1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
/* Native-dependent code for GNU/Linux x86-64.
Copyright (C) 2001-2019 Free Software Foundation, Inc.
Contributed by Jiri Smid, SuSE Labs.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "inferior.h"
#include "regcache.h"
#include "elf/common.h"
#include <sys/uio.h>
#include "nat/gdb_ptrace.h"
#include <asm/prctl.h>
#include <sys/reg.h>
#include "gregset.h"
#include "gdb_proc_service.h"
#include "amd64-nat.h"
#include "amd64-tdep.h"
#include "amd64-linux-tdep.h"
#include "i386-linux-tdep.h"
#include "common/x86-xstate.h"
#include "x86-linux-nat.h"
#include "nat/linux-ptrace.h"
#include "nat/amd64-linux-siginfo.h"
/* This definition comes from prctl.h. Kernels older than 2.5.64
do not have it. */
#ifndef PTRACE_ARCH_PRCTL
#define PTRACE_ARCH_PRCTL 30
#endif
struct amd64_linux_nat_target final : public x86_linux_nat_target
{
/* Add our register access methods. */
void fetch_registers (struct regcache *, int) override;
void store_registers (struct regcache *, int) override;
bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
override;
};
static amd64_linux_nat_target the_amd64_linux_nat_target;
/* Mapping between the general-purpose registers in GNU/Linux x86-64
`struct user' format and GDB's register cache layout for GNU/Linux
i386.
Note that most GNU/Linux x86-64 registers are 64-bit, while the
GNU/Linux i386 registers are all 32-bit, but since we're
little-endian we get away with that. */
/* From <sys/reg.h> on GNU/Linux i386. */
static int amd64_linux_gregset32_reg_offset[] =
{
RAX * 8, RCX * 8, /* %eax, %ecx */
RDX * 8, RBX * 8, /* %edx, %ebx */
RSP * 8, RBP * 8, /* %esp, %ebp */
RSI * 8, RDI * 8, /* %esi, %edi */
RIP * 8, EFLAGS * 8, /* %eip, %eflags */
CS * 8, SS * 8, /* %cs, %ss */
DS * 8, ES * 8, /* %ds, %es */
FS * 8, GS * 8, /* %fs, %gs */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
-1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
-1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
-1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
-1, /* PKEYS register PKRU */
ORIG_RAX * 8 /* "orig_eax" */
};
/* Transfering the general-purpose registers between GDB, inferiors
and core files. */
/* See amd64_collect_native_gregset. This linux specific version handles
issues with negative EAX values not being restored correctly upon syscall
return when debugging 32-bit targets. It has no effect on 64-bit
targets. */
static void
amd64_linux_collect_native_gregset (const struct regcache *regcache,
void *gregs, int regnum)
{
amd64_collect_native_gregset (regcache, gregs, regnum);
struct gdbarch *gdbarch = regcache->arch ();
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
{
/* Sign extend EAX value to avoid potential syscall restart
problems.
On Linux, when a syscall is interrupted by a signal, the
(kernel function implementing the) syscall may return
-ERESTARTSYS when a signal occurs. Doing so indicates that
the syscall is restartable. Then, depending on settings
associated with the signal handler, and after the signal
handler is called, the kernel can then either return -EINTR
or it can cause the syscall to be restarted. We are
concerned with the latter case here.
On (32-bit) i386, the status (-ERESTARTSYS) is placed in the
EAX register. When debugging a 32-bit process from a 64-bit
(amd64) GDB, the debugger fetches 64-bit registers even
though the process being debugged is only 32-bit. The
register cache is only 32 bits wide though; GDB discards the
high 32 bits when placing 64-bit values in the 32-bit
regcache. Normally, this is not a problem since the 32-bit
process should only care about the lower 32-bit portions of
these registers. That said, it can happen that the 64-bit
value being restored will be different from the 64-bit value
that was originally retrieved from the kernel. The one place
(that we know of) where it does matter is in the kernel's
syscall restart code. The kernel's code for restarting a
syscall after a signal expects to see a negative value
(specifically -ERESTARTSYS) in the 64-bit RAX register in
order to correctly cause a syscall to be restarted.
The call to amd64_collect_native_gregset, above, is setting
the high 32 bits of RAX (and other registers too) to 0. For
syscall restart, we need to sign extend EAX so that RAX will
appear as a negative value when EAX is set to -ERESTARTSYS.
This in turn will cause the signal handling code in the
kernel to recognize -ERESTARTSYS which will in turn cause the
syscall to be restarted.
The test case gdb.base/interrupt.exp tests for this problem.
