer at the time of the call.
The value was already reconstructed into PREV_SP. */
if (prev_regnum == ARM_SP_REGNUM)
return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
/* The CPSR may have been changed by the call instruction and by the
called function. The only bit we can reconstruct is the T bit,
by checking the low bit of LR as of the call. This is a reliable
indicator of Thumb-ness except for some ARM v4T pre-interworking
Thumb code, which could get away with a clear low bit as long as
the called function did not use bx. Guess that all other
bits are unchanged; the condition flags are presumably lost,
but the processor status is likely valid. */
if (prev_regnum == ARM_PS_REGNUM)
{
CORE_ADDR lr, cpsr;
ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
if (IS_THUMB_ADDR (lr))
cpsr |= t_bit;
else
cpsr &= ~t_bit;
return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
}
return trad_frame_get_prev_register (this_frame, cache->saved_regs,
prev_regnum);
}
struct frame_unwind arm_prologue_unwind = {
NORMAL_FRAME,
arm_prologue_unwind_stop_reason,
arm_prologue_this_id,
arm_prologue_prev_register,
NULL,
default_frame_sniffer
};
/* Maintain a list of ARM exception table entries per objfile, similar to the
list of mapping symbols. We only cache entries for standard ARM-defined
personality routines; the cache will contain only the frame unwinding
instructions associated with the entry (not the descriptors). */
static const struct objfile_data *arm_exidx_data_key;
struct arm_exidx_entry
{
bfd_vma addr;
gdb_byte *entry;
};
typedef struct arm_exidx_entry arm_exidx_entry_s;
DEF_VEC_O(arm_exidx_entry_s);
struct arm_exidx_data
{
VEC(arm_exidx_entry_s) **section_maps;
};
static void
arm_exidx_data_free (struct objfile *objfile, void *arg)
{
struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
unsigned int i;
for (i = 0; i < objfile->obfd->section_count; i++)
VEC_free (arm_exidx_entry_s, data->section_maps[i]);
}
static inline int
arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
const struct arm_exidx_entry *rhs)
{
return lhs->addr < rhs->addr;
}
static struct obj_section *
arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
{
struct obj_section *osect;
ALL_OBJFILE_OSECTIONS (objfile, osect)
if (bfd_get_section_flags (objfile->obfd,
osect->the_bfd_section) & SEC_ALLOC)
{
bfd_vma start, size;
start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
size = bfd_get_section_size (osect->the_bfd_section);
if (start <= vma && vma < start + size)
return osect;
}
return NULL;
}
/* Parse contents of exception table and exception index sections
of OBJFILE, and fill in the exception table entry cache.
For each entry that refers to a standard ARM-defined personality
routine, extract the frame unwinding instructions (from either
the index or the table section). The unwinding instructions
are normalized by:
- extracting them from the rest of the table data
- converting to host endianness
- appending the implicit 0xb0 ("Finish") code
The extracted and normalized instructions are stored for later
retrieval by the arm_find_exidx_entry routine. */
static void
arm_exidx_new_objfile (struct objfile *objfile)
{
struct cleanup *cleanups;
struct arm_exidx_data *data;
asection *exidx, *extab;
bfd_vma exidx_vma = 0, extab_vma = 0;
bfd_size_type exidx_size = 0, extab_size = 0;
gdb_byte *exidx_data = NULL, *extab_data = NULL;
LONGEST i;
/* If we've already touched this file, do nothing. */
if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
return;
cleanups = make_cleanup (null_cleanup, NULL);
/* Read contents of exception table and index. */
exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
if (exidx)
{
exidx_vma = bfd_section_vma (objfile->obfd, exidx);
exidx_size = bfd_get_section_size (exidx);
exidx_data = (gdb_byte *) xmalloc (exidx_size);
make_cleanup (xfree, exidx_data);
if (!bfd_get_section_contents (objfile->obfd, exidx,
exidx_data, 0, exidx_size))
{
do_cleanups (cleanups);
return;
}
}
extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
if (extab)
{
extab_vma = bfd_section_vma (objfile->obfd, extab);
extab_size = bfd_get_section_size (extab);
extab_data = (gdb_byte *) xmalloc (extab_size);
make_cleanup (xfree, extab_data);
if (!bfd_get_section_contents (objfile->obfd, extab,
extab_data, 0, extab_size))
{
do_cleanups (cleanups);
return;
}
}
/* Allocate exception table data structure. */
data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
set_objfile_data (objfile, arm_exidx_data_key, data);
data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
objfile->obfd->section_count,
VEC(arm_exidx_entry_s) *);
/* Fill in exception table. */
for (i = 0; i < exidx_size / 8; i++)
{
struct arm_exidx_entry new_exidx_entry;
bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
bfd_vma addr = 0, word = 0;
int n_bytes = 0, n_words = 0;
struct obj_section *sec;
gdb_byte *entry = NULL;
/* Extract address of start of function. */
idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
idx += exidx_vma + i * 8;
/* Find section containing function and compute section offset. */
sec = arm_obj_section_from_vma (objfile, idx);
if (sec == NULL)
continue;
idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
/* Determine address of exception table entry. */
if (val == 1)
{
/* EXIDX_CANTUNWIND -- no exception table entry present. */
}
else if ((val & 0xff000000) == 0x80000000)
{
/* Exception table entry embedded in .ARM.exidx
-- must be short form. */
word = val;
n_bytes = 3;
}
else if (!(val & 0x80000000))
{
/* Exception table entry in .ARM.extab. */
addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
addr += exidx_vma + i * 8 + 4;
if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
{
word = bfd_h_get_32 (objfile->obfd,
extab_data + addr - extab_vma);
addr += 4;
if ((word & 0xff000000) == 0x80000000)
{
/* Short form. */
n_bytes = 3;
}
else if ((word & 0xff000000) == 0x81000000
|| (word & 0xff000000) == 0x82000000)
{
/* Long form. */
n_bytes = 2;
n_words = ((word >> 16) & 0xff);
}
else if (!(word & 0x80000000))
{
bfd_vma pers;
struct obj_section *pers_sec;
int gnu_personality = 0;
/* Custom personality routine. */
pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
/* Check whether we've got one of the variants of the
GNU personality routines. */
pers_sec = arm_obj_section_from_vma (objfile, pers);
if (pers_sec)
{
static const char *personality[] =
{
"__gcc_personality_v0",
"__gxx_personality_v0",
"__gcj_personality_v0",
"__gnu_objc_personality_v0",
NULL
};
CORE_ADDR pc = pers + obj_section_offset (pers_sec);
int k;
for (k = 0; personality[k]; k++)
if (lookup_minimal_symbol_by_pc_name
(pc, personality[k], objfile))
{
gnu_personality = 1;
break;
}
}
/* If so, the next word contains a word count in the high
byte, followed by the same unwind instructions as the
pre-defined forms. */
if (gnu_personality
&& addr + 4 <= extab_vma + extab_size)
{
word = bfd_h_get_32 (objfile->obfd,
extab_data + addr - extab_vma);
addr += 4;
n_bytes = 3;
n_words = ((word >> 24) & 0xff);
}
}
}
}
/* Sanity check address. */
if (n_words)
if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
n_words = n_bytes = 0;
/* The unwind instructions reside in WORD (only the N_BYTES least
significant bytes are valid), followed by N_WORDS words in the
extab section starting at ADDR. */
if (n_bytes || n_words)
{
gdb_byte *p = entry
= (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
n_bytes + n_words * 4 + 1);
while (n_bytes--)
*p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
while (n_words--)
{
word = bfd_h_get_32 (objfile->obfd,
extab_data + addr - extab_vma);
addr += 4;
*p++ = (gdb_byte) ((word >> 24) & 0xff);
*p++ = (gdb_byte) ((word >> 16) & 0xff);
*p++ = (gdb_byte) ((word >> 8) & 0xff);
*p++ = (gdb_byte) (word & 0xff);
}
/* Implied "Finish" to terminate the list. */
*p++ = 0xb0;
}
/* Push entry onto vector. They are guaranteed to always
appear in order of increasing addresses. */
new_exidx_entry.addr = idx;
new_exidx_entry.entry = entry;
VEC_safe_push (arm_exidx_entry_s,
data->section_maps[sec->the_bfd_section->index],
&new_exidx_entry);
}
do_cleanups (cleanups);
}
/* Search for the exception table entry covering MEMADDR. If one is found,
return a pointer to its data. Otherwise, return 0. If START is non-NULL,
set *START to the start of the region covered by this entry. */
static gdb_byte *
arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
{
struct obj_section *sec;
sec = find_pc_section (memaddr);
if (sec != NULL)
{
struct arm_exidx_data *data;
VEC(arm_exidx_entry_s) *map;
struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
unsigned int idx;
data = ((struct arm_exidx_data *)
objfile_data (sec->objfile, arm_exidx_data_key));
if (data != NULL)
{
map = data->section_maps[sec->the_bfd_section->index];
if (!VEC_empty (arm_exidx_entry_s, map))
{
struct arm_exidx_entry *map_sym;
idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
arm_compare_exidx_entries);
/* VEC_lower_bound finds the earliest ordered insertion
point. If the following symbol starts at this exact
address, we use that; otherwise, the preceding
exception table entry covers this address. */
if (idx < VEC_length (arm_exidx_entry_s, map))
{
map_sym = VEC_index (arm_exidx_entry_s, map, idx);
if (map_sym->addr == map_key.addr)
{
if (start)
*start = map_sym->addr + obj_section_addr (sec);
return map_sym->entry;
}
}
if (idx > 0)
{
map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
if (start)
*start = map_sym->addr + obj_section_addr (sec);
return map_sym->entry;
}
}
}
}
return NULL;
}
/* Given the current frame THIS_FRAME, and its associated frame unwinding
instruction list from the ARM exception table entry ENTRY, allocate and
return a prologue cache structure describing how to unwind this frame.
Return NULL if the unwinding instruction list contains a "spare",
"reserved" or "refuse to unwind" instruction as defined in section
"9.3 Frame unwinding instructions" of the "Exception Handling ABI
for the ARM Architecture" document. */
static struct arm_prologue_cache *
arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
{
CORE_ADDR vsp = 0;
int vsp_valid = 0;
struct arm_prologue_cache *cache;
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
for (;;)
{
gdb_byte insn;
/* Whenever we reload SP, we actually have to retrieve its
actual value in the current frame. */
if (!vsp_valid)
{
if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
{
int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
vsp = get_frame_register_unsigned (this_frame, reg);
}
else
{
CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
vsp = get_frame_memory_unsigned (this_frame, addr, 4);
}
vsp_valid = 1;
}
/* Decode next unwind instruction. */
insn = *entry++;
if ((insn & 0xc0) == 0)
{
int offset = insn & 0x3f;
vsp += (offset << 2) + 4;
}
else if ((insn & 0xc0) == 0x40)
{
int offset = insn & 0x3f;
vsp -= (offset << 2) + 4;
}
else if ((insn & 0xf0) == 0x80)
{
int mask = ((insn & 0xf) << 8) | *entry++;
int i;
/* The special case of an all-zero mask identifies
"Refuse to unwind". We return NULL to fall back
to the prologue analyzer. */
if (mask == 0)
return NULL;
/* Pop registers r4..r15 under mask. */
for (i = 0; i < 12; i++)
if (mask & (1 << i))
{
cache->saved_regs[4 + i].addr = vsp;
vsp += 4;
}
/* Special-case popping SP -- we need to reload vsp. */
if (mask & (1 << (ARM_SP_REGNUM - 4)))
vsp_valid = 0;
}
else if ((insn & 0xf0) == 0x90)
{
int reg = insn & 0xf;
/* Reserved cases. */
if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
return NULL;
/* Set SP from another register and mark VSP for reload. */
cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
vsp_valid = 0;
}
else if ((insn & 0xf0) == 0xa0)
{
int count = insn & 0x7;
int pop_lr = (insn & 0x8) != 0;
int i;
/* Pop r4..r[4+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[4 + i].addr = vsp;
vsp += 4;
}
/* If indicated by flag, pop LR as well. */
if (pop_lr)
{
cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
vsp += 4;
}
}
else if (insn == 0xb0)
{
/* We could only have updated PC by popping into it; if so, it
will show up as address. Otherwise, copy LR into PC. */
if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
cache->saved_regs[ARM_PC_REGNUM]
= cache->saved_regs[ARM_LR_REGNUM];
/* We're done. */
break;
}
else if (insn == 0xb1)
{
int mask = *entry++;
int i;
/* All-zero mask and mask >= 16 is "spare". */
if (mask == 0 || mask >= 16)
return NULL;
/* Pop r0..r3 under mask. */
for (i = 0; i < 4; i++)
if (mask & (1 << i))
{
cache->saved_regs[i].addr = vsp;
vsp += 4;
}
}
else if (insn == 0xb2)
{
ULONGEST offset = 0;
unsigned shift = 0;
do
{
offset |= (*entry & 0x7f) << shift;
shift += 7;
}
while (*entry++ & 0x80);
vsp += 0x204 + (offset << 2);
}
else if (insn == 0xb3)
{
int start = *entry >> 4;
int count = (*entry++) & 0xf;
int i;
/* Only registers D0..D15 are valid here. */
if (start + count >= 16)
return NULL;
/* Pop VFP double-precision registers D[start]..D[start+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
vsp += 8;
}
/* Add an extra 4 bytes for FSTMFDX-style stack. */
vsp += 4;
}
else if ((insn & 0xf8) == 0xb8)
{
int count = insn & 0x7;
int i;
/* Pop VFP double-precision registers D[8]..D[8+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
vsp += 8;
}
/* Add an extra 4 bytes for FSTMFDX-style stack. */
vsp += 4;
}
else if (insn == 0xc6)
{
int start = *entry >> 4;
int count = (*entry++) & 0xf;
int i;
/* Only registers WR0..WR15 are valid. */
if (start + count >= 16)
return NULL;
/* Pop iwmmx registers WR[start]..WR[start+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
vsp += 8;
}
}
else if (insn == 0xc7)
{
int mask = *entry++;
int i;
/* All-zero mask and mask >= 16 is "spare". */
if (mask == 0 || mask >= 16)
return NULL;
/* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
for (i = 0; i < 4; i++)
if (mask & (1 << i))
{
cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
vsp += 4;
}
}
else if ((insn & 0xf8) == 0xc0)
{
int count = insn & 0x7;
int i;
/* Pop iwmmx registers WR[10]..WR[10+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
vsp += 8;
}
}
else if (insn == 0xc8)
{
int start = *entry >> 4;
int count = (*entry++) & 0xf;
int i;
/* Only registers D0..D31 are valid. */
if (start + count >= 16)
return NULL;
/* Pop VFP double-precision registers
D[16+start]..D[16+start+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
vsp += 8;
}
}
else if (insn == 0xc9)
{
int start = *entry >> 4;
int count = (*entry++) & 0xf;
int i;
/* Pop VFP double-precision registers D[start]..D[start+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
vsp += 8;
}
}
else if ((insn & 0xf8) == 0xd0)
{
int count = insn & 0x7;
int i;
/* Pop VFP double-precision registers D[8]..D[8+count]. */
for (i = 0; i <= count; i++)
{
cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
vsp += 8;
}
}
else
{
/* Everything else is "spare". */
return NULL;
}
}
/* If we restore SP from a register, assume this was the frame register.
Otherwise just fall back to SP as frame register. */
if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
else
cache->framereg = ARM_SP_REGNUM;
/* Determine offset to previous frame. */
cache->framesize
= vsp - get_frame_register_unsigned (this_frame, cache->framereg);
/* We already got the previous SP. */
cache->prev_sp = vsp;
return cache;
}
/* Unwinding via ARM exception table entries. Note that the sniffer
already computes a filled-in prologue cache, which is then used
with the same arm_prologue_this_id and arm_prologue_prev_register
routines also used for prologue-parsing based unwinding. */
static int
arm_exidx_unwind_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
CORE_ADDR addr_in_block, exidx_region, func_start;
struct arm_prologue_cache *cache;
gdb_byte *entry;
/* See if we have an ARM exception table entry covering this address. */
addr_in_block = get_frame_address_in_block (this_frame);
entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
if (!entry)
return 0;
/* The ARM exception table does not describe unwind information
for arbitrary PC values, but is guaranteed to be correct only
at call sites. We have to decide here whether we want to use
ARM exception table information for this frame, or fall back
to using prologue parsing. (Note that if we have DWARF CFI,
this sniffer isn't even called -- CFI is always preferred.)
Before we make this decision, however, we check whether we
actually have *symbol* information for the current frame.
If not, prologue parsing would not work anyway, so we might
as well use the exception table and hope for the best. */
if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
{
int exc_valid = 0;
/* If the next frame is "normal", we are at a call site in this
frame, so exception information is guaranteed to be valid. */
if (get_next_frame (this_frame)
&& get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
exc_valid = 1;
/* We also assume exception information is valid if we're currently
blocked in a system call. The system library is supposed to
ensure this, so that e.g. pthread cancellation works. */
if (arm_frame_is_thumb (this_frame))
{
ULONGEST insn;
if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2, byte_order_for_code, &insn)
&& (insn & 0xff00) == 0xdf00 /* svc */)
exc_valid = 1;
}
else
{
ULONGEST insn;
if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
4, byte_order_for_code, &insn)
&& (insn & 0x0f000000) == 0x0f000000 /* svc */)
exc_valid = 1;
}
/* Bail out if we don't know that exception information is valid. */
if (!exc_valid)
return 0;
/* The ARM exception index does not mark the *end* of the region
covered by the entry, and some functions will not have any entry.
To correctly recognize the end of the covered region, the linker
should have inserted dummy records with a CANTUNWIND marker.
Unfortunately, current versions of GNU ld do not reliably do
this, and thus we may have found an incorrect entry above.
As a (temporary) sanity check, we only use the entry if it
lies *within* the bounds of the function. Note that this check
might reject perfectly valid entries that just happen to cover
multiple functions; therefore this check ought to be removed
once the linker is fixed. */
if (func_start > exidx_region)
return 0;
}
/* Decode the list of unwinding instructions into a prologue cache.
Note that this may fail due to e.g. a "refuse to unwind" code. */
cache = arm_exidx_fill_cache (this_frame, entry);
if (!cache)
return 0;
*this_prologue_cache = cache;
return 1;
}
struct frame_unwind arm_exidx_unwind = {
NORMAL_FRAME,
default_frame_unwind_stop_reason,
arm_prologue_this_id,
arm_prologue_prev_register,
NULL,
arm_exidx_unwind_sniffer
};
static struct arm_prologue_cache *
arm_make_epilogue_frame_cache (struct frame_info *this_frame)
{
struct arm_prologue_cache *cache;
int reg;
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* Still rely on the offset calculated from prologue. */
arm_scan_prologue (this_frame, cache);
/* Since we are in epilogue, the SP has been restored. */
cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
/* Calculate actual addresses of saved registers using offsets
determined by arm_scan_prologue. */
for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
if (trad_frame_addr_p (cache->saved_regs, reg))
cache->saved_regs[reg].addr += cache->prev_sp;
return cache;
}
/* Implementation of function hook 'this_id' in
'struct frame_uwnind' for epilogue unwinder. */
static void
arm_epilogue_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct arm_prologue_cache *cache;
CORE_ADDR pc, func;
if (*this_cache == NULL)
*this_cache = arm_make_epilogue_frame_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* Use function start address as part of the frame ID. If we cannot
identify the start address (due to missing symbol information),
fall back to just using the current PC. */
pc = get_frame_pc (this_frame);
func = get_frame_func (this_frame);
if (func == 0)
func = pc;
(*this_id) = frame_id_build (cache->prev_sp, pc);
}
/* Implementation of function hook 'prev_register' in
'struct frame_uwnind' for epilogue unwinder. */
static struct value *
arm_epilogue_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
if (*this_cache == NULL)
*this_cache = arm_make_epilogue_frame_cache (this_frame);
return arm_prologue_prev_register (this_frame, this_cache, regnum);
}
static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
CORE_ADDR pc);
static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
CORE_ADDR pc);
/* Implementation of function hook 'sniffer' in
'struct frame_uwnind' for epilogue unwinder. */
static int
arm_epilogue_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
if (frame_relative_level (this_frame) == 0)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
CORE_ADDR pc = get_frame_pc (this_frame);
if (arm_frame_is_thumb (this_frame))
return thumb_stack_frame_destroyed_p (gdbarch, pc);
else
return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
}
else
return 0;
}
/* Frame unwinder from epilogue. */
static const struct frame_unwind arm_epilogue_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
arm_epilogue_frame_this_id,
arm_epilogue_frame_prev_register,
NULL,
arm_epilogue_frame_sniffer,
};
/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
trampoline, return the target PC. Otherwise return 0.
void call0a (char c, short s, int i, long l) {}
int main (void)
{
(*pointer_to_call0a) (c, s, i, l);
}
Instead of calling a stub library function _call_via_xx (xx is
the register name), GCC may inline the trampoline in the object
file as below (register r2 has the address of call0a).
.global main
.type main, %function
...
bl .L1
...
.size main, .-main
.L1:
bx r2
The trampoline 'bx r2' doesn't belong to main. */
static CORE_ADDR
arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
{
/* The heuristics of recognizing such trampoline is that FRAME is
executing in Thumb mode and the instruction on PC is 'bx Rm'. */
if (arm_frame_is_thumb (frame))
{
gdb_byte buf[2];
if (target_read_memory (pc, buf, 2) == 0)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch);
uint16_t insn
= extract_unsigned_integer (buf, 2, byte_order_for_code);
if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
{
CORE_ADDR dest
= get_frame_register_unsigned (frame, bits (insn, 3, 6));
/* Clear the LSB so that gdb core sets step-resume
breakpoint at the right address. */
return UNMAKE_THUMB_ADDR (dest);
}
}
}
return 0;
}
static struct arm_prologue_cache *
arm_make_stub_cache (struct frame_info *this_frame)
{
struct arm_prologue_cache *cache;
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
return cache;
}
/* Our frame ID for a stub frame is the current SP and LR. */
static void
arm_stub_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct arm_prologue_cache *cache;
if (*this_cache == NULL)
*this_cache = arm_make_stub_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
*this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
}
static int
arm_stub_unwind_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
CORE_ADDR addr_in_block;
gdb_byte dummy[4];
CORE_ADDR pc, start_addr;
const char *name;
addr_in_block = get_frame_address_in_block (this_frame);
pc = get_frame_pc (this_frame);
if (in_plt_section (addr_in_block)
/* We also use the stub winder if the target memory is unreadable
to avoid having the prologue unwinder trying to read it. */
|| target_read_memory (pc, dummy, 4) != 0)
return 1;
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
&& arm_skip_bx_reg (this_frame, pc) != 0)
return 1;
return 0;
}
struct frame_unwind arm_stub_unwind = {
NORMAL_FRAME,
default_frame_unwind_stop_reason,
arm_stub_this_id,
arm_prologue_prev_register,
NULL,
arm_stub_unwind_sniffer
};
/* Put here the code to store, into CACHE->saved_regs, the addresses
of the saved registers of frame described by THIS_FRAME. CACHE is
returned. */
static struct arm_prologue_cache *
arm_m_exception_cache (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct arm_prologue_cache *cache;
CORE_ADDR unwound_sp;
LONGEST xpsr;
cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
unwound_sp = get_frame_register_unsigned (this_frame,
ARM_SP_REGNUM);
/* The hardware saves eight 32-bit words, comprising xPSR,
ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
"B1.5.6 Exception entry behavior" in
"ARMv7-M Architecture Reference Manual". */
cache->saved_regs[0].addr = unwound_sp;
cache->saved_regs[1].addr = unwound_sp + 4;
cache->saved_regs[2].addr = unwound_sp + 8;
cache->saved_regs[3].addr = unwound_sp + 12;
cache->saved_regs[12].addr = unwound_sp + 16;
cache->saved_regs[14].addr = unwound_sp + 20;
cache->saved_regs[15].addr = unwound_sp + 24;
cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
/* If bit 9 of the saved xPSR is set, then there is a four-byte
aligner between the top of the 32-byte stack frame and the
previous context's stack pointer. */
cache->prev_sp = unwound_sp + 32;
if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
&& (xpsr & (1 << 9)) != 0)
cache->prev_sp += 4;
return cache;
}
/* Implementation of function hook 'this_id' in
'struct frame_uwnind'. */
static void
arm_m_exception_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct arm_prologue_cache *cache;
if (*this_cache == NULL)
*this_cache = arm_m_exception_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* Our frame ID for a stub frame is the current SP and LR. */
*this_id = frame_id_build (cache->prev_sp,
get_frame_pc (this_frame));
}
/* Implementation of function hook 'prev_register' in
'struct frame_uwnind'. */
static struct value *
arm_m_exception_prev_register (struct frame_info *this_frame,
void **this_cache,
int prev_regnum)
{
struct arm_prologue_cache *cache;
if (*this_cache == NULL)
*this_cache = arm_m_exception_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
/* The value was already reconstructed into PREV_SP. */
if (prev_regnum == ARM_SP_REGNUM)
return frame_unwind_got_constant (this_frame, prev_regnum,
cache->prev_sp);
return trad_frame_get_prev_register (this_frame, cache->saved_regs,
prev_regnum);
}
/* Implementation of function hook 'sniffer' in
'struct frame_uwnind'. */
static int
arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
CORE_ADDR this_pc = get_frame_pc (this_frame);
/* No need to check is_m; this sniffer is only registered for
M-profile architectures. */
/* Check if exception frame returns to a magic PC value. */
return arm_m_addr_is_magic (this_pc);
}
/* Frame unwinder for M-profile exceptions. */
struct frame_unwind arm_m_exception_unwind =
{
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
arm_m_exception_this_id,
arm_m_exception_prev_register,
NULL,
arm_m_exception_unwind_sniffer
};
static CORE_ADDR
arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
{
struct arm_prologue_cache *cache;
if (*this_cache == NULL)
*this_cache = arm_make_prologue_cache (this_frame);
cache = (struct arm_prologue_cache *) *this_cache;
return cache->prev_sp - cache->framesize;
}
struct frame_base arm_normal_base = {
&arm_prologue_unwind,
arm_normal_frame_base,
arm_normal_frame_base,
arm_normal_frame_base
};
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
dummy frame. The frame ID's base needs to match the TOS value
saved by save_dummy_frame_tos() and returned from
arm_push_dummy_call, and the PC needs to match the dummy frame's
breakpoint. */
static struct frame_id
arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
return frame_id_build (get_frame_register_unsigned (this_frame,
ARM_SP_REGNUM),
get_frame_pc (this_frame));
}
/* Given THIS_FRAME, find the previous frame's resume PC (which will
be used to construct the previous frame's ID, after looking up the
containing function). */
static CORE_ADDR
arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR pc;
pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
return arm_addr_bits_remove (gdbarch, pc);
}
static CORE_ADDR
arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
}
static struct value *
arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
int regnum)
{
struct gdbarch * gdbarch = get_frame_arch (this_frame);
CORE_ADDR lr, cpsr;
ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
switch (regnum)
{
case ARM_PC_REGNUM:
/* The PC is normally copied from the return column, which
describes saves of LR. However, that version may have an
extra bit set to indicate Thumb state. The bit is not
part of the PC. */
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
return frame_unwind_got_constant (this_frame, regnum,
arm_addr_bits_remove (gdbarch, lr));
case ARM_PS_REGNUM:
/* Reconstruct the T bit; see arm_prologue_prev_register for details. */
cpsr = get_frame_register_unsigned (this_frame, regnum);
lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
if (IS_THUMB_ADDR (lr))
cpsr |= t_bit;
else
cpsr &= ~t_bit;
return frame_unwind_got_constant (this_frame, regnum, cpsr);
default:
internal_error (__FILE__, __LINE__,
_("Unexpected register %d"), regnum);
}
}
static void
arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
struct frame_info *this_frame)
{
switch (regnum)
{
case ARM_PC_REGNUM:
case ARM_PS_REGNUM:
reg->how = DWARF2_FRAME_REG_FN;
reg->loc.fn = arm_dwarf2_prev_register;
break;
case ARM_SP_REGNUM:
reg->how = DWARF2_FRAME_REG_CFA;
break;
}
}
/* Implement the stack_frame_destroyed_p gdbarch method. */
static int
thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
unsigned int insn, insn2;
int found_return = 0, found_stack_adjust = 0;
CORE_ADDR func_start, func_end;
CORE_ADDR scan_pc;
gdb_byte buf[4];
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
return 0;
/* The epilogue is a sequence of instructions along the following lines:
- add stack frame size to SP or FP
- [if frame pointer used] restore SP from FP
- restore registers from SP [may include PC]
- a return-type instruction [if PC wasn't already restored]
In a first pass, we scan forward from the current PC and verify the
instructions we find as compatible with this sequence, ending in a
return instruction.
However, this is not sufficient to distinguish indirect function calls
within a function from indirect tail calls in the epilogue in some cases.
