1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
|
/* GNU/Linux on ARM native support.
Copyright 1999, 2000 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include <sys/user.h>
#include <sys/ptrace.h>
#include <sys/utsname.h>
extern int arm_apcs_32;
#define typeNone 0x00
#define typeSingle 0x01
#define typeDouble 0x02
#define typeExtended 0x03
#define FPWORDS 28
#define CPSR_REGNUM 16
typedef union tagFPREG
{
unsigned int fSingle;
unsigned int fDouble[2];
unsigned int fExtended[3];
}
FPREG;
typedef struct tagFPA11
{
FPREG fpreg[8]; /* 8 floating point registers */
unsigned int fpsr; /* floating point status register */
unsigned int fpcr; /* floating point control register */
unsigned char fType[8]; /* type of floating point value held in
floating point registers. */
int initflag; /* NWFPE initialization flag. */
}
FPA11;
/* The following variables are used to determine the version of the
underlying Linux operating system. Examples:
Linux 2.0.35 Linux 2.2.12
os_version = 0x00020023 os_version = 0x0002020c
os_major = 2 os_major = 2
os_minor = 0 os_minor = 2
os_release = 35 os_release = 12
Note: os_version = (os_major << 16) | (os_minor << 8) | os_release
These are initialized using get_linux_version() from
_initialize_arm_linux_nat(). */
static unsigned int os_version, os_major, os_minor, os_release;
static void
fetch_nwfpe_single (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fSingle;
mem[1] = 0;
mem[2] = 0;
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_double (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fDouble[1];
mem[1] = fpa11->fpreg[fn].fDouble[0];
mem[2] = 0;
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_none (unsigned int fn)
{
unsigned int mem[3] =
{0, 0, 0};
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
fetch_nwfpe_extended (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */
mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */
mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */
supply_register (F0_REGNUM + fn, (char *) &mem[0]);
}
static void
store_nwfpe_single (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fSingle = mem[0];
fpa11->fType[fn] = typeSingle;
}
static void
store_nwfpe_double (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fDouble[1] = mem[0];
fpa11->fpreg[fn].fDouble[0] = mem[1];
fpa11->fType[fn] = typeDouble;
}
void
store_nwfpe_extended (unsigned int fn, FPA11 * fpa11)
{
unsigned int mem[3];
read_register_gen (F0_REGNUM + fn, (char *) &mem[0]);
fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */
fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */
fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */
fpa11->fType[fn] = typeDouble;
}
/* Get the whole floating point state of the process and store the
floating point stack into registers[]. */
static void
fetch_fpregs (void)
{
int ret, regno;
FPA11 fp;
/* Read the floating point state. */
ret = ptrace (PT_GETFPREGS, inferior_pid, 0, &fp);
if (ret < 0)
{
warning ("Unable to fetch the floating point state.");
return;
}
/* Fetch fpsr. */
supply_register (FPS_REGNUM, (char *) &fp.fpsr);
/* Fetch the floating point registers. */
for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++)
{
int fn = regno - F0_REGNUM;
unsigned int *p = (unsigned int *) ®isters[REGISTER_BYTE (regno)];
switch (fp.fType[fn])
{
case typeSingle:
fetch_nwfpe_single (fn, &fp);
break;
case typeDouble:
fetch_nwfpe_double (fn, &fp);
break;
case typeExtended:
fetch_nwfpe_extended (fn, &fp);
break;
default:
fetch_nwfpe_none (fn);
}
}
}
/* Save the whole floating point state of the process using
the contents from registers[]. */
static void
store_fpregs (void)
{
int ret, regno;
FPA11 fp;
/* Store fpsr. */
if (register_valid[FPS_REGNUM])
read_register_gen (FPS_REGNUM, (char *) &fp.fpsr);
/* Store the floating point registers. */
for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++)
{
if (register_valid[regno])
{
unsigned int fn = regno - F0_REGNUM;
switch (fp.fType[fn])
{
case typeSingle:
store_nwfpe_single (fn, &fp);
break;
case typeDouble:
store_nwfpe_double (fn, &fp);
break;
case typeExtended:
store_nwfpe_extended (fn, &fp);
break;
}
}
}
ret = ptrace (PTRACE_SETFPREGS, inferior_pid, 0, &fp);
if (ret < 0)
{
warning ("Unable to store floating point state.");
return;
}
}
/* Fetch all general registers of the process and store into
registers[]. */
static void