Without this sign extension code in place, it'll show
a number of failures when testing against unix/-m32. */
if (regnum == -1 || regnum == I386_EAX_REGNUM)
{
void *ptr = ((gdb_byte *) gregs
+ amd64_linux_gregset32_reg_offset[I386_EAX_REGNUM]);
*(int64_t *) ptr = *(int32_t *) ptr;
}
}
}
/* Fill GDB's register cache with the general-purpose register values
in *GREGSETP. */
void
supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp)
{
amd64_supply_native_gregset (regcache, gregsetp, -1);
}
/* Fill register REGNUM (if it is a general-purpose register) in
*GREGSETP with the value in GDB's register cache. If REGNUM is -1,
do this for all registers. */
void
fill_gregset (const struct regcache *regcache,
elf_gregset_t *gregsetp, int regnum)
{
amd64_linux_collect_native_gregset (regcache, gregsetp, regnum);
}
/* Transfering floating-point registers between GDB, inferiors and cores. */
/* Fill GDB's register cache with the floating-point and SSE register
values in *FPREGSETP. */
void
supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp)
{
amd64_supply_fxsave (regcache, -1, fpregsetp);
}
/* Fill register REGNUM (if it is a floating-point or SSE register) in
*FPREGSETP with the value in GDB's register cache. If REGNUM is
-1, do this for all registers. */
void
fill_fpregset (const struct regcache *regcache,
elf_fpregset_t *fpregsetp, int regnum)
{
amd64_collect_fxsave (regcache, regnum, fpregsetp);
}
/* Transferring arbitrary registers between GDB and inferior. */
/* Fetch register REGNUM from the child process. If REGNUM is -1, do
this for all registers (including the floating point and SSE
registers). */
void
amd64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = regcache->arch ();
int tid;
/* GNU/Linux LWP ID's are process ID's. */
tid = regcache->ptid ().lwp ();
if (tid == 0)
tid = regcache->ptid ().pid (); /* Not a threaded program. */
if (regnum == -1 || amd64_native_gregset_supplies_p (gdbarch, regnum))
{
elf_gregset_t regs;
if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0)
perror_with_name (_("Couldn't get registers"));
amd64_supply_native_gregset (regcache, ®s, -1);
if (regnum != -1)
return;
}
if (regnum == -1 || !amd64_native_gregset_supplies_p (gdbarch, regnum))
{
elf_fpregset_t fpregs;
if (have_ptrace_getregset == TRIBOOL_TRUE)
{
char xstateregs[X86_XSTATE_MAX_SIZE];
struct iovec iov;
iov.iov_base = xstateregs;
iov.iov_len = sizeof (xstateregs);
if (ptrace (PTRACE_GETREGSET, tid,
(unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
perror_with_name (_("Couldn't get extended state status"));
amd64_supply_xsave (regcache, -1, xstateregs);
}
else
{
if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0)
perror_with_name (_("Couldn't get floating point status"));
amd64_supply_fxsave (regcache, -1, &fpregs);
}
#ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
{
/* PTRACE_ARCH_PRCTL is obsolete since 2.6.25, where the
fs_base and gs_base fields of user_regs_struct can be
used directly. */
unsigned long base;
if (regnum == -1 || regnum == AMD64_FSBASE_REGNUM)
{
if (ptrace (PTRACE_ARCH_PRCTL, tid, &base, ARCH_GET_FS) < 0)
perror_with_name (_("Couldn't get segment register fs_base"));
regcache->raw_supply (AMD64_FSBASE_REGNUM, &base);
}
if (regnum == -1 || regnum == AMD64_GSBASE_REGNUM)
{
if (ptrace (PTRACE_ARCH_PRCTL, tid, &base, ARCH_GET_GS) < 0)
perror_with_name (_("Couldn't get segment register gs_base"));
regcache->raw_supply (AMD64_GSBASE_REGNUM, &base);
}
}
#endif
}
}
/* Store register REGNUM back into the child process. If REGNUM is
-1, do this for all registers (including the floating-point and SSE
registers). */
void
amd64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = regcache->arch ();
int tid;
/* GNU/Linux LWP ID's are process ID's. */
tid = regcache->ptid ().lwp ();
if (tid == 0)
tid = regcache->ptid ().pid (); /* Not a threaded program. */
if (regnum == -1 || amd64_native_gregset_supplies_p (gdbarch, regnum))
{
elf_gregset_t regs;
if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0)
perror_with_name (_("Couldn't get registers"));
amd64_linux_collect_native_gregset (regcache, ®s, regnum);
if (ptrace (PTRACE_SETREGS, tid, 0, (long) ®s) < 0)
perror_with_name (_("Couldn't write registers"));
if (regnum != -1)
return;
}
if (regnum == -1 || !amd64_native_gregset_supplies_p (gdbarch, regnum))
{
elf_fpregset_t fpregs;