Therefore, if we didn't already find any SP-changing instruction during
forward scan, we add a backward scanning heuristic to ensure we actually
are in the epilogue. */
scan_pc = pc;
while (scan_pc < func_end && !found_return)
{
if (target_read_memory (scan_pc, buf, 2))
break;
scan_pc += 2;
insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
found_return = 1;
else if (insn == 0x46f7) /* mov pc, lr */
found_return = 1;
else if (thumb_instruction_restores_sp (insn))
{
if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
found_return = 1;
}
else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
{
if (target_read_memory (scan_pc, buf, 2))
break;
scan_pc += 2;
insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
{
if (insn2 & 0x8000) /* <registers> include PC. */
found_return = 1;
}
else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
&& (insn2 & 0x0fff) == 0x0b04)
{
if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
found_return = 1;
}
else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
&& (insn2 & 0x0e00) == 0x0a00)
;
else
break;
}
else
break;
}
if (!found_return)
return 0;
/* Since any instruction in the epilogue sequence, with the possible
exception of return itself, updates the stack pointer, we need to
scan backwards for at most one instruction. Try either a 16-bit or
a 32-bit instruction. This is just a heuristic, so we do not worry
too much about false positives. */
if (pc - 4 < func_start)
return 0;
if (target_read_memory (pc - 4, buf, 4))
return 0;
insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
if (thumb_instruction_restores_sp (insn2))
found_stack_adjust = 1;
else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
found_stack_adjust = 1;
else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
&& (insn2 & 0x0fff) == 0x0b04)
found_stack_adjust = 1;
else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
&& (insn2 & 0x0e00) == 0x0a00)
found_stack_adjust = 1;
return found_stack_adjust;
}
static int
arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
unsigned int insn;
int found_return;
CORE_ADDR func_start, func_end;
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
return 0;
/* We are in the epilogue if the previous instruction was a stack
adjustment and the next instruction is a possible return (bx, mov
pc, or pop). We could have to scan backwards to find the stack
adjustment, or forwards to find the return, but this is a decent
approximation. First scan forwards. */
found_return = 0;
insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
if (bits (insn, 28, 31) != INST_NV)
{
if ((insn & 0x0ffffff0) == 0x012fff10)
/* BX. */
found_return = 1;
else if ((insn & 0x0ffffff0) == 0x01a0f000)
/* MOV PC. */
found_return = 1;
else if ((insn & 0x0fff0000) == 0x08bd0000
&& (insn & 0x0000c000) != 0)
/* POP (LDMIA), including PC or LR. */
found_return = 1;
}
if (!found_return)
return 0;
/* Scan backwards. This is just a heuristic, so do not worry about
false positives from mode changes. */
if (pc < func_start + 4)
return 0;
insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
if (arm_instruction_restores_sp (insn))
return 1;
return 0;
}
/* Implement the stack_frame_destroyed_p gdbarch method. */
static int
arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
if (arm_pc_is_thumb (gdbarch, pc))
return thumb_stack_frame_destroyed_p (gdbarch, pc);
else
return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
}
/* When arguments must be pushed onto the stack, they go on in reverse
order. The code below implements a FILO (stack) to do this. */
struct stack_item
{
int len;
struct stack_item *prev;
gdb_byte *data;
};
static struct stack_item *
push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
{
struct stack_item *si;
si = XNEW (struct stack_item);
si->data = (gdb_byte *) xmalloc (len);
si->len = len;
si->prev = prev;
memcpy (si->data, contents, len);
return si;
}
static struct stack_item *
pop_stack_item (struct stack_item *si)
{
struct stack_item *dead = si;
si = si->prev;
xfree (dead->data);
xfree (dead);
return si;
}
/* Return the alignment (in bytes) of the given type. */
static int
arm_type_align (struct type *t)
{
int n;
int align;
int falign;
t = check_typedef (t);
switch (TYPE_CODE (t))
{
default:
/* Should never happen. */
internal_error (__FILE__, __LINE__, _("unknown type alignment"));
return 4;
case TYPE_CODE_PTR:
case TYPE_CODE_ENUM:
case TYPE_CODE_INT:
case TYPE_CODE_FLT:
case TYPE_CODE_SET:
case TYPE_CODE_RANGE:
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
return TYPE_LENGTH (t);
case TYPE_CODE_ARRAY:
if (TYPE_VECTOR (t))
{
/* Use the natural alignment for vector types (the same for
scalar type), but the maximum alignment is 64-bit. */
if (TYPE_LENGTH (t) > 8)
return 8;
else
return TYPE_LENGTH (t);
}
else
return arm_type_align (TYPE_TARGET_TYPE (t));
case TYPE_CODE_COMPLEX:
return arm_type_align (TYPE_TARGET_TYPE (t));
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
align = 1;
for (n = 0; n < TYPE_NFIELDS (t); n++)
{
falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
if (falign > align)
align = falign;
}
return align;
}
}
/* Possible base types for a candidate for passing and returning in
VFP registers. */
enum arm_vfp_cprc_base_type
{
VFP_CPRC_UNKNOWN,
VFP_CPRC_SINGLE,
VFP_CPRC_DOUBLE,
VFP_CPRC_VEC64,
VFP_CPRC_VEC128
};
/* The length of one element of base type B. */
static unsigned
arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
{
switch (b)
{
case VFP_CPRC_SINGLE:
return 4;
case VFP_CPRC_DOUBLE:
return 8;
case VFP_CPRC_VEC64:
return 8;
case VFP_CPRC_VEC128:
return 16;
default:
internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
(int) b);
}
}
/* The character ('s', 'd' or 'q') for the type of VFP register used
for passing base type B. */
static int
arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
{
switch (b)
{
case VFP_CPRC_SINGLE:
return 's';
case VFP_CPRC_DOUBLE:
return 'd';
case VFP_CPRC_VEC64:
return 'd';
case VFP_CPRC_VEC128:
return 'q';
default:
internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
(int) b);
}
}
/* Determine whether T may be part of a candidate for passing and
returning in VFP registers, ignoring the limit on the total number
of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
classification of the first valid component found; if it is not
VFP_CPRC_UNKNOWN, all components must have the same classification
as *BASE_TYPE. If it is found that T contains a type not permitted
for passing and returning in VFP registers, a type differently
classified from *BASE_TYPE, or two types differently classified
from each other, return -1, otherwise return the total number of
base-type elements found (possibly 0 in an empty structure or
array). Vector types are not currently supported, matching the
generic AAPCS support. */
static int
arm_vfp_cprc_sub_candidate (struct type *t,
enum arm_vfp_cprc_base_type *base_type)
{
t = check_typedef (t);
switch (TYPE_CODE (t))
{
case TYPE_CODE_FLT:
switch (TYPE_LENGTH (t))
{
case 4:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_SINGLE;
else if (*base_type != VFP_CPRC_SINGLE)
return -1;
return 1;
case 8:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_DOUBLE;
else if (*base_type != VFP_CPRC_DOUBLE)
return -1;
return 1;
default:
return -1;
}
break;
case TYPE_CODE_COMPLEX:
/* Arguments of complex T where T is one of the types float or
double get treated as if they are implemented as:
struct complexT
{
T real;
T imag;
};
*/
switch (TYPE_LENGTH (t))
{
case 8:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_SINGLE;
else if (*base_type != VFP_CPRC_SINGLE)
return -1;
return 2;
case 16:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_DOUBLE;
else if (*base_type != VFP_CPRC_DOUBLE)
return -1;
return 2;
default:
return -1;
}
break;
case TYPE_CODE_ARRAY:
{
if (TYPE_VECTOR (t))
{
/* A 64-bit or 128-bit containerized vector type are VFP
CPRCs. */
switch (TYPE_LENGTH (t))
{
case 8:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_VEC64;
return 1;
case 16:
if (*base_type == VFP_CPRC_UNKNOWN)
*base_type = VFP_CPRC_VEC128;
return 1;
default:
return -1;
}
}
else
{
int count;
unsigned unitlen;
count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
base_type);
if (count == -1)
return -1;
if (TYPE_LENGTH (t) == 0)
{
gdb_assert (count == 0);
return 0;
}
else if (count == 0)
return -1;
unitlen = arm_vfp_cprc_unit_length (*base_type);
gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
return TYPE_LENGTH (t) / unitlen;
}
}
break;
case TYPE_CODE_STRUCT:
{
int count = 0;
unsigned unitlen;
int i;
for (i = 0; i < TYPE_NFIELDS (t); i++)
{
int sub_count = 0;
if (!field_is_static (&TYPE_FIELD (t, i)))
sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
base_type);
if (sub_count == -1)
return -1;
count += sub_count;
}
if (TYPE_LENGTH (t) == 0)
{
gdb_assert (count == 0);
return 0;
}
else if (count == 0)
return -1;
unitlen = arm_vfp_cprc_unit_length (*base_type);
if (TYPE_LENGTH (t) != unitlen * count)
return -1;
return count;
}
case TYPE_CODE_UNION:
{
int count = 0;
unsigned unitlen;
int i;
for (i = 0; i < TYPE_NFIELDS (t); i++)
{
int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
base_type);
if (sub_count == -1)
return -1;
count = (count > sub_count ? count : sub_count);
}
if (TYPE_LENGTH (t) == 0)
{
gdb_assert (count == 0);
return 0;
}
else if (count == 0)
return -1;
unitlen = arm_vfp_cprc_unit_length (*base_type);
if (TYPE_LENGTH (t) != unitlen * count)
return -1;
return count;
}
default:
break;
}
return -1;
}
/* Determine whether T is a VFP co-processor register candidate (CPRC)
if passed to or returned from a non-variadic function with the VFP
ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
*BASE_TYPE to the base type for T and *COUNT to the number of
elements of that base type before returning. */
static int
arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
int *count)
{
enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
int c = arm_vfp_cprc_sub_candidate (t, &b);
if (c <= 0 || c > 4)
return 0;
*base_type = b;
*count = c;
return 1;
}
/* Return 1 if the VFP ABI should be used for passing arguments to and
returning values from a function of type FUNC_TYPE, 0
otherwise. */
static int
arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* Variadic functions always use the base ABI. Assume that functions
without debug info are not variadic. */
if (func_type && TYPE_VARARGS (check_typedef (func_type)))
return 0;
/* The VFP ABI is only supported as a variant of AAPCS. */
if (tdep->arm_abi != ARM_ABI_AAPCS)
return 0;
return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
}
/* We currently only support passing parameters in integer registers, which
conforms with GCC's default model, and VFP argument passing following
the VFP variant of AAPCS. Several other variants exist and
we should probably support some of them based on the selected ABI. */
static CORE_ADDR
arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
struct value **args, CORE_ADDR sp, int struct_return,
CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int argnum;
int argreg;
int nstack;
struct stack_item *si = NULL;
int use_vfp_abi;
struct type *ftype;
unsigned vfp_regs_free = (1 << 16) - 1;
/* Determine the type of this function and whether the VFP ABI
applies. */
ftype = check_typedef (value_type (function));
if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
/* Set the return address. For the ARM, the return breakpoint is
always at BP_ADDR. */
if (arm_pc_is_thumb (gdbarch, bp_addr))
bp_addr |= 1;
regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
/* Walk through the list of args and determine how large a temporary
stack is required. Need to take care here as structs may be
passed on the stack, and we have to push them. */
nstack = 0;
argreg = ARM_A1_REGNUM;
nstack = 0;
/* The struct_return pointer occupies the first parameter
passing register. */
if (struct_return)
{
if (arm_debug)
fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
gdbarch_register_name (gdbarch, argreg),
paddress (gdbarch, struct_addr));
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
argreg++;
}
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
struct type *arg_type;
struct type *target_type;
enum type_code typecode;
const bfd_byte *val;
int align;
enum arm_vfp_cprc_base_type vfp_base_type;
int vfp_base_count;
int may_use_core_reg = 1;
arg_type = check_typedef (value_type (args[argnum]));
len = TYPE_LENGTH (arg_type);
target_type = TYPE_TARGET_TYPE (arg_type);
typecode = TYPE_CODE (arg_type);
val = value_contents (args[argnum]);
align = arm_type_align (arg_type);
/* Round alignment up to a whole number of words. */
align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
/* Different ABIs have different maximum alignments. */
if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
{
/* The APCS ABI only requires word alignment. */
align = INT_REGISTER_SIZE;
}
else
{
/* The AAPCS requires at most doubleword alignment. */
if (align > INT_REGISTER_SIZE * 2)
align = INT_REGISTER_SIZE * 2;
}
if (use_vfp_abi
&& arm_vfp_call_candidate (arg_type, &vfp_base_type,
&vfp_base_count))
{
int regno;
int unit_length;
int shift;
unsigned mask;
/* Because this is a CPRC it cannot go in a core register or
cause a core register to be skipped for alignment.
Either it goes in VFP registers and the rest of this loop
iteration is skipped for this argument, or it goes on the
stack (and the stack alignment code is correct for this
case). */
may_use_core_reg = 0;
unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
shift = unit_length / 4;
mask = (1 << (shift * vfp_base_count)) - 1;
for (regno = 0; regno < 16; regno += shift)
if (((vfp_regs_free >> regno) & mask) == mask)
break;
if (regno < 16)
{
int reg_char;
int reg_scaled;
int i;
vfp_regs_free &= ~(mask << regno);
reg_scaled = regno / shift;
reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
for (i = 0; i < vfp_base_count; i++)
{
char name_buf[4];
int regnum;
if (reg_char == 'q')
arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
val + i * unit_length);
else
{
xsnprintf (name_buf, sizeof (name_buf), "%c%d",
reg_char, reg_scaled + i);
regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
regcache_cooked_write (regcache, regnum,
val + i * unit_length);
}
}
continue;
}
else
{
/* This CPRC could not go in VFP registers, so all VFP
registers are now marked as used. */
vfp_regs_free = 0;
}
}
/* Push stack padding for dowubleword alignment. */
if (nstack & (align - 1))
{
si = push_stack_item (si, val, INT_REGISTER_SIZE);
nstack += INT_REGISTER_SIZE;
}
/* Doubleword aligned quantities must go in even register pairs. */
if (may_use_core_reg
&& argreg <= ARM_LAST_ARG_REGNUM
&& align > INT_REGISTER_SIZE
&& argreg & 1)
argreg++;
/* If the argument is a pointer to a function, and it is a
Thumb function, create a LOCAL copy of the value and set
the THUMB bit in it. */
if (TYPE_CODE_PTR == typecode
&& target_type != NULL
&& TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
{
CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
if (arm_pc_is_thumb (gdbarch, regval))
{
bfd_byte *copy = (bfd_byte *) alloca (len);
store_unsigned_integer (copy, len, byte_order,
MAKE_THUMB_ADDR (regval));
val = copy;
}
}
/* Copy the argument to general registers or the stack in
register-sized pieces. Large arguments are split between
registers and stack. */
while (len > 0)
{
int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
CORE_ADDR regval
= extract_unsigned_integer (val, partial_len, byte_order);
if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
{
/* The argument is being passed in a general purpose
register. */
if (byte_order == BFD_ENDIAN_BIG)
regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
if (arm_debug)
fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
argnum,
gdbarch_register_name
(gdbarch, argreg),
phex (regval, INT_REGISTER_SIZE));
regcache_cooked_write_unsigned (regcache, argreg, regval);
argreg++;
}
else
{
gdb_byte buf[INT_REGISTER_SIZE];
memset (buf, 0, sizeof (buf));
store_unsigned_integer (buf, partial_len, byte_order, regval);
/* Push the arguments onto the stack. */
if (arm_debug)
fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
argnum, nstack);
si = push_stack_item (si, buf, INT_REGISTER_SIZE);
nstack += INT_REGISTER_SIZE;
}
len -= partial_len;
val += partial_len;
}
}
/* If we have an odd number of words to push, then decrement the stack
by one word now, so first stack argument will be dword aligned. */
if (nstack & 4)
sp -= 4;
while (si)
{
sp -= si->len;
write_memory (sp, si->data, si->len);
si = pop_stack_item (si);
}
/* Finally, update teh SP register. */
regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
return sp;
}
/* Always align the frame to an 8-byte boundary. This is required on
some platforms and harmless on the rest. */
static CORE_ADDR
arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align the stack to eight bytes. */
return sp & ~ (CORE_ADDR) 7;
}
static void
print_fpu_flags (struct ui_file *file, int flags)
{
if (flags & (1 << 0))
fputs_filtered ("IVO ", file);
if (flags & (1 << 1))
fputs_filtered ("DVZ ", file);
if (flags & (1 << 2))
fputs_filtered ("OFL ", file);
if (flags & (1 << 3))
fputs_filtered ("UFL ", file);
if (flags & (1 << 4))
fputs_filtered ("INX ", file);
fputc_filtered ('\n', file);
}
/* Print interesting information about the floating point processor
(if present) or emulator. */
static void
arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
struct frame_info *frame, const char *args)
{
unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
int type;
type = (status >> 24) & 127;
if (status & (1 << 31))
fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
else
fprintf_filtered (file, _("Software FPU type %d\n"), type);
/* i18n: [floating point unit] mask */
fputs_filtered (_("mask: "), file);
print_fpu_flags (file, status >> 16);
/* i18n: [floating point unit] flags */
fputs_filtered (_("flags: "), file);
print_fpu_flags (file, status);
}
/* Construct the ARM extended floating point type. */
static struct type *
arm_ext_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->arm_ext_type)
tdep->arm_ext_type
= arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
floatformats_arm_ext);
return tdep->arm_ext_type;
}
static struct type *
arm_neon_double_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep->neon_double_type == NULL)
{
struct type *t, *elem;
t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
TYPE_CODE_UNION);
elem = builtin_type (gdbarch)->builtin_uint8;
append_composite_type_field (t, "u8", init_vector_type (elem, 8));
elem = builtin_type (gdbarch)->builtin_uint16;
append_composite_type_field (t, "u16", init_vector_type (elem, 4));
elem = builtin_type (gdbarch)->builtin_uint32;
append_composite_type_field (t, "u32", init_vector_type (elem, 2));
elem = builtin_type (gdbarch)->builtin_uint64;
append_composite_type_field (t, "u64", elem);
elem = builtin_type (gdbarch)->builtin_float;
append_composite_type_field (t, "f32", init_vector_type (elem, 2));
elem = builtin_type (gdbarch)->builtin_double;
append_composite_type_field (t, "f64", elem);
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "neon_d";
tdep->neon_double_type = t;
}
return tdep->neon_double_type;
}
/* FIXME: The vector types are not correctly ordered on big-endian
targets. Just as s0 is the low bits of d0, d0[0] is also the low
bits of d0 - regardless of what unit size is being held in d0. So
the offset of the first uint8 in d0 is 7, but the offset of the
first float is 4. This code works as-is for little-endian
targets. */
static struct type *
arm_neon_quad_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep->neon_quad_type == NULL)
{
struct type *t, *elem;
t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
TYPE_CODE_UNION);
elem = builtin_type (gdbarch)->builtin_uint8;
append_composite_type_field (t, "u8", init_vector_type (elem, 16));
elem = builtin_type (gdbarch)->builtin_uint16;
append_composite_type_field (t, "u16", init_vector_type (elem, 8));
elem = builtin_type (gdbarch)->builtin_uint32;
append_composite_type_field (t, "u32", init_vector_type (elem, 4));
elem = builtin_type (gdbarch)->builtin_uint64;
append_composite_type_field (t, "u64", init_vector_type (elem, 2));
elem = builtin_type (gdbarch)->builtin_float;
append_composite_type_field (t, "f32", init_vector_type (elem, 4));
elem = builtin_type (gdbarch)->builtin_double;
append_composite_type_field (t, "f64", init_vector_type (elem, 2));
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "neon_q";
tdep->neon_quad_type = t;
}
return tdep->neon_quad_type;
}
/* Return the GDB type object for the "standard" data type of data in
register N. */
static struct type *
arm_register_type (struct gdbarch *gdbarch, int regnum)
{
int num_regs = gdbarch_num_regs (gdbarch);
if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
&& regnum >= num_regs && regnum < num_regs + 32)
return builtin_type (gdbarch)->builtin_float;
if (gdbarch_tdep (gdbarch)->have_neon_pseudos
&& regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
return arm_neon_quad_type (gdbarch);
/* If the target description has register information, we are only
in this function so that we can override the types of
double-precision registers for NEON. */
if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
{
struct type *t = tdesc_register_type (gdbarch, regnum);
if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
&& TYPE_CODE (t) == TYPE_CODE_FLT
&& gdbarch_tdep (gdbarch)->have_neon)
return arm_neon_double_type (gdbarch);
else
return t;
}
if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
{
if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
return builtin_type (gdbarch)->builtin_void;
return arm_ext_type (gdbarch);
}
else if (regnum == ARM_SP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else if (regnum == ARM_PC_REGNUM)
return builtin_type (gdbarch)->builtin_func_ptr;
else if (regnum >= ARRAY_SIZE (arm_register_names))
/* These registers are only supported on targets which supply
an XML description. */
return builtin_type (gdbarch)->builtin_int0;
else
return builtin_type (gdbarch)->builtin_uint32;
}
/* Map a DWARF register REGNUM onto the appropriate GDB register
number. */
static int
arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
/* Core integer regs. */
if (reg >= 0 && reg <= 15)
return reg;
/* Legacy FPA encoding. These were once used in a way which
overlapped with VFP register numbering, so their use is
discouraged, but GDB doesn't support the ARM toolchain
which used them for VFP. */
if (reg >= 16 && reg <= 23)
return ARM_F0_REGNUM + reg - 16;
/* New assignments for the FPA registers. */
if (reg >= 96 && reg <= 103)
return ARM_F0_REGNUM + reg - 96;
/* WMMX register assignments. */
if (reg >= 104 && reg <= 111)
return ARM_WCGR0_REGNUM + reg - 104;
if (reg >= 112 && reg <= 127)
return ARM_WR0_REGNUM + reg - 112;
if (reg >= 192 && reg <= 199)
return ARM_WC0_REGNUM + reg - 192;
/* VFP v2 registers. A double precision value is actually
in d1 rather than s2, but the ABI only defines numbering
for the single precision registers. This will "just work"
in GDB for little endian targets (we'll read eight bytes,
starting in s0 and then progressing to s1), but will be
reversed on big endian targets with VFP. This won't
be a problem for the new Neon quad registers; you're supposed
to use DW_OP_piece for those. */
if (reg >= 64 && reg <= 95)
{
char name_buf[4];
xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
return user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
}
/* VFP v3 / Neon registers. This range is also used for VFP v2
registers, except that it now describes d0 instead of s0. */
if (reg >= 256 && reg <= 287)
{
char name_buf[4];
xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
return user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
}
return -1;
}
/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
static int
arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
int reg = regnum;
gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
if (reg < NUM_GREGS)
return SIM_ARM_R0_REGNUM + reg;
reg -= NUM_GREGS;
if (reg < NUM_FREGS)
return SIM_ARM_FP0_REGNUM + reg;
reg -= NUM_FREGS;
if (reg < NUM_SREGS)
return SIM_ARM_FPS_REGNUM + reg;
reg -= NUM_SREGS;
internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
}
/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
the buffer to be NEW_LEN bytes ending at ENDADDR. Return
NULL if an error occurs. BUF is freed. */
static gdb_byte *
extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
int old_len, int new_len)
{
gdb_byte *new_buf;
int bytes_to_read = new_len - old_len;
new_buf = (gdb_byte *) xmalloc (new_len);
memcpy (new_buf + bytes_to_read, buf, old_len);
xfree (buf);
if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
{
xfree (new_buf);
return NULL;
}
return new_buf;
}
/* An IT block is at most the 2-byte IT instruction followed by
four 4-byte instructions. The furthest back we must search to
find an IT block that affects the current instruction is thus
2 + 3 * 4 == 14 bytes. */
#define MAX_IT_BLOCK_PREFIX 14
/* Use a quick scan if there are more than this many bytes of
code. */
#define IT_SCAN_THRESHOLD 32
/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
A breakpoint in an IT block may not be hit, depending on the
condition flags. */
static CORE_ADDR
arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
{
gdb_byte *buf;
char map_type;
CORE_ADDR boundary, func_start;
int buf_len;
enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
int i, any, last_it, last_it_count;
/* If we are using BKPT breakpoints, none of this is necessary. */
if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
return bpaddr;
/* ARM mode does not have this problem. */
if (!arm_pc_is_thumb (gdbarch, bpaddr))
return bpaddr;
/* We are setting a breakpoint in Thumb code that could potentially
contain an IT block. The first step is to find how much Thumb
code there is; we do not need to read outside of known Thumb
sequences. */
map_type = arm_find_mapping_symbol (bpaddr, &boundary);
if (map_type == 0)
/* Thumb-2 code must have mapping symbols to have a chance. */
return bpaddr;
bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
&& func_start > boundary)
boundary = func_start;
/* Search for a candidate IT instruction. We have to do some fancy
footwork to distinguish a real IT instruction from the second
half of a 32-bit instruction, but there is no need for that if
there's no candidate. */
buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
if (buf_len == 0)
/* No room for an IT instruction. */
return bpaddr;
buf = (gdb_byte *) xmalloc (buf_len);
if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
return bpaddr;
any = 0;
for (i = 0; i < buf_len; i += 2)
{
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
{
any = 1;
break;
}
}
if (any == 0)
{
xfree (buf);
return bpaddr;
}
/* OK, the code bytes before this instruction contain at least one
halfword which resembles an IT instruction. We know that it's
Thumb code, but there are still two possibilities. Either the
halfword really is an IT instruction, or it is the second half of
a 32-bit Thumb instruction. The only way we can tell is to
scan forwards from a known instruction boundary. */
if (bpaddr - boundary > IT_SCAN_THRESHOLD)
{
int definite;
/* There's a lot of code before this instruction. Start with an
optimistic search; it's easy to recognize halfwords that can
not be the start of a 32-bit instruction, and use that to
lock on to the instruction boundaries. */
buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
if (buf == NULL)
return bpaddr;
buf_len = IT_SCAN_THRESHOLD;
definite = 0;
for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
{
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
if (thumb_insn_size (inst1) == 2)
{
definite = 1;
break;
}
}
/* At this point, if DEFINITE, BUF[I] is the first place we
are sure that we know the instruction boundaries, and it is far
enough from BPADDR that we could not miss an IT instruction
affecting BPADDR. If ! DEFINITE, give up - start from a
known boundary. */
if (! definite)
{
buf = extend_buffer_earlier (buf, bpaddr, buf_len,
bpaddr - boundary);
if (buf == NULL)
return bpaddr;
buf_len = bpaddr - boundary;
i = 0;
}
}
else
{
buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
if (buf == NULL)
return bpaddr;
buf_len = bpaddr - boundary;
i = 0;
}
/* Scan forwards. Find the last IT instruction before BPADDR. */
last_it = -1;
last_it_count = 0;
while (i < buf_len)
{
unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
last_it_count--;
if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
{
last_it = i;
if (inst1 & 0x0001)
last_it_count = 4;
else if (inst1 & 0x0002)
last_it_count = 3;
else if (inst1 & 0x0004)
last_it_count = 2;
else
last_it_count = 1;
}
i += thumb_insn_size (inst1);
}
xfree (buf);
if (last_it == -1)
/* There wasn't really an IT instruction after all. */
return bpaddr;
if (last_it_count < 1)
/* It was too far away. */
return bpaddr;
/* This really is a trouble spot. Move the breakpoint to the IT
instruction. */
return bpaddr - buf_len + last_it;
}
/* ARM displaced stepping support.
Generally ARM displaced stepping works as follows:
1. When an instruction is to be single-stepped, it is first decoded by
arm_process_displaced_insn. Depending on the type of instruction, it is
then copied to a scratch location, possibly in a modified form. The
copy_* set of functions performs such modification, as necessary. A
breakpoint is placed after the modified instruction in the scratch space
to return control to GDB. Note in particular that instructions which
modify the PC will no longer do so after modification.
2. The instruction is single-stepped, by setting the PC to the scratch
location address, and resuming. Control returns to GDB when the
breakpoint is hit.
3. A cleanup function (cleanup_*) is called corresponding to the copy_*
function used for the current instruction. This function's job is to
put the CPU/memory state back to what it would have been if the
instruction had been executed unmodified in its original location. */
/* NOP instruction (mov r0, r0). */
#define ARM_NOP 0xe1a00000
#define THUMB_NOP 0x4600
/* Helper for register reads for displaced stepping. In particular, this
returns the PC as it would be seen by the instruction at its original
location. */
ULONGEST
displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
int regno)
{
ULONGEST ret;
CORE_ADDR from = dsc->insn_addr;
if (regno == ARM_PC_REGNUM)
{
/* Compute pipeline offset:
- When executing an ARM instruction, PC reads as the address of the
current instruction plus 8.
