aboutsummaryrefslogtreecommitdiff
path: root/gdb/arc-tdep.c
blob: 21f70156bf0f92136515eaf89c609dfb506e1f88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
/* Target dependent code for ARC arhitecture, for GDB.

   Copyright 2005-2017 Free Software Foundation, Inc.
   Contributed by Synopsys Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* GDB header files.  */
#include "defs.h"
#include "arch-utils.h"
#include "disasm.h"
#include "dwarf2-frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "prologue-value.h"
#include "trad-frame.h"

/* ARC header files.  */
#include "opcode/arc.h"
#include "opcodes/arc-dis.h"
#include "arc-tdep.h"

/* Standard headers.  */
#include <algorithm>

/* Default target descriptions.  */
#include "features/arc-v2.c"
#include "features/arc-arcompact.c"

/* The frame unwind cache for ARC.  */

struct arc_frame_cache
{
  /* The stack pointer at the time this frame was created; i.e. the caller's
     stack pointer when this function was called.  It is used to identify this
     frame.  */
  CORE_ADDR prev_sp;

  /* Register that is a base for this frame - FP for normal frame, SP for
     non-FP frames.  */
  int frame_base_reg;

  /* Offset from the previous SP to the current frame base.  If GCC uses
     `SUB SP,SP,offset` to allocate space for local variables, then it will be
     done after setting up a frame pointer, but it still will be considered
     part of prologue, therefore SP will be lesser than FP at the end of the
     prologue analysis.  In this case that would be an offset from old SP to a
     new FP.  But in case of non-FP frames, frame base is an SP and thus that
     would be an offset from old SP to new SP.  What is important is that this
     is an offset from old SP to a known register, so it can be used to find
     old SP.

     Using FP is preferable, when possible, because SP can change in function
     body after prologue due to alloca, variadic arguments or other shenanigans.
     If that is the case in the caller frame, then PREV_SP will point to SP at
     the moment of function call, but it will be different from SP value at the
     end of the caller prologue.  As a result it will not be possible to
     reconstruct caller's frame and go past it in the backtrace.  Those things
     are unlikely to happen to FP - FP value at the moment of function call (as
     stored on stack in callee prologue) is also an FP value at the end of the
     caller's prologue.  */

  LONGEST frame_base_offset;

  /* Store addresses for registers saved in prologue.  During prologue analysis
     GDB stores offsets relatively to "old SP", then after old SP is evaluated,
     offsets are replaced with absolute addresses.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Global debug flag.  */

int arc_debug;

/* List of "maintenance print arc" commands.  */

static struct cmd_list_element *maintenance_print_arc_list = NULL;

/* XML target description features.  */

static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2";
static const char
  core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2";
static const char
  core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact";
static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal";

/* XML target description known registers.  */

static const char *const core_v2_register_names[] = {
  "r0", "r1", "r2", "r3",
  "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11",
  "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19",
  "r20", "r21", "r22", "r23",
  "r24", "r25", "gp", "fp",
  "sp", "ilink", "r30", "blink",
  "r32", "r33", "r34", "r35",
  "r36", "r37", "r38", "r39",
  "r40", "r41", "r42", "r43",
  "r44", "r45", "r46", "r47",
  "r48", "r49", "r50", "r51",
  "r52", "r53", "r54", "r55",
  "r56", "r57", "accl", "acch",
  "lp_count", "reserved", "limm", "pcl",
};

static const char *const aux_minimal_register_names[] = {
  "pc", "status32",
};

static const char *const core_arcompact_register_names[] = {
  "r0", "r1", "r2", "r3",
  "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11",
  "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19",
  "r20", "r21", "r22", "r23",
  "r24", "r25", "gp", "fp",
  "sp", "ilink1", "ilink2", "blink",
  "r32", "r33", "r34", "r35",
  "r36", "r37", "r38", "r39",
  "r40", "r41", "r42", "r43",
  "r44", "r45", "r46", "r47",
  "r48", "r49", "r50", "r51",
  "r52", "r53", "r54", "r55",
  "r56", "r57", "r58", "r59",
  "lp_count", "reserved", "limm", "pcl",
};

static char *arc_disassembler_options = NULL;

/* Functions are sorted in the order as they are used in the
   _initialize_arc_tdep (), which uses the same order as gdbarch.h.  Static
   functions are defined before the first invocation.  */

/* Returns an unsigned value of OPERAND_NUM in instruction INSN.
   For relative branch instructions returned value is an offset, not an actual
   branch target.  */

static ULONGEST
arc_insn_get_operand_value (const struct arc_instruction &insn,
			    unsigned int operand_num)
{
  switch (insn.operands[operand_num].kind)
    {
    case ARC_OPERAND_KIND_LIMM:
      gdb_assert (insn.limm_p);
      return insn.limm_value;
    case ARC_OPERAND_KIND_SHIMM:
      return insn.operands[operand_num].value;
    default:
      /* Value in instruction is a register number.  */
      struct regcache *regcache = get_current_regcache ();
      ULONGEST value;
      regcache_cooked_read_unsigned (regcache,
				     insn.operands[operand_num].value,
				     &value);
      return value;
    }
}

/* Like arc_insn_get_operand_value, but returns a signed value.  */

static LONGEST
arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
				   unsigned int operand_num)
{
  switch (insn.operands[operand_num].kind)
    {
    case ARC_OPERAND_KIND_LIMM:
      gdb_assert (insn.limm_p);
      /* Convert unsigned raw value to signed one.  This assumes 2's
	 complement arithmetic, but so is the LONG_MIN value from generic
	 defs.h and that assumption is true for ARC.  */
      gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
      return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
    case ARC_OPERAND_KIND_SHIMM:
      /* Sign conversion has been done by binutils.  */
      return insn.operands[operand_num].value;
    default:
      /* Value in instruction is a register number.  */
      struct regcache *regcache = get_current_regcache ();
      LONGEST value;
      regcache_cooked_read_signed (regcache,
				   insn.operands[operand_num].value,
				   &value);
      return value;
    }
}

/* Get register with base address of memory operation.  */

int
arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
{
  /* POP_S and PUSH_S have SP as an implicit argument in a disassembler.  */
  if (insn.insn_class == PUSH || insn.insn_class == POP)
    return ARC_SP_REGNUM;

  gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);

  /* Other instructions all have at least two operands: operand 0 is data,
     operand 1 is address.  Operand 2 is offset from address.  However, see
     comment to arc_instruction.operands - in some cases, third operand may be
     missing, namely if it is 0.  */
  gdb_assert (insn.operands_count >= 2);
  return insn.operands[1].value;
}

/* Get offset of a memory operation INSN.  */

CORE_ADDR
arc_insn_get_memory_offset (const struct arc_instruction &insn)
{
  /* POP_S and PUSH_S have offset as an implicit argument in a
     disassembler.  */
  if (insn.insn_class == POP)
    return 4;
  else if (insn.insn_class == PUSH)
    return -4;

  gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);

  /* Other instructions all have at least two operands: operand 0 is data,
     operand 1 is address.  Operand 2 is offset from address.  However, see
     comment to arc_instruction.operands - in some cases, third operand may be
     missing, namely if it is 0.  */
  if (insn.operands_count < 3)
    return 0;

  CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
  /* Handle scaling.  */
  if (insn.writeback_mode == ARC_WRITEBACK_AS)
    {
      /* Byte data size is not valid for AS.  Halfword means shift by 1 bit.
	 Word and double word means shift by 2 bits.  */
      gdb_assert (insn.data_size_mode != ARC_SCALING_B);
      if (insn.data_size_mode == ARC_SCALING_H)
	value <<= 1;
      else
	value <<= 2;
    }
  return value;
}

CORE_ADDR
arc_insn_get_branch_target (const struct arc_instruction &insn)
{
  gdb_assert (insn.is_control_flow);

