aboutsummaryrefslogtreecommitdiff
path: root/gdb/aarch64-linux-nat.c
blob: 11a41e1afae00239722d85450ef4d53ae4eca120 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
/* Native-dependent code for GNU/Linux AArch64.

   Copyright (C) 2011-2024 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"

#include "inferior.h"
#include "gdbcore.h"
#include "regcache.h"
#include "linux-nat.h"
#include "target-descriptions.h"
#include "auxv.h"
#include "gdbcmd.h"
#include "aarch64-nat.h"
#include "aarch64-tdep.h"
#include "aarch64-linux-tdep.h"
#include "aarch32-linux-nat.h"
#include "aarch32-tdep.h"
#include "arch/arm.h"
#include "nat/aarch64-linux.h"
#include "nat/aarch64-linux-hw-point.h"
#include "nat/aarch64-scalable-linux-ptrace.h"

#include "elf/external.h"
#include "elf/common.h"

#include "nat/gdb_ptrace.h"
#include <sys/utsname.h>
#include <asm/ptrace.h>

#include "gregset.h"
#include "linux-tdep.h"
#include "arm-tdep.h"

/* Defines ps_err_e, struct ps_prochandle.  */
#include "gdb_proc_service.h"
#include "arch-utils.h"

#include "arch/aarch64-mte-linux.h"

#include "nat/aarch64-mte-linux-ptrace.h"
#include "arch/aarch64-scalable-linux.h"

#include <string.h>

#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 0x0004
#endif

class aarch64_linux_nat_target final
  : public aarch64_nat_target<linux_nat_target>
{
public:
  /* Add our register access methods.  */
  void fetch_registers (struct regcache *, int) override;
  void store_registers (struct regcache *, int) override;

  const struct target_desc *read_description () override;

  /* Add our hardware breakpoint and watchpoint implementation.  */
  bool stopped_by_watchpoint () override;
  bool stopped_data_address (CORE_ADDR *) override;

  int can_do_single_step () override;

  /* Override the GNU/Linux inferior startup hook.  */
  void post_startup_inferior (ptid_t) override;

  /* Override the GNU/Linux post attach hook.  */
  void post_attach (int pid) override;

  /* These three defer to common nat/ code.  */
  void low_new_thread (struct lwp_info *lp) override
  { aarch64_linux_new_thread (lp); }
  void low_delete_thread (struct arch_lwp_info *lp) override
  { aarch64_linux_delete_thread (lp); }
  void low_prepare_to_resume (struct lwp_info *lp) override
  { aarch64_linux_prepare_to_resume (lp); }

  void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
  void low_forget_process (pid_t pid) override;

  /* Add our siginfo layout converter.  */
  bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
    override;

  struct gdbarch *thread_architecture (ptid_t) override;

  bool supports_memory_tagging () override;

  /* Read memory allocation tags from memory via PTRACE.  */
  bool fetch_memtags (CORE_ADDR address, size_t len,
		      gdb::byte_vector &tags, int type) override;

  /* Write allocation tags to memory via PTRACE.  */
  bool store_memtags (CORE_ADDR address, size_t len,
		      const gdb::byte_vector &tags, int type) override;
};

static aarch64_linux_nat_target the_aarch64_linux_nat_target;

/* Called whenever GDB is no longer debugging process PID.  It deletes
   data structures that keep track of debug register state.  */

void
aarch64_linux_nat_target::low_forget_process (pid_t pid)
{
  aarch64_remove_debug_reg_state (pid);
}

/* Fill GDB's register array with the general-purpose register values
   from the current thread.  */

static void
fetch_gregs_from_thread (struct regcache *regcache)
{
  int ret, tid;
  struct gdbarch *gdbarch = regcache->arch ();
  elf_gregset_t regs;
  struct iovec iovec;

  /* Make sure REGS can hold all registers contents on both aarch64
     and arm.  */
  static_assert (sizeof (regs) >= 18 * 4);

  tid = regcache->ptid ().lwp ();

  iovec.iov_base = &regs;
  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    iovec.iov_len = 18 * 4;
  else
    iovec.iov_len = sizeof (regs);

  ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
  if (ret < 0)
    perror_with_name (_("Unable to fetch general registers"));

  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
  else
    {
      int regno;

      for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
	regcache->raw_supply (regno, &regs[regno - AARCH64_X0_REGNUM]);
    }
}