if (have_ptrace_getregset == TRIBOOL_TRUE)
{
char xstateregs[X86_XSTATE_MAX_SIZE];
struct iovec iov;
iov.iov_base = xstateregs;
iov.iov_len = sizeof (xstateregs);
if (ptrace (PTRACE_GETREGSET, tid,
(unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
perror_with_name (_("Couldn't get extended state status"));
amd64_collect_xsave (regcache, regnum, xstateregs, 0);
if (ptrace (PTRACE_SETREGSET, tid,
(unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
perror_with_name (_("Couldn't write extended state status"));
}
else
{
if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0)
perror_with_name (_("Couldn't get floating point status"));
amd64_collect_fxsave (regcache, regnum, &fpregs);
if (ptrace (PTRACE_SETFPREGS, tid, 0, (long) &fpregs) < 0)
perror_with_name (_("Couldn't write floating point status"));
}
#ifndef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
{
/* PTRACE_ARCH_PRCTL is obsolete since 2.6.25, where the
fs_base and gs_base fields of user_regs_struct can be
used directly. */
void *base;
if (regnum == -1 || regnum == AMD64_FSBASE_REGNUM)
{
regcache->raw_collect (AMD64_FSBASE_REGNUM, &base);
if (ptrace (PTRACE_ARCH_PRCTL, tid, base, ARCH_SET_FS) < 0)
perror_with_name (_("Couldn't write segment register fs_base"));
}
if (regnum == -1 || regnum == AMD64_GSBASE_REGNUM)
{
regcache->raw_collect (AMD64_GSBASE_REGNUM, &base);
if (ptrace (PTRACE_ARCH_PRCTL, tid, base, ARCH_SET_GS) < 0)
perror_with_name (_("Couldn't write segment register gs_base"));
}
}
#endif
}
}
/* This function is called by libthread_db as part of its handling of
a request for a thread's local storage address. */
ps_err_e
ps_get_thread_area (struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
if (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 32)
{
unsigned int base_addr;
ps_err_e result;
result = x86_linux_get_thread_area (lwpid, (void *) (long) idx,
&base_addr);
if (result == PS_OK)
{
/* Extend the value to 64 bits. Here it's assumed that
a "long" and a "void *" are the same. */
(*base) = (void *) (long) base_addr;
}
return result;
}
else
{
/* FIXME: ezannoni-2003-07-09 see comment above about include
file order. We could be getting bogus values for these two. */
gdb_assert (FS < ELF_NGREG);
gdb_assert (GS < ELF_NGREG);
switch (idx)
{
case FS:
#ifdef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE
{
/* PTRACE_ARCH_PRCTL is obsolete since 2.6.25, where the
fs_base and gs_base fields of user_regs_struct can be
used directly. */
unsigned long fs;
errno = 0;
fs = ptrace (PTRACE_PEEKUSER, lwpid,
offsetof (struct user_regs_struct, fs_base), 0);
if (errno == 0)
{
*base = (void *) fs;
return PS_OK;
}
}
#endif
if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
return PS_OK;
break;
case GS:
#ifdef HAVE_STRUCT_USER_REGS_STRUCT_GS_BASE
{
unsigned long gs;
errno = 0;
gs = ptrace (PTRACE_PEEKUSER, lwpid,
offsetof (struct user_regs_struct, gs_base), 0);
if (errno == 0)
{
*base = (void *) gs;
return PS_OK;
}
}
#endif
if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
return PS_OK;
break;
default: /* Should not happen. */
return PS_BADADDR;
}
}
return PS_ERR; /* ptrace failed. */
}
/* Convert a ptrace/host siginfo object, into/from the siginfo in the
layout of the inferiors' architecture. Returns true if any
conversion was done; false otherwise. If DIRECTION is 1, then copy
from INF to PTRACE. If DIRECTION is 0, copy from PTRACE to
INF. */
bool
amd64_linux_nat_target::low_siginfo_fixup (siginfo_t *ptrace,
gdb_byte *inf,
int direction)
{
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
/* Is the inferior 32-bit? If so, then do fixup the siginfo
object. */
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
FIXUP_32);
/* No fixup for native x32 GDB. */
else if (gdbarch_addr_bit (gdbarch) == 32 && sizeof (void *) == 8)
return amd64_linux_siginfo_fixup_common (ptrace, inf, direction,
FIXUP_X32);
else
return false;
}
void
_initialize_amd64_linux_nat (void)
{
amd64_native_gregset32_reg_offset = amd64_linux_gregset32_reg_offset;
amd64_native_gregset32_num_regs = I386_LINUX_NUM_REGS;
amd64_native_gregset64_reg_offset = amd64_linux_gregset_reg_offset;
amd64_native_gregset64_num_regs = AMD64_LINUX_NUM_REGS;
gdb_assert (ARRAY_SIZE (amd64_linux_gregset32_reg_offset)
== amd64_native_gregset32_num_regs);
linux_target = &the_amd64_linux_nat_target;
/* Add the target. */
add_inf_child_target (linux_target);
}
|