  /* BI [c]: PC = nextPC + (c << 2).  */
  if (insn.insn_class == BI)
    {
      ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
      return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
    }
  /* BIH [c]: PC = nextPC + (c << 1).  */
  else if (insn.insn_class == BIH)
    {
      ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
      return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
    }
  /* JLI and EI.  */
  /* JLI and EI depend on optional AUX registers.  Not supported right now.  */
  else if (insn.insn_class == JLI)
    {
      fprintf_unfiltered (gdb_stderr,
			  "JLI_S instruction is not supported by the GDB.");
      return 0;
    }
  else if (insn.insn_class == EI)
    {
      fprintf_unfiltered (gdb_stderr,
			  "EI_S instruction is not supported by the GDB.");
      return 0;
    }
  /* LEAVE_S: PC = BLINK.  */
  else if (insn.insn_class == LEAVE)
    {
      struct regcache *regcache = get_current_regcache ();
      ULONGEST value;
      regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
      return value;
    }
  /* BBIT0/1, BRcc: PC = currentPC + operand.  */
  else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
	   || insn.insn_class == BRCC)
    {
      /* Most instructions has branch target as their sole argument.  However
	 conditional brcc/bbit has it as a third operand.  */
      CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);

      /* Offset is relative to the 4-byte aligned address of the current
	 instruction, hence last two bits should be truncated.  */
      return pcrel_addr + align_down (insn.address, 4);
    }
  /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand.  */
  else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
    {
      CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);

      /* Offset is relative to the 4-byte aligned address of the current
	 instruction, hence last two bits should be truncated.  */
      return pcrel_addr + align_down (insn.address, 4);
    }
  /* J, Jcc, JL, JLcc: PC = operand.  */
  else if (insn.insn_class == JUMP)
    {
      /* All jumps are single-operand.  */
      return arc_insn_get_operand_value (insn, 0);
    }

  /* This is some new and unknown instruction.  */
  gdb_assert_not_reached ("Unknown branch instruction.");
}

/* Dump INSN into gdb_stdlog.  */

void
arc_insn_dump (const struct arc_instruction &insn)
{
  struct gdbarch *gdbarch = target_gdbarch ();

  arc_print ("Dumping arc_instruction at %s\n",
	     paddress (gdbarch, insn.address));
  arc_print ("\tlength = %u\n", insn.length);

  if (!insn.valid)
    {
      arc_print ("\tThis is not a valid ARC instruction.\n");
      return;
    }

  arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
  arc_print ("\tcc = 0x%x\n", insn.condition_code);
  arc_print ("\tinsn_class = %u\n", insn.insn_class);
  arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
  arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);

  CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
  arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));

  if (insn.is_control_flow)
    {
      CORE_ADDR t = arc_insn_get_branch_target (insn);
      arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
    }

  arc_print ("\tlimm_p = %i\n", insn.limm_p);
  if (insn.limm_p)
    arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);

  if (insn.insn_class == STORE || insn.insn_class == LOAD
      || insn.insn_class == PUSH || insn.insn_class == POP)
    {
      arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
      arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
      arc_print ("\tmemory_base_register = %s\n",
		 gdbarch_register_name (gdbarch,
					arc_insn_get_memory_base_reg (insn)));
      /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
	 LONGEST for a nicer representation.  */
      arc_print ("\taddr_offset = %s\n",
		 plongest (arc_insn_get_memory_offset (insn)));
    }

  arc_print ("\toperands_count = %u\n", insn.operands_count);
  for (unsigned int i = 0; i < insn.operands_count; ++i)
    {
      int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);

      arc_print ("\toperand[%u] = {\n", i);
      arc_print ("\t\tis_reg = %i\n", is_reg);
      if (is_reg)
	arc_print ("\t\tregister = %s\n",
		   gdbarch_register_name (gdbarch, insn.operands[i].value));
      /* Don't know if this value is signed or not, so print both
	 representations.  This tends to look quite ugly, especially for big
	 numbers.  */
      arc_print ("\t\tunsigned value = %s\n",
		 pulongest (arc_insn_get_operand_value (insn, i)));
      arc_print ("\t\tsigned value = %s\n",
		 plongest (arc_insn_get_operand_value_signed (insn, i)));
      arc_print ("\t}\n");
    }
}

CORE_ADDR
arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
{
  /* In ARC long immediate is always 4 bytes.  */
  return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
}

/* Implement the "write_pc" gdbarch method.

   In ARC PC register is a normal register so in most cases setting PC value
   is a straightforward process: debugger just writes PC value.  However it
   gets trickier in case when current instruction is an instruction in delay
   slot.  In this case CPU will execute instruction at current PC value, then
   will set PC to the current value of BTA register; also current instruction
   cannot be branch/jump and some of the other instruction types.  Thus if
   debugger would try to just change PC value in this case, this instruction
   will get executed, but then core will "jump" to the original branch target.

   Whether current instruction is a delay-slot instruction or not is indicated
   by DE bit in STATUS32 register indicates if current instruction is a delay
   slot instruction.  This bit is writable by debug host, which allows debug
   host to prevent core from jumping after the delay slot instruction.  It
   also works in another direction: setting this bit will make core to treat
   any current instructions as a delay slot instruction and to set PC to the
   current value of BTA register.

   To workaround issues with changing PC register while in delay slot
   instruction, debugger should check for the STATUS32.DE bit and reset it if
   it is set.  No other change is required in this function.  Most common
   case, where this function might be required is calling inferior functions
   from debugger.  Generic GDB logic handles this pretty well: current values
   of registers are stored, value of PC is changed (that is the job of this
   function), and after inferior function is executed, GDB restores all
   registers, include BTA and STATUS32, which also means that core is returned
   to its original state of being halted on delay slot instructions.

   This method is useless for ARC 600, because it doesn't have externally
   exposed BTA register.  In the case of ARC 600 it is impossible to restore
   core to its state in all occasions thus core should never be halted (from
   the perspective of debugger host) in the delay slot.  */

static void
arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);

  if (arc_debug)
    debug_printf ("arc: Writing PC, new value=%s\n",
		  paddress (gdbarch, new_pc));

  regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
				  new_pc);

  ULONGEST status32;
  regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
				 &status32);

  /* Mask for DE bit is 0x40.  */
  if (status32 & 0x40)
    {
      if (arc_debug)
	{
	  debug_printf ("arc: Changing PC while in delay slot.  Will "
			"reset STATUS32.DE bit to zero.  Value of STATUS32 "
			"register is 0x%s\n",
			phex (status32, ARC_REGISTER_SIZE));
	}

      /* Reset bit and write to the cache.  */
      status32 &= ~0x40;
      regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
				      status32);
    }
}

/* Implement the "virtual_frame_pointer" gdbarch method.

   According to ABI the FP (r27) is used to point to the middle of the current
   stack frame, just below the saved FP and before local variables, register
   spill area and outgoing args.  However for optimization levels above O2 and
   in any case in leaf functions, the frame pointer is usually not set at all.
   The exception being when handling nested functions.

   We use this function to return a "virtual" frame pointer, marking the start
   of the current stack frame as a register-offset pair.  If the FP is not
   being used, then it should return SP, with an offset of the frame size.

   The current implementation doesn't actually know the frame size, nor
   whether the FP is actually being used, so for now we just return SP and an
   offset of zero.  This is no worse than other architectures, but is needed
   to avoid assertion failures.

   TODO: Can we determine the frame size to get a correct offset?

   PC is a program counter where we need the virtual FP.  REG_PTR is the base
   register used for the virtual FP.  OFFSET_PTR is the offset used for the
   virtual FP.  */

static void
arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
			   int *reg_ptr, LONGEST *offset_ptr)
{
  *reg_ptr = gdbarch_sp_regnum (gdbarch);
  *offset_ptr = 0;
}

/* Implement the "dummy_id" gdbarch method.

   Tear down a dummy frame created by arc_push_dummy_call ().  This data has
   to be constructed manually from the data in our hand.  The stack pointer
   and program counter can be obtained from the frame info.  */

static struct frame_id
arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build (get_frame_sp (this_frame),
			 get_frame_pc (this_frame));
}

/* Implement the "push_dummy_call" gdbarch method.