/* Store to the current thread the valid general-purpose register
   values in the GDB's register array.  */

static void
store_gregs_to_thread (const struct regcache *regcache)
{
  int ret, tid;
  elf_gregset_t regs;
  struct iovec iovec;
  struct gdbarch *gdbarch = regcache->arch ();

  /* Make sure REGS can hold all registers contents on both aarch64
     and arm.  */
  static_assert (sizeof (regs) >= 18 * 4);
  tid = regcache->ptid ().lwp ();

  iovec.iov_base = &regs;
  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    iovec.iov_len = 18 * 4;
  else
    iovec.iov_len = sizeof (regs);

  ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
  if (ret < 0)
    perror_with_name (_("Unable to fetch general registers"));

  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
  else
    {
      int regno;

      for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
	if (REG_VALID == regcache->get_register_status (regno))
	  regcache->raw_collect (regno, &regs[regno - AARCH64_X0_REGNUM]);
    }

  ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
  if (ret < 0)
    perror_with_name (_("Unable to store general registers"));
}

/* Fill GDB's register array with the fp/simd register values
   from the current thread.  */

static void
fetch_fpregs_from_thread (struct regcache *regcache)
{
  int ret, tid;
  elf_fpregset_t regs;
  struct iovec iovec;
  struct gdbarch *gdbarch = regcache->arch ();

  /* Make sure REGS can hold all VFP registers contents on both aarch64
     and arm.  */
  static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);

  tid = regcache->ptid ().lwp ();

  iovec.iov_base = &regs;

  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    {
      iovec.iov_len = ARM_VFP3_REGS_SIZE;

      ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to fetch VFP registers"));

      aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
    }
  else
    {
      int regno;

      iovec.iov_len = sizeof (regs);

      ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to fetch vFP/SIMD registers"));

      for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
	regcache->raw_supply (regno, &regs.vregs[regno - AARCH64_V0_REGNUM]);

      regcache->raw_supply (AARCH64_FPSR_REGNUM, &regs.fpsr);
      regcache->raw_supply (AARCH64_FPCR_REGNUM, &regs.fpcr);
    }
}

/* Store to the current thread the valid fp/simd register
   values in the GDB's register array.  */

static void
store_fpregs_to_thread (const struct regcache *regcache)
{
  int ret, tid;
  elf_fpregset_t regs;
  struct iovec iovec;
  struct gdbarch *gdbarch = regcache->arch ();

  /* Make sure REGS can hold all VFP registers contents on both aarch64
     and arm.  */
  static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
  tid = regcache->ptid ().lwp ();

  iovec.iov_base = &regs;

  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    {
      iovec.iov_len = ARM_VFP3_REGS_SIZE;

      ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to fetch VFP registers"));

      aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
    }
  else
    {
      int regno;

      iovec.iov_len = sizeof (regs);

      ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to fetch FP/SIMD registers"));

      for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
	if (REG_VALID == regcache->get_register_status (regno))
	  regcache->raw_collect
	    (regno, (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);

      if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
	regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
      if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
	regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
    }

  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    {
      ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to store VFP registers"));
    }
  else
    {
      ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
      if (ret < 0)
	perror_with_name (_("Unable to store FP/SIMD registers"));
    }
}

/* Fill GDB's REGCACHE with the valid SVE register values from the thread
   associated with REGCACHE.

   This function handles reading data from SVE or SSVE states, depending
   on which state is active at the moment.  */

static void
fetch_sveregs_from_thread (struct regcache *regcache)
{
  /* Fetch SVE state from the thread and copy it into the register cache.  */
  aarch64_sve_regs_copy_to_reg_buf (regcache->ptid ().lwp (), regcache);
}

/* Store the valid SVE register values from GDB's REGCACHE to the thread
   associated with REGCACHE.