- When executing a Thumb instruction, PC reads as the address of the
current instruction plus 4. */
if (!dsc->is_thumb)
from += 8;
else
from += 4;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
(unsigned long) from);
return (ULONGEST) from;
}
else
{
regcache_cooked_read_unsigned (regs, regno, &ret);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
regno, (unsigned long) ret);
return ret;
}
}
static int
displaced_in_arm_mode (struct regcache *regs)
{
ULONGEST ps;
ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
return (ps & t_bit) == 0;
}
/* Write to the PC as from a branch instruction. */
static void
branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
ULONGEST val)
{
if (!dsc->is_thumb)
/* Note: If bits 0/1 are set, this branch would be unpredictable for
architecture versions < 6. */
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
val & ~(ULONGEST) 0x3);
else
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
val & ~(ULONGEST) 0x1);
}
/* Write to the PC as from a branch-exchange instruction. */
static void
bx_write_pc (struct regcache *regs, ULONGEST val)
{
ULONGEST ps;
ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
if ((val & 1) == 1)
{
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
}
else if ((val & 2) == 0)
{
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
}
else
{
/* Unpredictable behaviour. Try to do something sensible (switch to ARM
mode, align dest to 4 bytes). */
warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
}
}
/* Write to the PC as if from a load instruction. */
static void
load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
ULONGEST val)
{
if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
bx_write_pc (regs, val);
else
branch_write_pc (regs, dsc, val);
}
/* Write to the PC as if from an ALU instruction. */
static void
alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
ULONGEST val)
{
if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
bx_write_pc (regs, val);
else
branch_write_pc (regs, dsc, val);
}
/* Helper for writing to registers for displaced stepping. Writing to the PC
has a varying effects depending on the instruction which does the write:
this is controlled by the WRITE_PC argument. */
void
displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
int regno, ULONGEST val, enum pc_write_style write_pc)
{
if (regno == ARM_PC_REGNUM)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
(unsigned long) val);
switch (write_pc)
{
case BRANCH_WRITE_PC:
branch_write_pc (regs, dsc, val);
break;
case BX_WRITE_PC:
bx_write_pc (regs, val);
break;
case LOAD_WRITE_PC:
load_write_pc (regs, dsc, val);
break;
case ALU_WRITE_PC:
alu_write_pc (regs, dsc, val);
break;
case CANNOT_WRITE_PC:
warning (_("Instruction wrote to PC in an unexpected way when "
"single-stepping"));
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid argument to displaced_write_reg"));
}
dsc->wrote_to_pc = 1;
}
else
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
regno, (unsigned long) val);
regcache_cooked_write_unsigned (regs, regno, val);
}
}
/* This function is used to concisely determine if an instruction INSN
references PC. Register fields of interest in INSN should have the
corresponding fields of BITMASK set to 0b1111. The function
returns return 1 if any of these fields in INSN reference the PC
(also 0b1111, r15), else it returns 0. */
static int
insn_references_pc (uint32_t insn, uint32_t bitmask)
{
uint32_t lowbit = 1;
while (bitmask != 0)
{
uint32_t mask;
for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
;
if (!lowbit)
break;
mask = lowbit * 0xf;
if ((insn & mask) == mask)
return 1;
bitmask &= ~mask;
}
return 0;
}
/* The simplest copy function. Many instructions have the same effect no
matter what address they are executed at: in those cases, use this. */
static int
arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
const char *iname, struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
"opcode/class '%s' unmodified\n", (unsigned long) insn,
iname);
dsc->modinsn[0] = insn;
return 0;
}
static int
thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, const char *iname,
struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
"opcode/class '%s' unmodified\n", insn1, insn2,
iname);
dsc->modinsn[0] = insn1;
dsc->modinsn[1] = insn2;
dsc->numinsns = 2;
return 0;
}
/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
modification. */
static int
thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
const char *iname,
struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
"opcode/class '%s' unmodified\n", insn,
iname);
dsc->modinsn[0] = insn;
return 0;
}
/* Preload instructions with immediate offset. */
static void
cleanup_preload (struct gdbarch *gdbarch,
struct regcache *regs, struct displaced_step_closure *dsc)
{
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
if (!dsc->u.preload.immed)
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
}
static void
install_preload (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc, unsigned int rn)
{
ULONGEST rn_val;
/* Preload instructions:
{pli/pld} [rn, #+/-imm]
->
{pli/pld} [r0, #+/-imm]. */
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
rn_val = displaced_read_reg (regs, dsc, rn);
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
dsc->u.preload.immed = 1;
dsc->cleanup = &cleanup_preload;
}
static int
arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn, 16, 19);
if (!insn_references_pc (insn, 0x000f0000ul))
return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
(unsigned long) insn);
dsc->modinsn[0] = insn & 0xfff0ffff;
install_preload (gdbarch, regs, dsc, rn);
return 0;
}
static int
thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
struct regcache *regs, struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn1, 0, 3);
unsigned int u_bit = bit (insn1, 7);
int imm12 = bits (insn2, 0, 11);
ULONGEST pc_val;
if (rn != ARM_PC_REGNUM)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
/* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
PLD (literal) Encoding T1. */
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
(unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
imm12);
if (!u_bit)
imm12 = -1 * imm12;
/* Rewrite instruction {pli/pld} PC imm12 into:
Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
{pli/pld} [r0, r1]
Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
dsc->u.preload.immed = 0;
/* {pli/pld} [r0, r1] */
dsc->modinsn[0] = insn1 & 0xfff0;
dsc->modinsn[1] = 0xf001;
dsc->numinsns = 2;
dsc->cleanup = &cleanup_preload;
return 0;
}
/* Preload instructions with register offset. */
static void
install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc, unsigned int rn,
unsigned int rm)
{
ULONGEST rn_val, rm_val;
/* Preload register-offset instructions:
{pli/pld} [rn, rm {, shift}]
->
{pli/pld} [r0, r1 {, shift}]. */
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
rn_val = displaced_read_reg (regs, dsc, rn);
rm_val = displaced_read_reg (regs, dsc, rm);
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
dsc->u.preload.immed = 0;
dsc->cleanup = &cleanup_preload;
}
static int
arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn, 16, 19);
unsigned int rm = bits (insn, 0, 3);
if (!insn_references_pc (insn, 0x000f000ful))
return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
(unsigned long) insn);
dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
install_preload_reg (gdbarch, regs, dsc, rn, rm);
return 0;
}
/* Copy/cleanup coprocessor load and store instructions. */
static void
cleanup_copro_load_store (struct gdbarch *gdbarch,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
if (dsc->u.ldst.writeback)
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
}
static void
install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc,
int writeback, unsigned int rn)
{
ULONGEST rn_val;
/* Coprocessor load/store instructions:
{stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
->
{stc/stc2} [r0, #+/-imm].
ldc/ldc2 are handled identically. */
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
rn_val = displaced_read_reg (regs, dsc, rn);
/* PC should be 4-byte aligned. */
rn_val = rn_val & 0xfffffffc;
displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
dsc->u.ldst.writeback = writeback;
dsc->u.ldst.rn = rn;
dsc->cleanup = &cleanup_copro_load_store;
}
static int
arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn, 16, 19);
if (!insn_references_pc (insn, 0x000f0000ul))
return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
"load/store insn %.8lx\n", (unsigned long) insn);
dsc->modinsn[0] = insn & 0xfff0ffff;
install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
return 0;
}
static int
thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn1, 0, 3);
if (rn != ARM_PC_REGNUM)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"copro load/store", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
"load/store insn %.4x%.4x\n", insn1, insn2);
dsc->modinsn[0] = insn1 & 0xfff0;
dsc->modinsn[1] = insn2;
dsc->numinsns = 2;
/* This function is called for copying instruction LDC/LDC2/VLDR, which
doesn't support writeback, so pass 0. */
install_copro_load_store (gdbarch, regs, dsc, 0, rn);
return 0;
}
/* Clean up branch instructions (actually perform the branch, by setting
PC). */
static void
cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
int branch_taken = condition_true (dsc->u.branch.cond, status);
enum pc_write_style write_pc = dsc->u.branch.exchange
? BX_WRITE_PC : BRANCH_WRITE_PC;
if (!branch_taken)
return;
if (dsc->u.branch.link)
{
/* The value of LR should be the next insn of current one. In order
not to confuse logic hanlding later insn `bx lr', if current insn mode
is Thumb, the bit 0 of LR value should be set to 1. */
ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
if (dsc->is_thumb)
next_insn_addr |= 0x1;
displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
CANNOT_WRITE_PC);
}
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
}
/* Copy B/BL/BLX instructions with immediate destinations. */
static void
install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc,
unsigned int cond, int exchange, int link, long offset)
{
/* Implement "BL<cond> <label>" as:
Preparation: cond <- instruction condition
Insn: mov r0, r0 (nop)
Cleanup: if (condition true) { r14 <- pc; pc <- label }.
B<cond> similar, but don't set r14 in cleanup. */
dsc->u.branch.cond = cond;
dsc->u.branch.link = link;
dsc->u.branch.exchange = exchange;
dsc->u.branch.dest = dsc->insn_addr;
if (link && exchange)
/* For BLX, offset is computed from the Align (PC, 4). */
dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
if (dsc->is_thumb)
dsc->u.branch.dest += 4 + offset;
else
dsc->u.branch.dest += 8 + offset;
dsc->cleanup = &cleanup_branch;
}
static int
arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs, struct displaced_step_closure *dsc)
{
unsigned int cond = bits (insn, 28, 31);
int exchange = (cond == 0xf);
int link = exchange || bit (insn, 24);
long offset;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
"%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
(unsigned long) insn);
if (exchange)
/* For BLX, set bit 0 of the destination. The cleanup_branch function will
then arrange the switch into Thumb mode. */
offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
else
offset = bits (insn, 0, 23) << 2;
if (bit (offset, 25))
offset = offset | ~0x3ffffff;
dsc->modinsn[0] = ARM_NOP;
install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
return 0;
}
static int
thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
int link = bit (insn2, 14);
int exchange = link && !bit (insn2, 12);
int cond = INST_AL;
long offset = 0;
int j1 = bit (insn2, 13);
int j2 = bit (insn2, 11);
int s = sbits (insn1, 10, 10);
int i1 = !(j1 ^ bit (insn1, 10));
int i2 = !(j2 ^ bit (insn1, 10));
if (!link && !exchange) /* B */
{
offset = (bits (insn2, 0, 10) << 1);
if (bit (insn2, 12)) /* Encoding T4 */
{
offset |= (bits (insn1, 0, 9) << 12)
| (i2 << 22)
| (i1 << 23)
| (s << 24);
cond = INST_AL;
}
else /* Encoding T3 */
{
offset |= (bits (insn1, 0, 5) << 12)
| (j1 << 18)
| (j2 << 19)
| (s << 20);
cond = bits (insn1, 6, 9);
}
}
else
{
offset = (bits (insn1, 0, 9) << 12);
offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
offset |= exchange ?
(bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
}
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
"%.4x %.4x with offset %.8lx\n",
link ? (exchange) ? "blx" : "bl" : "b",
insn1, insn2, offset);
dsc->modinsn[0] = THUMB_NOP;
install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
return 0;
}
/* Copy B Thumb instructions. */
static int
thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
struct displaced_step_closure *dsc)
{
unsigned int cond = 0;
int offset = 0;
unsigned short bit_12_15 = bits (insn, 12, 15);
CORE_ADDR from = dsc->insn_addr;
if (bit_12_15 == 0xd)
{
/* offset = SignExtend (imm8:0, 32) */
offset = sbits ((insn << 1), 0, 8);
cond = bits (insn, 8, 11);
}
else if (bit_12_15 == 0xe) /* Encoding T2 */
{
offset = sbits ((insn << 1), 0, 11);
cond = INST_AL;
}
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying b immediate insn %.4x "
"with offset %d\n", insn, offset);
dsc->u.branch.cond = cond;
dsc->u.branch.link = 0;
dsc->u.branch.exchange = 0;
dsc->u.branch.dest = from + 4 + offset;
dsc->modinsn[0] = THUMB_NOP;
dsc->cleanup = &cleanup_branch;
return 0;
}
/* Copy BX/BLX with register-specified destinations. */
static void
install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc, int link,
unsigned int cond, unsigned int rm)
{
/* Implement {BX,BLX}<cond> <reg>" as:
Preparation: cond <- instruction condition
Insn: mov r0, r0 (nop)
Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
Don't set r14 in cleanup for BX. */
dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
dsc->u.branch.cond = cond;
dsc->u.branch.link = link;
dsc->u.branch.exchange = 1;
dsc->cleanup = &cleanup_branch;
}
static int
arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs, struct displaced_step_closure *dsc)
{
unsigned int cond = bits (insn, 28, 31);
/* BX: x12xxx1x
BLX: x12xxx3x. */
int link = bit (insn, 5);
unsigned int rm = bits (insn, 0, 3);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
(unsigned long) insn);
dsc->modinsn[0] = ARM_NOP;
install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
return 0;
}
static int
thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int link = bit (insn, 7);
unsigned int rm = bits (insn, 3, 6);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
(unsigned short) insn);
dsc->modinsn[0] = THUMB_NOP;
install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
return 0;
}
/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
static void
cleanup_alu_imm (struct gdbarch *gdbarch,
struct regcache *regs, struct displaced_step_closure *dsc)
{
ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
}
static int
arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rn = bits (insn, 16, 19);
unsigned int rd = bits (insn, 12, 15);
unsigned int op = bits (insn, 21, 24);
int is_mov = (op == 0xd);
ULONGEST rd_val, rn_val;
if (!insn_references_pc (insn, 0x000ff000ul))
return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
"%.8lx\n", is_mov ? "move" : "ALU",
(unsigned long) insn);
/* Instruction is of form:
<op><cond> rd, [rn,] #imm
Rewrite as:
Preparation: tmp1, tmp2 <- r0, r1;
r0, r1 <- rd, rn
Insn: <op><cond> r0, r1, #imm
Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
*/
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
rn_val = displaced_read_reg (regs, dsc, rn);
rd_val = displaced_read_reg (regs, dsc, rd);
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
dsc->rd = rd;
if (is_mov)
dsc->modinsn[0] = insn & 0xfff00fff;
else
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
dsc->cleanup = &cleanup_alu_imm;
return 0;
}
static int
thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int op = bits (insn1, 5, 8);
unsigned int rn, rm, rd;
ULONGEST rd_val, rn_val;
rn = bits (insn1, 0, 3); /* Rn */
rm = bits (insn2, 0, 3); /* Rm */
rd = bits (insn2, 8, 11); /* Rd */
/* This routine is only called for instruction MOV. */
gdb_assert (op == 0x2 && rn == 0xf);
if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
"ALU", insn1, insn2);
/* Instruction is of form:
<op><cond> rd, [rn,] #imm
Rewrite as:
Preparation: tmp1, tmp2 <- r0, r1;
r0, r1 <- rd, rn
Insn: <op><cond> r0, r1, #imm
Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
*/
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
rn_val = displaced_read_reg (regs, dsc, rn);
rd_val = displaced_read_reg (regs, dsc, rd);
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
dsc->rd = rd;
dsc->modinsn[0] = insn1;
dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
dsc->numinsns = 2;
dsc->cleanup = &cleanup_alu_imm;
return 0;
}
/* Copy/cleanup arithmetic/logic insns with register RHS. */
static void
cleanup_alu_reg (struct gdbarch *gdbarch,
struct regcache *regs, struct displaced_step_closure *dsc)
{
ULONGEST rd_val;
int i;
rd_val = displaced_read_reg (regs, dsc, 0);
for (i = 0; i < 3; i++)
displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
}
static void
install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc,
unsigned int rd, unsigned int rn, unsigned int rm)
{
ULONGEST rd_val, rn_val, rm_val;
/* Instruction is of form:
<op><cond> rd, [rn,] rm [, <shift>]
Rewrite as:
Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
r0, r1, r2 <- rd, rn, rm
Insn: <op><cond> r0, [r1,] r2 [, <shift>]
Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
*/
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
rd_val = displaced_read_reg (regs, dsc, rd);
rn_val = displaced_read_reg (regs, dsc, rn);
rm_val = displaced_read_reg (regs, dsc, rm);
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
dsc->rd = rd;
dsc->cleanup = &cleanup_alu_reg;
}
static int
arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int op = bits (insn, 21, 24);
int is_mov = (op == 0xd);
if (!insn_references_pc (insn, 0x000ff00ful))
return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
is_mov ? "move" : "ALU", (unsigned long) insn);
if (is_mov)
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
else
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
bits (insn, 0, 3));
return 0;
}
static int
thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned rm, rd;
rm = bits (insn, 3, 6);
rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
(unsigned short) insn);
dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
return 0;
}
/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
static void
cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
int i;
for (i = 0; i < 4; i++)
displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
}
static void
install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc,
unsigned int rd, unsigned int rn, unsigned int rm,
unsigned rs)
{
int i;
ULONGEST rd_val, rn_val, rm_val, rs_val;
/* Instruction is of form:
<op><cond> rd, [rn,] rm, <shift> rs
Rewrite as:
Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
r0, r1, r2, r3 <- rd, rn, rm, rs
Insn: <op><cond> r0, r1, r2, <shift> r3
Cleanup: tmp5 <- r0
r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
rd <- tmp5
*/
for (i = 0; i < 4; i++)
dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
rd_val = displaced_read_reg (regs, dsc, rd);
rn_val = displaced_read_reg (regs, dsc, rn);
rm_val = displaced_read_reg (regs, dsc, rm);
rs_val = displaced_read_reg (regs, dsc, rs);
displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
dsc->rd = rd;
dsc->cleanup = &cleanup_alu_shifted_reg;
}
static int
arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int op = bits (insn, 21, 24);
int is_mov = (op == 0xd);
unsigned int rd, rn, rm, rs;
if (!insn_references_pc (insn, 0x000fff0ful))
return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
"%.8lx\n", is_mov ? "move" : "ALU",
(unsigned long) insn);
rn = bits (insn, 16, 19);
rm = bits (insn, 0, 3);
rs = bits (insn, 8, 11);
rd = bits (insn, 12, 15);
if (is_mov)
dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
else
dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
return 0;
}
/* Clean up load instructions. */
static void
cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
ULONGEST rt_val, rt_val2 = 0, rn_val;
rt_val = displaced_read_reg (regs, dsc, 0);
if (dsc->u.ldst.xfersize == 8)
rt_val2 = displaced_read_reg (regs, dsc, 1);
rn_val = displaced_read_reg (regs, dsc, 2);
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
if (dsc->u.ldst.xfersize > 4)
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
if (!dsc->u.ldst.immed)
displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
/* Handle register writeback. */
if (dsc->u.ldst.writeback)
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
/* Put result in right place. */
displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
if (dsc->u.ldst.xfersize == 8)
displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
}
/* Clean up store instructions. */
static void
cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
if (dsc->u.ldst.xfersize > 4)
displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
if (!dsc->u.ldst.immed)
displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
if (!dsc->u.ldst.restore_r4)
displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
/* Writeback. */
if (dsc->u.ldst.writeback)
displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
}
/* Copy "extra" load/store instructions. These are halfword/doubleword
transfers, which have a different encoding to byte/word transfers. */
static int
arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
struct regcache *regs, struct displaced_step_closure *dsc)
{
unsigned int op1 = bits (insn, 20, 24);
unsigned int op2 = bits (insn, 5, 6);
unsigned int rt = bits (insn, 12, 15);
unsigned int rn = bits (insn, 16, 19);
unsigned int rm = bits (insn, 0, 3);
char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
int immed = (op1 & 0x4) != 0;
int opcode;
ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
if (!insn_references_pc (insn, 0x000ff00ful))
return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
"insn %.8lx\n", unprivileged ? "unprivileged " : "",
(unsigned long) insn);
opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
if (opcode < 0)
internal_error (__FILE__, __LINE__,
_("copy_extra_ld_st: instruction decode error"));
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
if (!immed)
dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
rt_val = displaced_read_reg (regs, dsc, rt);
if (bytesize[opcode] == 8)
rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
rn_val = displaced_read_reg (regs, dsc, rn);
if (!immed)
rm_val = displaced_read_reg (regs, dsc, rm);
displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
if (bytesize[opcode] == 8)
displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
if (!immed)
displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
dsc->rd = rt;
dsc->u.ldst.xfersize = bytesize[opcode];
dsc->u.ldst.rn = rn;
dsc->u.ldst.immed = immed;
dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
dsc->u.ldst.restore_r4 = 0;
if (immed)
/* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
->
{ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
else
/* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
->
{ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
return 0;
}
/* Copy byte/half word/word loads and stores. */
static void
install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc, int load,
int immed, int writeback, int size, int usermode,
int rt, int rm, int rn)
{
ULONGEST rt_val, rn_val, rm_val = 0;
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
if (!immed)
dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
if (!load)
dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
rt_val = displaced_read_reg (regs, dsc, rt);
rn_val = displaced_read_reg (regs, dsc, rn);
if (!immed)
rm_val = displaced_read_reg (regs, dsc, rm);
displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
if (!immed)
displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
dsc->rd = rt;
dsc->u.ldst.xfersize = size;
dsc->u.ldst.rn = rn;
dsc->u.ldst.immed = immed;
dsc->u.ldst.writeback = writeback;
/* To write PC we can do:
Before this sequence of instructions:
r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
r2 is the Rn value got from dispalced_read_reg.
Insn1: push {pc} Write address of STR instruction + offset on stack
Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
= addr(Insn1) + offset - addr(Insn3) - 8
= offset - 16
Insn4: add r4, r4, #8 r4 = offset - 8
Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
= from + offset
Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
Otherwise we don't know what value to write for PC, since the offset is
architecture-dependent (sometimes PC+8, sometimes PC+12). More details
of this can be found in Section "Saving from r15" in
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
dsc->cleanup = load ? &cleanup_load : &cleanup_store;
}
static int
thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc, int size)
{
unsigned int u_bit = bit (insn1, 7);
unsigned int rt = bits (insn2, 12, 15);
int imm12 = bits (insn2, 0, 11);
ULONGEST pc_val;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
(unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
imm12);
if (!u_bit)
imm12 = -1 * imm12;
/* Rewrite instruction LDR Rt imm12 into:
Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
LDR R0, R2, R3,
Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
pc_val = pc_val & 0xfffffffc;
displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
dsc->rd = rt;
dsc->u.ldst.xfersize = size;
dsc->u.ldst.immed = 0;
dsc->u.ldst.writeback = 0;
dsc->u.ldst.restore_r4 = 0;
/* LDR R0, R2, R3 */
dsc->modinsn[0] = 0xf852;
dsc->modinsn[1] = 0x3;
dsc->numinsns = 2;
dsc->cleanup = &cleanup_load;
return 0;
}
static int
thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc,
int writeback, int immed)
{
unsigned int rt = bits (insn2, 12, 15);
unsigned int rn = bits (insn1, 0, 3);
unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
/* In LDR (register), there is also a register Rm, which is not allowed to
be PC, so we don't have to check it. */
if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
rt, rn, insn1, insn2);
install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
0, rt, rm, rn);
dsc->u.ldst.restore_r4 = 0;
if (immed)
/* ldr[b]<cond> rt, [rn, #imm], etc.
->
ldr[b]<cond> r0, [r2, #imm]. */
{
dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
dsc->modinsn[1] = insn2 & 0x0fff;
}
else
/* ldr[b]<cond> rt, [rn, rm], etc.
->
ldr[b]<cond> r0, [r2, r3]. */
{
dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
}
dsc->numinsns = 2;
return 0;
}
static int
arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc,
int load, int size, int usermode)
{
int immed = !bit (insn, 25);
int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
unsigned int rt = bits (insn, 12, 15);
unsigned int rn = bits (insn, 16, 19);
unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
if (!insn_references_pc (insn, 0x000ff00ful))
return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying %s%s r%d [r%d] insn %.8lx\n",
load ? (size == 1 ? "ldrb" : "ldr")
: (size == 1 ? "strb" : "str"), usermode ? "t" : "",
rt, rn,
(unsigned long) insn);
install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
usermode, rt, rm, rn);
if (load || rt != ARM_PC_REGNUM)
{
dsc->u.ldst.restore_r4 = 0;
if (immed)
/* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
->
{ldr,str}[b]<cond> r0, [r2, #imm]. */
dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
else
/* {ldr,str}[b]<cond> rt, [rn, rm], etc.
->
{ldr,str}[b]<cond> r0, [r2, r3]. */
dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
}
else
{
/* We need to use r4 as scratch. Make sure it's restored afterwards. */
dsc->u.ldst.restore_r4 = 1;
dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
/* As above. */
if (immed)
dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
else
dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
dsc->numinsns = 6;
}
dsc->cleanup = load ? &cleanup_load : &cleanup_store;
return 0;
}
/* Cleanup LDM instructions with fully-populated register list. This is an
unfortunate corner case: it's impossible to implement correctly by modifying
the instruction. The issue is as follows: we have an instruction,
ldm rN, {r0-r15}
which we must rewrite to avoid loading PC. A possible solution would be to
do the load in two halves, something like (with suitable cleanup
afterwards):
mov r8, rN
ldm[id][ab] r8!, {r0-r7}
str r7, <temp>
ldm[id][ab] r8, {r7-r14}
<bkpt>
but at present there's no suitable place for <temp>, since the scratch space
is overwritten before the cleanup routine is called. For now, we simply
emulate the instruction. */
static void
cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
int inc = dsc->u.block.increment;
int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
uint32_t regmask = dsc->u.block.regmask;
int regno = inc ? 0 : 15;
CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
int exception_return = dsc->u.block.load && dsc->u.block.user
&& (regmask & 0x8000) != 0;
uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
int do_transfer = condition_true (dsc->u.block.cond, status);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
if (!do_transfer)
return;
/* If the instruction is ldm rN, {...pc}^, I don't think there's anything
sensible we can do here. Complain loudly. */
if (exception_return)
error (_("Cannot single-step exception return"));
/* We don't handle any stores here for now. */
gdb_assert (dsc->u.block.load != 0);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
"%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
dsc->u.block.increment ? "inc" : "dec",
dsc->u.block.before ? "before" : "after");
while (regmask)
{
uint32_t memword;
if (inc)
while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
regno++;
else
while (regno >= 0 && (regmask & (1 << regno)) == 0)
regno--;
xfer_addr += bump_before;
memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
xfer_addr += bump_after;
regmask &= ~(1 << regno);
}
if (dsc->u.block.writeback)
displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
CANNOT_WRITE_PC);
}
/* Clean up an STM which included the PC in the register list. */
static void
cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
int store_executed = condition_true (dsc->u.block.cond, status);
CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
CORE_ADDR stm_insn_addr;
uint32_t pc_val;
long offset;
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* If condition code fails, there's nothing else to do. */
if (!store_executed)
return;
if (dsc->u.block.increment)
{
pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
if (dsc->u.block.before)
pc_stored_at += 4;
}
else
{
pc_stored_at = dsc->u.block.xfer_addr;
if (dsc->u.block.before)
pc_stored_at -= 4;
}
pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
stm_insn_addr = dsc->scratch_base;
offset = pc_val - stm_insn_addr;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
"STM instruction\n", offset);
/* Rewrite the stored PC to the proper value for the non-displaced original
instruction. */
write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
dsc->insn_addr + offset);
}
/* Clean up an LDM which includes the PC in the register list. We clumped all
the registers in the transferred list into a contiguous range r0...rX (to
avoid loading PC directly and losing control of the debugged program), so we
must undo that here. */
static void
cleanup_block_load_pc (struct gdbarch *gdbarch,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
int load_executed = condition_true (dsc->u.block.cond, status);
unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
unsigned int regs_loaded = bitcount (mask);
unsigned int num_to_shuffle = regs_loaded, clobbered;
/* The method employed here will fail if the register list is fully populated
(we need to avoid loading PC directly). */
gdb_assert (num_to_shuffle < 16);
if (!load_executed)
return;
clobbered = (1 << num_to_shuffle) - 1;
while (num_to_shuffle > 0)
{
if ((mask & (1 << write_reg)) != 0)
{
unsigned int read_reg = num_to_shuffle - 1;
if (read_reg != write_reg)
{
ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
"loaded register r%d to r%d\n"), read_reg,
write_reg);
}
else if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
"r%d already in the right place\n"),
write_reg);
clobbered &= ~(1 << write_reg);
num_to_shuffle--;
}
write_reg--;
}
/* Restore any registers we scribbled over. */
for (write_reg = 0; clobbered != 0; write_reg++)
{
if ((clobbered & (1 << write_reg)) != 0)
{
displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
CANNOT_WRITE_PC);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
"clobbered register r%d\n"), write_reg);
clobbered &= ~(1 << write_reg);
}
}
/* Perform register writeback manually. */
if (dsc->u.block.writeback)
{
ULONGEST new_rn_val = dsc->u.block.xfer_addr;
if (dsc->u.block.increment)
new_rn_val += regs_loaded * 4;
else
new_rn_val -= regs_loaded * 4;
displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
CANNOT_WRITE_PC);
}
}
/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
in user-level code (in particular exception return, ldm rn, {...pc}^). */
static int
arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int load = bit (insn, 20);
int user = bit (insn, 22);
int increment = bit (insn, 23);
int before = bit (insn, 24);
int writeback = bit (insn, 21);
int rn = bits (insn, 16, 19);
/* Block transfers which don't mention PC can be run directly
out-of-line. */
if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
if (rn == ARM_PC_REGNUM)
{
warning (_("displaced: Unpredictable LDM or STM with "
"base register r15"));
return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
}
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
"%.8lx\n", (unsigned long) insn);
dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
dsc->u.block.rn = rn;
dsc->u.block.load = load;
dsc->u.block.user = user;
dsc->u.block.increment = increment;
dsc->u.block.before = before;
dsc->u.block.writeback = writeback;
dsc->u.block.cond = bits (insn, 28, 31);
dsc->u.block.regmask = insn & 0xffff;
if (load)
{
if ((insn & 0xffff) == 0xffff)
{
/* LDM with a fully-populated register list. This case is
particularly tricky. Implement for now by fully emulating the
instruction (which might not behave perfectly in all cases, but
these instructions should be rare enough for that not to matter
too much). */
dsc->modinsn[0] = ARM_NOP;
dsc->cleanup = &cleanup_block_load_all;
}
else
{
/* LDM of a list of registers which includes PC. Implement by
rewriting the list of registers to be transferred into a
contiguous chunk r0...rX before doing the transfer, then shuffling
registers into the correct places in the cleanup routine. */
unsigned int regmask = insn & 0xffff;
unsigned int num_in_list = bitcount (regmask), new_regmask;
unsigned int i;
for (i = 0; i < num_in_list; i++)
dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
/* Writeback makes things complicated. We need to avoid clobbering
the base register with one of the registers in our modified
register list, but just using a different register can't work in
all cases, e.g.:
ldm r14!, {r0-r13,pc}
which would need to be rewritten as:
ldm rN!, {r0-r14}
but that can't work, because there's no free register for N.