   Stack Frame Layout

   This shows the layout of the stack frame for the general case of a
   function call; a given function might not have a variable number of
   arguments or local variables, or might not save any registers, so it would
   not have the corresponding frame areas.  Additionally, a leaf function
   (i.e. one which calls no other functions) does not need to save the
   contents of the BLINK register (which holds its return address), and a
   function might not have a frame pointer.

   The stack grows downward, so SP points below FP in memory; SP always
   points to the last used word on the stack, not the first one.

                      |                       |   |
                      |      arg word N       |   | caller's
                      |           :           |   | frame
                      |      arg word 10      |   |
                      |      arg word 9       |   |
          old SP ---> +-----------------------+ --+
                      |                       |   |
                      |      callee-saved     |   |
                      |       registers       |   |
                      |  including fp, blink  |   |
                      |                       |   | callee's
          new FP ---> +-----------------------+   | frame
                      |                       |   |
                      |         local         |   |
                      |       variables       |   |
                      |                       |   |
                      |       register        |   |
                      |      spill area       |   |
                      |                       |   |
                      |     outgoing args     |   |
                      |                       |   |
          new SP ---> +-----------------------+ --+
                      |                       |
                      |         unused        |
                      |                       |
                                  |
                                  |
                                  V
                              downwards

   The list of arguments to be passed to a function is considered to be a
   sequence of _N_ words (as though all the parameters were stored in order in
   memory with each parameter occupying an integral number of words).  Words
   1..8 are passed in registers 0..7; if the function has more than 8 words of
   arguments then words 9..@em N are passed on the stack in the caller's frame.

   If the function has a variable number of arguments, e.g. it has a form such
   as `function (p1, p2, ...);' and _P_ words are required to hold the values
   of the named parameters (which are passed in registers 0..@em P -1), then
   the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
   top of the frame so that the anonymous parameter words occupy a continuous
   region.

   Any arguments are already in target byte order.  We just need to store
   them!

   BP_ADDR is the return address where breakpoint must be placed.  NARGS is
   the number of arguments to the function.  ARGS is the arguments values (in
   target byte order).  SP is the Current value of SP register.  STRUCT_RETURN
   is TRUE if structures are returned by the function.  STRUCT_ADDR is the
   hidden address for returning a struct.  Returns SP of a new frame.  */

static CORE_ADDR
arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		     struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		     struct value **args, CORE_ADDR sp, int struct_return,
		     CORE_ADDR struct_addr)
{
  if (arc_debug)
    debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs);

  int arg_reg = ARC_FIRST_ARG_REGNUM;

  /* Push the return address.  */
  regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);

  /* Are we returning a value using a structure return instead of a normal
     value return?  If so, struct_addr is the address of the reserved space for
     the return structure to be written on the stack, and that address is
     passed to that function as a hidden first argument.  */
  if (struct_return)
    {
      /* Pass the return address in the first argument register.  */
      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);

      if (arc_debug)
	debug_printf ("arc: struct return address %s passed in R%d",
		      print_core_address (gdbarch, struct_addr), arg_reg);

      arg_reg++;
    }

  if (nargs > 0)
    {
      unsigned int total_space = 0;

      /* How much space do the arguments occupy in total?  Must round each
	 argument's size up to an integral number of words.  */
      for (int i = 0; i < nargs; i++)
	{
	  unsigned int len = TYPE_LENGTH (value_type (args[i]));
	  unsigned int space = align_up (len, 4);

	  total_space += space;

	  if (arc_debug)
	    debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space);
	}

      /* Allocate a buffer to hold a memory image of the arguments.  */
      gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);

      /* Now copy all of the arguments into the buffer, correctly aligned.  */
      gdb_byte *data = memory_image;
      for (int i = 0; i < nargs; i++)
	{
	  unsigned int len = TYPE_LENGTH (value_type (args[i]));
	  unsigned int space = align_up (len, 4);

	  memcpy (data, value_contents (args[i]), (size_t) len);
	  if (arc_debug)
	    debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n",
			  i, *((int *) value_contents (args[i])), len);

	  data += space;
	}

      /* Now load as much as possible of the memory image into registers.  */
      data = memory_image;
      while (arg_reg <= ARC_LAST_ARG_REGNUM)
	{
	  if (arc_debug)
	    debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n",
			  data[0], data[1], data[2], data[3], arg_reg);

	  /* Note we don't use write_unsigned here, since that would convert
	     the byte order, but we are already in the correct byte order.  */
	  regcache_cooked_write (regcache, arg_reg, data);

	  data += ARC_REGISTER_SIZE;
	  total_space -= ARC_REGISTER_SIZE;

	  /* All the data is now in registers.  */
	  if (total_space == 0)
	    break;

	  arg_reg++;
	}

      /* If there is any data left, push it onto the stack (in a single write
	 operation).  */
      if (total_space > 0)
	{
	  if (arc_debug)
	    debug_printf ("arc: passing %d bytes on stack\n", total_space);

	  sp -= total_space;
	  write_memory (sp, data, (int) total_space);
	}

      xfree (memory_image);
    }

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);

  return sp;
}

/* Implement the "push_dummy_code" gdbarch method.

   We don't actually push any code.  We just identify where a breakpoint can
   be inserted to which we are can return and the resume address where we
   should be called.

   ARC does not necessarily have an executable stack, so we can't put the
   return breakpoint there.  Instead we put it at the entry point of the
   function.  This means the SP is unchanged.

   SP is a current stack pointer FUNADDR is an address of the function to be
   called.  ARGS is arguments to pass.  NARGS is a number of args to pass.
   VALUE_TYPE is a type of value returned.  REAL_PC is a resume address when
   the function is called.  BP_ADDR is an address where breakpoint should be
   set.  Returns the updated stack pointer.  */

static CORE_ADDR
arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
		     struct value **args, int nargs, struct type *value_type,
		     CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
		     struct regcache *regcache)
{
  *real_pc = funaddr;
  *bp_addr = entry_point_address ();
  return sp;
}

/* Implement the "cannot_fetch_register" gdbarch method.  */

static int
arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
  /* Assume that register is readable if it is unknown.  LIMM and RESERVED are
     not real registers, but specific register numbers.  They are available as
     regnums to align architectural register numbers with GDB internal regnums,
     but they shouldn't appear in target descriptions generated by
     GDB-servers.  */
  switch (regnum)
    {
    case ARC_RESERVED_REGNUM:
    case ARC_LIMM_REGNUM:
      return true;
    default:
      return false;
    }
}

/* Implement the "cannot_store_register" gdbarch method.  */

static int
arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  /* Assume that register is writable if it is unknown.  See comment in
     arc_cannot_fetch_register about LIMM and RESERVED.  */
  switch (regnum)
    {
    case ARC_RESERVED_REGNUM:
    case ARC_LIMM_REGNUM:
    case ARC_PCL_REGNUM:
      return true;
    default:
      return false;
    }
}

/* Get the return value of a function from the registers/memory used to
   return it, according to the convention used by the ABI - 4-bytes values are
   in the R0, while 8-byte values are in the R0-R1.

   TODO: This implementation ignores the case of "complex double", where
   according to ABI, value is returned in the R0-R3 registers.

   TYPE is a returned value's type.  VALBUF is a buffer for the returned
   value.  */

static void
arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			  struct regcache *regcache, gdb_byte *valbuf)
{
  unsigned int len = TYPE_LENGTH (type);

  if (arc_debug)
    debug_printf ("arc: extract_return_value\n");

  if (len <= ARC_REGISTER_SIZE)
    {
      ULONGEST val;

      /* Get the return value from one register.  */
      regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
      store_unsigned_integer (valbuf, (int) len,
			      gdbarch_byte_order (gdbarch), val);

      if (arc_debug)
	debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE));
    }
  else if (len <= ARC_REGISTER_SIZE * 2)
    {
      ULONGEST low, high;

      /* Get the return value from two registers.  */
      regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
      regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);

      store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
			      gdbarch_byte_order (gdbarch), low);
      store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
			      (int) len - ARC_REGISTER_SIZE,
			      gdbarch_byte_order (gdbarch), high);

      if (arc_debug)
	debug_printf ("arc: returning 0x%s%s\n",
		      phex (high, ARC_REGISTER_SIZE),
		      phex (low, ARC_REGISTER_SIZE));
    }
  else
    error (_("arc: extract_return_value: type length %u too large"), len);
}


/* Store the return value of a function into the registers/memory used to
   return it, according to the convention used by the ABI.

