1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
/* ARC target-dependent stuff.
Copyright (C) 1995, 1997 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "floatformat.h"
#include "symtab.h"
#include "gdbcmd.h"
/* Local functions */
static int arc_set_cpu_type (char *str);
/* Current CPU, set with the "set cpu" command. */
static int arc_bfd_mach_type;
char *arc_cpu_type;
char *tmp_arc_cpu_type;
/* Table of cpu names. */
struct
{
char *name;
int value;
}
arc_cpu_type_table[] =
{
{
"base", bfd_mach_arc_base
}
,
{
NULL, 0
}
};
/* Used by simulator. */
int display_pipeline_p;
int cpu_timer;
/* This one must have the same type as used in the emulator.
It's currently an enum so this should be ok for now. */
int debug_pipeline_p;
#define ARC_CALL_SAVED_REG(r) ((r) >= 16 && (r) < 24)
#define OPMASK 0xf8000000
/* Instruction field accessor macros.
See the Programmer's Reference Manual. */
#define X_OP(i) (((i) >> 27) & 0x1f)
#define X_A(i) (((i) >> 21) & 0x3f)
#define X_B(i) (((i) >> 15) & 0x3f)
#define X_C(i) (((i) >> 9) & 0x3f)
#define X_D(i) ((((i) & 0x1ff) ^ 0x100) - 0x100)
#define X_L(i) (((((i) >> 5) & 0x3ffffc) ^ 0x200000) - 0x200000)
#define X_N(i) (((i) >> 5) & 3)
#define X_Q(i) ((i) & 0x1f)
/* Return non-zero if X is a short immediate data indicator. */
#define SHIMM_P(x) ((x) == 61 || (x) == 63)
/* Return non-zero if X is a "long" (32 bit) immediate data indicator. */
#define LIMM_P(x) ((x) == 62)
/* Build a simple instruction. */
#define BUILD_INSN(op, a, b, c, d) \
((((op) & 31) << 27) \
| (((a) & 63) << 21) \
| (((b) & 63) << 15) \
| (((c) & 63) << 9) \
| ((d) & 511))
/* Codestream stuff. */
static void codestream_read PARAMS ((unsigned int *, int));
static void codestream_seek PARAMS ((CORE_ADDR));
static unsigned int codestream_fill PARAMS ((int));
#define CODESTREAM_BUFSIZ 16
static CORE_ADDR codestream_next_addr;
static CORE_ADDR codestream_addr;
/* FIXME assumes sizeof (int) == 32? */
static unsigned int codestream_buf[CODESTREAM_BUFSIZ];
static int codestream_off;
static int codestream_cnt;
#define codestream_tell() \
(codestream_addr + codestream_off * sizeof (codestream_buf[0]))
#define codestream_peek() \
(codestream_cnt == 0 \
? codestream_fill (1) \
: codestream_buf[codestream_off])
#define codestream_get() \
(codestream_cnt-- == 0 \
? codestream_fill (0) \
: codestream_buf[codestream_off++])
static unsigned int
codestream_fill (peek_flag)
int peek_flag;
{
codestream_addr = codestream_next_addr;
codestream_next_addr += CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]);
codestream_off = 0;
codestream_cnt = CODESTREAM_BUFSIZ;
read_memory (codestream_addr, (char *) codestream_buf,
CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]));
/* FIXME: check return code? */
/* Handle byte order differences -> convert to host byte ordering. */
{
int i;
for (i = 0; i < CODESTREAM_BUFSIZ; i++)
codestream_buf[i] =
extract_unsigned_integer (&codestream_buf[i],
sizeof (codestream_buf[i]));
}
if (peek_flag)
return codestream_peek ();
else
return codestream_get ();
}
static void
codestream_seek (place)
CORE_ADDR place;
{
codestream_next_addr = place / CODESTREAM_BUFSIZ;
codestream_next_addr *= CODESTREAM_BUFSIZ;
codestream_cnt = 0;
codestream_fill (1);
while (codestream_tell () != place)
codestream_get ();
}
/* This function is currently unused but leave in for now. */
static void
codestream_read (buf, count)
unsigned int *buf;
int count;
{
unsigned int *p;
int i;
p = buf;
for (i = 0; i < count; i++)
*p++ = codestream_get ();
}
/* Set up prologue scanning and return the first insn. */
static unsigned int
setup_prologue_scan (pc)
CORE_ADDR pc;
{
unsigned int insn;
codestream_seek (pc);
insn = codestream_get ();
return insn;
}
/*
* Find & return amount a local space allocated, and advance codestream to
* first register push (if any).