   This function handles writing data to SVE or SSVE states, depending
   on which state is active at the moment.  */

static void
store_sveregs_to_thread (struct regcache *regcache)
{
  /* Fetch SVE state from the register cache and update the thread TID with
     it.  */
  aarch64_sve_regs_copy_from_reg_buf (regcache->ptid ().lwp (), regcache);
}

/* Fill GDB's REGCACHE with the ZA register set contents from the
   thread associated with REGCACHE.  If there is no active ZA register state,
   make the ZA register contents zero.  */

static void
fetch_za_from_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Read ZA state from the thread to the register cache.  */
  aarch64_za_regs_copy_to_reg_buf (regcache->ptid ().lwp (),
				   regcache,
				   tdep->sme_za_regnum,
				   tdep->sme_svg_regnum,
				   tdep->sme_svcr_regnum);
}

/* Store the NT_ARM_ZA register set contents from GDB's REGCACHE to the thread
   associated with REGCACHE.  */

static void
store_za_to_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Write ZA state from the register cache to the thread.  */
  aarch64_za_regs_copy_from_reg_buf (regcache->ptid ().lwp (),
				     regcache,
				     tdep->sme_za_regnum,
				     tdep->sme_svg_regnum,
				     tdep->sme_svcr_regnum);
}

/* Fill GDB's REGCACHE with the ZT register set contents from the
   thread associated with REGCACHE.  If there is no active ZA register state,
   make the ZT register contents zero.  */

static void
fetch_zt_from_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Read ZT state from the thread to the register cache.  */
  aarch64_zt_regs_copy_to_reg_buf (regcache->ptid ().lwp (),
				   regcache,
				   tdep->sme2_zt0_regnum);
}

/* Store the NT_ARM_ZT register set contents from GDB's REGCACHE to the
   thread associated with REGCACHE.  */

static void
store_zt_to_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Write ZT state from the register cache to the thread.  */
  aarch64_zt_regs_copy_from_reg_buf (regcache->ptid ().lwp (),
				     regcache,
				     tdep->sme2_zt0_regnum);
}

/* Fill GDB's register array with the pointer authentication mask values from
   the current thread.  */

static void
fetch_pauth_masks_from_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
  int ret;
  struct iovec iovec;
  uint64_t pauth_regset[2] = {0, 0};
  int tid = regcache->ptid ().lwp ();

  iovec.iov_base = &pauth_regset;
  iovec.iov_len = sizeof (pauth_regset);

  ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_PAC_MASK, &iovec);
  if (ret != 0)
    perror_with_name (_("unable to fetch pauth registers"));

  regcache->raw_supply (AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base),
			&pauth_regset[0]);
  regcache->raw_supply (AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base),
			&pauth_regset[1]);
}

/* Fill GDB's register array with the MTE register values from
   the current thread.  */

static void
fetch_mteregs_from_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
  int regno = tdep->mte_reg_base;

  gdb_assert (regno != -1);

  uint64_t tag_ctl = 0;
  struct iovec iovec;

  iovec.iov_base = &tag_ctl;
  iovec.iov_len = sizeof (tag_ctl);

  int tid = get_ptrace_pid (regcache->ptid ());
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
      perror_with_name (_("unable to fetch MTE registers"));

  regcache->raw_supply (regno, &tag_ctl);
}

/* Store to the current thread the valid MTE register set in the GDB's
   register array.  */

static void
store_mteregs_to_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
  int regno = tdep->mte_reg_base;

  gdb_assert (regno != -1);

  uint64_t tag_ctl = 0;

  if (REG_VALID != regcache->get_register_status (regno))
    return;

  regcache->raw_collect (regno, (char *) &tag_ctl);

  struct iovec iovec;

  iovec.iov_base = &tag_ctl;
  iovec.iov_len = sizeof (tag_ctl);

  int tid = get_ptrace_pid (regcache->ptid ());
  if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
    perror_with_name (_("unable to store MTE registers"));
}

/* Fill GDB's register array with the TLS register values from
   the current thread.  */

static void
fetch_tlsregs_from_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
  int regno = tdep->tls_regnum_base;

  gdb_assert (regno != -1);
  gdb_assert (tdep->tls_register_count > 0);

  uint64_t tpidrs[tdep->tls_register_count];
  memset(tpidrs, 0, sizeof(tpidrs));

  struct iovec iovec;
  iovec.iov_base = tpidrs;
  iovec.iov_len = sizeof (tpidrs);

  int tid = get_ptrace_pid (regcache->ptid ());
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
      perror_with_name (_("unable to fetch TLS registers"));

  for (int i = 0; i < tdep->tls_register_count; i++)
    regcache->raw_supply (regno + i, &tpidrs[i]);
}