   TODO: This implementation ignores the case of "complex double", where
   according to ABI, value is returned in the R0-R3 registers.

   TYPE is a returned value's type.  VALBUF is a buffer with the value to
   return.  */

static void
arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
			struct regcache *regcache, const gdb_byte *valbuf)
{
  unsigned int len = TYPE_LENGTH (type);

  if (arc_debug)
    debug_printf ("arc: store_return_value\n");

  if (len <= ARC_REGISTER_SIZE)
    {
      ULONGEST val;

      /* Put the return value into one register.  */
      val = extract_unsigned_integer (valbuf, (int) len,
				      gdbarch_byte_order (gdbarch));
      regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);

      if (arc_debug)
	debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE));
    }
  else if (len <= ARC_REGISTER_SIZE * 2)
    {
      ULONGEST low, high;

      /* Put the return value into  two registers.  */
      low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
				      gdbarch_byte_order (gdbarch));
      high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
				       (int) len - ARC_REGISTER_SIZE,
				       gdbarch_byte_order (gdbarch));

      regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
      regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);

      if (arc_debug)
	debug_printf ("arc: storing 0x%s%s\n",
		      phex (high, ARC_REGISTER_SIZE),
		      phex (low, ARC_REGISTER_SIZE));
    }
  else
    error (_("arc_store_return_value: type length too large."));
}

/* Implement the "get_longjmp_target" gdbarch method.  */

static int
arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  if (arc_debug)
    debug_printf ("arc: get_longjmp_target\n");

  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
  gdb_byte buf[ARC_REGISTER_SIZE];
  CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);

  if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
    return 0; /* Failed to read from memory.  */

  *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
				  gdbarch_byte_order (gdbarch));
  return 1;
}

/* Implement the "return_value" gdbarch method.  */

static enum return_value_convention
arc_return_value (struct gdbarch *gdbarch, struct value *function,
		  struct type *valtype, struct regcache *regcache,
		  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  /* If the return type is a struct, or a union, or would occupy more than two
     registers, the ABI uses the "struct return convention": the calling
     function passes a hidden first parameter to the callee (in R0).  That
     parameter is the address at which the value being returned should be
     stored.  Otherwise, the result is returned in registers.  */
  int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
			  || TYPE_CODE (valtype) == TYPE_CODE_UNION
			  || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);

  if (arc_debug)
    debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n",
		  host_address_to_string (readbuf),
		  host_address_to_string (writebuf));

  if (writebuf != NULL)
    {
      /* Case 1.  GDB should not ask us to set a struct return value: it
	 should know the struct return location and write the value there
	 itself.  */
      gdb_assert (!is_struct_return);
      arc_store_return_value (gdbarch, valtype, regcache, writebuf);
    }
  else if (readbuf != NULL)
    {
      /* Case 2.  GDB should not ask us to get a struct return value: it
	 should know the struct return location and read the value from there
	 itself.  */
      gdb_assert (!is_struct_return);
      arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
    }

  return (is_struct_return
	  ? RETURN_VALUE_STRUCT_CONVENTION
	  : RETURN_VALUE_REGISTER_CONVENTION);
}

/* Return the base address of the frame.  For ARC, the base address is the
   frame pointer.  */

static CORE_ADDR
arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
{
  return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
}

/* Helper function that returns valid pv_t for an instruction operand:
   either a register or a constant.  */

static pv_t
arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
{
  if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
    return regs[insn.operands[operand].value];
  else
    return pv_constant (arc_insn_get_operand_value (insn, operand));
}

/* Determine whether the given disassembled instruction may be part of a
   function prologue.  If it is, the information in the frame unwind cache will
   be updated.  */

static bool
arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
		    pv_t *regs, struct pv_area *stack)
{
  /* It might be that currently analyzed address doesn't contain an
     instruction, hence INSN is not valid.  It likely means that address points
     to a data, non-initialized memory, or middle of a 32-bit instruction.  In
     practice this may happen if GDB connects to a remote target that has
     non-zeroed memory.  GDB would read PC value and would try to analyze
     prologue, but there is no guarantee that memory contents at the address
     specified in PC is address is a valid instruction.  There is not much that
     that can be done about that.  */
  if (!insn.valid)
    return false;

  /* Branch/jump or a predicated instruction.  */
  if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
    return false;

  /* Store of some register.  May or may not update base address register.  */
  if (insn.insn_class == STORE || insn.insn_class == PUSH)
    {
      /* There is definetely at least one operand - register/value being
	 stored.  */
      gdb_assert (insn.operands_count > 0);

      /* Store at some constant address.  */
      if (insn.operands_count > 1
	  && insn.operands[1].kind != ARC_OPERAND_KIND_REG)
	return false;

      /* Writeback modes:
	 Mode	Address used		    Writeback value
	 --------------------------------------------------
	 No	reg + offset		    no
	 A/AW	reg + offset		    reg + offset
	 AB	reg			    reg + offset
	 AS	reg + (offset << scaling)   no

	 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding.  However
	 16-bit PUSH_S is a distinct instruction encoding, where offset and
	 base register are implied through opcode.  */

      /* Register with base memory address.  */
      int base_reg = arc_insn_get_memory_base_reg (insn);

      /* Address where to write.  arc_insn_get_memory_offset returns scaled
	 value for ARC_WRITEBACK_AS.  */
      pv_t addr;
      if (insn.writeback_mode == ARC_WRITEBACK_AB)
	addr = regs[base_reg];
      else
	addr = pv_add_constant (regs[base_reg],
				arc_insn_get_memory_offset (insn));

      if (pv_area_store_would_trash (stack, addr))
	return false;

      if (insn.data_size_mode != ARC_SCALING_D)
	{
	  /* Find the value being stored.  */
	  pv_t store_value = arc_pv_get_operand (regs, insn, 0);

	  /* What is the size of a the stored value?  */
	  CORE_ADDR size;
	  if (insn.data_size_mode == ARC_SCALING_B)
	    size = 1;
	  else if (insn.data_size_mode == ARC_SCALING_H)
	    size = 2;
	  else
	    size = ARC_REGISTER_SIZE;

	  pv_area_store (stack, addr, size, store_value);
	}
      else
	{
	  if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
	    {
	      /* If this is a double store, than write N+1 register as well.  */
	      pv_t store_value1 = regs[insn.operands[0].value];
	      pv_t store_value2 = regs[insn.operands[0].value + 1];
	      pv_area_store (stack, addr, ARC_REGISTER_SIZE, store_value1);
	      pv_area_store (stack,
			     pv_add_constant (addr, ARC_REGISTER_SIZE),
			     ARC_REGISTER_SIZE, store_value2);
	    }
	  else
	    {
	      pv_t store_value
		= pv_constant (arc_insn_get_operand_value (insn, 0));
	      pv_area_store (stack, addr, ARC_REGISTER_SIZE * 2, store_value);
	    }
	}

      /* Is base register updated?  */
      if (insn.writeback_mode == ARC_WRITEBACK_A
	  || insn.writeback_mode == ARC_WRITEBACK_AB)
	regs[base_reg] = pv_add_constant (regs[base_reg],
					  arc_insn_get_memory_offset (insn));

      return true;
    }
  else if (insn.insn_class == MOVE)
    {
      gdb_assert (insn.operands_count == 2);

      /* Destination argument can be "0", so nothing will happen.  */
      if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
	{
	  int dst_regnum = insn.operands[0].value;
	  regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
	}
      return true;
    }
  else if (insn.insn_class == SUB)
    {
      gdb_assert (insn.operands_count == 3);

      /* SUB 0,b,c.  */
      if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
	return true;

      int dst_regnum = insn.operands[0].value;
      regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
				      arc_pv_get_operand (regs, insn, 2));
      return true;
    }
  else if (insn.insn_class == ENTER)
    {
      /* ENTER_S is a prologue-in-instruction - it saves all callee-saved
	 registers according to given arguments thus greatly reducing code
	 size.  Which registers will be actually saved depends on arguments.

