aboutsummaryrefslogtreecommitdiff
path: root/gdb/arch-utils.c
blob: b1cec80bcac2b8ffb143b230881b2c80d974dcf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/* Dynamic architecture support for GDB, the GNU debugger.

   Copyright (C) 1998-2017 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"

#include "arch-utils.h"
#include "buildsym.h"
#include "gdbcmd.h"
#include "inferior.h"		/* enum CALL_DUMMY_LOCATION et al.  */
#include "infrun.h"
#include "regcache.h"
#include "sim-regno.h"
#include "gdbcore.h"
#include "osabi.h"
#include "target-descriptions.h"
#include "objfiles.h"
#include "language.h"
#include "symtab.h"

#include "version.h"

#include "floatformat.h"


struct displaced_step_closure *
simple_displaced_step_copy_insn (struct gdbarch *gdbarch,
                                 CORE_ADDR from, CORE_ADDR to,
                                 struct regcache *regs)
{
  size_t len = gdbarch_max_insn_length (gdbarch);
  gdb_byte *buf = (gdb_byte *) xmalloc (len);

  read_memory (from, buf, len);
  write_memory (to, buf, len);

  if (debug_displaced)
    {
      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
                          paddress (gdbarch, from), paddress (gdbarch, to));
      displaced_step_dump_bytes (gdb_stdlog, buf, len);
    }

  return (struct displaced_step_closure *) buf;
}


void
simple_displaced_step_free_closure (struct gdbarch *gdbarch,
                                    struct displaced_step_closure *closure)
{
  xfree (closure);
}

int
default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
				      struct displaced_step_closure *closure)
{
  return !gdbarch_software_single_step_p (gdbarch);
}

CORE_ADDR
displaced_step_at_entry_point (struct gdbarch *gdbarch)
{
  CORE_ADDR addr;
  int bp_len;

  addr = entry_point_address ();

  /* Inferior calls also use the entry point as a breakpoint location.
     We don't want displaced stepping to interfere with those
     breakpoints, so leave space.  */
  gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
  addr += bp_len * 2;

  return addr;
}

int
legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
  /* NOTE: cagney/2002-05-13: The old code did it this way and it is
     suspected that some GDB/SIM combinations may rely on this
     behavour.  The default should be one2one_register_sim_regno
     (below).  */
  if (gdbarch_register_name (gdbarch, regnum) != NULL
      && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
    return regnum;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}

CORE_ADDR
generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  return 0;
}

CORE_ADDR
generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  return 0;
}

int
generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
				    CORE_ADDR pc, const char *name)
{
  return 0;
}

int
generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  return 0;
}

int
default_code_of_frame_writable (struct gdbarch *gdbarch,
				struct frame_info *frame)
{
  return 1;
}

/* Helper functions for gdbarch_inner_than */

int
core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
{
  return (lhs < rhs);
}

int
core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
{
  return (lhs > rhs);
}

/* Misc helper functions for targets.  */

CORE_ADDR
core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return addr;
}

CORE_ADDR
convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
				     struct target_ops *targ)
{
  return addr;
}

int
no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  return reg;
}

void
default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
{
  return;
}

/* See arch-utils.h.  */

void
default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
{
  return;
}

/* See arch-utils.h.  */

CORE_ADDR
default_adjust_dwarf2_addr (CORE_ADDR pc)
{
  return pc;
}

/* See arch-utils.h.  */

CORE_ADDR
default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
{
  return addr;
}

/* See arch-utils.h.  */

bool
default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
				     struct dwarf2_frame_state *fs)
{
  return false;
}

int
cannot_register_not (struct gdbarch *gdbarch, int regnum)
{
  return 0;
}

/* Legacy version of target_virtual_frame_pointer().  Assumes that
   there is an gdbarch_deprecated_fp_regnum and that it is the same,
   cooked or raw.  */