/* Store to the current thread the valid TLS register set in GDB's
   register array.  */

static void
store_tlsregs_to_thread (struct regcache *regcache)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
  int regno = tdep->tls_regnum_base;

  gdb_assert (regno != -1);
  gdb_assert (tdep->tls_register_count > 0);

  uint64_t tpidrs[tdep->tls_register_count];
  memset(tpidrs, 0, sizeof(tpidrs));

  for (int i = 0; i < tdep->tls_register_count; i++)
    {
      if (REG_VALID != regcache->get_register_status (regno + i))
	continue;

      regcache->raw_collect (regno + i, (char *) &tpidrs[i]);
    }

  struct iovec iovec;
  iovec.iov_base = &tpidrs;
  iovec.iov_len = sizeof (tpidrs);

  int tid = get_ptrace_pid (regcache->ptid ());
  if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
    perror_with_name (_("unable to store TLS register"));
}

/* The AArch64 version of the "fetch_registers" target_ops method.  Fetch
   REGNO from the target and place the result into REGCACHE.  */

static void
aarch64_fetch_registers (struct regcache *regcache, int regno)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Do we need to fetch all registers?  */
  if (regno == -1)
    {
      fetch_gregs_from_thread (regcache);

      /* We attempt to fetch SVE registers if there is support for either
	 SVE or SME (due to the SSVE state of SME).  */
      if (tdep->has_sve () || tdep->has_sme ())
	fetch_sveregs_from_thread (regcache);
      else
	fetch_fpregs_from_thread (regcache);

      if (tdep->has_pauth ())
	fetch_pauth_masks_from_thread (regcache);

      if (tdep->has_mte ())
	fetch_mteregs_from_thread (regcache);

      if (tdep->has_tls ())
	fetch_tlsregs_from_thread (regcache);

      if (tdep->has_sme ())
	fetch_za_from_thread (regcache);

      if (tdep->has_sme2 ())
	fetch_zt_from_thread (regcache);
    }
  /* General purpose register?  */
  else if (regno < AARCH64_V0_REGNUM)
    fetch_gregs_from_thread (regcache);
  /* SVE register?  */
  else if ((tdep->has_sve () || tdep->has_sme ())
	   && regno <= AARCH64_SVE_VG_REGNUM)
    fetch_sveregs_from_thread (regcache);
  /* FPSIMD register?  */
  else if (regno <= AARCH64_FPCR_REGNUM)
    fetch_fpregs_from_thread (regcache);
  /* PAuth register?  */
  else if (tdep->has_pauth ()
	   && (regno == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
	       || regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base)))
    fetch_pauth_masks_from_thread (regcache);
  /* SME register?  */
  else if (tdep->has_sme () && regno >= tdep->sme_reg_base
	   && regno < tdep->sme_reg_base + 3)
    fetch_za_from_thread (regcache);
  /* SME2 register?  */
  else if (tdep->has_sme2 () && regno == tdep->sme2_zt0_regnum)
    fetch_zt_from_thread (regcache);
  /* MTE register?  */
  else if (tdep->has_mte ()
	   && (regno == tdep->mte_reg_base))
    fetch_mteregs_from_thread (regcache);
  /* TLS register?  */
  else if (tdep->has_tls ()
	   && regno >= tdep->tls_regnum_base
	   && regno < tdep->tls_regnum_base + tdep->tls_register_count)
    fetch_tlsregs_from_thread (regcache);
}

/* A version of the "fetch_registers" target_ops method used when running
   32-bit ARM code on an AArch64 target.  Fetch REGNO from the target and
   place the result into REGCACHE.  */

static void
aarch32_fetch_registers (struct regcache *regcache, int regno)
{
  arm_gdbarch_tdep *tdep
    = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());

  if (regno == -1)
    {
      fetch_gregs_from_thread (regcache);
      if (tdep->vfp_register_count > 0)
	fetch_fpregs_from_thread (regcache);
    }
  else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
    fetch_gregs_from_thread (regcache);
  else if (tdep->vfp_register_count > 0
	   && regno >= ARM_D0_REGNUM
	   && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
	       || regno == ARM_FPSCR_REGNUM))
    fetch_fpregs_from_thread (regcache);
}

/* Implement the "fetch_registers" target_ops method.  */

void
aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
					   int regno)
{
  if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
    aarch32_fetch_registers (regcache, regno);
  else
    aarch64_fetch_registers (regcache, regno);
}

/* The AArch64 version of the "store_registers" target_ops method.  Copy
   the value of register REGNO from REGCACHE into the the target.  */

static void
aarch64_store_registers (struct regcache *regcache, int regno)
{
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());