	 ENTER_S {R13-...,FP,BLINK} stores registers in following order:

	 new SP ->
		   BLINK
		   R13
		   R14
		   R15
		   ...
		   FP
	 old SP ->

	 There are up to three arguments for this opcode, as presented by ARC
	 disassembler:
	 1) amount of general-purpose registers to be saved - this argument is
	    always present even when it is 0;
	 2) FP register number (27) if FP has to be stored, otherwise argument
	    is not present;
	 3) BLINK register number (31) if BLINK has to be stored, otherwise
	    argument is not present.  If both FP and BLINK are stored, then FP
	    is present before BLINK in argument list.  */
      gdb_assert (insn.operands_count > 0);

      int regs_saved = arc_insn_get_operand_value (insn, 0);

      bool is_fp_saved;
      if (insn.operands_count > 1)
	is_fp_saved = (insn.operands[1].value  == ARC_FP_REGNUM);
      else
	is_fp_saved = false;

      bool is_blink_saved;
      if (insn.operands_count > 1)
	is_blink_saved = (insn.operands[insn.operands_count - 1].value
			  == ARC_BLINK_REGNUM);
      else
	is_blink_saved = false;

      /* Amount of bytes to be allocated to store specified registers.  */
      CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
			   * ARC_REGISTER_SIZE);
      pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);

      /* Assume that if the last register (closest to new SP) can be written,
	 then it is possible to write all of them.  */
      if (pv_area_store_would_trash (stack, new_sp))
	return false;

      /* Current store address.  */
      pv_t addr = regs[ARC_SP_REGNUM];

      if (is_fp_saved)
	{
	  addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
	  pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
	}

      /* Registers are stored in backward order: from GP (R26) to R13.  */
      for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
	{
	  addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
	  pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[i]);
	}

      if (is_blink_saved)
	{
	  addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
	  pv_area_store (stack, addr, ARC_REGISTER_SIZE,
			 regs[ARC_BLINK_REGNUM]);
	}

      gdb_assert (pv_is_identical (addr, new_sp));

      regs[ARC_SP_REGNUM] = new_sp;

      if (is_fp_saved)
	regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];

      return true;
    }

  /* Some other architectures, like nds32 or arm, try to continue as far as
     possible when building a prologue cache (as opposed to when skipping
     prologue), so that cache will be as full as possible.  However current
     code for ARC doesn't recognize some instructions that may modify SP, like
     ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
     clobbered by the skipped instruction.  Potential existence of extension
     instruction, which may do anything they want makes this even more complex,
     so it is just better to halt on a first unrecognized instruction.  */

  return false;
}

/* Copy of gdb_buffered_insn_length_fprintf from disasm.c.  */

static int ATTRIBUTE_PRINTF (2, 3)
arc_fprintf_disasm (void *stream, const char *format, ...)
{
  return 0;
}

struct disassemble_info
arc_disassemble_info (struct gdbarch *gdbarch)
{
  struct disassemble_info di;
  init_disassemble_info (&di, &null_stream, arc_fprintf_disasm);
  di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
  di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
  di.endian = gdbarch_byte_order (gdbarch);
  di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr,
			   unsigned int len, struct disassemble_info *info)
    {
      return target_read_code (memaddr, myaddr, len);
    };
  return di;
}

/* Analyze the prologue and update the corresponding frame cache for the frame
   unwinder for unwinding frames that doesn't have debug info.  In such
   situation GDB attempts to parse instructions in the prologue to understand
   where each register is saved.

   If CACHE is not NULL, then it will be filled with information about saved
   registers.

   There are several variations of prologue which GDB may encouter.  "Full"
   prologue looks like this:

	sub	sp,sp,<imm>   ; Space for variadic arguments.
	push	blink	      ; Store return address.
	push	r13	      ; Store callee saved registers (up to R26/GP).
	push	r14
	push	fp	      ; Store frame pointer.
	mov	fp,sp	      ; Update frame pointer.
	sub	sp,sp,<imm>   ; Create space for local vars on the stack.

   Depending on compiler options lots of things may change:

    1) BLINK is not saved in leaf functions.
    2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
    3) 16-bit versions of those instructions may be used.
    4) Instead of a sequence of several push'es, compiler may instead prefer to
    do one subtract on stack pointer and then store registers using normal
    store, that doesn't update SP.  Like this:


	sub	sp,sp,8		; Create space for calee-saved registers.
	st	r13,[sp,4]      ; Store callee saved registers (up to R26/GP).
	st	r14,[sp,0]

    5) ENTER_S instruction can encode most of prologue sequence in one
    instruction (except for those subtracts for variadic arguments and local
    variables).
    6) GCC may use "millicode" functions from libgcc to store callee-saved
    registers with minimal code-size requirements.  This function currently
    doesn't support this.

   ENTRYPOINT is a function entry point where prologue starts.

   LIMIT_PC is a maximum possible end address of prologue (meaning address
   of first instruction after the prologue).  It might also point to the middle
   of prologue if execution has been stopped by the breakpoint at this address
   - in this case debugger should analyze prologue only up to this address,
   because further instructions haven't been executed yet.

   Returns address of the first instruction after the prologue.  */

static CORE_ADDR
arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
		      const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
{
  if (arc_debug)
    debug_printf ("arc: analyze_prologue (entrypoint=%s, limit_pc=%s)\n",
		  paddress (gdbarch, entrypoint),
		  paddress (gdbarch, limit_pc));

  /* Prologue values.  Only core registers can be stored.  */
  pv_t regs[ARC_LAST_CORE_REGNUM + 1];
  for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
    regs[i] = pv_register (i, 0);
  struct pv_area *stack = make_pv_area (ARC_SP_REGNUM,
					gdbarch_addr_bit (gdbarch));
  struct cleanup *back_to = make_cleanup_free_pv_area (stack);

  CORE_ADDR current_prologue_end = entrypoint;

  /* Look at each instruction in the prologue.  */
  while (current_prologue_end < limit_pc)
    {
      struct arc_instruction insn;
      struct disassemble_info di = arc_disassemble_info (gdbarch);
      arc_insn_decode (current_prologue_end, &di, arc_delayed_print_insn,
		       &insn);

      if (arc_debug >= 2)
	arc_insn_dump (insn);

      /* If this instruction is in the prologue, fields in the cache will be
	 updated, and the saved registers mask may be updated.  */
      if (!arc_is_in_prologue (gdbarch, insn, regs, stack))
	{
	  /* Found an instruction that is not in the prologue.  */
	  if (arc_debug)
	    debug_printf ("arc: End of prologue reached at address %s\n",
			  paddress (gdbarch, insn.address));
	  break;
	}

      current_prologue_end = arc_insn_get_linear_next_pc (insn);
    }

  if (cache != NULL)
    {
      /* Figure out if it is a frame pointer or just a stack pointer.  */
      if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
	{
	  cache->frame_base_reg = ARC_FP_REGNUM;
	  cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
	}
      else
	{
	  cache->frame_base_reg = ARC_SP_REGNUM;
	  cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
	}

      /* Assign offset from old SP to all saved registers.  */
      for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
	{
	  CORE_ADDR offset;
	  if (pv_area_find_reg (stack, gdbarch, i, &offset))
	    cache->saved_regs[i].addr = offset;
	}
    }

  do_cleanups (back_to);
  return current_prologue_end;
}

/* Estimated maximum prologue length in bytes.  This should include:
   1) Store instruction for each callee-saved register (R25 - R13 + 1)
   2) Two instructions for FP
   3) One for BLINK
   4) Three substract instructions for SP (for variadic args, for
   callee saved regs and for local vars) and assuming that those SUB use
   long-immediate (hence double length).
   5) Stores of arguments registers are considered part of prologue too
      (R7 - R1 + 1).
   This is quite an extreme case, because even with -O0 GCC will collapse first
   two SUBs into one and long immediate values are quite unlikely to appear in
   this case, but still better to overshoot a bit - prologue analysis will
   anyway stop at the first instruction that doesn't fit prologue, so this
   limit will be rarely reached.  */

const static int MAX_PROLOGUE_LENGTH
  = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
	 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);

/* Implement the "skip_prologue" gdbarch method.