* If entry sequence doesn't make sense, return -1, and leave
* codestream pointer random.
*/
static long
arc_get_frame_setup (pc)
CORE_ADDR pc;
{
unsigned int insn;
/* Size of frame or -1 if unrecognizable prologue. */
int frame_size = -1;
/* An initial "sub sp,sp,N" may or may not be for a stdarg fn. */
int maybe_stdarg_decr = -1;
insn = setup_prologue_scan (pc);
/* The authority for what appears here is the home-grown ABI.
The most recent version is 1.2. */
/* First insn may be "sub sp,sp,N" if stdarg fn. */
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
{
maybe_stdarg_decr = X_D (insn);
insn = codestream_get ();
}
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
== BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
{
insn = codestream_get ();
/* Frame may not be necessary, even though blink is saved.
At least this is something we recognize. */
frame_size = 0;
}
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st fp,[sp] */
== BUILD_INSN (2, 0, SP_REGNUM, FP_REGNUM, 0))
{
insn = codestream_get ();
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
!= BUILD_INSN (12, FP_REGNUM, SP_REGNUM, SP_REGNUM, 0))
return -1;
/* Check for stack adjustment sub sp,sp,N. */
insn = codestream_peek ();
if ((insn & BUILD_INSN (-1, -1, -1, 0, 0))
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, 0, 0))
{
if (LIMM_P (X_C (insn)))
frame_size = codestream_get ();
else if (SHIMM_P (X_C (insn)))
frame_size = X_D (insn);
else
return -1;
if (frame_size < 0)
return -1;
codestream_get ();
/* This sequence is used to get the address of the return
buffer for a function that returns a structure. */
insn = codestream_peek ();
if ((insn & OPMASK) == 0x60000000)
codestream_get ();
}
/* Frameless fn. */
else
{
frame_size = 0;
}
}
/* If we found a "sub sp,sp,N" and nothing else, it may or may not be a
stdarg fn. The stdarg decrement is not treated as part of the frame size,
so we have a dilemma: what do we return? For now, if we get a
"sub sp,sp,N" and nothing else assume this isn't a stdarg fn. One way
to fix this completely would be to add a bit to the function descriptor
that says the function is a stdarg function. */
if (frame_size < 0 && maybe_stdarg_decr > 0)
return maybe_stdarg_decr;
return frame_size;
}
/* Given a pc value, skip it forward past the function prologue by
disassembling instructions that appear to be a prologue.
If FRAMELESS_P is set, we are only testing to see if the function
is frameless. If it is a frameless function, return PC unchanged.
This allows a quicker answer. */
CORE_ADDR
arc_skip_prologue (pc, frameless_p)
CORE_ADDR pc;
int frameless_p;
{
unsigned int insn;
int i, frame_size;
if ((frame_size = arc_get_frame_setup (pc)) < 0)
return (pc);
if (frameless_p)
return frame_size == 0 ? pc : codestream_tell ();
/* Skip over register saves. */
for (i = 0; i < 8; i++)
{
insn = codestream_peek ();
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
break; /* not st insn */
if (!ARC_CALL_SAVED_REG (X_C (insn)))
break;
codestream_get ();
}
return codestream_tell ();
}
/* Return the return address for a frame.