  /* Do we need to store all registers?  */
  if (regno == -1)
    {
      store_gregs_to_thread (regcache);

      /* We attempt to store SVE registers if there is support for either
	 SVE or SME (due to the SSVE state of SME).  */
      if (tdep->has_sve () || tdep->has_sme ())
	store_sveregs_to_thread (regcache);
      else
	store_fpregs_to_thread (regcache);

      if (tdep->has_mte ())
	store_mteregs_to_thread (regcache);

      if (tdep->has_tls ())
	store_tlsregs_to_thread (regcache);

      if (tdep->has_sme ())
	store_za_to_thread (regcache);

      if (tdep->has_sme2 ())
	store_zt_to_thread (regcache);
    }
  /* General purpose register?  */
  else if (regno < AARCH64_V0_REGNUM)
    store_gregs_to_thread (regcache);
  /* SVE register?  */
  else if ((tdep->has_sve () || tdep->has_sme ())
	   && regno <= AARCH64_SVE_VG_REGNUM)
    store_sveregs_to_thread (regcache);
  /* FPSIMD register?  */
  else if (regno <= AARCH64_FPCR_REGNUM)
    store_fpregs_to_thread (regcache);
  /* SME register?  */
  else if (tdep->has_sme () && regno >= tdep->sme_reg_base
	   && regno < tdep->sme_reg_base + 3)
    store_za_to_thread (regcache);
  else if (tdep->has_sme2 () && regno == tdep->sme2_zt0_regnum)
    store_zt_to_thread (regcache);
  /* MTE register?  */
  else if (tdep->has_mte ()
	   && (regno == tdep->mte_reg_base))
    store_mteregs_to_thread (regcache);
  /* TLS register?  */
  else if (tdep->has_tls ()
	   && regno >= tdep->tls_regnum_base
	   && regno < tdep->tls_regnum_base + tdep->tls_register_count)
    store_tlsregs_to_thread (regcache);

  /* PAuth registers are read-only.  */
}

/* A version of the "store_registers" target_ops method used when running
   32-bit ARM code on an AArch64 target.  Copy the value of register REGNO
   from REGCACHE into the the target.  */

static void
aarch32_store_registers (struct regcache *regcache, int regno)
{
  arm_gdbarch_tdep *tdep
    = gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());

  if (regno == -1)
    {
      store_gregs_to_thread (regcache);
      if (tdep->vfp_register_count > 0)
	store_fpregs_to_thread (regcache);
    }
  else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
    store_gregs_to_thread (regcache);
  else if (tdep->vfp_register_count > 0
	   && regno >= ARM_D0_REGNUM
	   && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
	       || regno == ARM_FPSCR_REGNUM))
    store_fpregs_to_thread (regcache);
}

/* Implement the "store_registers" target_ops method.  */

void
aarch64_linux_nat_target::store_registers (struct regcache *regcache,
					   int regno)
{
  if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
    aarch32_store_registers (regcache, regno);
  else
    aarch64_store_registers (regcache, regno);
}

/* Fill register REGNO (if it is a general-purpose register) in
   *GREGSETPS with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */

void
fill_gregset (const struct regcache *regcache,
	      gdb_gregset_t *gregsetp, int regno)
{
  regcache_collect_regset (&aarch64_linux_gregset, regcache,
			   regno, (gdb_byte *) gregsetp,
			   AARCH64_LINUX_SIZEOF_GREGSET);
}

/* Fill GDB's register array with the general-purpose register values
   in *GREGSETP.  */

void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
  regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
			  (const gdb_byte *) gregsetp,
			  AARCH64_LINUX_SIZEOF_GREGSET);
}

/* Fill register REGNO (if it is a floating-point register) in
   *FPREGSETP with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */

void
fill_fpregset (const struct regcache *regcache,
	       gdb_fpregset_t *fpregsetp, int regno)
{
  regcache_collect_regset (&aarch64_linux_fpregset, regcache,
			   regno, (gdb_byte *) fpregsetp,
			   AARCH64_LINUX_SIZEOF_FPREGSET);
}

/* Fill GDB's register array with the floating-point register values
   in *FPREGSETP.  */

void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
{
  regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
			  (const gdb_byte *) fpregsetp,
			  AARCH64_LINUX_SIZEOF_FPREGSET);
}