void
legacy_virtual_frame_pointer (struct gdbarch *gdbarch, 
			      CORE_ADDR pc,
			      int *frame_regnum,
			      LONGEST *frame_offset)
{
  /* FIXME: cagney/2002-09-13: This code is used when identifying the
     frame pointer of the current PC.  It is assuming that a single
     register and an offset can determine this.  I think it should
     instead generate a byte code expression as that would work better
     with things like Dwarf2's CFI.  */
  if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
      && gdbarch_deprecated_fp_regnum (gdbarch)
	   < gdbarch_num_regs (gdbarch))
    *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
  else if (gdbarch_sp_regnum (gdbarch) >= 0
	   && gdbarch_sp_regnum (gdbarch)
	        < gdbarch_num_regs (gdbarch))
    *frame_regnum = gdbarch_sp_regnum (gdbarch);
  else
    /* Should this be an internal error?  I guess so, it is reflecting
       an architectural limitation in the current design.  */
    internal_error (__FILE__, __LINE__, 
		    _("No virtual frame pointer available"));
  *frame_offset = 0;
}

/* Return a floating-point format for a floating-point variable of
   length LEN in bits.  If non-NULL, NAME is the name of its type.
   If no suitable type is found, return NULL.  */

const struct floatformat **
default_floatformat_for_type (struct gdbarch *gdbarch,
			      const char *name, int len)
{
  const struct floatformat **format = NULL;

  if (len == gdbarch_half_bit (gdbarch))
    format = gdbarch_half_format (gdbarch);
  else if (len == gdbarch_float_bit (gdbarch))
    format = gdbarch_float_format (gdbarch);
  else if (len == gdbarch_double_bit (gdbarch))
    format = gdbarch_double_format (gdbarch);
  else if (len == gdbarch_long_double_bit (gdbarch))
    format = gdbarch_long_double_format (gdbarch);
  /* On i386 the 'long double' type takes 96 bits,
     while the real number of used bits is only 80,
     both in processor and in memory.
     The code below accepts the real bit size.  */
  else if (gdbarch_long_double_format (gdbarch) != NULL
	   && len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
    format = gdbarch_long_double_format (gdbarch);

  return format;
}

int
generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
			    struct type *type)
{
  return 0;
}

int
default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
{
  return 0;
}

int
generic_instruction_nullified (struct gdbarch *gdbarch,
			       struct regcache *regcache)
{
  return 0;
}

int
default_remote_register_number (struct gdbarch *gdbarch,
				int regno)
{
  return regno;
}

/* See arch-utils.h.  */

int
default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
{
  return 0;
}


/* Functions to manipulate the endianness of the target.  */

static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;

static const char endian_big[] = "big";
static const char endian_little[] = "little";
static const char endian_auto[] = "auto";
static const char *const endian_enum[] =
{
  endian_big,
  endian_little,
  endian_auto,
  NULL,
};
static const char *set_endian_string;

enum bfd_endian
selected_byte_order (void)
{
  return target_byte_order_user;
}

/* Called by ``show endian''.  */

static void
show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
	     const char *value)
{
  if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
    if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
      fprintf_unfiltered (file, _("The target endianness is set automatically "
				  "(currently big endian)\n"));
    else
      fprintf_unfiltered (file, _("The target endianness is set automatically "
				  "(currently little endian)\n"));
  else
    if (target_byte_order_user == BFD_ENDIAN_BIG)
      fprintf_unfiltered (file,
			  _("The target is assumed to be big endian\n"));
    else
      fprintf_unfiltered (file,
			  _("The target is assumed to be little endian\n"));
}

static void
set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
  struct gdbarch_info info;

  gdbarch_info_init (&info);

  if (set_endian_string == endian_auto)
    {
      target_byte_order_user = BFD_ENDIAN_UNKNOWN;
      if (! gdbarch_update_p (info))
	internal_error (__FILE__, __LINE__,
			_("set_endian: architecture update failed"));
    }
  else if (set_endian_string == endian_little)
    {
      info.byte_order = BFD_ENDIAN_LITTLE;
      if (! gdbarch_update_p (info))
	printf_unfiltered (_("Little endian target not supported by GDB\n"));
      else
	target_byte_order_user = BFD_ENDIAN_LITTLE;
    }
  else if (set_endian_string == endian_big)
    {
      info.byte_order = BFD_ENDIAN_BIG;
      if (! gdbarch_update_p (info))
	printf_unfiltered (_("Big endian target not supported by GDB\n"));
      else
	target_byte_order_user = BFD_ENDIAN_BIG;
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("set_endian: bad value"));

  show_endian (gdb_stdout, from_tty, NULL, NULL);
}

/* Given SELECTED, a currently selected BFD architecture, and
   TARGET_DESC, the current target description, return what
   architecture to use.