Solve this by turning off the writeback bit, and emulating
writeback manually in the cleanup routine. */
if (writeback)
insn &= ~(1 << 21);
new_regmask = (1 << num_in_list) - 1;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
"{..., pc}: original reg list %.4x, modified "
"list %.4x\n"), rn, writeback ? "!" : "",
(int) insn & 0xffff, new_regmask);
dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
dsc->cleanup = &cleanup_block_load_pc;
}
}
else
{
/* STM of a list of registers which includes PC. Run the instruction
as-is, but out of line: this will store the wrong value for the PC,
so we must manually fix up the memory in the cleanup routine.
Doing things this way has the advantage that we can auto-detect
the offset of the PC write (which is architecture-dependent) in
the cleanup routine. */
dsc->modinsn[0] = insn;
dsc->cleanup = &cleanup_block_store_pc;
}
return 0;
}
static int
thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int rn = bits (insn1, 0, 3);
int load = bit (insn1, 4);
int writeback = bit (insn1, 5);
/* Block transfers which don't mention PC can be run directly
out-of-line. */
if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
if (rn == ARM_PC_REGNUM)
{
warning (_("displaced: Unpredictable LDM or STM with "
"base register r15"));
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"unpredictable ldm/stm", dsc);
}
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
"%.4x%.4x\n", insn1, insn2);
/* Clear bit 13, since it should be always zero. */
dsc->u.block.regmask = (insn2 & 0xdfff);
dsc->u.block.rn = rn;
dsc->u.block.load = load;
dsc->u.block.user = 0;
dsc->u.block.increment = bit (insn1, 7);
dsc->u.block.before = bit (insn1, 8);
dsc->u.block.writeback = writeback;
dsc->u.block.cond = INST_AL;
dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
if (load)
{
if (dsc->u.block.regmask == 0xffff)
{
/* This branch is impossible to happen. */
gdb_assert (0);
}
else
{
unsigned int regmask = dsc->u.block.regmask;
unsigned int num_in_list = bitcount (regmask), new_regmask;
unsigned int i;
for (i = 0; i < num_in_list; i++)
dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
if (writeback)
insn1 &= ~(1 << 5);
new_regmask = (1 << num_in_list) - 1;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
"{..., pc}: original reg list %.4x, modified "
"list %.4x\n"), rn, writeback ? "!" : "",
(int) dsc->u.block.regmask, new_regmask);
dsc->modinsn[0] = insn1;
dsc->modinsn[1] = (new_regmask & 0xffff);
dsc->numinsns = 2;
dsc->cleanup = &cleanup_block_load_pc;
}
}
else
{
dsc->modinsn[0] = insn1;
dsc->modinsn[1] = insn2;
dsc->numinsns = 2;
dsc->cleanup = &cleanup_block_store_pc;
}
return 0;
}
/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
This is used to avoid a dependency on BFD's bfd_endian enum. */
ULONGEST
arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
int byte_order)
{
return read_memory_unsigned_integer (memaddr, len,
(enum bfd_endian) byte_order);
}
/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
CORE_ADDR
arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
CORE_ADDR val)
{
return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
}
/* Wrapper over syscall_next_pc for use in get_next_pcs. */
static CORE_ADDR
arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
{
return 0;
}
/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
int
arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
{
return arm_is_thumb (self->regcache);
}
/* single_step() is called just before we want to resume the inferior,
if we want to single-step it but there is no hardware or kernel
single-step support. We find the target of the coming instructions
and breakpoint them. */
std::vector<CORE_ADDR>
arm_software_single_step (struct regcache *regcache)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct arm_get_next_pcs next_pcs_ctx;
arm_get_next_pcs_ctor (&next_pcs_ctx,
&arm_get_next_pcs_ops,
gdbarch_byte_order (gdbarch),
gdbarch_byte_order_for_code (gdbarch),
0,
regcache);
std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
for (CORE_ADDR &pc_ref : next_pcs)
pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
return next_pcs;
}
/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
for Linux, where some SVC instructions must be treated specially. */
static void
cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
"%.8lx\n", (unsigned long) resume_addr);
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
}
/* Common copy routine for svc instruciton. */
static int
install_svc (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
/* Preparation: none.
Insn: unmodified svc.
Cleanup: pc <- insn_addr + insn_size. */
/* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
instruction. */
dsc->wrote_to_pc = 1;
/* Allow OS-specific code to override SVC handling. */
if (dsc->u.svc.copy_svc_os)
return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
else
{
dsc->cleanup = &cleanup_svc;
return 0;
}
}
static int
arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs, struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
(unsigned long) insn);
dsc->modinsn[0] = insn;
return install_svc (gdbarch, regs, dsc);
}
static int
thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
struct regcache *regs, struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
insn);
dsc->modinsn[0] = insn;
return install_svc (gdbarch, regs, dsc);
}
/* Copy undefined instructions. */
static int
arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying undefined insn %.8lx\n",
(unsigned long) insn);
dsc->modinsn[0] = insn;
return 0;
}
static int
thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
"%.4x %.4x\n", (unsigned short) insn1,
(unsigned short) insn2);
dsc->modinsn[0] = insn1;
dsc->modinsn[1] = insn2;
dsc->numinsns = 2;
return 0;
}
/* Copy unpredictable instructions. */
static int
arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
struct displaced_step_closure *dsc)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
"%.8lx\n", (unsigned long) insn);
dsc->modinsn[0] = insn;
return 0;
}
/* The decode_* functions are instruction decoding helpers. They mostly follow
the presentation in the ARM ARM. */
static int
arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
unsigned int rn = bits (insn, 16, 19);
if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0)
return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1)
return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
else if ((op1 & 0x60) == 0x20)
return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
else if ((op1 & 0x71) == 0x40)
return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
dsc);
else if ((op1 & 0x77) == 0x41)
return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
else if ((op1 & 0x77) == 0x45)
return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
else if ((op1 & 0x77) == 0x51)
{
if (rn != 0xf)
return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
else
return arm_copy_unpred (gdbarch, insn, dsc);
}
else if ((op1 & 0x77) == 0x55)
return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
else if (op1 == 0x57)
switch (op2)
{
case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
default: return arm_copy_unpred (gdbarch, insn, dsc);
}
else if ((op1 & 0x63) == 0x43)
return arm_copy_unpred (gdbarch, insn, dsc);
else if ((op2 & 0x1) == 0x0)
switch (op1 & ~0x80)
{
case 0x61:
return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
case 0x65:
return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
case 0x71: case 0x75:
/* pld/pldw reg. */
return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
case 0x63: case 0x67: case 0x73: case 0x77:
return arm_copy_unpred (gdbarch, insn, dsc);
default:
return arm_copy_undef (gdbarch, insn, dsc);
}
else
return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
}
static int
arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
if (bit (insn, 27) == 0)
return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
/* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
{
case 0x0: case 0x2:
return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
case 0x1: case 0x3:
return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
case 0x4: case 0x5: case 0x6: case 0x7:
return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
case 0x8:
switch ((insn & 0xe00000) >> 21)
{
case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
/* stc/stc2. */
return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
case 0x2:
return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
default:
return arm_copy_undef (gdbarch, insn, dsc);
}
case 0x9:
{
int rn_f = (bits (insn, 16, 19) == 0xf);
switch ((insn & 0xe00000) >> 21)
{
case 0x1: case 0x3:
/* ldc/ldc2 imm (undefined for rn == pc). */
return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
: arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
case 0x2:
return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
case 0x4: case 0x5: case 0x6: case 0x7:
/* ldc/ldc2 lit (undefined for rn != pc). */
return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
: arm_copy_undef (gdbarch, insn, dsc);
default:
return arm_copy_undef (gdbarch, insn, dsc);
}
}
case 0xa:
return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
case 0xb:
if (bits (insn, 16, 19) == 0xf)
/* ldc/ldc2 lit. */
return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0xc:
if (bit (insn, 4))
return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
else
return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
case 0xd:
if (bit (insn, 4))
return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
else
return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
default:
return arm_copy_undef (gdbarch, insn, dsc);
}
}
/* Decode miscellaneous instructions in dp/misc encoding space. */
static int
arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int op2 = bits (insn, 4, 6);
unsigned int op = bits (insn, 21, 22);
switch (op2)
{
case 0x0:
return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
case 0x1:
if (op == 0x1) /* bx. */
return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
else if (op == 0x3)
return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x2:
if (op == 0x1)
/* Not really supported. */
return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x3:
if (op == 0x1)
return arm_copy_bx_blx_reg (gdbarch, insn,
regs, dsc); /* blx register. */
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x5:
return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
case 0x7:
if (op == 0x1)
return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
else if (op == 0x3)
/* Not really supported. */
return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
default:
return arm_copy_undef (gdbarch, insn, dsc);
}
}
static int
arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
if (bit (insn, 25))
switch (bits (insn, 20, 24))
{
case 0x10:
return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
case 0x14:
return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
case 0x12: case 0x16:
return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
default:
return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
}
else
{
uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
else if (op2 == 0xb || (op2 & 0xd) == 0xd)
/* 2nd arg means "unprivileged". */
return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
dsc);
}
/* Should be unreachable. */
return 1;
}
static int
arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int a = bit (insn, 25), b = bit (insn, 4);
uint32_t op1 = bits (insn, 20, 24);
if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
|| (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
else if ((!a && (op1 & 0x17) == 0x02)
|| (a && (op1 & 0x17) == 0x02 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
|| (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
else if ((!a && (op1 & 0x17) == 0x03)
|| (a && (op1 & 0x17) == 0x03 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
|| (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
else if ((!a && (op1 & 0x17) == 0x06)
|| (a && (op1 & 0x17) == 0x06 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
|| (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
else if ((!a && (op1 & 0x17) == 0x07)
|| (a && (op1 & 0x17) == 0x07 && !b))
return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
/* Should be unreachable. */
return 1;
}
static int
arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
struct displaced_step_closure *dsc)
{
switch (bits (insn, 20, 24))
{
case 0x00: case 0x01: case 0x02: case 0x03:
return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
case 0x04: case 0x05: case 0x06: case 0x07:
return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
case 0x08: case 0x09: case 0x0a: case 0x0b:
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
return arm_copy_unmodified (gdbarch, insn,
"decode/pack/unpack/saturate/reverse", dsc);
case 0x18:
if (bits (insn, 5, 7) == 0) /* op2. */
{
if (bits (insn, 12, 15) == 0xf)
return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
else
return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
}
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x1a: case 0x1b:
if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x1c: case 0x1d:
if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
{
if (bits (insn, 0, 3) == 0xf)
return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
else
return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
}
else
return arm_copy_undef (gdbarch, insn, dsc);
case 0x1e: case 0x1f:
if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
else
return arm_copy_undef (gdbarch, insn, dsc);
}
/* Should be unreachable. */
return 1;
}
static int
arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
if (bit (insn, 25))
return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
else
return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
}
static int
arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int opcode = bits (insn, 20, 24);
switch (opcode)
{
case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
case 0x08: case 0x0a: case 0x0c: case 0x0e:
case 0x12: case 0x16:
return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
case 0x09: case 0x0b: case 0x0d: case 0x0f:
case 0x13: case 0x17:
return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
/* Note: no writeback for these instructions. Bit 25 will always be
zero though (via caller), so the following works OK. */
return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
}
/* Should be unreachable. */
return 1;
}
/* Decode shifted register instructions. */
static int
thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
/* PC is only allowed to be used in instruction MOV. */
unsigned int op = bits (insn1, 5, 8);
unsigned int rn = bits (insn1, 0, 3);
if (op == 0x2 && rn == 0xf) /* MOV */
return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
else
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"dp (shift reg)", dsc);
}
/* Decode extension register load/store. Exactly the same as
arm_decode_ext_reg_ld_st. */
static int
thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int opcode = bits (insn1, 4, 8);
switch (opcode)
{
case 0x04: case 0x05:
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"vfp/neon vmov", dsc);
case 0x08: case 0x0c: /* 01x00 */
case 0x0a: case 0x0e: /* 01x10 */
case 0x12: case 0x16: /* 10x10 */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"vfp/neon vstm/vpush", dsc);
case 0x09: case 0x0d: /* 01x01 */
case 0x0b: case 0x0f: /* 01x11 */
case 0x13: case 0x17: /* 10x11 */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"vfp/neon vldm/vpop", dsc);
case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"vstr", dsc);
case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
}
/* Should be unreachable. */
return 1;
}
static int
arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
struct regcache *regs, struct displaced_step_closure *dsc)
{
unsigned int op1 = bits (insn, 20, 25);
int op = bit (insn, 4);
unsigned int coproc = bits (insn, 8, 11);
if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
&& (coproc & 0xe) != 0xa)
/* stc/stc2. */
return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
&& (coproc & 0xe) != 0xa)
/* ldc/ldc2 imm/lit. */
return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
else if ((op1 & 0x3e) == 0x00)
return arm_copy_undef (gdbarch, insn, dsc);
else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
else if ((op1 & 0x30) == 0x20 && !op)
{
if ((coproc & 0xe) == 0xa)
return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
else
return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
}
else if ((op1 & 0x30) == 0x20 && op)
return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
else if ((op1 & 0x30) == 0x30)
return arm_copy_svc (gdbarch, insn, regs, dsc);
else
return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
}
static int
thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int coproc = bits (insn2, 8, 11);
unsigned int bit_5_8 = bits (insn1, 5, 8);
unsigned int bit_9 = bit (insn1, 9);
unsigned int bit_4 = bit (insn1, 4);
if (bit_9 == 0)
{
if (bit_5_8 == 2)
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
dsc);
else if (bit_5_8 == 0) /* UNDEFINED. */
return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
else
{
/*coproc is 101x. SIMD/VFP, ext registers load/store. */
if ((coproc & 0xe) == 0xa)
return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
dsc);
else /* coproc is not 101x. */
{
if (bit_4 == 0) /* STC/STC2. */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"stc/stc2", dsc);
else /* LDC/LDC2 {literal, immeidate}. */
return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
regs, dsc);
}
}
}
else
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
return 0;
}
static void
install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc, int rd)
{
/* ADR Rd, #imm
Rewrite as:
Preparation: Rd <- PC
Insn: ADD Rd, #imm
Cleanup: Null.
*/
/* Rd <- PC */
int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
}
static int
thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc,
int rd, unsigned int imm)
{
/* Encoding T2: ADDS Rd, #imm */
dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
install_pc_relative (gdbarch, regs, dsc, rd);
return 0;
}
static int
thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rd = bits (insn, 8, 10);
unsigned int imm8 = bits (insn, 0, 7);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying thumb adr r%d, #%d insn %.4x\n",
rd, imm8, insn);
return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
}
static int
thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rd = bits (insn2, 8, 11);
/* Since immediate has the same encoding in ADR ADD and SUB, so we simply
extract raw immediate encoding rather than computing immediate. When
generating ADD or SUB instruction, we can simply perform OR operation to
set immediate into ADD. */
unsigned int imm_3_8 = insn2 & 0x70ff;
unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
rd, imm_i, imm_3_8, insn1, insn2);
if (bit (insn1, 7)) /* Encoding T2 */
{
/* Encoding T3: SUB Rd, Rd, #imm */
dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
dsc->modinsn[1] = ((rd << 8) | imm_3_8);
}
else /* Encoding T3 */
{
/* Encoding T3: ADD Rd, Rd, #imm */
dsc->modinsn[0] = (0xf100 | rd | imm_i);
dsc->modinsn[1] = ((rd << 8) | imm_3_8);
}
dsc->numinsns = 2;
install_pc_relative (gdbarch, regs, dsc, rd);
return 0;
}
static int
thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned int rt = bits (insn1, 8, 10);
unsigned int pc;
int imm8 = (bits (insn1, 0, 7) << 2);
/* LDR Rd, #imm8
Rwrite as:
Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
Insn: LDR R0, [R2, R3];
Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying thumb ldr r%d [pc #%d]\n"
, rt, imm8);
dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
/* The assembler calculates the required value of the offset from the
Align(PC,4) value of this instruction to the label. */
pc = pc & 0xfffffffc;
displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
dsc->rd = rt;
dsc->u.ldst.xfersize = 4;
dsc->u.ldst.rn = 0;
dsc->u.ldst.immed = 0;
dsc->u.ldst.writeback = 0;
dsc->u.ldst.restore_r4 = 0;
dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
dsc->cleanup = &cleanup_load;
return 0;
}
/* Copy Thumb cbnz/cbz insruction. */
static int
thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int non_zero = bit (insn1, 11);
unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
CORE_ADDR from = dsc->insn_addr;
int rn = bits (insn1, 0, 2);
int rn_val = displaced_read_reg (regs, dsc, rn);
dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
/* CBNZ and CBZ do not affect the condition flags. If condition is true,
set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
condition is false, let it be, cleanup_branch will do nothing. */
if (dsc->u.branch.cond)
{
dsc->u.branch.cond = INST_AL;
dsc->u.branch.dest = from + 4 + imm5;
}
else
dsc->u.branch.dest = from + 2;
dsc->u.branch.link = 0;
dsc->u.branch.exchange = 0;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
" insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
rn, rn_val, insn1, dsc->u.branch.dest);
dsc->modinsn[0] = THUMB_NOP;
dsc->cleanup = &cleanup_branch;
return 0;
}
/* Copy Table Branch Byte/Halfword */
static int
thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
ULONGEST rn_val, rm_val;
int is_tbh = bit (insn2, 4);
CORE_ADDR halfwords = 0;
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
if (is_tbh)
{
gdb_byte buf[2];
target_read_memory (rn_val + 2 * rm_val, buf, 2);
halfwords = extract_unsigned_integer (buf, 2, byte_order);
}
else
{
gdb_byte buf[1];
target_read_memory (rn_val + rm_val, buf, 1);
halfwords = extract_unsigned_integer (buf, 1, byte_order);
}
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
" offset 0x%x\n", is_tbh ? "tbh" : "tbb",
(unsigned int) rn_val, (unsigned int) rm_val,
(unsigned int) halfwords);
dsc->u.branch.cond = INST_AL;
dsc->u.branch.link = 0;
dsc->u.branch.exchange = 0;
dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
dsc->cleanup = &cleanup_branch;
return 0;
}
static void
cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
struct displaced_step_closure *dsc)
{
/* PC <- r7 */
int val = displaced_read_reg (regs, dsc, 7);
displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
/* r7 <- r8 */
val = displaced_read_reg (regs, dsc, 8);
displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
/* r8 <- tmp[0] */
displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
}
static int
thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
dsc->u.block.regmask = insn1 & 0x00ff;
/* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
to :
(1) register list is full, that is, r0-r7 are used.
Prepare: tmp[0] <- r8
POP {r0, r1, ...., r6, r7}; remove PC from reglist
MOV r8, r7; Move value of r7 to r8;
POP {r7}; Store PC value into r7.
Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
(2) register list is not full, supposing there are N registers in
register list (except PC, 0 <= N <= 7).
Prepare: for each i, 0 - N, tmp[i] <- ri.
POP {r0, r1, ...., rN};
Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
from tmp[] properly.
*/
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
dsc->u.block.regmask, insn1);
if (dsc->u.block.regmask == 0xff)
{
dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
dsc->modinsn[2] = 0xbc80; /* POP {r7} */
dsc->numinsns = 3;
dsc->cleanup = &cleanup_pop_pc_16bit_all;
}
else
{
unsigned int num_in_list = bitcount (dsc->u.block.regmask);
unsigned int i;
unsigned int new_regmask;
for (i = 0; i < num_in_list + 1; i++)
dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
new_regmask = (1 << (num_in_list + 1)) - 1;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
"{..., pc}: original reg list %.4x,"
" modified list %.4x\n"),
(int) dsc->u.block.regmask, new_regmask);
dsc->u.block.regmask |= 0x8000;
dsc->u.block.writeback = 0;
dsc->u.block.cond = INST_AL;
dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
dsc->cleanup = &cleanup_block_load_pc;
}
return 0;
}
static void
thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
unsigned short op_bit_12_15 = bits (insn1, 12, 15);
unsigned short op_bit_10_11 = bits (insn1, 10, 11);
int err = 0;
/* 16-bit thumb instructions. */
switch (op_bit_12_15)
{
/* Shift (imme), add, subtract, move and compare. */
case 0: case 1: case 2: case 3:
err = thumb_copy_unmodified_16bit (gdbarch, insn1,
"shift/add/sub/mov/cmp",
dsc);
break;
case 4:
switch (op_bit_10_11)
{
case 0: /* Data-processing */
err = thumb_copy_unmodified_16bit (gdbarch, insn1,
"data-processing",
dsc);
break;
case 1: /* Special data instructions and branch and exchange. */
{
unsigned short op = bits (insn1, 7, 9);
if (op == 6 || op == 7) /* BX or BLX */
err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
else
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
dsc);
}
break;
default: /* LDR (literal) */
err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
}
break;
case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
break;
case 10:
if (op_bit_10_11 < 2) /* Generate PC-relative address */
err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
else /* Generate SP-relative address */
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
break;
case 11: /* Misc 16-bit instructions */
{
switch (bits (insn1, 8, 11))
{
case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
break;
case 12: case 13: /* POP */
if (bit (insn1, 8)) /* PC is in register list. */
err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
else
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
break;
case 15: /* If-Then, and hints */
if (bits (insn1, 0, 3))
/* If-Then makes up to four following instructions conditional.
IT instruction itself is not conditional, so handle it as a
common unmodified instruction. */
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
dsc);
else
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
break;
default:
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
}
}
break;
case 12:
if (op_bit_10_11 < 2) /* Store multiple registers */
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
else /* Load multiple registers */
err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
break;
case 13: /* Conditional branch and supervisor call */
if (bits (insn1, 9, 11) != 7) /* conditional branch */
err = thumb_copy_b (gdbarch, insn1, dsc);
else
err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
break;
case 14: /* Unconditional branch */
err = thumb_copy_b (gdbarch, insn1, dsc);
break;
default:
err = 1;
}
if (err)
internal_error (__FILE__, __LINE__,
_("thumb_process_displaced_16bit_insn: Instruction decode error"));
}
static int
decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
uint16_t insn1, uint16_t insn2,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
int rt = bits (insn2, 12, 15);
int rn = bits (insn1, 0, 3);
int op1 = bits (insn1, 7, 8);
switch (bits (insn1, 5, 6))
{
case 0: /* Load byte and memory hints */
if (rt == 0xf) /* PLD/PLI */
{
if (rn == 0xf)
/* PLD literal or Encoding T3 of PLI(immediate, literal). */
return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
else
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"pli/pld", dsc);
}
else
{
if (rn == 0xf) /* LDRB/LDRSB (literal) */
return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
1);
else
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"ldrb{reg, immediate}/ldrbt",
dsc);
}
break;
case 1: /* Load halfword and memory hints. */
if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"pld/unalloc memhint", dsc);
else
{
if (rn == 0xf)
return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
2);
else
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"ldrh/ldrht", dsc);
}
break;
case 2: /* Load word */
{
int insn2_bit_8_11 = bits (insn2, 8, 11);
if (rn == 0xf)
return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
else if (op1 == 0x1) /* Encoding T3 */
return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
0, 1);
else /* op1 == 0x0 */
{
if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
/* LDR (immediate) */
return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
dsc, bit (insn2, 8), 1);
else if (insn2_bit_8_11 == 0xe) /* LDRT */
return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"ldrt", dsc);
else
/* LDR (register) */
return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
dsc, 0, 0);
}
break;
}
default:
return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
break;
}
return 0;
}
static void
thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
uint16_t insn2, struct regcache *regs,
struct displaced_step_closure *dsc)
{
int err = 0;
unsigned short op = bit (insn2, 15);
unsigned int op1 = bits (insn1, 11, 12);
switch (op1)
{
case 1:
{
switch (bits (insn1, 9, 10))
{
case 0:
if (bit (insn1, 6))
{
/* Load/store {dual, execlusive}, table branch. */
if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
&& bits (insn2, 5, 7) == 0)
err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
dsc);
else
/* PC is not allowed to use in load/store {dual, exclusive}
instructions. */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"load/store dual/ex", dsc);
}
else /* load/store multiple */
{
switch (bits (insn1, 7, 8))
{
case 0: case 3: /* SRS, RFE */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"srs/rfe", dsc);
break;
case 1: case 2: /* LDM/STM/PUSH/POP */
err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
break;
}
}
break;
case 1:
/* Data-processing (shift register). */
err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
dsc);
break;
default: /* Coprocessor instructions. */
err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
break;
}
break;
}
case 2: /* op1 = 2 */
if (op) /* Branch and misc control. */
{
if (bit (insn2, 14) /* BLX/BL */
|| bit (insn2, 12) /* Unconditional branch */
|| (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
else
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"misc ctrl", dsc);
}
else
{
if (bit (insn1, 9)) /* Data processing (plain binary imm). */
{
int op = bits (insn1, 4, 8);
int rn = bits (insn1, 0, 3);
if ((op == 0 || op == 0xa) && rn == 0xf)
err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
regs, dsc);
else
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"dp/pb", dsc);
}
else /* Data processing (modified immeidate) */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"dp/mi", dsc);
}
break;
case 3: /* op1 = 3 */
switch (bits (insn1, 9, 10))
{
case 0:
if (bit (insn1, 4))
err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
regs, dsc);
else /* NEON Load/Store and Store single data item */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"neon elt/struct load/store",
dsc);
break;
case 1: /* op1 = 3, bits (9, 10) == 1 */
switch (bits (insn1, 7, 8))
{
case 0: case 1: /* Data processing (register) */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"dp(reg)", dsc);
break;
case 2: /* Multiply and absolute difference */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"mul/mua/diff", dsc);
break;
case 3: /* Long multiply and divide */
err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
"lmul/lmua", dsc);
break;
}
break;
default: /* Coprocessor instructions */
err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
break;
}
break;
default:
err = 1;
}
if (err)
internal_error (__FILE__, __LINE__,
_("thumb_process_displaced_32bit_insn: Instruction decode error"));
}
static void
thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
struct regcache *regs,
struct displaced_step_closure *dsc)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
uint16_t insn1
= read_memory_unsigned_integer (from, 2, byte_order_for_code);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
"at %.8lx\n", insn1, (unsigned long) from);
dsc->is_thumb = 1;
dsc->insn_size = thumb_insn_size (insn1);
if (thumb_insn_size (insn1) == 4)
{
uint16_t insn2
= read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
}
else
thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
}
void
arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
CORE_ADDR to, struct regcache *regs,
struct displaced_step_closure *dsc)
{
int err = 0;
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
uint32_t insn;
/* Most displaced instructions use a 1-instruction scratch space, so set this
here and override below if/when necessary. */
dsc->numinsns = 1;
dsc->insn_addr = from;
dsc->scratch_base = to;
dsc->cleanup = NULL;
dsc->wrote_to_pc = 0;
if (!displaced_in_arm_mode (regs))
return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
dsc->is_thumb = 0;
dsc->insn_size = 4;
insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
"at %.8lx\n", (unsigned long) insn,
(unsigned long) from);
if ((insn & 0xf0000000) == 0xf0000000)
err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
{
case 0x0: case 0x1: case 0x2: case 0x3:
err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
break;
case 0x4: case 0x5: case 0x6:
err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
break;
case 0x7:
err = arm_decode_media (gdbarch, insn, dsc);
break;
case 0x8: case 0x9: case 0xa: case 0xb:
err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
break;
case 0xc: case 0xd: case 0xe: case 0xf:
err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
break;
}
if (err)
internal_error (__FILE__, __LINE__,
_("arm_process_displaced_insn: Instruction decode error"));
}
/* Actually set up the scratch space for a displaced instruction. */
void
arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
CORE_ADDR to, struct displaced_step_closure *dsc)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
unsigned int i, len, offset;
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
int size = dsc->is_thumb? 2 : 4;
const gdb_byte *bkp_insn;
offset = 0;
/* Poke modified instruction(s). */
for (i = 0; i < dsc->numinsns; i++)
{
if (debug_displaced)
{
fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
if (size == 4)
fprintf_unfiltered (gdb_stdlog, "%.8lx",
dsc->modinsn[i]);
else if (size == 2)
fprintf_unfiltered (gdb_stdlog, "%.4x",
(unsigned short)dsc->modinsn[i]);
fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
(unsigned long) to + offset);
}
write_memory_unsigned_integer (to + offset, size,
byte_order_for_code,
dsc->modinsn[i]);
offset += size;
}
/* Choose the correct breakpoint instruction. */
if (dsc->is_thumb)
{
bkp_insn = tdep->thumb_breakpoint;
len = tdep->thumb_breakpoint_size;
}
else
{
bkp_insn = tdep->arm_breakpoint;
len = tdep->arm_breakpoint_size;
}
/* Put breakpoint afterwards. */
write_memory (to + offset, bkp_insn, len);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
paddress (gdbarch, from), paddress (gdbarch, to));
}
/* Entry point for cleaning things up after a displaced instruction has been
single-stepped. */
void
arm_displaced_step_fixup (struct gdbarch *gdbarch,
struct displaced_step_closure *dsc,
CORE_ADDR from, CORE_ADDR to,
struct regcache *regs)
{
if (dsc->cleanup)
dsc->cleanup (gdbarch, regs, dsc);
if (!dsc->wrote_to_pc)
regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
dsc->insn_addr + dsc->insn_size);
}
#include "bfd-in2.h"
#include "libcoff.h"
static int
gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
{
gdb_disassembler *di
= static_cast<gdb_disassembler *>(info->application_data);
struct gdbarch *gdbarch = di->arch ();
if (arm_pc_is_thumb (gdbarch, memaddr))
{
static asymbol *asym;
static combined_entry_type ce;
static struct coff_symbol_struct csym;
static struct bfd fake_bfd;
static bfd_target fake_target;
if (csym.native == NULL)
{
/* Create a fake symbol vector containing a Thumb symbol.