   Skip the prologue for the function at PC.  This is done by checking from
   the line information read from the DWARF, if possible; otherwise, we scan
   the function prologue to find its end.  */

static CORE_ADDR
arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  if (arc_debug)
    debug_printf ("arc: skip_prologue\n");

  CORE_ADDR func_addr;
  const char *func_name;

  /* See what the symbol table says.  */
  if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
    {
      /* Found a function.  */
      CORE_ADDR postprologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (postprologue_pc != 0)
	return std::max (pc, postprologue_pc);
    }

  /* No prologue info in symbol table, have to analyze prologue.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If there is no debug information about prologue end, then
     skip_prologue_using_sal will return 0.  */
  CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);

  /* If there is no debug information at all, it is required to give some
     semi-arbitrary hard limit on amount of bytes to scan during prologue
     analysis.  */
  if (limit_pc == 0)
    limit_pc = pc + MAX_PROLOGUE_LENGTH;

  /* Find the address of the first instruction after the prologue by scanning
     through it - no other information is needed, so pass NULL as a cache.  */
  return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
}

/* Implement the "print_insn" gdbarch method.

   arc_get_disassembler () may return different functions depending on bfd
   type, so it is not possible to pass print_insn directly to
   set_gdbarch_print_insn ().  Instead this wrapper function is used.  It also
   may be used by other functions to get disassemble_info for address.  It is
   important to note, that those print_insn from opcodes always print
   instruction to the stream specified in the INFO.  If this is not desired,
   then either `print_insn` function in INFO should be set to some function
   that will not print, or `stream` should be different from standard
   gdb_stdlog.  */

int
arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
{
  /* Standard BFD "machine number" field allows libocodes disassembler to
     distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
     and HS, which have some difference between.  There are two ways to specify
     what is the target core:
     1) via the disassemble_info->disassembler_options;
     2) otherwise libopcodes will use private (architecture-specific) ELF
     header.

     Using disassembler_options is preferable, because it comes directly from
     GDBserver which scanned an actual ARC core identification info.  However,
     not all GDBservers report core architecture, so as a fallback GDB still
     should support analysis of ELF header.  The libopcodes disassembly code
     uses the section to find the BFD and the BFD to find the ELF header,
     therefore this function should set disassemble_info->section properly.

     disassembler_options was already set by non-target specific code with
     proper options obtained via gdbarch_disassembler_options ().

     This function might be called multiple times in a sequence, reusing same
     disassemble_info.  */
  if ((info->disassembler_options == NULL) && (info->section == NULL))
    {
      struct obj_section *s = find_pc_section (addr);
      if (s != NULL)
	info->section = s->the_bfd_section;
    }

  return default_print_insn (addr, info);
}

/* Baremetal breakpoint instructions.

   ARC supports both big- and little-endian.  However, instructions for
   little-endian processors are encoded in the middle-endian: half-words are
   in big-endian, while bytes inside the half-words are in little-endian; data
   is represented in the "normal" little-endian.  Big-endian processors treat
   data and code identically.

   Assuming the number 0x01020304, it will be presented this way:

   Address            :  N   N+1  N+2  N+3
   little-endian      : 0x04 0x03 0x02 0x01
   big-endian         : 0x01 0x02 0x03 0x04
   ARC middle-endian  : 0x02 0x01 0x04 0x03
  */

static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };

/* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
   (little endian) or 0xff7f (big endian).  We used to insert BRK_S even
   instead of 32-bit instructions, which works mostly ok, unless breakpoint is
   inserted into delay slot instruction.  In this case if branch is taken
   BLINK value will be set to address of instruction after delay slot, however
   if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
   then BLINK value will have an invalid value - it will point to the address
   after the BRK_S (which was there at the moment of branch execution) while
   it should point to the address after the 32-bit long instruction.  To avoid
   such issues this function disassembles instruction at target location and
   evaluates it value.

   ARC 600 supports only 16-bit BRK_S.

   NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S.  BRK[_S]
   is much better because it doesn't commit unlike TRAP_S, so it can be set in
   delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
   in GDB for user-space.  */

/* Implement the "breakpoint_kind_from_pc" gdbarch method.  */

static int
arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);

  /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
     BRK.  LIMM is part of instruction length, so it can be either 4 or 8
     bytes for 32-bit instructions.  */
  if ((length_with_limm == 4 || length_with_limm == 8)
      && !arc_mach_is_arc600 (gdbarch))
    return sizeof (arc_brk_le);
  else
    return sizeof (arc_brk_s_le);
}

/* Implement the "sw_breakpoint_from_kind" gdbarch method.  */

static const gdb_byte *
arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  *size = kind;

  if (kind == sizeof (arc_brk_le))
    {
      return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	      ? arc_brk_be
	      : arc_brk_le);
    }
  else
    {
      return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	      ? arc_brk_s_be
	      : arc_brk_s_le);
    }
}

/* Implement the "unwind_pc" gdbarch method.  */

static CORE_ADDR
arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  int pc_regnum = gdbarch_pc_regnum (gdbarch);
  CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum);

  if (arc_debug)
    debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc));

  return pc;
}

/* Implement the "unwind_sp" gdbarch method.  */

static CORE_ADDR
arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  int sp_regnum = gdbarch_sp_regnum (gdbarch);
  CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum);

  if (arc_debug)
    debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp));

  return sp;
}

/* Implement the "frame_align" gdbarch method.  */

static CORE_ADDR
arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return align_down (sp, 4);
}

/* Dump the frame info.  Used for internal debugging only.  */

static void
arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
		       struct arc_frame_cache *cache, int addresses_known)
{
  debug_printf ("arc: frame_info %s\n", message);
  debug_printf ("arc: prev_sp = %s\n", paddress (gdbarch, cache->prev_sp));
  debug_printf ("arc: frame_base_reg = %i\n", cache->frame_base_reg);
  debug_printf ("arc: frame_base_offset = %s\n",
		plongest (cache->frame_base_offset));

  for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
    {
      if (trad_frame_addr_p (cache->saved_regs, i))
	debug_printf ("arc: saved register %s at %s %s\n",
		      gdbarch_register_name (gdbarch, i),
		      (addresses_known) ? "address" : "offset",
		      paddress (gdbarch, cache->saved_regs[i].addr));
    }
}

/* Frame unwinder for normal frames.  */

static struct arc_frame_cache *
arc_make_frame_cache (struct frame_info *this_frame)
{
  if (arc_debug)
    debug_printf ("arc: frame_cache\n");

  struct gdbarch *gdbarch = get_frame_arch (this_frame);

  CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
  CORE_ADDR entrypoint, prologue_end;
  if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
    {
      struct symtab_and_line sal = find_pc_line (entrypoint, 0);
      CORE_ADDR prev_pc = get_frame_pc (this_frame);
      if (sal.line == 0)
	/* No line info so use current PC.  */
	prologue_end = prev_pc;
      else if (sal.end < prologue_end)
	/* The next line begins after the function end.  */
	prologue_end = sal.end;

      prologue_end = std::min (prologue_end, prev_pc);
    }
  else
    {
      /* If find_pc_partial_function returned nothing then there is no symbol
	 information at all for this PC.  Currently it is assumed in this case
	 that current PC is entrypoint to function and try to construct the
	 frame from that.  This is, probably, suboptimal, for example ARM
	 assumes in this case that program is inside the normal frame (with
	 frame pointer).  ARC, perhaps, should try to do the same.  */
      entrypoint = get_frame_register_unsigned (this_frame,
						gdbarch_pc_regnum (gdbarch));
      prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
    }