   SELECTED may be NULL, in which case we return the architecture
   associated with TARGET_DESC.  If SELECTED specifies a variant
   of the architecture associtated with TARGET_DESC, return the
   more specific of the two.

   If SELECTED is a different architecture, but it is accepted as
   compatible by the target, we can use the target architecture.

   If SELECTED is obviously incompatible, warn the user.  */

static const struct bfd_arch_info *
choose_architecture_for_target (const struct target_desc *target_desc,
				const struct bfd_arch_info *selected)
{
  const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
  const struct bfd_arch_info *compat1, *compat2;

  if (selected == NULL)
    return from_target;

  if (from_target == NULL)
    return selected;

  /* struct bfd_arch_info objects are singletons: that is, there's
     supposed to be exactly one instance for a given machine.  So you
     can tell whether two are equivalent by comparing pointers.  */
  if (from_target == selected)
    return selected;

  /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
     incompatible.  But if they are compatible, it returns the 'more
     featureful' of the two arches.  That is, if A can run code
     written for B, but B can't run code written for A, then it'll
     return A.

     Some targets (e.g. MIPS as of 2006-12-04) don't fully
     implement this, instead always returning NULL or the first
     argument.  We detect that case by checking both directions.  */

  compat1 = selected->compatible (selected, from_target);
  compat2 = from_target->compatible (from_target, selected);

  if (compat1 == NULL && compat2 == NULL)
    {
      /* BFD considers the architectures incompatible.  Check our
	 target description whether it accepts SELECTED as compatible
	 anyway.  */
      if (tdesc_compatible_p (target_desc, selected))
	return from_target;

      warning (_("Selected architecture %s is not compatible "
		 "with reported target architecture %s"),
	       selected->printable_name, from_target->printable_name);
      return selected;
    }

  if (compat1 == NULL)
    return compat2;
  if (compat2 == NULL)
    return compat1;
  if (compat1 == compat2)
    return compat1;

  /* If the two didn't match, but one of them was a default
     architecture, assume the more specific one is correct.  This
     handles the case where an executable or target description just
     says "mips", but the other knows which MIPS variant.  */
  if (compat1->the_default)
    return compat2;
  if (compat2->the_default)
    return compat1;

  /* We have no idea which one is better.  This is a bug, but not
     a critical problem; warn the user.  */
  warning (_("Selected architecture %s is ambiguous with "
	     "reported target architecture %s"),
	   selected->printable_name, from_target->printable_name);
  return selected;
}

/* Functions to manipulate the architecture of the target.  */

enum set_arch { set_arch_auto, set_arch_manual };

static const struct bfd_arch_info *target_architecture_user;

static const char *set_architecture_string;

const char *
selected_architecture_name (void)
{
  if (target_architecture_user == NULL)
    return NULL;
  else
    return set_architecture_string;
}

/* Called if the user enters ``show architecture'' without an
   argument.  */

static void
show_architecture (struct ui_file *file, int from_tty,
		   struct cmd_list_element *c, const char *value)
{
  if (target_architecture_user == NULL)
    fprintf_filtered (file, _("The target architecture is set "
			      "automatically (currently %s)\n"),
		      gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
  else
    fprintf_filtered (file, _("The target architecture is assumed to be %s\n"),
		      set_architecture_string);
}


/* Called if the user enters ``set architecture'' with or without an
   argument.  */

static void
set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
  struct gdbarch_info info;

  gdbarch_info_init (&info);

  if (strcmp (set_architecture_string, "auto") == 0)
    {
      target_architecture_user = NULL;
      if (!gdbarch_update_p (info))
	internal_error (__FILE__, __LINE__,
			_("could not select an architecture automatically"));
    }
  else
    {
      info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
      if (info.bfd_arch_info == NULL)
	internal_error (__FILE__, __LINE__,
			_("set_architecture: bfd_scan_arch failed"));
      if (gdbarch_update_p (info))
	target_architecture_user = info.bfd_arch_info;
      else
	printf_unfiltered (_("Architecture `%s' not recognized.\n"),
			   set_architecture_string);
    }
  show_architecture (gdb_stdout, from_tty, NULL, NULL);
}