This is used to implement FRAME_SAVED_PC.
This is taken from frameless_look_for_prologue. */
CORE_ADDR
arc_frame_saved_pc (frame)
struct frame_info *frame;
{
CORE_ADDR func_start;
unsigned int insn;
func_start = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
if (func_start == 0)
{
/* Best guess. */
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
}
/* The authority for what appears here is the home-grown ABI.
The most recent version is 1.2. */
insn = setup_prologue_scan (func_start);
/* First insn may be "sub sp,sp,N" if stdarg fn. */
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
insn = codestream_get ();
/* If the next insn is "st blink,[sp,4]" we can get blink from there.
Otherwise this is a leaf function and we can use blink. Note that
this still allows for the case where a leaf function saves/clobbers/
restores blink. */
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
!= BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
return ARC_PC_TO_REAL_ADDRESS (read_register (BLINK_REGNUM));
else
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
}
/*
* Parse the first few instructions of the function to see
* what registers were stored.
*
* The startup sequence can be at the start of the function.
* 'st blink,[sp+4], st fp,[sp], mov fp,sp'
*
* Local space is allocated just below by sub sp,sp,nnn.
* Next, the registers used by this function are stored (as offsets from sp).
*/
void
frame_find_saved_regs (fip, fsrp)
struct frame_info *fip;
struct frame_saved_regs *fsrp;
{
long locals;
unsigned int insn;
CORE_ADDR dummy_bottom;
CORE_ADDR adr;
int i, regnum, offset;
memset (fsrp, 0, sizeof *fsrp);
/* If frame is the end of a dummy, compute where the beginning would be. */
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
/* Check if the PC is in the stack, in a dummy frame. */
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
{
/* all regs were saved by push_call_dummy () */
adr = fip->frame;
for (i = 0; i < NUM_REGS; i++)
{
adr -= REGISTER_RAW_SIZE (i);
fsrp->regs[i] = adr;
}
return;
}
locals = arc_get_frame_setup (get_pc_function_start (fip->pc));
if (locals >= 0)
{
/* Set `adr' to the value of `sp'. */
adr = fip->frame - locals;
for (i = 0; i < 8; i++)
{
insn = codestream_get ();
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
break;
regnum = X_C (insn);
offset = X_D (insn);
fsrp->regs[regnum] = adr + offset;
}
}
fsrp->regs[PC_REGNUM] = fip->frame + 4;
fsrp->regs[FP_REGNUM] = fip->frame;
}
void
arc_push_dummy_frame (void)
{
CORE_ADDR sp = read_register (SP_REGNUM);
int regnum;
char regbuf[MAX_REGISTER_RAW_SIZE];
read_register_gen (PC_REGNUM, regbuf);
write_memory (sp + 4, regbuf, REGISTER_SIZE);
read_register_gen (FP_REGNUM, regbuf);
write_memory (sp, regbuf, REGISTER_SIZE);
write_register (FP_REGNUM, sp);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
read_register_gen (regnum, regbuf);
sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
}
sp += (2 * REGISTER_SIZE);
write_register (SP_REGNUM, sp);
}
void
arc_pop_frame (void)
{
struct frame_info *frame = get_current_frame ();
CORE_ADDR fp;
int regnum;
struct frame_saved_regs fsr;
char regbuf[MAX_REGISTER_RAW_SIZE];
fp = FRAME_FP (frame);
get_frame_saved_regs (frame, &fsr);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
CORE_ADDR adr;
adr = fsr.regs[regnum];
if (adr)
{
read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
write_register_bytes (REGISTER_BYTE (regnum), regbuf,
REGISTER_RAW_SIZE (regnum));
}
}
write_register (FP_REGNUM, read_memory_integer (fp, 4));
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
write_register (SP_REGNUM, fp + 8);
flush_cached_frames ();
}
/* Simulate single-step. */
typedef enum
{
NORMAL4, /* a normal 4 byte insn */
NORMAL8, /* a normal 8 byte insn */
BRANCH4, /* a 4 byte branch insn, including ones without delay slots */
BRANCH8, /* an 8 byte branch insn, including ones with delay slots */
}
insn_type;
/* Return the type of INSN and store in TARGET the destination address of a
branch if this is one. */
/* ??? Need to verify all cases are properly handled. */
static insn_type
get_insn_type (insn, pc, target)
unsigned long insn;
CORE_ADDR pc, *target;
{
unsigned long limm;
switch (insn >> 27)
{
case 0:
case 1:
case 2: /* load/store insns */
if (LIMM_P (X_A (insn))
|| LIMM_P (X_B (insn))
|| LIMM_P (X_C (insn)))
return NORMAL8;
return NORMAL4;
case 4:
case 5:
case 6: /* branch insns */
*target = pc + 4 + X_L (insn);
/* ??? It isn't clear that this is always the right answer.