fetch_regs (void)
{
int ret, regno;
struct pt_regs regs;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, ®s);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = A1_REGNUM; regno < PC_REGNUM; regno++)
supply_register (regno, (char *) ®s.uregs[regno]);
if (arm_apcs_32)
supply_register (PS_REGNUM, (char *) ®s.uregs[CPSR_REGNUM]);
else
supply_register (PS_REGNUM, (char *) ®s.uregs[PC_REGNUM]);
regs.uregs[PC_REGNUM] = ADDR_BITS_REMOVE (regs.uregs[PC_REGNUM]);
supply_register (PC_REGNUM, (char *) ®s.uregs[PC_REGNUM]);
}
/* Store all general registers of the process from the values in
registers[]. */
static void
store_regs (void)
{
int ret, regno;
struct pt_regs regs;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, ®s);
if (ret < 0)
{
warning ("Unable to fetch general registers.");
return;
}
for (regno = A1_REGNUM; regno <= PC_REGNUM; regno++)
{
if (register_valid[regno])
read_register_gen (regno, (char *) ®s.uregs[regno]);
}
ret = ptrace (PTRACE_SETREGS, inferior_pid, 0, ®s);
if (ret < 0)
{
warning ("Unable to store general registers.");
return;
}
}
/* Fetch registers from the child process. Fetch all registers if
regno == -1, otherwise fetch all general registers or all floating
point registers depending upon the value of regno. */
void
fetch_inferior_registers (int regno)
{
if ((regno < F0_REGNUM) || (regno > FPS_REGNUM))
fetch_regs ();
if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1))
fetch_fpregs ();
}
/* Store registers back into the inferior. Store all registers if
regno == -1, otherwise store all general registers or all floating
point registers depending upon the value of regno. */
void
store_inferior_registers (int regno)
{
if ((regno < F0_REGNUM) || (regno > FPS_REGNUM))
store_regs ();
if (((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) || (regno == -1))
store_fpregs ();
}
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. We expect that we have
just entered longjmp and haven't yet altered r0, r1, so the
arguments are still in the registers. (A1_REGNUM) points at the
jmp_buf structure from which we extract the pc (JB_PC) that we will
land at. The pc is copied into ADDR. This routine returns true on
success. */
#define LONGJMP_TARGET_SIZE sizeof(int)
#define JB_ELEMENT_SIZE sizeof(int)
#define JB_SL 18
#define JB_FP 19
#define JB_SP 20
#define JB_PC 21
int
arm_get_longjmp_target (CORE_ADDR * pc)
{
CORE_ADDR jb_addr;
char buf[LONGJMP_TARGET_SIZE];
jb_addr = read_register (A1_REGNUM);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
LONGJMP_TARGET_SIZE))
return 0;
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
return 1;
}
#endif /* GET_LONGJMP_TARGET */
/*
Dynamic Linking on ARM Linux
----------------------------
Note: PLT = procedure linkage table
GOT = global offset table
As much as possible, ELF dynamic linking defers the resolution of
jump/call addresses until the last minute. The technique used is
inspired by the i386 ELF design, and is based on the following
constraints.
1) The calling technique should not force a change in the assembly
code produced for apps; it MAY cause changes in the way assembly
code is produced for position independent code (i.e. shared
libraries).
2) The technique must be such that all executable areas must not be
modified; and any modified areas must not be executed.
To do this, there are three steps involved in a typical jump:
1) in the code
2) through the PLT
3) using a pointer from the GOT
When the executable or library is first loaded, each GOT entry is
initialized to point to the code which implements dynamic name
resolution and code finding. This is normally a function in the
program interpreter (on ARM Linux this is usually ld-linux.so.2,
but it does not have to be). On the first invocation, the function
is located and the GOT entry is replaced with the real function
address. Subsequent calls go through steps 1, 2 and 3 and end up
calling the real code.
1) In the code:
b function_call
bl function_call
This is typical ARM code using the 26 bit relative branch or branch
and link instructions. The target of the instruction
(function_call is usually the address of the function to be called.
In position independent code, the target of the instruction is
actually an entry in the PLT when calling functions in a shared
library. Note that this call is identical to a normal function
call, only the target differs.