  /* Allocate new frame cache instance and space for saved register info.
     FRAME_OBSTACK_ZALLOC will initialize fields to zeroes.  */
  struct arc_frame_cache *cache
    = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);

  if (arc_debug)
    arc_print_frame_cache (gdbarch, "after prologue", cache, false);

  CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
						      cache->frame_base_reg);
  if (unwound_fb == 0)
    return cache;
  cache->prev_sp = unwound_fb + cache->frame_base_offset;

  for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
    {
      if (trad_frame_addr_p (cache->saved_regs, i))
	cache->saved_regs[i].addr += cache->prev_sp;
    }

  if (arc_debug)
    arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);

  return cache;
}

/* Implement the "this_id" frame_unwind method.  */

static void
arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
		   struct frame_id *this_id)
{
  if (arc_debug)
    debug_printf ("arc: frame_this_id\n");

  struct gdbarch *gdbarch = get_frame_arch (this_frame);

  if (*this_cache == NULL)
    *this_cache = arc_make_frame_cache (this_frame);
  struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);

  CORE_ADDR stack_addr = cache->prev_sp;

  /* There are 4 possible situation which decide how frame_id->code_addr is
     evaluated:

     1) Function is compiled with option -g.  Then frame_id will be created
     in dwarf_* function and not in this function.  NB: even if target
     binary is compiled with -g, some std functions like __start and _init
     are not, so they still will follow one of the following choices.

     2) Function is compiled without -g and binary hasn't been stripped in
     any way.  In this case GDB still has enough information to evaluate
     frame code_addr properly.  This case is covered by call to
     get_frame_func ().

     3) Binary has been striped with option -g (strip debug symbols).  In
     this case there is still enough symbols for get_frame_func () to work
     properly, so this case is also covered by it.

     4) Binary has been striped with option -s (strip all symbols).  In this
     case GDB cannot get function start address properly, so we return current
     PC value instead.
   */
  CORE_ADDR code_addr = get_frame_func (this_frame);
  if (code_addr == 0)
    code_addr = get_frame_register_unsigned (this_frame,
					     gdbarch_pc_regnum (gdbarch));

  *this_id = frame_id_build (stack_addr, code_addr);
}

/* Implement the "prev_register" frame_unwind method.  */

static struct value *
arc_frame_prev_register (struct frame_info *this_frame,
			 void **this_cache, int regnum)
{
  if (*this_cache == NULL)
    *this_cache = arc_make_frame_cache (this_frame);
  struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);

  struct gdbarch *gdbarch = get_frame_arch (this_frame);

  /* If we are asked to unwind the PC, then we need to return BLINK instead:
     the saved value of PC points into this frame's function's prologue, not
     the next frame's function's resume location.  */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    regnum = ARC_BLINK_REGNUM;

  /* SP is a special case - we should return prev_sp, because
     trad_frame_get_prev_register will return _current_ SP value.
     Alternatively we could have stored cache->prev_sp in the cache->saved
     regs, but here we follow the lead of AArch64, ARM and Xtensa and will
     leave that logic in this function, instead of prologue analyzers.  That I
     think is a bit more clear as `saved_regs` should contain saved regs, not
     computable.

     Because value has been computed, "got_constant" should be used, so that
     returned value will be a "not_lval" - immutable.  */

  if (regnum == gdbarch_sp_regnum (gdbarch))
    return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);

  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}

/* Implement the "init_reg" dwarf2_frame method.  */

static void
arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			   struct dwarf2_frame_state_reg *reg,
			   struct frame_info *info)
{
  if (regnum == gdbarch_pc_regnum (gdbarch))
    /* The return address column.  */
    reg->how = DWARF2_FRAME_REG_RA;
  else if (regnum == gdbarch_sp_regnum (gdbarch))
    /* The call frame address.  */
    reg->how = DWARF2_FRAME_REG_CFA;
}

/* Structure defining the ARC ordinary frame unwind functions.  Since we are
   the fallback unwinder, we use the default frame sniffer, which always
   accepts the frame.  */

static const struct frame_unwind arc_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  arc_frame_this_id,
  arc_frame_prev_register,
  NULL,
  default_frame_sniffer,
  NULL,
  NULL
};


static const struct frame_base arc_normal_base = {
  &arc_frame_unwind,
  arc_frame_base_address,
  arc_frame_base_address,
  arc_frame_base_address
};

/* Initialize target description for the ARC.

   Returns TRUE if input tdesc was valid and in this case it will assign TDESC
   and TDESC_DATA output parameters.  */

static int
arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
		struct tdesc_arch_data **tdesc_data)
{
  if (arc_debug)
    debug_printf ("arc: Target description initialization.\n");

  const struct target_desc *tdesc_loc = info.target_desc;

  /* Depending on whether this is ARCompact or ARCv2 we will assign
     different default registers sets (which will differ in exactly two core
     registers).  GDB will also refuse to accept register feature from invalid
     ISA - v2 features can be used only with v2 ARChitecture.  We read
     bfd_arch_info, which looks like to be a safe bet here, as it looks like it
     is always initialized even when we don't pass any elf file to GDB at all
     (it uses default arch in this case).  Also GDB will call this function
     multiple times, and if XML target description file contains architecture
     specifications, then GDB will set this architecture to info.bfd_arch_info,
     overriding value from ELF file if they are different.  That means that,
     where matters, this value is always our best guess on what CPU we are
     debugging.  It has been noted that architecture specified in tdesc file
     has higher precedence over ELF and even "set architecture" - that is,
     using "set architecture" command will have no effect when tdesc has "arch"
     tag.  */
  /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet.  */
  const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2);
  int is_reduced_rf;
  const char *const *core_regs;
  const char *core_feature_name;

  /* If target doesn't provide a description - use default one.  */
  if (!tdesc_has_registers (tdesc_loc))
    {
      if (is_arcv2)
	{
	  tdesc_loc = tdesc_arc_v2;
	  if (arc_debug)
	    debug_printf ("arc: Using default register set for ARC v2.\n");
	}
      else
	{
	  tdesc_loc = tdesc_arc_arcompact;
	  if (arc_debug)
	    debug_printf ("arc: Using default register set for ARCompact.\n");
	}
    }
  else
    {
      if (arc_debug)
	debug_printf ("arc: Using provided register set.\n");
    }
  gdb_assert (tdesc_loc != NULL);

  /* Now we can search for base registers.  Core registers can be either full
     or reduced.  Summary:

     - core.v2 + aux-minimal
     - core-reduced.v2 + aux-minimal
     - core.arcompact + aux-minimal

     NB: It is entirely feasible to have ARCompact with reduced core regs, but
     we ignore that because GCC doesn't support that and at the same time
     ARCompact is considered obsolete, so there is not much reason to support
     that.  */
  const struct tdesc_feature *feature
    = tdesc_find_feature (tdesc_loc, core_v2_feature_name);
  if (feature != NULL)
    {
      /* Confirm that register and architecture match, to prevent accidents in
	 some situations.  This code will trigger an error if:

	 1. XML tdesc doesn't specify arch explicitly, registers are for arch
	 X, but ELF specifies arch Y.

	 2. XML tdesc specifies arch X, but contains registers for arch Y.

	 It will not protect from case where XML or ELF specify arch X,
	 registers are for the same arch X, but the real target is arch Y.  To
	 detect this case we need to check IDENTITY register.  */
      if (!is_arcv2)
	{
	  arc_print (_("Error: ARC v2 target description supplied for "
		       "non-ARCv2 target.\n"));
	  return FALSE;
	}

      is_reduced_rf = FALSE;
      core_feature_name = core_v2_feature_name;
      core_regs = core_v2_register_names;
    }
  else
    {
      feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name);
      if (feature != NULL)
	{
	  if (!is_arcv2)
	    {
	      arc_print (_("Error: ARC v2 target description supplied for "
			   "non-ARCv2 target.\n"));
	      return FALSE;
	    }

	  is_reduced_rf = TRUE;
	  core_feature_name = core_reduced_v2_feature_name;
	  core_regs = core_v2_register_names;
	}
      else
	{
	  feature = tdesc_find_feature (tdesc_loc,
					core_arcompact_feature_name);
	  if (feature != NULL)
	    {
	      if (is_arcv2)
		{
		  arc_print (_("Error: ARCompact target description supplied "
			       "for non-ARCompact target.\n"));
		  return FALSE;
		}

	      is_reduced_rf = FALSE;
	      core_feature_name = core_arcompact_feature_name;
	      core_regs = core_arcompact_register_names;
	    }
	  else
	    {
	      arc_print (_("Error: Couldn't find core register feature in "
			   "supplied target description."));
	      return FALSE;
	    }
	}
    }

  struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc ();

  gdb_assert (feature != NULL);
  int valid_p = 1;

  for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
    {
      /* If rf16, then skip extra registers.  */
      if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM)
			    || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM)))
	continue;

      valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i,
					 core_regs[i]);

      /* - Ignore errors in extension registers - they are optional.
	 - Ignore missing ILINK because it doesn't make sense for Linux.
	 - Ignore missing ILINK2 when architecture is ARCompact, because it
	 doesn't make sense for Linux targets.

	 In theory those optional registers should be in separate features, but
	 that would create numerous but tiny features, which looks like an
	 overengineering of a rather simple task.  */
      if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM
		       || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM
		       || (i == ARC_R30_REGNUM && is_arcv2)))
	{
	  arc_print (_("Error: Cannot find required register `%s' in "
		       "feature `%s'.\n"), core_regs[i], core_feature_name);
	  tdesc_data_cleanup (tdesc_data_loc);
	  return FALSE;
	}
    }

  /* Mandatory AUX registeres are intentionally few and are common between
     ARCompact and ARC v2, so same code can be used for both.  */
  feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name);
  if (feature == NULL)
    {
      arc_print (_("Error: Cannot find required feature `%s' in supplied "
		   "target description.\n"), aux_minimal_feature_name);
      tdesc_data_cleanup (tdesc_data_loc);
      return FALSE;
    }

  for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++)
    {
      const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM];
      valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name);
      if (!valid_p)
	{
	  arc_print (_("Error: Cannot find required register `%s' "
		       "in feature `%s'.\n"),
		     name, tdesc_feature_name (feature));
	  tdesc_data_cleanup (tdesc_data_loc);
	  return FALSE;
	}
    }

  *tdesc = tdesc_loc;
  *tdesc_data = tdesc_data_loc;

  return TRUE;
}

/* Implement the "init" gdbarch method.  */

static struct gdbarch *
arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  const struct target_desc *tdesc;
  struct tdesc_arch_data *tdesc_data;

  if (arc_debug)
    debug_printf ("arc: Architecture initialization.\n");

  if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
    return NULL;

  /* Allocate the ARC-private target-dependent information structure, and the
     GDB target-independent information structure.  */
  struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
  tdep->jb_pc = -1; /* No longjmp support by default.  */
  struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);

  /* Data types.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_long_long_align_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_write_pc (gdbarch, arc_write_pc);

  set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);

  /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
     parsed by gdbarch_init, and then it will add all of the remaining
     registers and will increase number of registers.  */
  set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, -1);	/* No FPU registers.  */

  set_gdbarch_dummy_id (gdbarch, arc_dummy_id);
  set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
  set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);

  set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
  set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  set_gdbarch_return_value (gdbarch, arc_return_value);

  set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);

  /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores.  */
  if (!arc_mach_is_arc600 (gdbarch))
    set_gdbarch_decr_pc_after_break (gdbarch, 0);
  else
    set_gdbarch_decr_pc_after_break (gdbarch, 2);

  set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp);

  set_gdbarch_frame_align (gdbarch, arc_frame_align);

  set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);

  set_gdbarch_cannot_step_breakpoint (gdbarch, 1);

  /* "nonsteppable" watchpoint means that watchpoint triggers before
     instruction is committed, therefore it is required to remove watchpoint
     to step though instruction that triggers it.  ARC watchpoints trigger
     only after instruction is committed, thus there is no need to remove
     them.  In fact on ARC watchpoint for memory writes may trigger with more
     significant delay, like one or two instructions, depending on type of
     memory where write is performed (CCM or external) and next instruction
     after the memory write.  */
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);

  /* This doesn't include possible long-immediate value.  */
  set_gdbarch_max_insn_length (gdbarch, 4);

  /* Frame unwinders and sniffers.  */
  dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
  frame_base_set_default (gdbarch, &arc_normal_base);

  /* Setup stuff specific to a particular environment (baremetal or Linux).
     It can override functions set earlier.  */
  gdbarch_init_osabi (info, gdbarch);

  if (tdep->jb_pc >= 0)
    set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);

  /* Disassembler options.  Enforce CPU if it was specified in XML target
     description, otherwise use default method of determining CPU (ELF private
     header).  */
  if (info.target_desc != NULL)
    {
      const struct bfd_arch_info *tdesc_arch
	= tdesc_architecture (info.target_desc);
      if (tdesc_arch != NULL)
	{
	  xfree (arc_disassembler_options);
	  /* FIXME: It is not really good to change disassembler options
	     behind the scene, because that might override options
	     specified by the user.  However as of now ARC doesn't support
	     `set disassembler-options' hence this code is the only place
	     where options are changed.  It also changes options for all
	     existing gdbarches, which also can be problematic, if
	     arc_gdbarch_init will start reusing existing gdbarch
	     instances.  */
	  arc_disassembler_options = xstrprintf ("cpu=%s",
						 tdesc_arch->printable_name);
	  set_gdbarch_disassembler_options (gdbarch,
					    &arc_disassembler_options);
	}
    }

  tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  return gdbarch;
}

/* Implement the "dump_tdep" gdbarch method.  */

static void
arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  fprintf_unfiltered (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
}

/* Wrapper for "maintenance print arc" list of commands.  */

static void
maintenance_print_arc_command (char *args, int from_tty)
{
  cmd_show_list (maintenance_print_arc_list, from_tty, "");
}

/* This command accepts single argument - address of instruction to
   disassemble.  */

static void
dump_arc_instruction_command (char *args, int from_tty)
{
  struct value *val;
  if (args != NULL && strlen (args) > 0)
    val = evaluate_expression (parse_expression (args).get ());
  else
    val = access_value_history (0);
  record_latest_value (val);

  CORE_ADDR address = value_as_address (val);
  struct arc_instruction insn;
  struct disassemble_info di = arc_disassemble_info (target_gdbarch ());
  arc_insn_decode (address, &di, arc_delayed_print_insn, &insn);
  arc_insn_dump (insn);
}

/* Suppress warning from -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_arc_tdep;

void
_initialize_arc_tdep (void)
{
  gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);

  initialize_tdesc_arc_v2 ();
  initialize_tdesc_arc_arcompact ();

  /* Register ARC-specific commands with gdb.  */

  /* Add root prefix command for "maintenance print arc" commands.  */
  add_prefix_cmd ("arc", class_maintenance, maintenance_print_arc_command,
		  _("ARC-specific maintenance commands for printing GDB "
		    "internal state."),
		  &maintenance_print_arc_list, "maintenance print arc ", 0,
		  &maintenanceprintlist);

  add_cmd ("arc-instruction", class_maintenance,
	   dump_arc_instruction_command,
	   _("Dump arc_instruction structure for specified address."),
	   &maintenance_print_arc_list);

  /* Debug internals for ARC GDB.  */
  add_setshow_zinteger_cmd ("arc", class_maintenance,
			    &arc_debug,
			    _("Set ARC specific debugging."),
			    _("Show ARC specific debugging."),
			    _("Non-zero enables ARC specific debugging."),
			    NULL, NULL, &setdebuglist, &showdebuglist);
}