The problem occurs when the next insn is an 8 byte insn. If the
branch is conditional there's no worry as there shouldn't be an 8
byte insn following. The programmer may be cheating if s/he knows
the branch will never be taken, but we don't deal with that.
Note that the programmer is also allowed to play games by putting
an insn with long immediate data in the delay slot and then duplicate
the long immediate data at the branch target. Ugh! */
if (X_N (insn) == 0)
return BRANCH4;
return BRANCH8;
case 7: /* jump insns */
if (LIMM_P (X_B (insn)))
{
limm = read_memory_integer (pc + 4, 4);
*target = ARC_PC_TO_REAL_ADDRESS (limm);
return BRANCH8;
}
if (SHIMM_P (X_B (insn)))
*target = ARC_PC_TO_REAL_ADDRESS (X_D (insn));
else
*target = ARC_PC_TO_REAL_ADDRESS (read_register (X_B (insn)));
if (X_Q (insn) == 0 && X_N (insn) == 0)
return BRANCH4;
return BRANCH8;
default: /* arithmetic insns, etc. */
if (LIMM_P (X_A (insn))
|| LIMM_P (X_B (insn))
|| LIMM_P (X_C (insn)))
return NORMAL8;
return NORMAL4;
}
}
/* single_step() is called just before we want to resume the inferior, if we
want to single-step it but there is no hardware or kernel single-step
support. We find all the possible targets of the coming instruction and
breakpoint them.
single_step is also called just after the inferior stops. If we had
set up a simulated single-step, we undo our damage. */
void
arc_software_single_step (ignore, insert_breakpoints_p)
enum target_signal ignore; /* sig but we don't need it */
int insert_breakpoints_p;
{
static CORE_ADDR next_pc, target;
static int brktrg_p;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[2];
if (insert_breakpoints_p)
{
insn_type type;
CORE_ADDR pc;
unsigned long insn;
pc = read_register (PC_REGNUM);
insn = read_memory_integer (pc, 4);
type = get_insn_type (insn, pc, &target);
/* Always set a breakpoint for the insn after the branch. */
next_pc = pc + ((type == NORMAL8 || type == BRANCH8) ? 8 : 4);
target_insert_breakpoint (next_pc, break_mem[0]);
brktrg_p = 0;
if ((type == BRANCH4 || type == BRANCH8)
/* Watch out for branches to the following location.
We just stored a breakpoint there and another call to
target_insert_breakpoint will think the real insn is the
breakpoint we just stored there. */
&& target != next_pc)
{
brktrg_p = 1;
target_insert_breakpoint (target, break_mem[1]);
}
}
else
{
/* Remove breakpoints. */
target_remove_breakpoint (next_pc, break_mem[0]);
if (brktrg_p)
target_remove_breakpoint (target, break_mem[1]);
/* Fix the pc. */
stop_pc -= DECR_PC_AFTER_BREAK;
write_pc (stop_pc);
}
}
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. Slurp the args out of the stack.