/* Try to select a global architecture that matches "info".  Return
   non-zero if the attempt succeeds.  */
int
gdbarch_update_p (struct gdbarch_info info)
{
  struct gdbarch *new_gdbarch;

  /* Check for the current file.  */
  if (info.abfd == NULL)
    info.abfd = exec_bfd;
  if (info.abfd == NULL)
    info.abfd = core_bfd;

  /* Check for the current target description.  */
  if (info.target_desc == NULL)
    info.target_desc = target_current_description ();

  new_gdbarch = gdbarch_find_by_info (info);

  /* If there no architecture by that name, reject the request.  */
  if (new_gdbarch == NULL)
    {
      if (gdbarch_debug)
	fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
			    "Architecture not found\n");
      return 0;
    }

  /* If it is the same old architecture, accept the request (but don't
     swap anything).  */
  if (new_gdbarch == target_gdbarch ())
    {
      if (gdbarch_debug)
	fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
			    "Architecture %s (%s) unchanged\n",
			    host_address_to_string (new_gdbarch),
			    gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
      return 1;
    }

  /* It's a new architecture, swap it in.  */
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
			"New architecture %s (%s) selected\n",
			host_address_to_string (new_gdbarch),
			gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
  set_target_gdbarch (new_gdbarch);

  return 1;
}

/* Return the architecture for ABFD.  If no suitable architecture
   could be find, return NULL.  */

struct gdbarch *
gdbarch_from_bfd (bfd *abfd)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);

  info.abfd = abfd;
  return gdbarch_find_by_info (info);
}

/* Set the dynamic target-system-dependent parameters (architecture,
   byte-order) using information found in the BFD */

void
set_gdbarch_from_file (bfd *abfd)
{
  struct gdbarch_info info;
  struct gdbarch *gdbarch;

  gdbarch_info_init (&info);
  info.abfd = abfd;
  info.target_desc = target_current_description ();
  gdbarch = gdbarch_find_by_info (info);

  if (gdbarch == NULL)
    error (_("Architecture of file not recognized."));
  set_target_gdbarch (gdbarch);
}

/* Initialize the current architecture.  Update the ``set
   architecture'' command so that it specifies a list of valid
   architectures.  */

#ifdef DEFAULT_BFD_ARCH
extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
#else
static const bfd_arch_info_type *default_bfd_arch;
#endif

#ifdef DEFAULT_BFD_VEC
extern const bfd_target DEFAULT_BFD_VEC;
static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
#else
static const bfd_target *default_bfd_vec;
#endif

static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;

void
initialize_current_architecture (void)
{
  const char **arches = gdbarch_printable_names ();
  struct gdbarch_info info;

  /* determine a default architecture and byte order.  */
  gdbarch_info_init (&info);
  
  /* Find a default architecture.  */
  if (default_bfd_arch == NULL)
    {
      /* Choose the architecture by taking the first one
	 alphabetically.  */
      const char *chosen = arches[0];
      const char **arch;
      for (arch = arches; *arch != NULL; arch++)
	{
	  if (strcmp (*arch, chosen) < 0)
	    chosen = *arch;
	}
      if (chosen == NULL)
	internal_error (__FILE__, __LINE__,
			_("initialize_current_architecture: No arch"));
      default_bfd_arch = bfd_scan_arch (chosen);
      if (default_bfd_arch == NULL)
	internal_error (__FILE__, __LINE__,
			_("initialize_current_architecture: Arch not found"));
    }

  info.bfd_arch_info = default_bfd_arch;