/* linux_nat_new_fork hook.   */

void
aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
					pid_t child_pid)
{
  pid_t parent_pid;
  struct aarch64_debug_reg_state *parent_state;
  struct aarch64_debug_reg_state *child_state;

  /* NULL means no watchpoint has ever been set in the parent.  In
     that case, there's nothing to do.  */
  if (parent->arch_private == NULL)
    return;

  /* GDB core assumes the child inherits the watchpoints/hw
     breakpoints of the parent, and will remove them all from the
     forked off process.  Copy the debug registers mirrors into the
     new process so that all breakpoints and watchpoints can be
     removed together.  */

  parent_pid = parent->ptid.pid ();
  parent_state = aarch64_get_debug_reg_state (parent_pid);
  child_state = aarch64_get_debug_reg_state (child_pid);
  *child_state = *parent_state;
}


/* Called by libthread_db.  Returns a pointer to the thread local
   storage (or its descriptor).  */

ps_err_e
ps_get_thread_area (struct ps_prochandle *ph,
		    lwpid_t lwpid, int idx, void **base)
{
  gdbarch *arch = current_inferior ()->arch ();
  int is_64bit_p = (gdbarch_bfd_arch_info (arch)->bits_per_word == 64);

  return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
}


/* Implement the virtual inf_ptrace_target::post_startup_inferior method.  */

void
aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
{
  low_forget_process (ptid.pid ());
  aarch64_linux_get_debug_reg_capacity (ptid.pid ());
  linux_nat_target::post_startup_inferior (ptid);
}

/* Implement the "post_attach" target_ops method.  */

void
aarch64_linux_nat_target::post_attach (int pid)
{
  low_forget_process (pid);
  /* Set the hardware debug register capacity.  If
     aarch64_linux_get_debug_reg_capacity is not called
     (as it is in aarch64_linux_child_post_startup_inferior) then
     software watchpoints will be used instead of hardware
     watchpoints when attaching to a target.  */
  aarch64_linux_get_debug_reg_capacity (pid);
  linux_nat_target::post_attach (pid);
}

/* Implement the "read_description" target_ops method.  */

const struct target_desc *
aarch64_linux_nat_target::read_description ()
{
  int ret, tid;
  gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
  struct iovec iovec;

  if (inferior_ptid == null_ptid)
    return this->beneath ()->read_description ();

  tid = inferior_ptid.pid ();

  iovec.iov_base = regbuf;
  iovec.iov_len = ARM_VFP3_REGS_SIZE;

  ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
  if (ret == 0)
    return aarch32_read_description ();

  CORE_ADDR hwcap = linux_get_hwcap ();
  CORE_ADDR hwcap2 = linux_get_hwcap2 ();

  aarch64_features features;
  /* SVE/SSVE check.  Reading VQ may return either the regular vector length
     or the streaming vector length, depending on whether streaming mode is
     active or not.  */
  features.vq = aarch64_sve_get_vq (tid);
  features.pauth = hwcap & AARCH64_HWCAP_PACA;
  features.mte = hwcap2 & HWCAP2_MTE;
  features.tls = aarch64_tls_register_count (tid);
  /* SME feature check.  */
  features.svq = aarch64_za_get_svq (tid);

  /* Check for SME2 support.  */
  if ((hwcap2 & HWCAP2_SME2) || (hwcap2 & HWCAP2_SME2P1))
    features.sme2 = supports_zt_registers (tid);

  return aarch64_read_description (features);
}

/* Convert a native/host siginfo object, into/from the siginfo in the
   layout of the inferiors' architecture.  Returns true if any
   conversion was done; false otherwise.  If DIRECTION is 1, then copy
   from INF to NATIVE.  If DIRECTION is 0, copy from NATIVE to
   INF.  */

bool
aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
					     int direction)
{
  struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());

  /* Is the inferior 32-bit?  If so, then do fixup the siginfo
     object.  */
  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
    {
      if (direction == 0)
	aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
					     native);
      else
	aarch64_siginfo_from_compat_siginfo (native,
					     (struct compat_siginfo *) inf);

      return true;
    }

  return false;
}

/* Implement the "stopped_data_address" target_ops method.  */

bool
aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
{
  siginfo_t siginfo;
  struct aarch64_debug_reg_state *state;

  if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
    return false;

  /* This must be a hardware breakpoint.  */
  if (siginfo.si_signo != SIGTRAP
      || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
    return false;