We expect the first arg to be a pointer to the jmp_buf structure from which
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
This routine returns true on success. */
int
get_longjmp_target (pc)
CORE_ADDR *pc;
{
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
CORE_ADDR sp, jb_addr;
sp = read_register (SP_REGNUM);
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
buf,
TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
#endif /* GET_LONGJMP_TARGET */
/* Disassemble one instruction. */
static int
arc_print_insn (vma, info)
bfd_vma vma;
disassemble_info *info;
{
static int current_mach;
static int current_endian;
static disassembler_ftype current_disasm;
if (current_disasm == NULL
|| arc_bfd_mach_type != current_mach
|| TARGET_BYTE_ORDER != current_endian)
{
current_mach = arc_bfd_mach_type;
current_endian = TARGET_BYTE_ORDER;
current_disasm = arc_get_disassembler (current_mach,
current_endian == BIG_ENDIAN);
}
return (*current_disasm) (vma, info);
}
/* Command to set cpu type. */
void
arc_set_cpu_type_command (char *args, int from_tty)
{
int i;
if (tmp_arc_cpu_type == NULL || *tmp_arc_cpu_type == '\0')
{
printf_unfiltered ("The known ARC cpu types are as follows:\n");
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
printf_unfiltered ("%s\n", arc_cpu_type_table[i].name);
/* Restore the value. */
tmp_arc_cpu_type = strsave (arc_cpu_type);
return;
}
if (!arc_set_cpu_type (tmp_arc_cpu_type))
{
error ("Unknown cpu type `%s'.", tmp_arc_cpu_type);
/* Restore its value. */
tmp_arc_cpu_type = strsave (arc_cpu_type);
}
}
static void
arc_show_cpu_type_command (args, from_tty)
char *args;
int from_tty;
{
}
/* Modify the actual cpu type.
Result is a boolean indicating success. */
static int
arc_set_cpu_type (str)
char *str;
{
int i, j;
if (str == NULL)
return 0;
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
{
if (strcasecmp (str, arc_cpu_type_table[i].name) == 0)
{
arc_cpu_type = str;
arc_bfd_mach_type = arc_cpu_type_table[i].value;
return 1;
}
}
return 0;
}
void
_initialize_arc_tdep ()
{
struct cmd_list_element *c;
c = add_set_cmd ("cpu", class_support, var_string_noescape,
(char *) &tmp_arc_cpu_type,
"Set the type of ARC cpu in use.\n\
This command has two purposes. In a multi-cpu system it lets one\n\
change the cpu being debugged. It also gives one access to\n\
cpu-type-specific registers and recognize cpu-type-specific instructions.\
",
&setlist);
c->function.cfunc = arc_set_cpu_type_command;
c = add_show_from_set (c, &showlist);
c->function.cfunc = arc_show_cpu_type_command;
/* We have to use strsave here because the `set' command frees it before
setting a new value. */
tmp_arc_cpu_type = strsave (DEFAULT_ARC_CPU_TYPE);
arc_set_cpu_type (tmp_arc_cpu_type);
c = add_set_cmd ("displaypipeline", class_support, var_zinteger,
(char *) &display_pipeline_p,
"Set pipeline display (simulator only).\n\
When enabled, the state of the pipeline after each cycle is displayed.",
&setlist);
c = add_show_from_set (c, &showlist);
c = add_set_cmd ("debugpipeline", class_support, var_zinteger,
(char *) &debug_pipeline_p,
"Set pipeline debug display (simulator only).\n\
When enabled, debugging information about the pipeline is displayed.",
&setlist);
c = add_show_from_set (c, &showlist);
c = add_set_cmd ("cputimer", class_support, var_zinteger,
(char *) &cpu_timer,
"Set maximum cycle count (simulator only).\n\
Control will return to gdb if the timer expires.\n\
A negative value disables the timer.",
&setlist);
c = add_show_from_set (c, &showlist);
tm_print_insn = arc_print_insn;
}
|