  /* Take several guesses at a byte order.  */
  if (default_byte_order == BFD_ENDIAN_UNKNOWN
      && default_bfd_vec != NULL)
    {
      /* Extract BFD's default vector's byte order.  */
      switch (default_bfd_vec->byteorder)
	{
	case BFD_ENDIAN_BIG:
	  default_byte_order = BFD_ENDIAN_BIG;
	  break;
	case BFD_ENDIAN_LITTLE:
	  default_byte_order = BFD_ENDIAN_LITTLE;
	  break;
	default:
	  break;
	}
    }
  if (default_byte_order == BFD_ENDIAN_UNKNOWN)
    {
      /* look for ``*el-*'' in the target name.  */
      const char *chp;
      chp = strchr (target_name, '-');
      if (chp != NULL
	  && chp - 2 >= target_name
	  && startswith (chp - 2, "el"))
	default_byte_order = BFD_ENDIAN_LITTLE;
    }
  if (default_byte_order == BFD_ENDIAN_UNKNOWN)
    {
      /* Wire it to big-endian!!! */
      default_byte_order = BFD_ENDIAN_BIG;
    }

  info.byte_order = default_byte_order;
  info.byte_order_for_code = info.byte_order;

  if (! gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__,
		    _("initialize_current_architecture: Selection of "
		      "initial architecture failed"));

  /* Create the ``set architecture'' command appending ``auto'' to the
     list of architectures.  */
  {
    /* Append ``auto''.  */
    int nr;
    for (nr = 0; arches[nr] != NULL; nr++);
    arches = XRESIZEVEC (const char *, arches, nr + 2);
    arches[nr + 0] = "auto";
    arches[nr + 1] = NULL;
    add_setshow_enum_cmd ("architecture", class_support,
			  arches, &set_architecture_string, 
			  _("Set architecture of target."),
			  _("Show architecture of target."), NULL,
			  set_architecture, show_architecture,
			  &setlist, &showlist);
    add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
  }
}


/* Initialize a gdbarch info to values that will be automatically
   overridden.  Note: Originally, this ``struct info'' was initialized
   using memset(0).  Unfortunately, that ran into problems, namely
   BFD_ENDIAN_BIG is zero.  An explicit initialization function that
   can explicitly set each field to a well defined value is used.  */

void
gdbarch_info_init (struct gdbarch_info *info)
{
  memset (info, 0, sizeof (struct gdbarch_info));
  info->byte_order = BFD_ENDIAN_UNKNOWN;
  info->byte_order_for_code = info->byte_order;
  info->osabi = GDB_OSABI_UNINITIALIZED;
}

/* Similar to init, but this time fill in the blanks.  Information is
   obtained from the global "set ..." options and explicitly
   initialized INFO fields.  */

void
gdbarch_info_fill (struct gdbarch_info *info)
{
  /* "(gdb) set architecture ...".  */
  if (info->bfd_arch_info == NULL
      && target_architecture_user)
    info->bfd_arch_info = target_architecture_user;
  /* From the file.  */
  if (info->bfd_arch_info == NULL
      && info->abfd != NULL
      && bfd_get_arch (info->abfd) != bfd_arch_unknown
      && bfd_get_arch (info->abfd) != bfd_arch_obscure)
    info->bfd_arch_info = bfd_get_arch_info (info->abfd);
  /* From the target.  */
  if (info->target_desc != NULL)
    info->bfd_arch_info = choose_architecture_for_target
			   (info->target_desc, info->bfd_arch_info);
  /* From the default.  */
  if (info->bfd_arch_info == NULL)
    info->bfd_arch_info = default_bfd_arch;

  /* "(gdb) set byte-order ...".  */
  if (info->byte_order == BFD_ENDIAN_UNKNOWN
      && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
    info->byte_order = target_byte_order_user;
  /* From the INFO struct.  */
  if (info->byte_order == BFD_ENDIAN_UNKNOWN
      && info->abfd != NULL)
    info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
			: bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
			: BFD_ENDIAN_UNKNOWN);
  /* From the default.  */
  if (info->byte_order == BFD_ENDIAN_UNKNOWN)
    info->byte_order = default_byte_order;
  info->byte_order_for_code = info->byte_order;

  /* "(gdb) set osabi ...".  Handled by gdbarch_lookup_osabi.  */
  /* From the manual override, or from file.  */
  if (info->osabi == GDB_OSABI_UNINITIALIZED)
    info->osabi = gdbarch_lookup_osabi (info->abfd);
  /* From the target.  */
  if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
    info->osabi = tdesc_osabi (info->target_desc);
  /* From the configured default.  */
#ifdef GDB_OSABI_DEFAULT
  if (info->osabi == GDB_OSABI_UNKNOWN)
    info->osabi = GDB_OSABI_DEFAULT;
#endif

  /* Must have at least filled in the architecture.  */
  gdb_assert (info->bfd_arch_info != NULL);
}

/* Return "current" architecture.  If the target is running, this is
   the architecture of the selected frame.  Otherwise, the "current"
   architecture defaults to the target architecture.