This is solely so that the code in print_insn_little_arm()
and print_insn_big_arm() in opcodes/arm-dis.c will detect
the presence of a Thumb symbol and switch to decoding
Thumb instructions. */
fake_target.flavour = bfd_target_coff_flavour;
fake_bfd.xvec = &fake_target;
ce.u.syment.n_sclass = C_THUMBEXTFUNC;
csym.native = &ce;
csym.symbol.the_bfd = &fake_bfd;
csym.symbol.name = "fake";
asym = (asymbol *) & csym;
}
memaddr = UNMAKE_THUMB_ADDR (memaddr);
info->symbols = &asym;
}
else
info->symbols = NULL;
/* GDB is able to get bfd_mach from the exe_bfd, info->mach is
accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise,
opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger
the assert on the mismatch of info->mach and bfd_get_mach (exec_bfd)
in default_print_insn. */
if (exec_bfd != NULL)
info->flags |= USER_SPECIFIED_MACHINE_TYPE;
return default_print_insn (memaddr, info);
}
/* The following define instruction sequences that will cause ARM
cpu's to take an undefined instruction trap. These are used to
signal a breakpoint to GDB.
The newer ARMv4T cpu's are capable of operating in ARM or Thumb
modes. A different instruction is required for each mode. The ARM
cpu's can also be big or little endian. Thus four different
instructions are needed to support all cases.
Note: ARMv4 defines several new instructions that will take the
undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
not in fact add the new instructions. The new undefined
instructions in ARMv4 are all instructions that had no defined
behaviour in earlier chips. There is no guarantee that they will
raise an exception, but may be treated as NOP's. In practice, it
may only safe to rely on instructions matching:
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
Even this may only true if the condition predicate is true. The
following use a condition predicate of ALWAYS so it is always TRUE.
There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
and NetBSD all use a software interrupt rather than an undefined
instruction to force a trap. This can be handled by by the
abi-specific code during establishment of the gdbarch vector. */
#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
/* Implement the breakpoint_kind_from_pc gdbarch method. */
static int
arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
if (arm_pc_is_thumb (gdbarch, *pcptr))
{
*pcptr = UNMAKE_THUMB_ADDR (*pcptr);
/* If we have a separate 32-bit breakpoint instruction for Thumb-2,
check whether we are replacing a 32-bit instruction. */
if (tdep->thumb2_breakpoint != NULL)
{
gdb_byte buf[2];
if (target_read_memory (*pcptr, buf, 2) == 0)
{
unsigned short inst1;
inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
if (thumb_insn_size (inst1) == 4)
return ARM_BP_KIND_THUMB2;
}
}
return ARM_BP_KIND_THUMB;
}
else
return ARM_BP_KIND_ARM;
}
/* Implement the sw_breakpoint_from_kind gdbarch method. */
static const gdb_byte *
arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
switch (kind)
{
case ARM_BP_KIND_ARM:
*size = tdep->arm_breakpoint_size;
return tdep->arm_breakpoint;
case ARM_BP_KIND_THUMB:
*size = tdep->thumb_breakpoint_size;
return tdep->thumb_breakpoint;
case ARM_BP_KIND_THUMB2:
*size = tdep->thumb2_breakpoint_size;
return tdep->thumb2_breakpoint;
default:
gdb_assert_not_reached ("unexpected arm breakpoint kind");
}
}
/* Implement the breakpoint_kind_from_current_state gdbarch method. */
static int
arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR *pcptr)
{
gdb_byte buf[4];
/* Check the memory pointed by PC is readable. */
if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
{
struct arm_get_next_pcs next_pcs_ctx;
arm_get_next_pcs_ctor (&next_pcs_ctx,
&arm_get_next_pcs_ops,
gdbarch_byte_order (gdbarch),
gdbarch_byte_order_for_code (gdbarch),
0,
regcache);
std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
/* If MEMADDR is the next instruction of current pc, do the
software single step computation, and get the thumb mode by
the destination address. */
for (CORE_ADDR pc : next_pcs)
{
if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
{
if (IS_THUMB_ADDR (pc))
{
*pcptr = MAKE_THUMB_ADDR (*pcptr);
return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
}
else
return ARM_BP_KIND_ARM;
}
}
}
return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
}
/* Extract from an array REGBUF containing the (raw) register state a
function return value of type TYPE, and copy that, in virtual
format, into VALBUF. */
static void
arm_extract_return_value (struct type *type, struct regcache *regs,
gdb_byte *valbuf)
{
struct gdbarch *gdbarch = get_regcache_arch (regs);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
if (TYPE_CODE_FLT == TYPE_CODE (type))
{
switch (gdbarch_tdep (gdbarch)->fp_model)
{
case ARM_FLOAT_FPA:
{
/* The value is in register F0 in internal format. We need to
extract the raw value and then convert it to the desired
internal type. */
bfd_byte tmpbuf[FP_REGISTER_SIZE];
regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
convert_typed_floating (tmpbuf, arm_ext_type (gdbarch),
valbuf, type);
}
break;
case ARM_FLOAT_SOFT_FPA:
case ARM_FLOAT_SOFT_VFP:
/* ARM_FLOAT_VFP can arise if this is a variadic function so
not using the VFP ABI code. */
case ARM_FLOAT_VFP:
regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
if (TYPE_LENGTH (type) > 4)
regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
valbuf + INT_REGISTER_SIZE);
break;
default:
internal_error (__FILE__, __LINE__,
_("arm_extract_return_value: "
"Floating point model not supported"));
break;
}
}
else if (TYPE_CODE (type) == TYPE_CODE_INT
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|| TYPE_CODE (type) == TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (type)
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
{
/* If the type is a plain integer, then the access is
straight-forward. Otherwise we have to play around a bit
more. */
int len = TYPE_LENGTH (type);
int regno = ARM_A1_REGNUM;
ULONGEST tmp;
while (len > 0)
{
/* By using store_unsigned_integer we avoid having to do
anything special for small big-endian values. */
regcache_cooked_read_unsigned (regs, regno++, &tmp);
store_unsigned_integer (valbuf,
(len > INT_REGISTER_SIZE
? INT_REGISTER_SIZE : len),
byte_order, tmp);
len -= INT_REGISTER_SIZE;
valbuf += INT_REGISTER_SIZE;
}
}
else
{
/* For a structure or union the behaviour is as if the value had
been stored to word-aligned memory and then loaded into
registers with 32-bit load instruction(s). */
int len = TYPE_LENGTH (type);
int regno = ARM_A1_REGNUM;
bfd_byte tmpbuf[INT_REGISTER_SIZE];
while (len > 0)
{
regcache_cooked_read (regs, regno++, tmpbuf);
memcpy (valbuf, tmpbuf,
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
len -= INT_REGISTER_SIZE;
valbuf += INT_REGISTER_SIZE;
}
}
}
/* Will a function return an aggregate type in memory or in a
register? Return 0 if an aggregate type can be returned in a
register, 1 if it must be returned in memory. */
static int
arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
{
enum type_code code;
type = check_typedef (type);
/* Simple, non-aggregate types (ie not including vectors and
complex) are always returned in a register (or registers). */
code = TYPE_CODE (type);
if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
&& TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
return 0;
if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
{
/* Vector values should be returned using ARM registers if they
are not over 16 bytes. */
return (TYPE_LENGTH (type) > 16);
}
if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
{
/* The AAPCS says all aggregates not larger than a word are returned
in a register. */
if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
return 0;
return 1;
}
else
{
int nRc;
/* All aggregate types that won't fit in a register must be returned
in memory. */
if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
return 1;
/* In the ARM ABI, "integer" like aggregate types are returned in
registers. For an aggregate type to be integer like, its size
must be less than or equal to INT_REGISTER_SIZE and the
offset of each addressable subfield must be zero. Note that bit
fields are not addressable, and all addressable subfields of
unions always start at offset zero.
This function is based on the behaviour of GCC 2.95.1.
See: gcc/arm.c: arm_return_in_memory() for details.
Note: All versions of GCC before GCC 2.95.2 do not set up the
parameters correctly for a function returning the following
structure: struct { float f;}; This should be returned in memory,
not a register. Richard Earnshaw sent me a patch, but I do not
know of any way to detect if a function like the above has been
compiled with the correct calling convention. */
/* Assume all other aggregate types can be returned in a register.
Run a check for structures, unions and arrays. */
nRc = 0;
if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
{
int i;
/* Need to check if this struct/union is "integer" like. For
this to be true, its size must be less than or equal to
INT_REGISTER_SIZE and the offset of each addressable
subfield must be zero. Note that bit fields are not
addressable, and unions always start at offset zero. If any
of the subfields is a floating point type, the struct/union
cannot be an integer type. */
/* For each field in the object, check:
1) Is it FP? --> yes, nRc = 1;
2) Is it addressable (bitpos != 0) and
not packed (bitsize == 0)?
--> yes, nRc = 1
*/
for (i = 0; i < TYPE_NFIELDS (type); i++)
{
enum type_code field_type_code;
field_type_code
= TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
i)));
/* Is it a floating point type field? */
if (field_type_code == TYPE_CODE_FLT)
{
nRc = 1;
break;
}
/* If bitpos != 0, then we have to care about it. */
if (TYPE_FIELD_BITPOS (type, i) != 0)
{
/* Bitfields are not addressable. If the field bitsize is
zero, then the field is not packed. Hence it cannot be
a bitfield or any other packed type. */
if (TYPE_FIELD_BITSIZE (type, i) == 0)
{
nRc = 1;
break;
}
}
}
}
return nRc;
}
}
/* Write into appropriate registers a function return value of type
TYPE, given in virtual format. */
static void
arm_store_return_value (struct type *type, struct regcache *regs,
const gdb_byte *valbuf)
{
struct gdbarch *gdbarch = get_regcache_arch (regs);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
if (TYPE_CODE (type) == TYPE_CODE_FLT)
{
gdb_byte buf[FP_REGISTER_SIZE];
switch (gdbarch_tdep (gdbarch)->fp_model)
{
case ARM_FLOAT_FPA:
convert_typed_floating (valbuf, type, buf, arm_ext_type (gdbarch));
regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
break;
case ARM_FLOAT_SOFT_FPA:
case ARM_FLOAT_SOFT_VFP:
/* ARM_FLOAT_VFP can arise if this is a variadic function so
not using the VFP ABI code. */
case ARM_FLOAT_VFP:
regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
if (TYPE_LENGTH (type) > 4)
regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
valbuf + INT_REGISTER_SIZE);
break;
default:
internal_error (__FILE__, __LINE__,
_("arm_store_return_value: Floating "
"point model not supported"));
break;
}
}
else if (TYPE_CODE (type) == TYPE_CODE_INT
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|| TYPE_CODE (type) == TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (type)
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
{
if (TYPE_LENGTH (type) <= 4)
{
/* Values of one word or less are zero/sign-extended and
returned in r0. */
bfd_byte tmpbuf[INT_REGISTER_SIZE];
LONGEST val = unpack_long (type, valbuf);
store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
}
else
{
/* Integral values greater than one word are stored in consecutive
registers starting with r0. This will always be a multiple of
the regiser size. */
int len = TYPE_LENGTH (type);
int regno = ARM_A1_REGNUM;
while (len > 0)
{
regcache_cooked_write (regs, regno++, valbuf);
len -= INT_REGISTER_SIZE;
valbuf += INT_REGISTER_SIZE;
}
}
}
else
{
/* For a structure or union the behaviour is as if the value had
been stored to word-aligned memory and then loaded into
registers with 32-bit load instruction(s). */
int len = TYPE_LENGTH (type);
int regno = ARM_A1_REGNUM;
bfd_byte tmpbuf[INT_REGISTER_SIZE];
while (len > 0)
{
memcpy (tmpbuf, valbuf,
len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
regcache_cooked_write (regs, regno++, tmpbuf);
len -= INT_REGISTER_SIZE;
valbuf += INT_REGISTER_SIZE;
}
}
}
/* Handle function return values. */
static enum return_value_convention
arm_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct type *func_type = function ? value_type (function) : NULL;
enum arm_vfp_cprc_base_type vfp_base_type;
int vfp_base_count;
if (arm_vfp_abi_for_function (gdbarch, func_type)
&& arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
{
int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
int i;
for (i = 0; i < vfp_base_count; i++)
{
if (reg_char == 'q')
{
if (writebuf)
arm_neon_quad_write (gdbarch, regcache, i,
writebuf + i * unit_length);
if (readbuf)
arm_neon_quad_read (gdbarch, regcache, i,
readbuf + i * unit_length);
}
else
{
char name_buf[4];
int regnum;
xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
if (writebuf)
regcache_cooked_write (regcache, regnum,
writebuf + i * unit_length);
if (readbuf)
regcache_cooked_read (regcache, regnum,
readbuf + i * unit_length);
}
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
{
if (tdep->struct_return == pcc_struct_return
|| arm_return_in_memory (gdbarch, valtype))
return RETURN_VALUE_STRUCT_CONVENTION;
}
else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
{
if (arm_return_in_memory (gdbarch, valtype))
return RETURN_VALUE_STRUCT_CONVENTION;
}
if (writebuf)
arm_store_return_value (valtype, regcache, writebuf);
if (readbuf)
arm_extract_return_value (valtype, regcache, readbuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
static int
arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR jb_addr;
gdb_byte buf[INT_REGISTER_SIZE];
jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
INT_REGISTER_SIZE))
return 0;
*pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
return 1;
}
/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
return the target PC. Otherwise return 0. */
CORE_ADDR
arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
{
const char *name;
int namelen;
CORE_ADDR start_addr;
/* Find the starting address and name of the function containing the PC. */
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
{
/* Trampoline 'bx reg' doesn't belong to any functions. Do the
check here. */
start_addr = arm_skip_bx_reg (frame, pc);
if (start_addr != 0)
return start_addr;
return 0;
}
/* If PC is in a Thumb call or return stub, return the address of the
target PC, which is in a register. The thunk functions are called
_call_via_xx, where x is the register name. The possible names
are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
functions, named __ARM_call_via_r[0-7]. */
if (startswith (name, "_call_via_")
|| startswith (name, "__ARM_call_via_"))
{
/* Use the name suffix to determine which register contains the
target PC. */
static const char *table[15] =
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "sl", "fp", "ip", "sp", "lr"
};
int regno;
int offset = strlen (name) - 2;
for (regno = 0; regno <= 14; regno++)
if (strcmp (&name[offset], table[regno]) == 0)
return get_frame_register_unsigned (frame, regno);
}
/* GNU ld generates __foo_from_arm or __foo_from_thumb for
non-interworking calls to foo. We could decode the stubs
to find the target but it's easier to use the symbol table. */
namelen = strlen (name);
if (name[0] == '_' && name[1] == '_'
&& ((namelen > 2 + strlen ("_from_thumb")
&& startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
|| (namelen > 2 + strlen ("_from_arm")
&& startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
{
char *target_name;
int target_len = namelen - 2;
struct bound_minimal_symbol minsym;
struct objfile *objfile;
struct obj_section *sec;
if (name[namelen - 1] == 'b')
target_len -= strlen ("_from_thumb");
else
target_len -= strlen ("_from_arm");
target_name = (char *) alloca (target_len + 1);
memcpy (target_name, name + 2, target_len);
target_name[target_len] = '\0';
sec = find_pc_section (pc);
objfile = (sec == NULL) ? NULL : sec->objfile;
minsym = lookup_minimal_symbol (target_name, NULL, objfile);
if (minsym.minsym != NULL)
return BMSYMBOL_VALUE_ADDRESS (minsym);
else
return 0;
}
return 0; /* not a stub */
}
static void
set_arm_command (const char *args, int from_tty)
{
printf_unfiltered (_("\
\"set arm\" must be followed by an apporpriate subcommand.\n"));
help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
}
static void
show_arm_command (const char *args, int from_tty)
{
cmd_show_list (showarmcmdlist, from_tty, "");
}
static void
arm_update_current_architecture (void)
{
struct gdbarch_info info;
/* If the current architecture is not ARM, we have nothing to do. */
if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
return;
/* Update the architecture. */
gdbarch_info_init (&info);
if (!gdbarch_update_p (info))
internal_error (__FILE__, __LINE__, _("could not update architecture"));
}
static void
set_fp_model_sfunc (char *args, int from_tty,
struct cmd_list_element *c)
{
int fp_model;
for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
{
arm_fp_model = (enum arm_float_model) fp_model;
break;
}
if (fp_model == ARM_FLOAT_LAST)
internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
current_fp_model);
arm_update_current_architecture ();
}
static void
show_fp_model (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
if (arm_fp_model == ARM_FLOAT_AUTO
&& gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
fprintf_filtered (file, _("\
The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
fp_model_strings[tdep->fp_model]);
else
fprintf_filtered (file, _("\
The current ARM floating point model is \"%s\".\n"),
fp_model_strings[arm_fp_model]);
}
static void
arm_set_abi (char *args, int from_tty,
struct cmd_list_element *c)
{
int arm_abi;
for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
{
arm_abi_global = (enum arm_abi_kind) arm_abi;
break;
}
if (arm_abi == ARM_ABI_LAST)
internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
arm_abi_string);
arm_update_current_architecture ();
}
static void
arm_show_abi (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
if (arm_abi_global == ARM_ABI_AUTO
&& gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
fprintf_filtered (file, _("\
The current ARM ABI is \"auto\" (currently \"%s\").\n"),
arm_abi_strings[tdep->arm_abi]);
else
fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
arm_abi_string);
}
static void
arm_show_fallback_mode (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("The current execution mode assumed "
"(when symbols are unavailable) is \"%s\".\n"),
arm_fallback_mode_string);
}
static void
arm_show_force_mode (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file,
_("The current execution mode assumed "
"(even when symbols are available) is \"%s\".\n"),
arm_force_mode_string);
}
/* If the user changes the register disassembly style used for info
register and other commands, we have to also switch the style used
in opcodes for disassembly output. This function is run in the "set
arm disassembly" command, and does that. */
static void
set_disassembly_style_sfunc (char *args, int from_tty,
struct cmd_list_element *c)
{
/* Convert the short style name into the long style name (eg, reg-names-*)
before calling the generic set_disassembler_options() function. */
std::string long_name = std::string ("reg-names-") + disassembly_style;
set_disassembler_options (&long_name[0]);
}
static void
show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
struct gdbarch *gdbarch = get_current_arch ();
char *options = get_disassembler_options (gdbarch);
const char *style = "";
int len = 0;
const char *opt;
FOR_EACH_DISASSEMBLER_OPTION (opt, options)
if (CONST_STRNEQ (opt, "reg-names-"))
{
style = &opt[strlen ("reg-names-")];
len = strcspn (style, ",");
}
fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
}
/* Return the ARM register name corresponding to register I. */
static const char *
arm_register_name (struct gdbarch *gdbarch, int i)
{
const int num_regs = gdbarch_num_regs (gdbarch);
if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
&& i >= num_regs && i < num_regs + 32)
{
static const char *const vfp_pseudo_names[] = {
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
};
return vfp_pseudo_names[i - num_regs];
}
if (gdbarch_tdep (gdbarch)->have_neon_pseudos
&& i >= num_regs + 32 && i < num_regs + 32 + 16)
{
static const char *const neon_pseudo_names[] = {
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
};
return neon_pseudo_names[i - num_regs - 32];
}
if (i >= ARRAY_SIZE (arm_register_names))
/* These registers are only supported on targets which supply
an XML description. */
return "";
return arm_register_names[i];
}
/* Test whether the coff symbol specific value corresponds to a Thumb
function. */
static int
coff_sym_is_thumb (int val)
{
return (val == C_THUMBEXT
|| val == C_THUMBSTAT
|| val == C_THUMBEXTFUNC
|| val == C_THUMBSTATFUNC
|| val == C_THUMBLABEL);
}
/* arm_coff_make_msymbol_special()
arm_elf_make_msymbol_special()
These functions test whether the COFF or ELF symbol corresponds to
an address in thumb code, and set a "special" bit in a minimal
symbol to indicate that it does. */
static void
arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
{
elf_symbol_type *elfsym = (elf_symbol_type *) sym;
if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
== ST_BRANCH_TO_THUMB)
MSYMBOL_SET_SPECIAL (msym);
}
static void
arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
{
if (coff_sym_is_thumb (val))
MSYMBOL_SET_SPECIAL (msym);
}
static void
arm_objfile_data_free (struct objfile *objfile, void *arg)
{
struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
unsigned int i;
for (i = 0; i < objfile->obfd->section_count; i++)
VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
}
static void
arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
asymbol *sym)
{
const char *name = bfd_asymbol_name (sym);
struct arm_per_objfile *data;
VEC(arm_mapping_symbol_s) **map_p;
struct arm_mapping_symbol new_map_sym;
gdb_assert (name[0] == '$');
if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
return;
data = (struct arm_per_objfile *) objfile_data (objfile,
arm_objfile_data_key);
if (data == NULL)
{
data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
struct arm_per_objfile);
set_objfile_data (objfile, arm_objfile_data_key, data);
data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
objfile->obfd->section_count,
VEC(arm_mapping_symbol_s) *);
}
map_p = &data->section_maps[bfd_get_section (sym)->index];
new_map_sym.value = sym->value;
new_map_sym.type = name[1];
/* Assume that most mapping symbols appear in order of increasing
value. If they were randomly distributed, it would be faster to
always push here and then sort at first use. */
if (!VEC_empty (arm_mapping_symbol_s, *map_p))
{
struct arm_mapping_symbol *prev_map_sym;
prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
if (prev_map_sym->value >= sym->value)
{
unsigned int idx;
idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
arm_compare_mapping_symbols);
VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
return;
}
}
VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
}
static void
arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
/* If necessary, set the T bit. */
if (arm_apcs_32)
{
ULONGEST val, t_bit;
regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
t_bit = arm_psr_thumb_bit (gdbarch);
if (arm_pc_is_thumb (gdbarch, pc))
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
val | t_bit);
else
regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
val & ~t_bit);
}
}
/* Read the contents of a NEON quad register, by reading from two
double registers. This is used to implement the quad pseudo
registers, and for argument passing in case the quad registers are
missing; vectors are passed in quad registers when using the VFP
ABI, even if a NEON unit is not present. REGNUM is the index of
the quad register, in [0, 15]. */
static enum register_status
arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, gdb_byte *buf)
{
char name_buf[4];
gdb_byte reg_buf[8];
int offset, double_regnum;
enum register_status status;
xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
/* d0 is always the least significant half of q0. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 8;
else
offset = 0;
status = regcache_raw_read (regcache, double_regnum, reg_buf);
if (status != REG_VALID)
return status;
memcpy (buf + offset, reg_buf, 8);
offset = 8 - offset;
status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
if (status != REG_VALID)
return status;
memcpy (buf + offset, reg_buf, 8);
return REG_VALID;
}
static enum register_status
arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, gdb_byte *buf)
{
const int num_regs = gdbarch_num_regs (gdbarch);
char name_buf[4];
gdb_byte reg_buf[8];
int offset, double_regnum;
gdb_assert (regnum >= num_regs);
regnum -= num_regs;
if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
/* Quad-precision register. */
return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
else
{
enum register_status status;
/* Single-precision register. */
gdb_assert (regnum < 32);
/* s0 is always the least significant half of d0. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = (regnum & 1) ? 0 : 4;
else
offset = (regnum & 1) ? 4 : 0;
xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
status = regcache_raw_read (regcache, double_regnum, reg_buf);
if (status == REG_VALID)
memcpy (buf, reg_buf + offset, 4);
return status;
}
}
/* Store the contents of BUF to a NEON quad register, by writing to
two double registers. This is used to implement the quad pseudo
registers, and for argument passing in case the quad registers are
missing; vectors are passed in quad registers when using the VFP
ABI, even if a NEON unit is not present. REGNUM is the index
of the quad register, in [0, 15]. */
static void
arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, const gdb_byte *buf)
{
char name_buf[4];
int offset, double_regnum;
xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
/* d0 is always the least significant half of q0. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = 8;
else
offset = 0;
regcache_raw_write (regcache, double_regnum, buf + offset);
offset = 8 - offset;
regcache_raw_write (regcache, double_regnum + 1, buf + offset);
}
static void
arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, const gdb_byte *buf)
{
const int num_regs = gdbarch_num_regs (gdbarch);
char name_buf[4];
gdb_byte reg_buf[8];
int offset, double_regnum;
gdb_assert (regnum >= num_regs);
regnum -= num_regs;
if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
/* Quad-precision register. */
arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
else
{
/* Single-precision register. */
gdb_assert (regnum < 32);
/* s0 is always the least significant half of d0. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
offset = (regnum & 1) ? 0 : 4;
else
offset = (regnum & 1) ? 4 : 0;
xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
strlen (name_buf));
regcache_raw_read (regcache, double_regnum, reg_buf);
memcpy (reg_buf + offset, buf, 4);
regcache_raw_write (regcache, double_regnum, reg_buf);
}
}
static struct value *
value_of_arm_user_reg (struct frame_info *frame, const void *baton)
{
const int *reg_p = (const int *) baton;
return value_of_register (*reg_p, frame);
}
static enum gdb_osabi
arm_elf_osabi_sniffer (bfd *abfd)
{
unsigned int elfosabi;
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
if (elfosabi == ELFOSABI_ARM)
/* GNU tools use this value. Check note sections in this case,
as well. */
bfd_map_over_sections (abfd,
generic_elf_osabi_sniff_abi_tag_sections,
&osabi);
/* Anything else will be handled by the generic ELF sniffer. */
return osabi;
}
static int
arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
/* FPS register's type is INT, but belongs to float_reggroup. Beside
this, FPS register belongs to save_regroup, restore_reggroup, and
all_reggroup, of course. */
if (regnum == ARM_FPS_REGNUM)
return (group == float_reggroup
|| group == save_reggroup
|| group == restore_reggroup
|| group == all_reggroup);
else
return default_register_reggroup_p (gdbarch, regnum, group);
}
/* For backward-compatibility we allow two 'g' packet lengths with
the remote protocol depending on whether FPA registers are
supplied. M-profile targets do not have FPA registers, but some
stubs already exist in the wild which use a 'g' packet which
supplies them albeit with dummy values. The packet format which
includes FPA registers should be considered deprecated for
M-profile targets. */
static void
arm_register_g_packet_guesses (struct gdbarch *gdbarch)
{
if (gdbarch_tdep (gdbarch)->is_m)
{
/* If we know from the executable this is an M-profile target,
cater for remote targets whose register set layout is the
same as the FPA layout. */
register_remote_g_packet_guess (gdbarch,
/* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
(16 * INT_REGISTER_SIZE)
+ (8 * FP_REGISTER_SIZE)
+ (2 * INT_REGISTER_SIZE),
tdesc_arm_with_m_fpa_layout);
/* The regular M-profile layout. */
register_remote_g_packet_guess (gdbarch,
/* r0-r12,sp,lr,pc; xpsr */
(16 * INT_REGISTER_SIZE)
+ INT_REGISTER_SIZE,
tdesc_arm_with_m);
/* M-profile plus M4F VFP. */
register_remote_g_packet_guess (gdbarch,
/* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
(16 * INT_REGISTER_SIZE)
+ (16 * VFP_REGISTER_SIZE)
+ (2 * INT_REGISTER_SIZE),
tdesc_arm_with_m_vfp_d16);
}
/* Otherwise we don't have a useful guess. */
}
/* Implement the code_of_frame_writable gdbarch method. */
static int
arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
{
if (gdbarch_tdep (gdbarch)->is_m
&& get_frame_type (frame) == SIGTRAMP_FRAME)
{
/* M-profile exception frames return to some magic PCs, where
isn't writable at all. */
return 0;
}
else
return 1;
}
/* Initialize the current architecture based on INFO. If possible,
re-use an architecture from ARCHES, which is a list of
architectures already created during this debugging session.
Called e.g. at program startup, when reading a core file, and when
reading a binary file. */
static struct gdbarch *
arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep;
struct gdbarch *gdbarch;
struct gdbarch_list *best_arch;
enum arm_abi_kind arm_abi = arm_abi_global;
enum arm_float_model fp_model = arm_fp_model;
struct tdesc_arch_data *tdesc_data = NULL;
int i, is_m = 0;
int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
int have_wmmx_registers = 0;
int have_neon = 0;
int have_fpa_registers = 1;
const struct target_desc *tdesc = info.target_desc;
/* If we have an object to base this architecture on, try to determine
its ABI. */
if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
{
int ei_osabi, e_flags;
switch (bfd_get_flavour (info.abfd))
{
case bfd_target_coff_flavour:
/* Assume it's an old APCS-style ABI. */
/* XXX WinCE? */
arm_abi = ARM_ABI_APCS;
break;
case bfd_target_elf_flavour:
ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
e_flags = elf_elfheader (info.abfd)->e_flags;
if (ei_osabi == ELFOSABI_ARM)
{
/* GNU tools used to use this value, but do not for EABI
objects. There's nowhere to tag an EABI version
anyway, so assume APCS. */
arm_abi = ARM_ABI_APCS;
}
else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
{
int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
int attr_arch, attr_profile;
switch (eabi_ver)
{
case EF_ARM_EABI_UNKNOWN:
/* Assume GNU tools. */
arm_abi = ARM_ABI_APCS;
break;
case EF_ARM_EABI_VER4:
case EF_ARM_EABI_VER5:
arm_abi = ARM_ABI_AAPCS;
/* EABI binaries default to VFP float ordering.