2) In the PLT:
The PLT is a synthetic area, created by the linker. It exists in
both executables and libraries. It is an array of stubs, one per
imported function call. It looks like this:
PLT[0]:
str lr, [sp, #-4]! @push the return address (lr)
ldr lr, [pc, #16] @load from 6 words ahead
add lr, pc, lr @form an address for GOT[0]
ldr pc, [lr, #8]! @jump to the contents of that addr
The return address (lr) is pushed on the stack and used for
calculations. The load on the second line loads the lr with
&GOT[3] - . - 20. The addition on the third leaves:
lr = (&GOT[3] - . - 20) + (. + 8)
lr = (&GOT[3] - 12)
lr = &GOT[0]
On the fourth line, the pc and lr are both updated, so that:
pc = GOT[2]
lr = &GOT[0] + 8
= &GOT[2]
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
"tight", but allows us to keep all the PLT entries the same size.
PLT[n+1]:
ldr ip, [pc, #4] @load offset from gotoff
add ip, pc, ip @add the offset to the pc
ldr pc, [ip] @jump to that address
gotoff: .word GOT[n+3] - .
The load on the first line, gets an offset from the fourth word of
the PLT entry. The add on the second line makes ip = &GOT[n+3],
which contains either a pointer to PLT[0] (the fixup trampoline) or
a pointer to the actual code.
3) In the GOT:
The GOT contains helper pointers for both code (PLT) fixups and
data fixups. The first 3 entries of the GOT are special. The next
M entries (where M is the number of entries in the PLT) belong to
the PLT fixups. The next D (all remaining) entries belong to
various data fixups. The actual size of the GOT is 3 + M + D.
The GOT is also a synthetic area, created by the linker. It exists
in both executables and libraries. When the GOT is first
initialized , all the GOT entries relating to PLT fixups are
pointing to code back at PLT[0].
The special entries in the GOT are:
GOT[0] = linked list pointer used by the dynamic loader
GOT[1] = pointer to the reloc table for this module
GOT[2] = pointer to the fixup/resolver code
The first invocation of function call comes through and uses the
fixup/resolver code. On the entry to the fixup/resolver code:
ip = &GOT[n+3]
lr = &GOT[2]
stack[0] = return address (lr) of the function call
[r0, r1, r2, r3] are still the arguments to the function call
This is enough information for the fixup/resolver code to work
with. Before the fixup/resolver code returns, it actually calls
the requested function and repairs &GOT[n+3]. */
CORE_ADDR
arm_skip_solib_resolver (CORE_ADDR pc)
{
/* FIXME */
return 0;
}
int
arm_linux_register_u_addr (int blockend, int regnum)
{
return blockend + REGISTER_BYTE (regnum);
}
int
arm_linux_kernel_u_size (void)
{
return (sizeof (struct user));
}
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
void
arm_linux_extract_return_value (struct type *type,
char regbuf[REGISTER_BYTES],
char *valbuf)
{
/* ScottB: This needs to be looked at to handle the different
floating point emulators on ARM Linux. Right now the code
assumes that fetch inferior registers does the right thing for
GDB. I suspect this won't handle NWFPE registers correctly, nor
will the default ARM version (arm_extract_return_value()). */
int regnum = (TYPE_CODE_FLT == TYPE_CODE (type)) ? F0_REGNUM : A1_REGNUM;
memcpy (valbuf, ®buf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
}
static unsigned int
get_linux_version (unsigned int *vmajor,
unsigned int *vminor,
unsigned int *vrelease)
{
struct utsname info;
char *pmajor, *pminor, *prelease, *tail;
if (-1 == uname (&info))
{
warning ("Unable to determine Linux version.");
return -1;
}
pmajor = strtok (info.release, ".");
pminor = strtok (NULL, ".");
prelease = strtok (NULL, ".");
*vmajor = (unsigned int) strtoul (pmajor, &tail, 0);
*vminor = (unsigned int) strtoul (pminor, &tail, 0);
*vrelease = (unsigned int) strtoul (prelease, &tail, 0);
return ((*vmajor << 16) | (*vminor << 8) | *vrelease);
}
void
_initialize_arm_linux_nat (void)
{
os_version = get_linux_version (&os_major, &os_minor, &os_release);
}
|