  /* Make sure to ignore the top byte, otherwise we may not recognize a
     hardware watchpoint hit.  The stopped data addresses coming from the
     kernel can potentially be tagged addresses.  */
  struct gdbarch *gdbarch = thread_architecture (inferior_ptid);
  const CORE_ADDR addr_trap
    = gdbarch_remove_non_address_bits (gdbarch, (CORE_ADDR) siginfo.si_addr);

  /* Check if the address matches any watched address.  */
  state = aarch64_get_debug_reg_state (inferior_ptid.pid ());
  return aarch64_stopped_data_address (state, addr_trap, addr_p);
}

/* Implement the "stopped_by_watchpoint" target_ops method.  */

bool
aarch64_linux_nat_target::stopped_by_watchpoint ()
{
  CORE_ADDR addr;

  return stopped_data_address (&addr);
}

/* Implement the "can_do_single_step" target_ops method.  */

int
aarch64_linux_nat_target::can_do_single_step ()
{
  return 1;
}

/* Implement the "thread_architecture" target_ops method.

   Returns the gdbarch for the thread identified by PTID.  If the thread in
   question is a 32-bit ARM thread, then the architecture returned will be
   that of the process itself.

   If the thread is an AArch64 thread then we need to check the current
   vector length; if the vector length has changed then we need to lookup a
   new gdbarch that matches the new vector length.  */

struct gdbarch *
aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
{
  /* Find the current gdbarch the same way as process_stratum_target.  */
  inferior *inf = find_inferior_ptid (this, ptid);
  gdb_assert (inf != NULL);

  /* If this is a 32-bit architecture, then this is ARM, not AArch64.
     There's no SVE vectors here, so just return the inferior
     architecture.  */
  if (gdbarch_bfd_arch_info (inf->arch ())->bits_per_word == 32)
    return inf->arch ();

  /* Only return the inferior's gdbarch if both vq and svq match the ones in
     the tdep.  */
  aarch64_gdbarch_tdep *tdep
    = gdbarch_tdep<aarch64_gdbarch_tdep> (inf->arch ());
  uint64_t vq = aarch64_sve_get_vq (ptid.lwp ());
  uint64_t svq = aarch64_za_get_svq (ptid.lwp ());
  if (vq == tdep->vq && svq == tdep->sme_svq)
    return inf->arch ();

  /* We reach here if any vector length for the thread is different from its
     value at process start.  Lookup gdbarch via info (potentially creating a
     new one) by using a target description that corresponds to the new vq/svq
     value and the current architecture features.  */

  const struct target_desc *tdesc = gdbarch_target_desc (inf->arch ());
  aarch64_features features = aarch64_features_from_target_desc (tdesc);
  features.vq = vq;
  features.svq = svq;

  /* Check for the SME2 feature.  */
  features.sme2 = supports_zt_registers (ptid.lwp ());

  struct gdbarch_info info;
  info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64);
  info.target_desc = aarch64_read_description (features);
  return gdbarch_find_by_info (info);
}

/* Implement the "supports_memory_tagging" target_ops method.  */

bool
aarch64_linux_nat_target::supports_memory_tagging ()
{
  return (linux_get_hwcap2 () & HWCAP2_MTE) != 0;
}

/* Implement the "fetch_memtags" target_ops method.  */

bool
aarch64_linux_nat_target::fetch_memtags (CORE_ADDR address, size_t len,
					 gdb::byte_vector &tags, int type)
{
  int tid = get_ptrace_pid (inferior_ptid);

  /* Allocation tags?  */
  if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
    return aarch64_mte_fetch_memtags (tid, address, len, tags);

  return false;
}

/* Implement the "store_memtags" target_ops method.  */

bool
aarch64_linux_nat_target::store_memtags (CORE_ADDR address, size_t len,
					 const gdb::byte_vector &tags, int type)
{
  int tid = get_ptrace_pid (inferior_ptid);

  /* Allocation tags?  */
  if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
    return aarch64_mte_store_memtags (tid, address, len, tags);

  return false;
}

void _initialize_aarch64_linux_nat ();
void
_initialize_aarch64_linux_nat ()
{
  aarch64_initialize_hw_point ();

  /* Register the target.  */
  linux_target = &the_aarch64_linux_nat_target;
  add_inf_child_target (&the_aarch64_linux_nat_target);
}