They may also contain build attributes that can
be used to identify if the VFP argument-passing
ABI is in use. */
if (fp_model == ARM_FLOAT_AUTO)
{
#ifdef HAVE_ELF
switch (bfd_elf_get_obj_attr_int (info.abfd,
OBJ_ATTR_PROC,
Tag_ABI_VFP_args))
{
case AEABI_VFP_args_base:
/* "The user intended FP parameter/result
passing to conform to AAPCS, base
variant". */
fp_model = ARM_FLOAT_SOFT_VFP;
break;
case AEABI_VFP_args_vfp:
/* "The user intended FP parameter/result
passing to conform to AAPCS, VFP
variant". */
fp_model = ARM_FLOAT_VFP;
break;
case AEABI_VFP_args_toolchain:
/* "The user intended FP parameter/result
passing to conform to tool chain-specific
conventions" - we don't know any such
conventions, so leave it as "auto". */
break;
case AEABI_VFP_args_compatible:
/* "Code is compatible with both the base
and VFP variants; the user did not permit
non-variadic functions to pass FP
parameters/results" - leave it as
"auto". */
break;
default:
/* Attribute value not mentioned in the
November 2012 ABI, so leave it as
"auto". */
break;
}
#else
fp_model = ARM_FLOAT_SOFT_VFP;
#endif
}
break;
default:
/* Leave it as "auto". */
warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
break;
}
#ifdef HAVE_ELF
/* Detect M-profile programs. This only works if the
executable file includes build attributes; GCC does
copy them to the executable, but e.g. RealView does
not. */
attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
Tag_CPU_arch);
attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
OBJ_ATTR_PROC,
Tag_CPU_arch_profile);
/* GCC specifies the profile for v6-M; RealView only
specifies the profile for architectures starting with
V7 (as opposed to architectures with a tag
numerically greater than TAG_CPU_ARCH_V7). */
if (!tdesc_has_registers (tdesc)
&& (attr_arch == TAG_CPU_ARCH_V6_M
|| attr_arch == TAG_CPU_ARCH_V6S_M
|| attr_profile == 'M'))
is_m = 1;
#endif
}
if (fp_model == ARM_FLOAT_AUTO)
{
int e_flags = elf_elfheader (info.abfd)->e_flags;
switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
{
case 0:
/* Leave it as "auto". Strictly speaking this case
means FPA, but almost nobody uses that now, and
many toolchains fail to set the appropriate bits
for the floating-point model they use. */
break;
case EF_ARM_SOFT_FLOAT:
fp_model = ARM_FLOAT_SOFT_FPA;
break;
case EF_ARM_VFP_FLOAT:
fp_model = ARM_FLOAT_VFP;
break;
case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
fp_model = ARM_FLOAT_SOFT_VFP;
break;
}
}
if (e_flags & EF_ARM_BE8)
info.byte_order_for_code = BFD_ENDIAN_LITTLE;
break;
default:
/* Leave it as "auto". */
break;
}
}
/* Check any target description for validity. */
if (tdesc_has_registers (tdesc))
{
/* For most registers we require GDB's default names; but also allow
the numeric names for sp / lr / pc, as a convenience. */
static const char *const arm_sp_names[] = { "r13", "sp", NULL };
static const char *const arm_lr_names[] = { "r14", "lr", NULL };
static const char *const arm_pc_names[] = { "r15", "pc", NULL };
const struct tdesc_feature *feature;
int valid_p;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.arm.core");
if (feature == NULL)
{
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.arm.m-profile");
if (feature == NULL)
return NULL;
else
is_m = 1;
}
tdesc_data = tdesc_data_alloc ();
valid_p = 1;
for (i = 0; i < ARM_SP_REGNUM; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
arm_register_names[i]);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
ARM_SP_REGNUM,
arm_sp_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
ARM_LR_REGNUM,
arm_lr_names);
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
ARM_PC_REGNUM,
arm_pc_names);
if (is_m)
valid_p &= tdesc_numbered_register (feature, tdesc_data,
ARM_PS_REGNUM, "xpsr");
else
valid_p &= tdesc_numbered_register (feature, tdesc_data,
ARM_PS_REGNUM, "cpsr");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.arm.fpa");
if (feature != NULL)
{
valid_p = 1;
for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
arm_register_names[i]);
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
}
else
have_fpa_registers = 0;
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.xscale.iwmmxt");
if (feature != NULL)
{
static const char *const iwmmxt_names[] = {
"wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
"wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
"wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
"wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
};
valid_p = 1;
for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
valid_p
&= tdesc_numbered_register (feature, tdesc_data, i,
iwmmxt_names[i - ARM_WR0_REGNUM]);
/* Check for the control registers, but do not fail if they
are missing. */
for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
tdesc_numbered_register (feature, tdesc_data, i,
iwmmxt_names[i - ARM_WR0_REGNUM]);
for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
valid_p
&= tdesc_numbered_register (feature, tdesc_data, i,
iwmmxt_names[i - ARM_WR0_REGNUM]);
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
have_wmmx_registers = 1;
}
/* If we have a VFP unit, check whether the single precision registers
are present. If not, then we will synthesize them as pseudo
registers. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.arm.vfp");
if (feature != NULL)
{
static const char *const vfp_double_names[] = {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
};
/* Require the double precision registers. There must be either
16 or 32. */
valid_p = 1;
for (i = 0; i < 32; i++)
{
valid_p &= tdesc_numbered_register (feature, tdesc_data,
ARM_D0_REGNUM + i,
vfp_double_names[i]);
if (!valid_p)
break;
}
if (!valid_p && i == 16)
valid_p = 1;
/* Also require FPSCR. */
valid_p &= tdesc_numbered_register (feature, tdesc_data,
ARM_FPSCR_REGNUM, "fpscr");
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
if (tdesc_unnumbered_register (feature, "s0") == 0)
have_vfp_pseudos = 1;
vfp_register_count = i;
/* If we have VFP, also check for NEON. The architecture allows
NEON without VFP (integer vector operations only), but GDB
does not support that. */
feature = tdesc_find_feature (tdesc,
"org.gnu.gdb.arm.neon");
if (feature != NULL)
{
/* NEON requires 32 double-precision registers. */
if (i != 32)
{
tdesc_data_cleanup (tdesc_data);
return NULL;
}
/* If there are quad registers defined by the stub, use
their type; otherwise (normally) provide them with
the default type. */
if (tdesc_unnumbered_register (feature, "q0") == 0)
have_neon_pseudos = 1;
have_neon = 1;
}
}
}
/* If there is already a candidate, use it. */
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
best_arch != NULL;
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
{
if (arm_abi != ARM_ABI_AUTO
&& arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
continue;
if (fp_model != ARM_FLOAT_AUTO
&& fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
continue;
/* There are various other properties in tdep that we do not
need to check here: those derived from a target description,
since gdbarches with a different target description are
automatically disqualified. */
/* Do check is_m, though, since it might come from the binary. */
if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
continue;
/* Found a match. */
break;
}
if (best_arch != NULL)
{
if (tdesc_data != NULL)
tdesc_data_cleanup (tdesc_data);
return best_arch->gdbarch;
}
tdep = XCNEW (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
/* Record additional information about the architecture we are defining.
These are gdbarch discriminators, like the OSABI. */
tdep->arm_abi = arm_abi;
tdep->fp_model = fp_model;
tdep->is_m = is_m;
tdep->have_fpa_registers = have_fpa_registers;
tdep->have_wmmx_registers = have_wmmx_registers;
gdb_assert (vfp_register_count == 0
|| vfp_register_count == 16
|| vfp_register_count == 32);
tdep->vfp_register_count = vfp_register_count;
tdep->have_vfp_pseudos = have_vfp_pseudos;
tdep->have_neon_pseudos = have_neon_pseudos;
tdep->have_neon = have_neon;
arm_register_g_packet_guesses (gdbarch);
/* Breakpoints. */
switch (info.byte_order_for_code)
{
case BFD_ENDIAN_BIG:
tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
break;
case BFD_ENDIAN_LITTLE:
tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
break;
default:
internal_error (__FILE__, __LINE__,
_("arm_gdbarch_init: bad byte order for float format"));
}
/* On ARM targets char defaults to unsigned. */
set_gdbarch_char_signed (gdbarch, 0);
/* wchar_t is unsigned under the AAPCS. */
if (tdep->arm_abi == ARM_ABI_AAPCS)
set_gdbarch_wchar_signed (gdbarch, 0);
else
set_gdbarch_wchar_signed (gdbarch, 1);
/* Note: for displaced stepping, this includes the breakpoint, and one word
of additional scratch space. This setting isn't used for anything beside
displaced stepping at present. */
set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
/* This should be low enough for everything. */
tdep->lowest_pc = 0x20;
tdep->jb_pc = -1; /* Longjump support not enabled by default. */
/* The default, for both APCS and AAPCS, is to return small
structures in registers. */
tdep->struct_return = reg_struct_return;
set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
set_gdbarch_frame_align (gdbarch, arm_frame_align);
if (is_m)
set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
set_gdbarch_write_pc (gdbarch, arm_write_pc);
/* Frame handling. */
set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
frame_base_set_default (gdbarch, &arm_normal_base);
/* Address manipulation. */
set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
/* Advance PC across function entry code. */
set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
/* Detect whether PC is at a point where the stack has been destroyed. */
set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
/* Skip trampolines. */
set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
/* The stack grows downward. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
/* Breakpoint manipulation. */
set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
arm_breakpoint_kind_from_current_state);
/* Information about registers, etc. */
set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
set_gdbarch_register_type (gdbarch, arm_register_type);
set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
/* This "info float" is FPA-specific. Use the generic version if we
do not have FPA. */
if (gdbarch_tdep (gdbarch)->have_fpa_registers)
set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
/* Internal <-> external register number maps. */
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
set_gdbarch_register_name (gdbarch, arm_register_name);
/* Returning results. */
set_gdbarch_return_value (gdbarch, arm_return_value);
/* Disassembly. */
set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
/* Minsymbol frobbing. */
set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
set_gdbarch_coff_make_msymbol_special (gdbarch,
arm_coff_make_msymbol_special);
set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
/* Thumb-2 IT block support. */
set_gdbarch_adjust_breakpoint_address (gdbarch,
arm_adjust_breakpoint_address);
/* Virtual tables. */
set_gdbarch_vbit_in_delta (gdbarch, 1);
/* Hook in the ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
/* Add some default predicates. */
if (is_m)
frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
dwarf2_append_unwinders (gdbarch);
frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
/* Now we have tuned the configuration, set a few final things,
based on what the OS ABI has told us. */
/* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
binaries are always marked. */
if (tdep->arm_abi == ARM_ABI_AUTO)
tdep->arm_abi = ARM_ABI_APCS;
/* Watchpoints are not steppable. */
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
/* We used to default to FPA for generic ARM, but almost nobody
uses that now, and we now provide a way for the user to force
the model. So default to the most useful variant. */
if (tdep->fp_model == ARM_FLOAT_AUTO)
tdep->fp_model = ARM_FLOAT_SOFT_FPA;
if (tdep->jb_pc >= 0)
set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
/* Floating point sizes and format. */
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
{
set_gdbarch_double_format
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
set_gdbarch_long_double_format
(gdbarch, floatformats_ieee_double_littlebyte_bigword);
}
else
{
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
}
if (have_vfp_pseudos)
{
/* NOTE: These are the only pseudo registers used by
the ARM target at the moment. If more are added, a
little more care in numbering will be needed. */
int num_pseudos = 32;
if (have_neon_pseudos)
num_pseudos += 16;
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
}
if (tdesc_data)
{
set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
/* Override tdesc_register_type to adjust the types of VFP
registers for NEON. */
set_gdbarch_register_type (gdbarch, arm_register_type);
}
/* Add standard register aliases. We add aliases even for those
nanes which are used by the current architecture - it's simpler,
and does no harm, since nothing ever lists user registers. */
for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
user_reg_add (gdbarch, arm_register_aliases[i].name,
value_of_arm_user_reg, &arm_register_aliases[i].regnum);
set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
return gdbarch;
}
static void
arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (tdep == NULL)
return;
fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
(unsigned long) tdep->lowest_pc);
}
#if GDB_SELF_TEST
namespace selftests
{
static void arm_record_test (void);
}
#endif
void
_initialize_arm_tdep (void)
{
long length;
const char *setname;
const char *setdesc;
int i, j;
char regdesc[1024], *rdptr = regdesc;
size_t rest = sizeof (regdesc);
gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
arm_objfile_data_key
= register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
/* Add ourselves to objfile event chain. */
observer_attach_new_objfile (arm_exidx_new_objfile);
arm_exidx_data_key
= register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
/* Register an ELF OS ABI sniffer for ARM binaries. */
gdbarch_register_osabi_sniffer (bfd_arch_arm,
bfd_target_elf_flavour,
arm_elf_osabi_sniffer);
/* Initialize the standard target descriptions. */
initialize_tdesc_arm_with_m ();
initialize_tdesc_arm_with_m_fpa_layout ();
initialize_tdesc_arm_with_m_vfp_d16 ();
initialize_tdesc_arm_with_iwmmxt ();
initialize_tdesc_arm_with_vfpv2 ();
initialize_tdesc_arm_with_vfpv3 ();
initialize_tdesc_arm_with_neon ();
/* Add root prefix command for all "set arm"/"show arm" commands. */
add_prefix_cmd ("arm", no_class, set_arm_command,
_("Various ARM-specific commands."),
&setarmcmdlist, "set arm ", 0, &setlist);
add_prefix_cmd ("arm", no_class, show_arm_command,
_("Various ARM-specific commands."),
&showarmcmdlist, "show arm ", 0, &showlist);
arm_disassembler_options = xstrdup ("reg-names-std");
const disasm_options_t *disasm_options = disassembler_options_arm ();
int num_disassembly_styles = 0;
for (i = 0; disasm_options->name[i] != NULL; i++)
if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
num_disassembly_styles++;
/* Initialize the array that will be passed to add_setshow_enum_cmd(). */
valid_disassembly_styles = XNEWVEC (const char *,
num_disassembly_styles + 1);
for (i = j = 0; disasm_options->name[i] != NULL; i++)
if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
{
size_t offset = strlen ("reg-names-");
const char *style = disasm_options->name[i];
valid_disassembly_styles[j++] = &style[offset];
length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
disasm_options->description[i]);
rdptr += length;
rest -= length;
}
/* Mark the end of valid options. */
valid_disassembly_styles[num_disassembly_styles] = NULL;
/* Create the help text. */
std::string helptext = string_printf ("%s%s%s",
_("The valid values are:\n"),
regdesc,
_("The default is \"std\"."));
add_setshow_enum_cmd("disassembler", no_class,
valid_disassembly_styles, &disassembly_style,
_("Set the disassembly style."),
_("Show the disassembly style."),
helptext.c_str (),
set_disassembly_style_sfunc,
show_disassembly_style_sfunc,
&setarmcmdlist, &showarmcmdlist);
add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
_("Set usage of ARM 32-bit mode."),
_("Show usage of ARM 32-bit mode."),
_("When off, a 26-bit PC will be used."),
NULL,
NULL, /* FIXME: i18n: Usage of ARM 32-bit
mode is %s. */
&setarmcmdlist, &showarmcmdlist);
/* Add a command to allow the user to force the FPU model. */
add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model,
_("Set the floating point type."),
_("Show the floating point type."),
_("auto - Determine the FP typefrom the OS-ABI.\n\
softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
fpa - FPA co-processor (GCC compiled).\n\
softvfp - Software FP with pure-endian doubles.\n\
vfp - VFP co-processor."),
set_fp_model_sfunc, show_fp_model,
&setarmcmdlist, &showarmcmdlist);
/* Add a command to allow the user to force the ABI. */
add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
_("Set the ABI."),
_("Show the ABI."),
NULL, arm_set_abi, arm_show_abi,
&setarmcmdlist, &showarmcmdlist);
/* Add two commands to allow the user to force the assumed
execution mode. */
add_setshow_enum_cmd ("fallback-mode", class_support,
arm_mode_strings, &arm_fallback_mode_string,
_("Set the mode assumed when symbols are unavailable."),
_("Show the mode assumed when symbols are unavailable."),
NULL, NULL, arm_show_fallback_mode,
&setarmcmdlist, &showarmcmdlist);
add_setshow_enum_cmd ("force-mode", class_support,
arm_mode_strings, &arm_force_mode_string,
_("Set the mode assumed even when symbols are available."),
_("Show the mode assumed even when symbols are available."),
NULL, NULL, arm_show_force_mode,
&setarmcmdlist, &showarmcmdlist);
/* Debugging flag. */
add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
_("Set ARM debugging."),
_("Show ARM debugging."),
_("When on, arm-specific debugging is enabled."),
NULL,
NULL, /* FIXME: i18n: "ARM debugging is %s. */
&setdebuglist, &showdebuglist);
#if GDB_SELF_TEST
selftests::register_test ("arm-record", selftests::arm_record_test);
#endif
}
/* ARM-reversible process record data structures. */
#define ARM_INSN_SIZE_BYTES 4
#define THUMB_INSN_SIZE_BYTES 2
#define THUMB2_INSN_SIZE_BYTES 4
/* Position of the bit within a 32-bit ARM instruction
that defines whether the instruction is a load or store. */
#define INSN_S_L_BIT_NUM 20
#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
do \
{ \
unsigned int reg_len = LENGTH; \
if (reg_len) \
{ \
REGS = XNEWVEC (uint32_t, reg_len); \
memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
} \
} \
while (0)
#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
do \
{ \
unsigned int mem_len = LENGTH; \
if (mem_len) \
{ \
MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
memcpy(&MEMS->len, &RECORD_BUF[0], \
sizeof(struct arm_mem_r) * LENGTH); \
} \
} \
while (0)
/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
#define INSN_RECORDED(ARM_RECORD) \
(0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
/* ARM memory record structure. */
struct arm_mem_r
{
uint32_t len; /* Record length. */
uint32_t addr; /* Memory address. */
};
/* ARM instruction record contains opcode of current insn
and execution state (before entry to decode_insn()),
contains list of to-be-modified registers and
memory blocks (on return from decode_insn()). */
typedef struct insn_decode_record_t
{
struct gdbarch *gdbarch;
struct regcache *regcache;
CORE_ADDR this_addr; /* Address of the insn being decoded. */
uint32_t arm_insn; /* Should accommodate thumb. */
uint32_t cond; /* Condition code. */
uint32_t opcode; /* Insn opcode. */
uint32_t decode; /* Insn decode bits. */
uint32_t mem_rec_count; /* No of mem records. */
uint32_t reg_rec_count; /* No of reg records. */
uint32_t *arm_regs; /* Registers to be saved for this record. */
struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
} insn_decode_record;
/* Checks ARM SBZ and SBO mandatory fields. */
static int
sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
{
uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
if (!len)
return 1;
if (!sbo)
ones = ~ones;
while (ones)
{
if (!(ones & sbo))
{
return 0;
}
ones = ones >> 1;
}
return 1;
}
enum arm_record_result
{
ARM_RECORD_SUCCESS = 0,
ARM_RECORD_FAILURE = 1
};
typedef enum
{
ARM_RECORD_STRH=1,
ARM_RECORD_STRD
} arm_record_strx_t;
typedef enum
{
ARM_RECORD=1,
THUMB_RECORD,
THUMB2_RECORD
} record_type_t;
static int
arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
uint32_t *record_buf_mem, arm_record_strx_t str_type)
{
struct regcache *reg_cache = arm_insn_r->regcache;
ULONGEST u_regval[2]= {0};
uint32_t reg_src1 = 0, reg_src2 = 0;
uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
{
/* 1) Handle misc store, immediate offset. */
immed_low = bits (arm_insn_r->arm_insn, 0, 3);
immed_high = bits (arm_insn_r->arm_insn, 8, 11);
reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1,
&u_regval[0]);
if (ARM_PC_REGNUM == reg_src1)
{
/* If R15 was used as Rn, hence current PC+8. */
u_regval[0] = u_regval[0] + 8;
}
offset_8 = (immed_high << 4) | immed_low;
/* Calculate target store address. */
if (14 == arm_insn_r->opcode)
{
tgt_mem_addr = u_regval[0] + offset_8;
}
else
{
tgt_mem_addr = u_regval[0] - offset_8;
}
if (ARM_RECORD_STRH == str_type)
{
record_buf_mem[0] = 2;
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
}
else if (ARM_RECORD_STRD == str_type)
{
record_buf_mem[0] = 4;
record_buf_mem[1] = tgt_mem_addr;
record_buf_mem[2] = 4;
record_buf_mem[3] = tgt_mem_addr + 4;
arm_insn_r->mem_rec_count = 2;
}
}
else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
{
/* 2) Store, register offset. */
/* Get Rm. */
reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
/* Get Rn. */
reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
if (15 == reg_src2)
{
/* If R15 was used as Rn, hence current PC+8. */
u_regval[0] = u_regval[0] + 8;
}
/* Calculate target store address, Rn +/- Rm, register offset. */
if (12 == arm_insn_r->opcode)
{
tgt_mem_addr = u_regval[0] + u_regval[1];
}
else
{
tgt_mem_addr = u_regval[1] - u_regval[0];
}
if (ARM_RECORD_STRH == str_type)
{
record_buf_mem[0] = 2;
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
}
else if (ARM_RECORD_STRD == str_type)
{
record_buf_mem[0] = 4;
record_buf_mem[1] = tgt_mem_addr;
record_buf_mem[2] = 4;
record_buf_mem[3] = tgt_mem_addr + 4;
arm_insn_r->mem_rec_count = 2;
}
}
else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
|| 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
{
/* 3) Store, immediate pre-indexed. */
/* 5) Store, immediate post-indexed. */
immed_low = bits (arm_insn_r->arm_insn, 0, 3);
immed_high = bits (arm_insn_r->arm_insn, 8, 11);
offset_8 = (immed_high << 4) | immed_low;
reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
/* Calculate target store address, Rn +/- Rm, register offset. */
if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
{
tgt_mem_addr = u_regval[0] + offset_8;
}
else
{
tgt_mem_addr = u_regval[0] - offset_8;
}
if (ARM_RECORD_STRH == str_type)
{
record_buf_mem[0] = 2;
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
}
else if (ARM_RECORD_STRD == str_type)
{
record_buf_mem[0] = 4;
record_buf_mem[1] = tgt_mem_addr;
record_buf_mem[2] = 4;
record_buf_mem[3] = tgt_mem_addr + 4;
arm_insn_r->mem_rec_count = 2;
}
/* Record Rn also as it changes. */
*(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
arm_insn_r->reg_rec_count = 1;
}
else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
|| 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
{
/* 4) Store, register pre-indexed. */
/* 6) Store, register post -indexed. */
reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
/* Calculate target store address, Rn +/- Rm, register offset. */
if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
{
tgt_mem_addr = u_regval[0] + u_regval[1];
}
else
{
tgt_mem_addr = u_regval[1] - u_regval[0];
}
if (ARM_RECORD_STRH == str_type)
{
record_buf_mem[0] = 2;
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
}
else if (ARM_RECORD_STRD == str_type)
{
record_buf_mem[0] = 4;
record_buf_mem[1] = tgt_mem_addr;
record_buf_mem[2] = 4;
record_buf_mem[3] = tgt_mem_addr + 4;
arm_insn_r->mem_rec_count = 2;
}
/* Record Rn also as it changes. */
*(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
arm_insn_r->reg_rec_count = 1;
}
return 0;
}
/* Handling ARM extension space insns. */
static int
arm_record_extension_space (insn_decode_record *arm_insn_r)
{
uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t reg_src1 = 0;
struct regcache *reg_cache = arm_insn_r->regcache;
ULONGEST u_regval = 0;
gdb_assert (!INSN_RECORDED(arm_insn_r));
/* Handle unconditional insn extension space. */
opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
if (arm_insn_r->cond)
{
/* PLD has no affect on architectural state, it just affects
the caches. */
if (5 == ((opcode1 & 0xE0) >> 5))
{
/* BLX(1) */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
/* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
}
opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
{
ret = -1;
/* Undefined instruction on ARM V5; need to handle if later
versions define it. */
}
opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
/* Handle arithmetic insn extension space. */
if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
&& !INSN_RECORDED(arm_insn_r))
{
/* Handle MLA(S) and MUL(S). */
if (0 <= insn_op1 && 3 >= insn_op1)
{
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else if (4 <= insn_op1 && 15 >= insn_op1)
{
/* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[2] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 3;
}
}
opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
/* Handle control insn extension space. */
if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
&& 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
{
if (!bit (arm_insn_r->arm_insn,25))
{
if (!bits (arm_insn_r->arm_insn, 4, 7))
{
if ((0 == insn_op1) || (2 == insn_op1))
{
/* MRS. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else if (1 == insn_op1)
{
/* CSPR is going to be changed. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else if (3 == insn_op1)
{
/* SPSR is going to be changed. */
/* We need to get SPSR value, which is yet to be done. */
return -1;
}
}
else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
{
if (1 == insn_op1)
{
/* BX. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else if (3 == insn_op1)
{
/* CLZ. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
}
else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
{
/* BLX. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
{
/* QADD, QSUB, QDADD, QDSUB */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 2;
}
else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
{
/* BKPT. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 2;
/* Save SPSR also;how? */
return -1;
}
else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
|| 10 == bits (arm_insn_r->arm_insn, 4, 7)
|| 12 == bits (arm_insn_r->arm_insn, 4, 7)
|| 14 == bits (arm_insn_r->arm_insn, 4, 7)
)
{
if (0 == insn_op1 || 1 == insn_op1)
{
/* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
/* We dont do optimization for SMULW<y> where we
need only Rd. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else if (2 == insn_op1)
{
/* SMLAL<x><y>. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
arm_insn_r->reg_rec_count = 2;
}
else if (3 == insn_op1)
{
/* SMUL<x><y>. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
}
}
else
{
/* MSR : immediate form. */
if (1 == insn_op1)
{
/* CSPR is going to be changed. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else if (3 == insn_op1)
{
/* SPSR is going to be changed. */
/* we need to get SPSR value, which is yet to be done */
return -1;
}
}
}
opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
/* Handle load/store insn extension space. */
if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
&& bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
&& !INSN_RECORDED(arm_insn_r))
{
/* SWP/SWPB. */
if (0 == insn_op1)
{
/* These insn, changes register and memory as well. */
/* SWP or SWPB insn. */
/* Get memory address given by Rn. */
reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
/* SWP insn ?, swaps word. */
if (8 == arm_insn_r->opcode)
{
record_buf_mem[0] = 4;
}
else
{
/* SWPB insn, swaps only byte. */
record_buf_mem[0] = 1;
}
record_buf_mem[1] = u_regval;
arm_insn_r->mem_rec_count = 1;
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
{
/* STRH. */
arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
ARM_RECORD_STRH);
}
else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
{
/* LDRD. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = record_buf[0] + 1;
arm_insn_r->reg_rec_count = 2;
}
else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
{
/* STRD. */
arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
ARM_RECORD_STRD);
}
else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
{
/* LDRH, LDRSB, LDRSH. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
}
opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
&& !INSN_RECORDED(arm_insn_r))
{
ret = -1;
/* Handle coprocessor insn extension space. */
}
/* To be done for ARMv5 and later; as of now we return -1. */
if (-1 == ret)
return ret;
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return ret;
}
/* Handling opcode 000 insns. */
static int
arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
{
struct regcache *reg_cache = arm_insn_r->regcache;
uint32_t record_buf[8], record_buf_mem[8];
ULONGEST u_regval[2] = {0};
uint32_t reg_src1 = 0, reg_dest = 0;
uint32_t opcode1 = 0;
arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
/* Data processing insn /multiply insn. */
if (9 == arm_insn_r->decode
&& ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
|| (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
{
/* Handle multiply instructions. */
/* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
{
/* Handle MLA and MUL. */
record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
{
/* Handle SMLAL, SMULL, UMLAL, UMULL. */
record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[2] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 3;
}
}
else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
&& (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
{
/* Handle misc load insns, as 20th bit (L = 1). */
/* LDR insn has a capability to do branching, if
MOV LR, PC is precceded by LDR insn having Rn as R15
in that case, it emulates branch and link insn, and hence we
need to save CSPR and PC as well. I am not sure this is right
place; as opcode = 010 LDR insn make this happen, if R15 was
used. */
reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
if (15 != reg_dest)
{
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else
{
record_buf[0] = reg_dest;
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
}
else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
&& sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
&& sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
&& 2 == bits (arm_insn_r->arm_insn, 20, 21))
{
/* Handle MSR insn. */