   This function should normally be called solely by the command
   interpreter routines to determine the architecture to execute a
   command in.  */
struct gdbarch *
get_current_arch (void)
{
  if (has_stack_frames ())
    return get_frame_arch (get_selected_frame (NULL));
  else
    return target_gdbarch ();
}

int
default_has_shared_address_space (struct gdbarch *gdbarch)
{
  /* Simply say no.  In most unix-like targets each inferior/process
     has its own address space.  */
  return 0;
}

int
default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
				  char **msg)
{
  /* We don't know if maybe the target has some way to do fast
     tracepoints that doesn't need gdbarch, so always say yes.  */
  if (msg)
    *msg = NULL;
  return 1;
}

const gdb_byte *
default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
			    int *lenptr)
{
  int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);

  return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
}
int
default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
					    struct regcache *regcache,
					    CORE_ADDR *pcptr)
{
  return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
}


void
default_gen_return_address (struct gdbarch *gdbarch,
			    struct agent_expr *ax, struct axs_value *value,
			    CORE_ADDR scope)
{
  error (_("This architecture has no method to collect a return address."));
}

int
default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
					struct type *type)
{
  /* Usually, the return value's address is stored the in the "first hidden"
     parameter if the return value should be passed by reference, as
     specified in ABI.  */
  return language_pass_by_reference (type);
}

int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return 0;
}

int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return 0;
}

int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return 0;
}

void
default_skip_permanent_breakpoint (struct regcache *regcache)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  CORE_ADDR current_pc = regcache_read_pc (regcache);
  int bp_len;

  gdbarch_breakpoint_from_pc (gdbarch, &current_pc, &bp_len);
  current_pc += bp_len;
  regcache_write_pc (regcache, current_pc);
}

CORE_ADDR
default_infcall_mmap (CORE_ADDR size, unsigned prot)
{
  error (_("This target does not support inferior memory allocation by mmap."));
}

void
default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
{
  /* Memory reserved by inferior mmap is kept leaked.  */
}

/* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
   created in inferior memory by GDB (normally it is set by ld.so).  */

char *
default_gcc_target_options (struct gdbarch *gdbarch)
{
  return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
		     gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : "");
}

/* gdbarch gnu_triplet_regexp method.  */

const char *
default_gnu_triplet_regexp (struct gdbarch *gdbarch)
{
  return gdbarch_bfd_arch_info (gdbarch)->arch_name;
}

/* Default method for gdbarch_addressable_memory_unit_size.  By default, a memory byte has
   a size of 1 octet.  */

int
default_addressable_memory_unit_size (struct gdbarch *gdbarch)
{
  return 1;
}

void
default_guess_tracepoint_registers (struct gdbarch *gdbarch,
				    struct regcache *regcache,
				    CORE_ADDR addr)
{
  int pc_regno = gdbarch_pc_regnum (gdbarch);
  gdb_byte *regs;

  /* This guessing code below only works if the PC register isn't
     a pseudo-register.  The value of a pseudo-register isn't stored
     in the (non-readonly) regcache -- instead it's recomputed
     (probably from some other cached raw register) whenever the
     register is read.  In this case, a custom method implementation
     should be used by the architecture.  */
  if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
    return;

  regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
  store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
			  gdbarch_byte_order (gdbarch), addr);
  regcache_raw_supply (regcache, pc_regno, regs);
}

/* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_gdbarch_utils;

void
_initialize_gdbarch_utils (void)
{
  add_setshow_enum_cmd ("endian", class_support,
			endian_enum, &set_endian_string, 
			_("Set endianness of target."),
			_("Show endianness of target."),
			NULL, set_endian, show_endian,
			&setlist, &showlist);
}