if (9 == arm_insn_r->opcode)
{
/* CSPR is going to be changed. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else
{
/* SPSR is going to be changed. */
/* How to read SPSR value? */
return -1;
}
}
else if (9 == arm_insn_r->decode
&& (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
&& !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* Handling SWP, SWPB. */
/* These insn, changes register and memory as well. */
/* SWP or SWPB insn. */
reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
/* SWP insn ?, swaps word. */
if (8 == arm_insn_r->opcode)
{
record_buf_mem[0] = 4;
}
else
{
/* SWPB insn, swaps only byte. */
record_buf_mem[0] = 1;
}
record_buf_mem[1] = u_regval[0];
arm_insn_r->mem_rec_count = 1;
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else if (3 == arm_insn_r->decode && 0x12 == opcode1
&& sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
{
/* Handle BLX, branch and link/exchange. */
if (9 == arm_insn_r->opcode)
{
/* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
and R14 stores the return address. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
}
else if (7 == arm_insn_r->decode && 0x12 == opcode1)
{
/* Handle enhanced software breakpoint insn, BKPT. */
/* CPSR is changed to be executed in ARM state, disabling normal
interrupts, entering abort mode. */
/* According to high vector configuration PC is set. */
/* user hit breakpoint and type reverse, in
that case, we need to go back with previous CPSR and
Program Counter. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 2;
/* Save SPSR also; how? */
return -1;
}
else if (11 == arm_insn_r->decode
&& !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* Handle enhanced store insns and DSP insns (e.g. LDRD). */
/* Handle str(x) insn */
arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
ARM_RECORD_STRH);
}
else if (1 == arm_insn_r->decode && 0x12 == opcode1
&& sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
{
/* Handle BX, branch and link/exchange. */
/* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else if (1 == arm_insn_r->decode && 0x16 == opcode1
&& sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
&& sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
{
/* Count leading zeros: CLZ. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
&& (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
&& sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
&& sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
)
{
/* Handle MRS insn. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else if (arm_insn_r->opcode <= 15)
{
/* Normal data processing insns. */
/* Out of 11 shifter operands mode, all the insn modifies destination
register, which is specified by 13-16 decode. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else
{
return -1;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
/* Handling opcode 001 insns. */
static int
arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
{
uint32_t record_buf[8], record_buf_mem[8];
arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
&& 2 == bits (arm_insn_r->arm_insn, 20, 21)
&& sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
)
{
/* Handle MSR insn. */
if (9 == arm_insn_r->opcode)
{
/* CSPR is going to be changed. */
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
else
{
/* SPSR is going to be changed. */
}
}
else if (arm_insn_r->opcode <= 15)
{
/* Normal data processing insns. */
/* Out of 11 shifter operands mode, all the insn modifies destination
register, which is specified by 13-16 decode. */
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
else
{
return -1;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
static int
arm_record_media (insn_decode_record *arm_insn_r)
{
uint32_t record_buf[8];
switch (bits (arm_insn_r->arm_insn, 22, 24))
{
case 0:
/* Parallel addition and subtraction, signed */
case 1:
/* Parallel addition and subtraction, unsigned */
case 2:
case 3:
/* Packing, unpacking, saturation and reversal */
{
int rd = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[arm_insn_r->reg_rec_count++] = rd;
}
break;
case 4:
case 5:
/* Signed multiplies */
{
int rd = bits (arm_insn_r->arm_insn, 16, 19);
unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
record_buf[arm_insn_r->reg_rec_count++] = rd;
if (op1 == 0x0)
record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
else if (op1 == 0x4)
record_buf[arm_insn_r->reg_rec_count++]
= bits (arm_insn_r->arm_insn, 12, 15);
}
break;
case 6:
{
if (bit (arm_insn_r->arm_insn, 21)
&& bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
{
/* SBFX */
record_buf[arm_insn_r->reg_rec_count++]
= bits (arm_insn_r->arm_insn, 12, 15);
}
else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
&& bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
{
/* USAD8 and USADA8 */
record_buf[arm_insn_r->reg_rec_count++]
= bits (arm_insn_r->arm_insn, 16, 19);
}
}
break;
case 7:
{
if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
&& bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
{
/* Permanently UNDEFINED */
return -1;
}
else
{
/* BFC, BFI and UBFX */
record_buf[arm_insn_r->reg_rec_count++]
= bits (arm_insn_r->arm_insn, 12, 15);
}
}
break;
default:
return -1;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Handle ARM mode instructions with opcode 010. */
static int
arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
{
struct regcache *reg_cache = arm_insn_r->regcache;
uint32_t reg_base , reg_dest;
uint32_t offset_12, tgt_mem_addr;
uint32_t record_buf[8], record_buf_mem[8];
unsigned char wback;
ULONGEST u_regval;
/* Calculate wback. */
wback = (bit (arm_insn_r->arm_insn, 24) == 0)
|| (bit (arm_insn_r->arm_insn, 21) == 1);
arm_insn_r->reg_rec_count = 0;
reg_base = bits (arm_insn_r->arm_insn, 16, 19);
if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
and LDRT. */
reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
/* The LDR instruction is capable of doing branching. If MOV LR, PC
preceeds a LDR instruction having R15 as reg_base, it
emulates a branch and link instruction, and hence we need to save
CPSR and PC as well. */
if (ARM_PC_REGNUM == reg_dest)
record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
/* If wback is true, also save the base register, which is going to be
written to. */
if (wback)
record_buf[arm_insn_r->reg_rec_count++] = reg_base;
}
else
{
/* STR (immediate), STRB (immediate), STRBT and STRT. */
offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
/* Handle bit U. */
if (bit (arm_insn_r->arm_insn, 23))
{
/* U == 1: Add the offset. */
tgt_mem_addr = (uint32_t) u_regval + offset_12;
}
else
{
/* U == 0: subtract the offset. */
tgt_mem_addr = (uint32_t) u_regval - offset_12;
}
/* Bit 22 tells us whether the store instruction writes 1 byte or 4
bytes. */
if (bit (arm_insn_r->arm_insn, 22))
{
/* STRB and STRBT: 1 byte. */
record_buf_mem[0] = 1;
}
else
{
/* STR and STRT: 4 bytes. */
record_buf_mem[0] = 4;
}
/* Handle bit P. */
if (bit (arm_insn_r->arm_insn, 24))
record_buf_mem[1] = tgt_mem_addr;
else
record_buf_mem[1] = (uint32_t) u_regval;
arm_insn_r->mem_rec_count = 1;
/* If wback is true, also save the base register, which is going to be
written to. */
if (wback)
record_buf[arm_insn_r->reg_rec_count++] = reg_base;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
/* Handling opcode 011 insns. */
static int
arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
{
struct regcache *reg_cache = arm_insn_r->regcache;
uint32_t shift_imm = 0;
uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
uint32_t offset_12 = 0, tgt_mem_addr = 0;
uint32_t record_buf[8], record_buf_mem[8];
LONGEST s_word;
ULONGEST u_regval[2];
if (bit (arm_insn_r->arm_insn, 4))
return arm_record_media (arm_insn_r);
arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
/* Handle enhanced store insns and LDRD DSP insn,
order begins according to addressing modes for store insns
STRH insn. */
/* LDR or STR? */
if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
/* LDR insn has a capability to do branching, if
MOV LR, PC is precedded by LDR insn having Rn as R15
in that case, it emulates branch and link insn, and hence we
need to save CSPR and PC as well. */
if (15 != reg_dest)
{
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
arm_insn_r->reg_rec_count = 1;
}
else
{
record_buf[0] = reg_dest;
record_buf[1] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 2;
}
}
else
{
if (! bits (arm_insn_r->arm_insn, 4, 11))
{
/* Store insn, register offset and register pre-indexed,
register post-indexed. */
/* Get Rm. */
reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
/* Get Rn. */
reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_src1
, &u_regval[0]);
regcache_raw_read_unsigned (reg_cache, reg_src2
, &u_regval[1]);
if (15 == reg_src2)
{
/* If R15 was used as Rn, hence current PC+8. */
/* Pre-indexed mode doesnt reach here ; illegal insn. */
u_regval[0] = u_regval[0] + 8;
}
/* Calculate target store address, Rn +/- Rm, register offset. */
/* U == 1. */
if (bit (arm_insn_r->arm_insn, 23))
{
tgt_mem_addr = u_regval[0] + u_regval[1];
}
else
{
tgt_mem_addr = u_regval[1] - u_regval[0];
}
switch (arm_insn_r->opcode)
{
/* STR. */
case 8:
case 12:
/* STR. */
case 9:
case 13:
/* STRT. */
case 1:
case 5:
/* STR. */
case 0:
case 4:
record_buf_mem[0] = 4;
break;
/* STRB. */
case 10:
case 14:
/* STRB. */
case 11:
case 15:
/* STRBT. */
case 3:
case 7:
/* STRB. */
case 2:
case 6:
record_buf_mem[0] = 1;
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
|| 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
|| 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
|| 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
|| 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
|| 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
)
{
/* Rn is going to be changed in pre-indexed mode and
post-indexed mode as well. */
record_buf[0] = reg_src2;
arm_insn_r->reg_rec_count = 1;
}
}
else
{
/* Store insn, scaled register offset; scaled pre-indexed. */
offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
/* Get Rm. */
reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
/* Get Rn. */
reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
/* Get shift_imm. */
shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
/* Offset_12 used as shift. */
switch (offset_12)
{
case 0:
/* Offset_12 used as index. */
offset_12 = u_regval[0] << shift_imm;
break;
case 1:
offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
break;
case 2:
if (!shift_imm)
{
if (bit (u_regval[0], 31))
{
offset_12 = 0xFFFFFFFF;
}
else
{
offset_12 = 0;
}
}
else
{
/* This is arithmetic shift. */
offset_12 = s_word >> shift_imm;
}
break;
case 3:
if (!shift_imm)
{
regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
&u_regval[1]);
/* Get C flag value and shift it by 31. */
offset_12 = (((bit (u_regval[1], 29)) << 31) \
| (u_regval[0]) >> 1);
}
else
{
offset_12 = (u_regval[0] >> shift_imm) \
| (u_regval[0] <<
(sizeof(uint32_t) - shift_imm));
}
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
/* bit U set. */
if (bit (arm_insn_r->arm_insn, 23))
{
tgt_mem_addr = u_regval[1] + offset_12;
}
else
{
tgt_mem_addr = u_regval[1] - offset_12;
}
switch (arm_insn_r->opcode)
{
/* STR. */
case 8:
case 12:
/* STR. */
case 9:
case 13:
/* STRT. */
case 1:
case 5:
/* STR. */
case 0:
case 4:
record_buf_mem[0] = 4;
break;
/* STRB. */
case 10:
case 14:
/* STRB. */
case 11:
case 15:
/* STRBT. */
case 3:
case 7:
/* STRB. */
case 2:
case 6:
record_buf_mem[0] = 1;
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
record_buf_mem[1] = tgt_mem_addr;
arm_insn_r->mem_rec_count = 1;
if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
|| 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
|| 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
|| 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
|| 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
|| 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
)
{
/* Rn is going to be changed in register scaled pre-indexed
mode,and scaled post indexed mode. */
record_buf[0] = reg_src2;
arm_insn_r->reg_rec_count = 1;
}
}
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
/* Handle ARM mode instructions with opcode 100. */
static int
arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
{
struct regcache *reg_cache = arm_insn_r->regcache;
uint32_t register_count = 0, register_bits;
uint32_t reg_base, addr_mode;
uint32_t record_buf[24], record_buf_mem[48];
uint32_t wback;
ULONGEST u_regval;
/* Fetch the list of registers. */
register_bits = bits (arm_insn_r->arm_insn, 0, 15);
arm_insn_r->reg_rec_count = 0;
/* Fetch the base register that contains the address we are loading data
to. */
reg_base = bits (arm_insn_r->arm_insn, 16, 19);
/* Calculate wback. */
wback = (bit (arm_insn_r->arm_insn, 21) == 1);
if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
/* Find out which registers are going to be loaded from memory. */
while (register_bits)
{
if (register_bits & 0x00000001)
record_buf[arm_insn_r->reg_rec_count++] = register_count;
register_bits = register_bits >> 1;
register_count++;
}
/* If wback is true, also save the base register, which is going to be
written to. */
if (wback)
record_buf[arm_insn_r->reg_rec_count++] = reg_base;
/* Save the CPSR register. */
record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
}
else
{
/* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
/* Find out how many registers are going to be stored to memory. */
while (register_bits)
{
if (register_bits & 0x00000001)
register_count++;
register_bits = register_bits >> 1;
}
switch (addr_mode)
{
/* STMDA (STMED): Decrement after. */
case 0:
record_buf_mem[1] = (uint32_t) u_regval
- register_count * INT_REGISTER_SIZE + 4;
break;
/* STM (STMIA, STMEA): Increment after. */
case 1:
record_buf_mem[1] = (uint32_t) u_regval;
break;
/* STMDB (STMFD): Decrement before. */
case 2:
record_buf_mem[1] = (uint32_t) u_regval
- register_count * INT_REGISTER_SIZE;
break;
/* STMIB (STMFA): Increment before. */
case 3:
record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
arm_insn_r->mem_rec_count = 1;
/* If wback is true, also save the base register, which is going to be
written to. */
if (wback)
record_buf[arm_insn_r->reg_rec_count++] = reg_base;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
/* Handling opcode 101 insns. */
static int
arm_record_b_bl (insn_decode_record *arm_insn_r)
{
uint32_t record_buf[8];
/* Handle B, BL, BLX(1) insns. */
/* B simply branches so we do nothing here. */
/* Note: BLX(1) doesnt fall here but instead it falls into
extension space. */
if (bit (arm_insn_r->arm_insn, 24))
{
record_buf[0] = ARM_LR_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
return 0;
}
static int
arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
{
printf_unfiltered (_("Process record does not support instruction "
"0x%0x at address %s.\n"),arm_insn_r->arm_insn,
paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
return -1;
}
/* Record handler for vector data transfer instructions. */
static int
arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
{
uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
uint32_t record_buf[4];
reg_t = bits (arm_insn_r->arm_insn, 12, 15);
reg_v = bits (arm_insn_r->arm_insn, 21, 23);
bits_a = bits (arm_insn_r->arm_insn, 21, 23);
bit_l = bit (arm_insn_r->arm_insn, 20);
bit_c = bit (arm_insn_r->arm_insn, 8);
/* Handle VMOV instruction. */
if (bit_l && bit_c)
{
record_buf[0] = reg_t;
arm_insn_r->reg_rec_count = 1;
}
else if (bit_l && !bit_c)
{
/* Handle VMOV instruction. */
if (bits_a == 0x00)
{
record_buf[0] = reg_t;
arm_insn_r->reg_rec_count = 1;
}
/* Handle VMRS instruction. */
else if (bits_a == 0x07)
{
if (reg_t == 15)
reg_t = ARM_PS_REGNUM;
record_buf[0] = reg_t;
arm_insn_r->reg_rec_count = 1;
}
}
else if (!bit_l && !bit_c)
{
/* Handle VMOV instruction. */
if (bits_a == 0x00)
{
record_buf[0] = ARM_D0_REGNUM + reg_v;
arm_insn_r->reg_rec_count = 1;
}
/* Handle VMSR instruction. */
else if (bits_a == 0x07)
{
record_buf[0] = ARM_FPSCR_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
}
else if (!bit_l && bit_c)
{
/* Handle VMOV instruction. */
if (!(bits_a & 0x04))
{
record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
+ ARM_D0_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
/* Handle VDUP instruction. */
else
{
if (bit (arm_insn_r->arm_insn, 21))
{
reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
record_buf[0] = reg_v + ARM_D0_REGNUM;
record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
arm_insn_r->reg_rec_count = 2;
}
else
{
reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
record_buf[0] = reg_v + ARM_D0_REGNUM;
arm_insn_r->reg_rec_count = 1;
}
}
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Record handler for extension register load/store instructions. */
static int
arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
{
uint32_t opcode, single_reg;
uint8_t op_vldm_vstm;
uint32_t record_buf[8], record_buf_mem[128];
ULONGEST u_regval = 0;
struct regcache *reg_cache = arm_insn_r->regcache;
opcode = bits (arm_insn_r->arm_insn, 20, 24);
single_reg = !bit (arm_insn_r->arm_insn, 8);
op_vldm_vstm = opcode & 0x1b;
/* Handle VMOV instructions. */
if ((opcode & 0x1e) == 0x04)
{
if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
{
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
arm_insn_r->reg_rec_count = 2;
}
else
{
uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
if (single_reg)
{
/* The first S register number m is REG_M:M (M is bit 5),
the corresponding D register number is REG_M:M / 2, which
is REG_M. */
record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
/* The second S register number is REG_M:M + 1, the
corresponding D register number is (REG_M:M + 1) / 2.
IOW, if bit M is 1, the first and second S registers
are mapped to different D registers, otherwise, they are
in the same D register. */
if (bit_m)
{
record_buf[arm_insn_r->reg_rec_count++]
= ARM_D0_REGNUM + reg_m + 1;
}
}
else
{
record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
arm_insn_r->reg_rec_count = 1;
}
}
}
/* Handle VSTM and VPUSH instructions. */
else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
|| op_vldm_vstm == 0x12)
{
uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
uint32_t memory_index = 0;
reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
imm_off32 = imm_off8 << 2;
memory_count = imm_off8;
if (bit (arm_insn_r->arm_insn, 23))
start_address = u_regval;
else
start_address = u_regval - imm_off32;
if (bit (arm_insn_r->arm_insn, 21))
{
record_buf[0] = reg_rn;
arm_insn_r->reg_rec_count = 1;
}
while (memory_count > 0)
{
if (single_reg)
{
record_buf_mem[memory_index] = 4;
record_buf_mem[memory_index + 1] = start_address;
start_address = start_address + 4;
memory_index = memory_index + 2;
}
else
{
record_buf_mem[memory_index] = 4;
record_buf_mem[memory_index + 1] = start_address;
record_buf_mem[memory_index + 2] = 4;
record_buf_mem[memory_index + 3] = start_address + 4;
start_address = start_address + 8;
memory_index = memory_index + 4;
}
memory_count--;
}
arm_insn_r->mem_rec_count = (memory_index >> 1);
}
/* Handle VLDM instructions. */
else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
|| op_vldm_vstm == 0x13)
{
uint32_t reg_count, reg_vd;
uint32_t reg_index = 0;
uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
reg_count = bits (arm_insn_r->arm_insn, 0, 7);
/* REG_VD is the first D register number. If the instruction
loads memory to S registers (SINGLE_REG is TRUE), the register
number is (REG_VD << 1 | bit D), so the corresponding D
register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
if (!single_reg)
reg_vd = reg_vd | (bit_d << 4);
if (bit (arm_insn_r->arm_insn, 21) /* write back */)
record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
/* If the instruction loads memory to D register, REG_COUNT should
be divided by 2, according to the ARM Architecture Reference
Manual. If the instruction loads memory to S register, divide by
2 as well because two S registers are mapped to D register. */
reg_count = reg_count / 2;
if (single_reg && bit_d)
{
/* Increase the register count if S register list starts from
an odd number (bit d is one). */
reg_count++;
}
while (reg_count > 0)
{
record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
reg_count--;
}
arm_insn_r->reg_rec_count = reg_index;
}
/* VSTR Vector store register. */
else if ((opcode & 0x13) == 0x10)
{
uint32_t start_address, reg_rn, imm_off32, imm_off8;
uint32_t memory_index = 0;
reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
imm_off32 = imm_off8 << 2;
if (bit (arm_insn_r->arm_insn, 23))
start_address = u_regval + imm_off32;
else
start_address = u_regval - imm_off32;
if (single_reg)
{
record_buf_mem[memory_index] = 4;
record_buf_mem[memory_index + 1] = start_address;
arm_insn_r->mem_rec_count = 1;
}
else
{
record_buf_mem[memory_index] = 4;
record_buf_mem[memory_index + 1] = start_address;
record_buf_mem[memory_index + 2] = 4;
record_buf_mem[memory_index + 3] = start_address + 4;
arm_insn_r->mem_rec_count = 2;
}
}
/* VLDR Vector load register. */
else if ((opcode & 0x13) == 0x11)
{
uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
if (!single_reg)
{
reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
record_buf[0] = ARM_D0_REGNUM + reg_vd;
}
else
{
reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
/* Record register D rather than pseudo register S. */
record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
}
arm_insn_r->reg_rec_count = 1;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
return 0;
}
/* Record handler for arm/thumb mode VFP data processing instructions. */
static int
arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
{
uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
uint32_t record_buf[4];
enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
enum insn_types curr_insn_type = INSN_INV;
reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
opc1 = bits (arm_insn_r->arm_insn, 20, 23);
opc2 = bits (arm_insn_r->arm_insn, 16, 19);
opc3 = bits (arm_insn_r->arm_insn, 6, 7);
dp_op_sz = bit (arm_insn_r->arm_insn, 8);
bit_d = bit (arm_insn_r->arm_insn, 22);
opc1 = opc1 & 0x04;
/* Handle VMLA, VMLS. */
if (opc1 == 0x00)
{
if (bit (arm_insn_r->arm_insn, 10))
{
if (bit (arm_insn_r->arm_insn, 6))
curr_insn_type = INSN_T0;
else
curr_insn_type = INSN_T1;
}
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VNMLA, VNMLS, VNMUL. */
else if (opc1 == 0x01)
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
/* Handle VMUL. */
else if (opc1 == 0x02 && !(opc3 & 0x01))
{
if (bit (arm_insn_r->arm_insn, 10))
{
if (bit (arm_insn_r->arm_insn, 6))
curr_insn_type = INSN_T0;
else
curr_insn_type = INSN_T1;
}
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VADD, VSUB. */
else if (opc1 == 0x03)
{
if (!bit (arm_insn_r->arm_insn, 9))
{
if (bit (arm_insn_r->arm_insn, 6))
curr_insn_type = INSN_T0;
else
curr_insn_type = INSN_T1;
}
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VDIV. */
else if (opc1 == 0x0b)
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
/* Handle all other vfp data processing instructions. */
else if (opc1 == 0x0b)
{
/* Handle VMOV. */
if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
{
if (bit (arm_insn_r->arm_insn, 4))
{
if (bit (arm_insn_r->arm_insn, 6))
curr_insn_type = INSN_T0;
else
curr_insn_type = INSN_T1;
}
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VNEG and VABS. */
else if ((opc2 == 0x01 && opc3 == 0x01)
|| (opc2 == 0x00 && opc3 == 0x03))
{
if (!bit (arm_insn_r->arm_insn, 11))
{
if (bit (arm_insn_r->arm_insn, 6))
curr_insn_type = INSN_T0;
else
curr_insn_type = INSN_T1;
}
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VSQRT. */
else if (opc2 == 0x01 && opc3 == 0x03)
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
/* Handle VCVT. */
else if (opc2 == 0x07 && opc3 == 0x03)
{
if (!dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
else if (opc3 & 0x01)
{
/* Handle VCVT. */
if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
{
if (!bit (arm_insn_r->arm_insn, 18))
curr_insn_type = INSN_T2;
else
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
}
/* Handle VCVT. */
else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
{
if (dp_op_sz)
curr_insn_type = INSN_T1;
else
curr_insn_type = INSN_T2;
}
/* Handle VCVTB, VCVTT. */
else if ((opc2 & 0x0e) == 0x02)
curr_insn_type = INSN_T2;
/* Handle VCMP, VCMPE. */
else if ((opc2 & 0x0e) == 0x04)
curr_insn_type = INSN_T3;
}
}
switch (curr_insn_type)
{
case INSN_T0:
reg_vd = reg_vd | (bit_d << 4);
record_buf[0] = reg_vd + ARM_D0_REGNUM;
record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
arm_insn_r->reg_rec_count = 2;
break;
case INSN_T1:
reg_vd = reg_vd | (bit_d << 4);
record_buf[0] = reg_vd + ARM_D0_REGNUM;
arm_insn_r->reg_rec_count = 1;
break;
case INSN_T2:
reg_vd = (reg_vd << 1) | bit_d;
record_buf[0] = reg_vd + ARM_D0_REGNUM;
arm_insn_r->reg_rec_count = 1;
break;
case INSN_T3:
record_buf[0] = ARM_FPSCR_REGNUM;
arm_insn_r->reg_rec_count = 1;
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Handling opcode 110 insns. */
static int
arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
{
uint32_t op1, op1_ebit, coproc;
coproc = bits (arm_insn_r->arm_insn, 8, 11);
op1 = bits (arm_insn_r->arm_insn, 20, 25);
op1_ebit = bit (arm_insn_r->arm_insn, 20);
if ((coproc & 0x0e) == 0x0a)
{
/* Handle extension register ld/st instructions. */
if (!(op1 & 0x20))
return arm_record_exreg_ld_st_insn (arm_insn_r);
/* 64-bit transfers between arm core and extension registers. */
if ((op1 & 0x3e) == 0x04)
return arm_record_exreg_ld_st_insn (arm_insn_r);
}
else
{
/* Handle coprocessor ld/st instructions. */
if (!(op1 & 0x3a))
{
/* Store. */
if (!op1_ebit)
return arm_record_unsupported_insn (arm_insn_r);
else
/* Load. */
return arm_record_unsupported_insn (arm_insn_r);
}
/* Move to coprocessor from two arm core registers. */
if (op1 == 0x4)
return arm_record_unsupported_insn (arm_insn_r);
/* Move to two arm core registers from coprocessor. */
if (op1 == 0x5)
{
uint32_t reg_t[2];
reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
arm_insn_r->reg_rec_count = 2;
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
return 0;
}
}
return arm_record_unsupported_insn (arm_insn_r);
}
/* Handling opcode 111 insns. */
static int
arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
{
uint32_t op, op1_sbit, op1_ebit, coproc;
struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
struct regcache *reg_cache = arm_insn_r->regcache;
arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
coproc = bits (arm_insn_r->arm_insn, 8, 11);
op1_sbit = bit (arm_insn_r->arm_insn, 24);
op1_ebit = bit (arm_insn_r->arm_insn, 20);
op = bit (arm_insn_r->arm_insn, 4);
/* Handle arm SWI/SVC system call instructions. */
if (op1_sbit)
{
if (tdep->arm_syscall_record != NULL)
{
ULONGEST svc_operand, svc_number;
svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
if (svc_operand) /* OABI. */
svc_number = svc_operand - 0x900000;
else /* EABI. */
regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
return tdep->arm_syscall_record (reg_cache, svc_number);
}
else
{
printf_unfiltered (_("no syscall record support\n"));
return -1;
}
}
if ((coproc & 0x0e) == 0x0a)
{
/* VFP data-processing instructions. */
if (!op1_sbit && !op)
return arm_record_vfp_data_proc_insn (arm_insn_r);
/* Advanced SIMD, VFP instructions. */
if (!op1_sbit && op)
return arm_record_vdata_transfer_insn (arm_insn_r);
}
else
{
/* Coprocessor data operations. */
if (!op1_sbit && !op)
return arm_record_unsupported_insn (arm_insn_r);
/* Move to Coprocessor from ARM core register. */
if (!op1_sbit && !op1_ebit && op)
return arm_record_unsupported_insn (arm_insn_r);
/* Move to arm core register from coprocessor. */
if (!op1_sbit && op1_ebit && op)
{
uint32_t record_buf[1];
record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
if (record_buf[0] == 15)
record_buf[0] = ARM_PS_REGNUM;
arm_insn_r->reg_rec_count = 1;
REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
record_buf);
return 0;
}
}
return arm_record_unsupported_insn (arm_insn_r);
}
/* Handling opcode 000 insns. */
static int
thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
{
uint32_t record_buf[8];
uint32_t reg_src1 = 0;
reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = reg_src1;
thumb_insn_r->reg_rec_count = 2;
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Handling opcode 001 insns. */
static int
thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
{
uint32_t record_buf[8];
uint32_t reg_src1 = 0;
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = reg_src1;
thumb_insn_r->reg_rec_count = 2;
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Handling opcode 010 insns. */
static int
thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
{
struct regcache *reg_cache = thumb_insn_r->regcache;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t reg_src1 = 0, reg_src2 = 0;
uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
ULONGEST u_regval[2] = {0};
opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
if (bit (thumb_insn_r->arm_insn, 12))
{
/* Handle load/store register offset. */
uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
if (opB >= 4 && opB <= 7)
{
/* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else if (opB >= 0 && opB <= 2)
{
/* STR(2), STRB(2), STRH(2) . */
reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
if (0 == opB)
record_buf_mem[0] = 4; /* STR (2). */
else if (2 == opB)
record_buf_mem[0] = 1; /* STRB (2). */
else if (1 == opB)
record_buf_mem[0] = 2; /* STRH (2). */
record_buf_mem[1] = u_regval[0] + u_regval[1];
thumb_insn_r->mem_rec_count = 1;
}
}
else if (bit (thumb_insn_r->arm_insn, 11))
{
/* Handle load from literal pool. */
/* LDR(3). */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else if (opcode1)
{
/* Special data instructions and branch and exchange */
opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
if ((3 == opcode2) && (!opcode3))
{
/* Branch with exchange. */
record_buf[0] = ARM_PS_REGNUM;
thumb_insn_r->reg_rec_count = 1;
}
else
{
/* Format 8; special data processing insns. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
| bits (thumb_insn_r->arm_insn, 0, 2));
thumb_insn_r->reg_rec_count = 2;
}
}
else
{
/* Format 5; data processing insns. */
reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
if (bit (thumb_insn_r->arm_insn, 7))
{
reg_src1 = reg_src1 + 8;
}
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = reg_src1;
thumb_insn_r->reg_rec_count = 2;
}
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
record_buf_mem);
return 0;
}
/* Handling opcode 001 insns. */
static int
thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
{
struct regcache *reg_cache = thumb_insn_r->regcache;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t reg_src1 = 0;
uint32_t opcode = 0, immed_5 = 0;
ULONGEST u_regval = 0;
opcode = bits (thumb_insn_r->arm_insn, 11, 12);
if (opcode)
{
/* LDR(1). */
reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else
{
/* STR(1). */
reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
record_buf_mem[0] = 4;
record_buf_mem[1] = u_regval + (immed_5 * 4);
thumb_insn_r->mem_rec_count = 1;
}
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
record_buf_mem);
return 0;
}
/* Handling opcode 100 insns. */
static int
thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
{
struct regcache *reg_cache = thumb_insn_r->regcache;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t reg_src1 = 0;
uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
ULONGEST u_regval = 0;
opcode = bits (thumb_insn_r->arm_insn, 11, 12);
if (3 == opcode)
{
/* LDR(4). */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else if (1 == opcode)
{
/* LDRH(1). */
reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else if (2 == opcode)
{
/* STR(3). */
immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
record_buf_mem[0] = 4;
record_buf_mem[1] = u_regval + (immed_8 * 4);
thumb_insn_r->mem_rec_count = 1;
}
else if (0 == opcode)
{
/* STRH(1). */
immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
record_buf_mem[0] = 2;
record_buf_mem[1] = u_regval + (immed_5 * 2);
thumb_insn_r->mem_rec_count = 1;
}
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
record_buf_mem);
return 0;
}
/* Handling opcode 101 insns. */
static int
thumb_record_misc (insn_decode_record *thumb_insn_r)
{
struct regcache *reg_cache = thumb_insn_r->regcache;
uint32_t opcode = 0;
uint32_t register_bits = 0, register_count = 0;
uint32_t index = 0, start_address = 0;
uint32_t record_buf[24], record_buf_mem[48];
uint32_t reg_src1;
ULONGEST u_regval = 0;
opcode = bits (thumb_insn_r->arm_insn, 11, 12);
if (opcode == 0 || opcode == 1)
{
/* ADR and ADD (SP plus immediate) */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
record_buf[0] = reg_src1;
thumb_insn_r->reg_rec_count = 1;
}
else
{
/* Miscellaneous 16-bit instructions */
uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
switch (opcode2)
{
case 6:
/* SETEND and CPS */
break;
case 0:
/* ADD/SUB (SP plus immediate) */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
record_buf[0] = ARM_SP_REGNUM;
thumb_insn_r->reg_rec_count = 1;
break;
case 1: /* fall through */
case 3: /* fall through */
case 9: /* fall through */
case 11:
/* CBNZ, CBZ */
break;
case 2:
/* SXTH, SXTB, UXTH, UXTB */
record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
thumb_insn_r->reg_rec_count = 1;
break;
case 4: /* fall through */
case 5:
/* PUSH. */
register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
while (register_bits)
{
if (register_bits & 0x00000001)
register_count++;
register_bits = register_bits >> 1;
}
start_address = u_regval - \
(4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
thumb_insn_r->mem_rec_count = register_count;
while (register_count)
{
record_buf_mem[(register_count * 2) - 1] = start_address;
record_buf_mem[(register_count * 2) - 2] = 4;
start_address = start_address + 4;
register_count--;
}
record_buf[0] = ARM_SP_REGNUM;
thumb_insn_r->reg_rec_count = 1;
break;
case 10:
/* REV, REV16, REVSH */
record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
thumb_insn_r->reg_rec_count = 1;
break;
case 12: /* fall through */
case 13:
/* POP. */
register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
while (register_bits)
{
if (register_bits & 0x00000001)
record_buf[index++] = register_count;
register_bits = register_bits >> 1;
register_count++;
}
record_buf[index++] = ARM_PS_REGNUM;
record_buf[index++] = ARM_SP_REGNUM;
thumb_insn_r->reg_rec_count = index;
break;
case 0xe:
/* BKPT insn. */
/* Handle enhanced software breakpoint insn, BKPT. */
/* CPSR is changed to be executed in ARM state, disabling normal
interrupts, entering abort mode. */
/* According to high vector configuration PC is set. */
/* User hits breakpoint and type reverse, in that case, we need to go back with
previous CPSR and Program Counter. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
thumb_insn_r->reg_rec_count = 2;
/* We need to save SPSR value, which is not yet done. */
printf_unfiltered (_("Process record does not support instruction "
"0x%0x at address %s.\n"),
thumb_insn_r->arm_insn,
paddress (thumb_insn_r->gdbarch,
thumb_insn_r->this_addr));
return -1;
case 0xf:
/* If-Then, and hints */
break;
default:
return -1;
};
}
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
record_buf_mem);
return 0;
}
/* Handling opcode 110 insns. */
static int
thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
struct regcache *reg_cache = thumb_insn_r->regcache;
uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
uint32_t reg_src1 = 0;
uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
uint32_t index = 0, start_address = 0;
uint32_t record_buf[24], record_buf_mem[48];
ULONGEST u_regval = 0;
opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
if (1 == opcode2)
{
/* LDMIA. */
register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
/* Get Rn. */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
while (register_bits)
{
if (register_bits & 0x00000001)
record_buf[index++] = register_count;
register_bits = register_bits >> 1;
register_count++;
}
record_buf[index++] = reg_src1;
thumb_insn_r->reg_rec_count = index;
}
else if (0 == opcode2)
{
/* It handles both STMIA. */
register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
/* Get Rn. */
reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
while (register_bits)
{
if (register_bits & 0x00000001)
register_count++;
register_bits = register_bits >> 1;
}
start_address = u_regval;
thumb_insn_r->mem_rec_count = register_count;
while (register_count)
{
record_buf_mem[(register_count * 2) - 1] = start_address;
record_buf_mem[(register_count * 2) - 2] = 4;
start_address = start_address + 4;
register_count--;
}
}
else if (0x1F == opcode1)
{
/* Handle arm syscall insn. */
if (tdep->arm_syscall_record != NULL)
{
regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
ret = tdep->arm_syscall_record (reg_cache, u_regval);
}
else
{
printf_unfiltered (_("no syscall record support\n"));
return -1;
}
}
/* B (1), conditional branch is automatically taken care in process_record,
as PC is saved there. */
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
record_buf_mem);
return ret;
}
/* Handling opcode 111 insns. */
static int
thumb_record_branch (insn_decode_record *thumb_insn_r)
{
uint32_t record_buf[8];
uint32_t bits_h = 0;
bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
if (2 == bits_h || 3 == bits_h)
{
/* BL */
record_buf[0] = ARM_LR_REGNUM;
thumb_insn_r->reg_rec_count = 1;
}
else if (1 == bits_h)
{
/* BLX(1). */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
thumb_insn_r->reg_rec_count = 2;
}
/* B(2) is automatically taken care in process_record, as PC is
saved there. */
REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
return 0;
}
/* Handler for thumb2 load/store multiple instructions. */
static int
thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
{
struct regcache *reg_cache = thumb2_insn_r->regcache;
uint32_t reg_rn, op;
uint32_t register_bits = 0, register_count = 0;
uint32_t index = 0, start_address = 0;
uint32_t record_buf[24], record_buf_mem[48];
ULONGEST u_regval = 0;
reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
op = bits (thumb2_insn_r->arm_insn, 23, 24);
if (0 == op || 3 == op)
{
if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* Handle RFE instruction. */
record_buf[0] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 1;
}
else
{
/* Handle SRS instruction after reading banked SP. */
return arm_record_unsupported_insn (thumb2_insn_r);
}
}
else if (1 == op || 2 == op)
{
if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
/* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
while (register_bits)
{
if (register_bits & 0x00000001)
record_buf[index++] = register_count;
register_count++;
register_bits = register_bits >> 1;
}
record_buf[index++] = reg_rn;
record_buf[index++] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = index;
}
else
{
/* Handle STM/STMIA/STMEA and STMDB/STMFD. */
register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
while (register_bits)
{
if (register_bits & 0x00000001)
register_count++;
register_bits = register_bits >> 1;
}
if (1 == op)
{
/* Start address calculation for LDMDB/LDMEA. */
start_address = u_regval;
}
else if (2 == op)
{
/* Start address calculation for LDMDB/LDMEA. */
start_address = u_regval - register_count * 4;
}
thumb2_insn_r->mem_rec_count = register_count;
while (register_count)
{
record_buf_mem[register_count * 2 - 1] = start_address;
record_buf_mem[register_count * 2 - 2] = 4;
start_address = start_address + 4;
register_count--;
}
record_buf[0] = reg_rn;
record_buf[1] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
}
}
MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
record_buf_mem);
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 load/store (dual/exclusive) and table branch
instructions. */
static int
thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
{
struct regcache *reg_cache = thumb2_insn_r->regcache;
uint32_t reg_rd, reg_rn, offset_imm;
uint32_t reg_dest1, reg_dest2;
uint32_t address, offset_addr;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t op1, op2, op3;
ULONGEST u_regval[2];
op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
{
if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
{
reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
record_buf[0] = reg_dest1;
record_buf[1] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
}
if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
{
reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
record_buf[2] = reg_dest2;
thumb2_insn_r->reg_rec_count = 3;
}
}
else
{
reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
if (0 == op1 && 0 == op2)
{
/* Handle STREX. */
offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
address = u_regval[0] + (offset_imm * 4);
record_buf_mem[0] = 4;
record_buf_mem[1] = address;
thumb2_insn_r->mem_rec_count = 1;
reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
record_buf[0] = reg_rd;
thumb2_insn_r->reg_rec_count = 1;
}
else if (1 == op1 && 0 == op2)
{
reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
record_buf[0] = reg_rd;
thumb2_insn_r->reg_rec_count = 1;
address = u_regval[0];
record_buf_mem[1] = address;
if (4 == op3)
{
/* Handle STREXB. */
record_buf_mem[0] = 1;
thumb2_insn_r->mem_rec_count = 1;
}
else if (5 == op3)
{
/* Handle STREXH. */
record_buf_mem[0] = 2 ;
thumb2_insn_r->mem_rec_count = 1;
}
else if (7 == op3)
{
/* Handle STREXD. */
address = u_regval[0];
record_buf_mem[0] = 4;
record_buf_mem[2] = 4;
record_buf_mem[3] = address + 4;
thumb2_insn_r->mem_rec_count = 2;
}
}
else
{
offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
if (bit (thumb2_insn_r->arm_insn, 24))
{
if (bit (thumb2_insn_r->arm_insn, 23))
offset_addr = u_regval[0] + (offset_imm * 4);
else
offset_addr = u_regval[0] - (offset_imm * 4);
address = offset_addr;
}
else
address = u_regval[0];
record_buf_mem[0] = 4;
record_buf_mem[1] = address;
record_buf_mem[2] = 4;
record_buf_mem[3] = address + 4;
thumb2_insn_r->mem_rec_count = 2;
record_buf[0] = reg_rn;
thumb2_insn_r->reg_rec_count = 1;
}
}
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
record_buf_mem);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 data processing (shift register and modified immediate)
instructions. */
static int
thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
{
uint32_t reg_rd, op;
uint32_t record_buf[8];
op = bits (thumb2_insn_r->arm_insn, 21, 24);
reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
{
record_buf[0] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 1;
}
else
{
record_buf[0] = reg_rd;
record_buf[1] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
}
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Generic handler for thumb2 instructions which effect destination and PS
registers. */
static int
thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
{
uint32_t reg_rd;
uint32_t record_buf[8];
reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
record_buf[0] = reg_rd;
record_buf[1] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 branch and miscellaneous control instructions. */
static int
thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
{
uint32_t op, op1, op2;
uint32_t record_buf[8];
op = bits (thumb2_insn_r->arm_insn, 20, 26);
op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
/* Handle MSR insn. */
if (!(op1 & 0x2) && 0x38 == op)
{
if (!(op2 & 0x3))
{
/* CPSR is going to be changed. */
record_buf[0] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 1;
}
else
{
arm_record_unsupported_insn(thumb2_insn_r);
return -1;
}
}
else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
{
/* BLX. */
record_buf[0] = ARM_PS_REGNUM;
record_buf[1] = ARM_LR_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
}
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 store single data item instructions. */
static int
thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
{
struct regcache *reg_cache = thumb2_insn_r->regcache;
uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
uint32_t address, offset_addr;
uint32_t record_buf[8], record_buf_mem[8];
uint32_t op1, op2;
ULONGEST u_regval[2];
op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
if (bit (thumb2_insn_r->arm_insn, 23))
{
/* T2 encoding. */
offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
offset_addr = u_regval[0] + offset_imm;
address = offset_addr;
}
else
{
/* T3 encoding. */
if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
{
/* Handle STRB (register). */
reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
offset_addr = u_regval[1] << shift_imm;
address = u_regval[0] + offset_addr;
}
else
{
offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
if (bit (thumb2_insn_r->arm_insn, 10))
{
if (bit (thumb2_insn_r->arm_insn, 9))
offset_addr = u_regval[0] + offset_imm;
else
offset_addr = u_regval[0] - offset_imm;
address = offset_addr;
}
else
address = u_regval[0];
}
}
switch (op1)
{
/* Store byte instructions. */
case 4:
case 0:
record_buf_mem[0] = 1;
break;
/* Store half word instructions. */
case 1:
case 5:
record_buf_mem[0] = 2;
break;
/* Store word instructions. */
case 2:
case 6:
record_buf_mem[0] = 4;
break;
default:
gdb_assert_not_reached ("no decoding pattern found");
break;
}
record_buf_mem[1] = address;
thumb2_insn_r->mem_rec_count = 1;
record_buf[0] = reg_rn;
thumb2_insn_r->reg_rec_count = 1;
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
record_buf_mem);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 load memory hints instructions. */
static int
thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
{
uint32_t record_buf[8];
uint32_t reg_rt, reg_rn;
reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
if (ARM_PC_REGNUM != reg_rt)
{
record_buf[0] = reg_rt;
record_buf[1] = reg_rn;
record_buf[2] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 3;
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
return ARM_RECORD_FAILURE;
}
/* Handler for thumb2 load word instructions. */
static int
thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
{
uint32_t record_buf[8];
record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
record_buf[1] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 2;
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Handler for thumb2 long multiply, long multiply accumulate, and
divide instructions. */
static int
thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
{
uint32_t opcode1 = 0, opcode2 = 0;
uint32_t record_buf[8];
opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
{
/* Handle SMULL, UMULL, SMULAL. */
/* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
record_buf[2] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 3;
}
else if (1 == opcode1 || 3 == opcode2)
{
/* Handle SDIV and UDIV. */
record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
record_buf[2] = ARM_PS_REGNUM;
thumb2_insn_r->reg_rec_count = 3;
}
else
return ARM_RECORD_FAILURE;
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
return ARM_RECORD_SUCCESS;
}
/* Record handler for thumb32 coprocessor instructions. */
static int
thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
{
if (bit (thumb2_insn_r->arm_insn, 25))
return arm_record_coproc_data_proc (thumb2_insn_r);
else
return arm_record_asimd_vfp_coproc (thumb2_insn_r);
}
/* Record handler for advance SIMD structure load/store instructions. */
static int
thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
{
struct regcache *reg_cache = thumb2_insn_r->regcache;
uint32_t l_bit, a_bit, b_bits;
uint32_t record_buf[128], record_buf_mem[128];
uint32_t reg_rn, reg_vd, address, f_elem;
uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
uint8_t f_ebytes;
l_bit = bit (thumb2_insn_r->arm_insn, 21);
a_bit = bit (thumb2_insn_r->arm_insn, 23);
b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
f_elem = 8 / f_ebytes;
if (!l_bit)
{
ULONGEST u_regval = 0;
regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
address = u_regval;
if (!a_bit)
{
/* Handle VST1. */
if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
{
if (b_bits == 0x07)
bf_regs = 1;
else if (b_bits == 0x0a)
bf_regs = 2;
else if (b_bits == 0x06)
bf_regs = 3;
else if (b_bits == 0x02)
bf_regs = 4;
else
bf_regs = 0;
for (index_r = 0; index_r < bf_regs; index_r++)
{
for (index_e = 0; index_e < f_elem; index_e++)
{
record_buf_mem[index_m++] = f_ebytes;
record_buf_mem[index_m++] = address;
address = address + f_ebytes;
thumb2_insn_r->mem_rec_count += 1;
}
}
}
/* Handle VST2. */
else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
{
if (b_bits == 0x09 || b_bits == 0x08)
bf_regs = 1;
else if (b_bits == 0x03)
bf_regs = 2;
else
bf_regs = 0;
for (index_r = 0; index_r < bf_regs; index_r++)
for (index_e = 0; index_e < f_elem; index_e++)
{
for (loop_t = 0; loop_t < 2; loop_t++)
{
record_buf_mem[index_m++] = f_ebytes;
record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
thumb2_insn_r->mem_rec_count += 1;
}
address = address + (2 * f_ebytes);
}
}
/* Handle VST3. */
else if ((b_bits & 0x0e) == 0x04)
{
for (index_e = 0; index_e < f_elem; index_e++)
{
for (loop_t = 0; loop_t < 3; loop_t++)
{
record_buf_mem[index_m++] = f_ebytes;
record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
thumb2_insn_r->mem_rec_count += 1;
}
address = address + (3 * f_ebytes);
}
}
/* Handle VST4. */
else if (!(b_bits & 0x0e))
{
for (index_e = 0; index_e < f_elem; index_e++)
{
for (loop_t = 0; loop_t < 4; loop_t++)
{
record_buf_mem[index_m++] = f_ebytes;
record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
thumb2_insn_r->mem_rec_count += 1;
}
address = address + (4 * f_ebytes);
}
}
}
else
{
uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
if (bft_size == 0x00)
f_ebytes = 1;
else if (bft_size == 0x01)
f_ebytes = 2;
else if (bft_size == 0x02)
f_ebytes = 4;
else
f_ebytes = 0;
/* Handle VST1. */
if (!(b_bits & 0x0b) || b_bits == 0x08)
thumb2_insn_r->mem_rec_count = 1;
/* Handle VST2. */
else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
thumb2_insn_r->mem_rec_count = 2;
/* Handle VST3. */
else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
thumb2_insn_r->mem_rec_count = 3;
/* Handle VST4. */
else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
thumb2_insn_r->mem_rec_count = 4;
for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
{
record_buf_mem[index_m] = f_ebytes;
record_buf_mem[index_m] = address + (index_m * f_ebytes);
}
}
}
else
{
if (!a_bit)
{
/* Handle VLD1. */
if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
thumb2_insn_r->reg_rec_count = 1;
/* Handle VLD2. */
else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
thumb2_insn_r->reg_rec_count = 2;
/* Handle VLD3. */
else if ((b_bits & 0x0e) == 0x04)
thumb2_insn_r->reg_rec_count = 3;
/* Handle VLD4. */
else if (!(b_bits & 0x0e))
thumb2_insn_r->reg_rec_count = 4;
}
else
{
/* Handle VLD1. */
if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
thumb2_insn_r->reg_rec_count = 1;
/* Handle VLD2. */
else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
thumb2_insn_r->reg_rec_count = 2;
/* Handle VLD3. */
else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
thumb2_insn_r->reg_rec_count = 3;
/* Handle VLD4. */
else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
thumb2_insn_r->reg_rec_count = 4;
for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
}
}
if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
{
record_buf[index_r] = reg_rn;
thumb2_insn_r->reg_rec_count += 1;
}
REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
record_buf);
MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
record_buf_mem);
return 0;
}
/* Decodes thumb2 instruction type and invokes its record handler. */
static unsigned int
thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
{
uint32_t op, op1, op2;
op = bit (thumb2_insn_r->arm_insn, 15);
op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
if (op1 == 0x01)
{
if (!(op2 & 0x64 ))
{
/* Load/store multiple instruction. */
return thumb2_record_ld_st_multiple (thumb2_insn_r);
}
else if ((op2 & 0x64) == 0x4)
{
/* Load/store (dual/exclusive) and table branch instruction. */
return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
}
else if ((op2 & 0x60) == 0x20)
{
/* Data-processing (shifted register). */
return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
}
else if (op2 & 0x40)
{
/* Co-processor instructions. */
return thumb2_record_coproc_insn (thumb2_insn_r);
}
}
else if (op1 == 0x02)
{
if (op)
{
/* Branches and miscellaneous control instructions. */
return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
}
else if (op2 & 0x20)
{
/* Data-processing (plain binary immediate) instruction. */
return thumb2_record_ps_dest_generic (thumb2_insn_r);
}
else
{
/* Data-processing (modified immediate). */
return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
}
}
else if (op1 == 0x03)
{
if (!(op2 & 0x71 ))
{
/* Store single data item. */
return thumb2_record_str_single_data (thumb2_insn_r);
}
else if (!((op2 & 0x71) ^ 0x10))
{
/* Advanced SIMD or structure load/store instructions. */
return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
}
else if (!((op2 & 0x67) ^ 0x01))
{
/* Load byte, memory hints instruction. */
return thumb2_record_ld_mem_hints (thumb2_insn_r);
}
else if (!((op2 & 0x67) ^ 0x03))
{
/* Load halfword, memory hints instruction. */
return thumb2_record_ld_mem_hints (thumb2_insn_r);
}
else if (!((op2 & 0x67) ^ 0x05))
{
/* Load word instruction. */
return thumb2_record_ld_word (thumb2_insn_r);
}
else if (!((op2 & 0x70) ^ 0x20))
{
/* Data-processing (register) instruction. */
return thumb2_record_ps_dest_generic (thumb2_insn_r);
}
else if (!((op2 & 0x78) ^ 0x30))
{
/* Multiply, multiply accumulate, abs diff instruction. */
return thumb2_record_ps_dest_generic (thumb2_insn_r);
}
else if (!((op2 & 0x78) ^ 0x38))
{
/* Long multiply, long multiply accumulate, and divide. */
return thumb2_record_lmul_lmla_div (thumb2_insn_r);
}
else if (op2 & 0x40)
{
/* Co-processor instructions. */
return thumb2_record_coproc_insn (thumb2_insn_r);
}
}
return -1;
}
namespace {
/* Abstract memory reader. */
class abstract_memory_reader
{
public:
/* Read LEN bytes of target memory at address MEMADDR, placing the
results in GDB's memory at BUF. Return true on success. */
virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
};
/* Instruction reader from real target. */
class instruction_reader : public abstract_memory_reader
{
public:
bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
{
if (target_read_memory (memaddr, buf, len))
return false;
else
return true;
}
};
} // namespace
/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
and positive val on fauilure. */
static int
extract_arm_insn (abstract_memory_reader& reader,
insn_decode_record *insn_record, uint32_t insn_size)
{
gdb_byte buf[insn_size];
memset (&buf[0], 0, insn_size);
if (!reader.read (insn_record->this_addr, buf, insn_size))
return 1;
insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
insn_size,
gdbarch_byte_order_for_code (insn_record->gdbarch));
return 0;
}
typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
/* Decode arm/thumb insn depending on condition cods and opcodes; and
dispatch it. */
static int
decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
record_type_t record_type, uint32_t insn_size)
{
/* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
instruction. */
static const sti_arm_hdl_fp_t arm_handle_insn[8] =
{
arm_record_data_proc_misc_ld_str, /* 000. */
arm_record_data_proc_imm, /* 001. */
arm_record_ld_st_imm_offset, /* 010. */
arm_record_ld_st_reg_offset, /* 011. */
arm_record_ld_st_multiple, /* 100. */
arm_record_b_bl, /* 101. */
arm_record_asimd_vfp_coproc, /* 110. */
arm_record_coproc_data_proc /* 111. */
};
/* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
instruction. */
static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
{ \
thumb_record_shift_add_sub, /* 000. */
thumb_record_add_sub_cmp_mov, /* 001. */
thumb_record_ld_st_reg_offset, /* 010. */
thumb_record_ld_st_imm_offset, /* 011. */
thumb_record_ld_st_stack, /* 100. */
thumb_record_misc, /* 101. */
thumb_record_ldm_stm_swi, /* 110. */
thumb_record_branch /* 111. */
};
uint32_t ret = 0; /* return value: negative:failure 0:success. */
uint32_t insn_id = 0;
if (extract_arm_insn (reader, arm_record, insn_size))
{
if (record_debug)
{
printf_unfiltered (_("Process record: error reading memory at "
"addr %s len = %d.\n"),
paddress (arm_record->gdbarch,
arm_record->this_addr), insn_size);
}
return -1;
}
else if (ARM_RECORD == record_type)
{
arm_record->cond = bits (arm_record->arm_insn, 28, 31);
insn_id = bits (arm_record->arm_insn, 25, 27);
if (arm_record->cond == 0xf)
ret = arm_record_extension_space (arm_record);
else
{
/* If this insn has fallen into extension space
then we need not decode it anymore. */
ret = arm_handle_insn[insn_id] (arm_record);
}
if (ret != ARM_RECORD_SUCCESS)
{
arm_record_unsupported_insn (arm_record);
ret = -1;
}
}
else if (THUMB_RECORD == record_type)
{
/* As thumb does not have condition codes, we set negative. */
arm_record->cond = -1;
insn_id = bits (arm_record->arm_insn, 13, 15);
ret = thumb_handle_insn[insn_id] (arm_record);
if (ret != ARM_RECORD_SUCCESS)
{
arm_record_unsupported_insn (arm_record);
ret = -1;
}
}
else if (THUMB2_RECORD == record_type)
{
/* As thumb does not have condition codes, we set negative. */
arm_record->cond = -1;
/* Swap first half of 32bit thumb instruction with second half. */
arm_record->arm_insn
= (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
ret = thumb2_record_decode_insn_handler (arm_record);
if (ret != ARM_RECORD_SUCCESS)
{
arm_record_unsupported_insn (arm_record);
ret = -1;
}
}
else
{
/* Throw assertion. */
gdb_assert_not_reached ("not a valid instruction, could not decode");
}
return ret;
}
#if GDB_SELF_TEST
namespace selftests {
/* Provide both 16-bit and 32-bit thumb instructions. */
class instruction_reader_thumb : public abstract_memory_reader
{
public:
template<size_t SIZE>
instruction_reader_thumb (enum bfd_endian endian,
const uint16_t (&insns)[SIZE])
: m_endian (endian), m_insns (insns), m_insns_size (SIZE)
{}
bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
{
SELF_CHECK (len == 4 || len == 2);
SELF_CHECK (memaddr % 2 == 0);
SELF_CHECK ((memaddr / 2) < m_insns_size);
store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
if (len == 4)
{
store_unsigned_integer (&buf[2], 2, m_endian,
m_insns[memaddr / 2 + 1]);
}
return true;
}
private:
enum bfd_endian m_endian;
const uint16_t *m_insns;
size_t m_insns_size;
};
static void
arm_record_test (void)
{
struct gdbarch_info info;
gdbarch_info_init (&info);
info.bfd_arch_info = bfd_scan_arch ("arm");
struct gdbarch *gdbarch = gdbarch_find_by_info (info);
SELF_CHECK (gdbarch != NULL);
/* 16-bit Thumb instructions. */
{
insn_decode_record arm_record;
memset (&arm_record, 0, sizeof (insn_decode_record));
arm_record.gdbarch = gdbarch;
static const uint16_t insns[] = {
/* db b2 uxtb r3, r3 */
0xb2db,
/* cd 58 ldr r5, [r1, r3] */
0x58cd,
};
enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
instruction_reader_thumb reader (endian, insns);
int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
THUMB_INSN_SIZE_BYTES);
SELF_CHECK (ret == 0);
SELF_CHECK (arm_record.mem_rec_count == 0);
SELF_CHECK (arm_record.reg_rec_count == 1);
SELF_CHECK (arm_record.arm_regs[0] == 3);
arm_record.this_addr += 2;
ret = decode_insn (reader, &arm_record, THUMB_RECORD,
THUMB_INSN_SIZE_BYTES);
SELF_CHECK (ret == 0);
SELF_CHECK (arm_record.mem_rec_count == 0);
SELF_CHECK (arm_record.reg_rec_count == 1);
SELF_CHECK (arm_record.arm_regs[0] == 5);
}
/* 32-bit Thumb-2 instructions. */
{
insn_decode_record arm_record;
memset (&arm_record, 0, sizeof (insn_decode_record));
arm_record.gdbarch = gdbarch;
static const uint16_t insns[] = {
/* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
0xee1d, 0x7f70,
};
enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
instruction_reader_thumb reader (endian, insns);
int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
THUMB2_INSN_SIZE_BYTES);
SELF_CHECK (ret == 0);
SELF_CHECK (arm_record.mem_rec_count == 0);
SELF_CHECK (arm_record.reg_rec_count == 1);
SELF_CHECK (arm_record.arm_regs[0] == 7);
}
}
} // namespace selftests
#endif /* GDB_SELF_TEST */
/* Cleans up local record registers and memory allocations. */
static void
deallocate_reg_mem (insn_decode_record *record)
{
xfree (record->arm_regs);
xfree (record->arm_mems);
}
/* Parse the current instruction and record the values of the registers and
memory that will be changed in current instruction to record_arch_list".
Return -1 if something is wrong. */
int
arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR insn_addr)
{
uint32_t no_of_rec = 0;
uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
ULONGEST t_bit = 0, insn_id = 0;
ULONGEST u_regval = 0;
insn_decode_record arm_record;
memset (&arm_record, 0, sizeof (insn_decode_record));
arm_record.regcache = regcache;
arm_record.this_addr = insn_addr;
arm_record.gdbarch = gdbarch;
if (record_debug > 1)
{
fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
"addr = %s\n",
paddress (gdbarch, arm_record.this_addr));
}
instruction_reader reader;
if (extract_arm_insn (reader, &arm_record, 2))
{
if (record_debug)
{
printf_unfiltered (_("Process record: error reading memory at "
"addr %s len = %d.\n"),
paddress (arm_record.gdbarch,
arm_record.this_addr), 2);
}
return -1;
}
/* Check the insn, whether it is thumb or arm one. */
t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
if (!(u_regval & t_bit))
{
/* We are decoding arm insn. */
ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
}
else
{
insn_id = bits (arm_record.arm_insn, 11, 15);
/* is it thumb2 insn? */
if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
{
ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
THUMB2_INSN_SIZE_BYTES);
}
else
{
/* We are decoding thumb insn. */
ret = decode_insn (reader, &arm_record, THUMB_RECORD,
THUMB_INSN_SIZE_BYTES);
}
}
if (0 == ret)
{
/* Record registers. */
record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
if (arm_record.arm_regs)
{
for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
{
if (record_full_arch_list_add_reg
(arm_record.regcache , arm_record.arm_regs[no_of_rec]))
ret = -1;
}
}
/* Record memories. */
if (arm_record.arm_mems)
{
for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
{
if (record_full_arch_list_add_mem
((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
arm_record.arm_mems[no_of_rec].len))
ret = -1;
}
}
if (record_full_arch_list_add_end ())
ret = -1;
}
deallocate_reg_mem (&arm_record);
return ret;
}
|