aboutsummaryrefslogtreecommitdiff
path: root/gas/expr.c
blob: c62e39cb6104f589c6fdd46f05e6e51ef6b7a147 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/* expr.c -operands, expressions-
   Copyright (C) 1987, 1990, 1991 Free Software Foundation, Inc.

This file is part of GAS, the GNU Assembler.

GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */

/* static const char rcsid[] = "$Id$"; */

/*
 * This is really a branch office of as-read.c. I split it out to clearly
 * distinguish the world of expressions from the world of statements.
 * (It also gives smaller files to re-compile.)
 * Here, "operand"s are of expressions, not instructions.
 */

#include <ctype.h>
#include <string.h>

#include "as.h"

#include "obstack.h"

#ifdef __STDC__
static void clean_up_expression(expressionS *expressionP);
#else /* __STDC__ */
static void clean_up_expression();	/* Internal. */
#endif /* __STDC__ */
extern const char EXP_CHARS[];	/* JF hide MD floating pt stuff all the same place */
extern const char FLT_CHARS[];

#ifdef LOCAL_LABELS_DOLLAR
extern int local_label_defined[];
#endif

/*
 * Build any floating-point literal here.
 * Also build any bignum literal here.
 */

/* LITTLENUM_TYPE	generic_buffer [6]; */	/* JF this is a hack */
/* Seems atof_machine can backscan through generic_bignum and hit whatever
   happens to be loaded before it in memory.  And its way too complicated
   for me to fix right.  Thus a hack.  JF:  Just make generic_bignum bigger,
   and never write into the early words, thus they'll always be zero.
   I hate Dean's floating-point code.  Bleh.
 */
LITTLENUM_TYPE	generic_bignum [SIZE_OF_LARGE_NUMBER+6];
FLONUM_TYPE	generic_floating_point_number =
{
  & generic_bignum [6],		/* low (JF: Was 0) */
  & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
  0,				/* leader */
  0,				/* exponent */
  0				/* sign */
};
/* If nonzero, we've been asked to assemble nan, +inf or -inf */
int generic_floating_point_magic;

/*
 * Summary of operand().
 *
 * in:	Input_line_pointer points to 1st char of operand, which may
 *	be a space.
 *
 * out:	A expressionS. X_seg determines how to understand the rest of the
 *	expressionS.
 *	The operand may have been empty: in this case X_seg == SEG_ABSENT.
 *	Input_line_pointer->(next non-blank) char after operand.
 *
 */

static segT
operand (expressionP)
     register expressionS *	expressionP;
{
  register char c;
  register char *name;	/* points to name of symbol */
  register symbolS *	symbolP; /* Points to symbol */

  extern  char hex_value[];	/* In hex_value.c */

  SKIP_WHITESPACE();		/* Leading whitespace is part of operand. */
  c = * input_line_pointer ++;	/* Input_line_pointer->past char in c. */
  if (isdigit(c))
    {
      register valueT	number;	/* offset or (absolute) value */
      register short int digit;	/* value of next digit in current radix */
				/* invented for humans only, hope */
				/* optimising compiler flushes it! */
      register short int radix;	/* 2, 8, 10 or 16 */
				/* 0 means we saw start of a floating- */
				/* point constant. */
      register short int maxdig = 0;/* Highest permitted digit value. */
      register int too_many_digits = 0; /* If we see >= this number of */
				/* digits, assume it is a bignum. */
      register char *	digit_2; /*->2nd digit of number. */
               int small;	/* TRUE if fits in 32 bits. */

      if (c == '0') {			/* non-decimal radix */
	      if ((c = *input_line_pointer ++)=='x' || c=='X') {
		      c = *input_line_pointer ++; /* read past "0x" or "0X" */
		      maxdig = radix = 16;
		      too_many_digits = 9;
	      } else {
		      /* If it says '0f' and the line ends or it DOESN'T look like
			 a floating point #, its a local label ref.  DTRT */
		      /* likewise for the b's.  xoxorich. */
		      if ((c == 'f' || c == 'b' || c == 'B')
			  && (!*input_line_pointer ||
			      (!strchr("+-.0123456789",*input_line_pointer) &&
			       !strchr(EXP_CHARS,*input_line_pointer)))) {
			      maxdig = radix = 10;
			      too_many_digits = 11;
			      c = '0';
			      input_line_pointer -= 2;

		      } else if (c == 'b' || c == 'B') {
			      c = *input_line_pointer++;
			      maxdig = radix = 2;
			      too_many_digits = 33;

		      } else if (c && strchr(FLT_CHARS,c)) {
			      radix = 0;	/* Start of floating-point constant. */
			      /* input_line_pointer->1st char of number. */
			      expressionP->X_add_number =  -(isupper(c) ? tolower(c) : c);

		      } else {		/* By elimination, assume octal radix. */
			      radix = maxdig = 8;
			      too_many_digits = 11;
		      }
	      } /* c == char after "0" or "0x" or "0X" or "0e" etc. */
      } else {
	      maxdig = radix = 10;
	      too_many_digits = 11;
      } /* if operand starts with a zero */

      if (radix) {			/* Fixed-point integer constant. */
				/* May be bignum, or may fit in 32 bits. */
/*
 * Most numbers fit into 32 bits, and we want this case to be fast.
 * So we pretend it will fit into 32 bits. If, after making up a 32
 * bit number, we realise that we have scanned more digits than
 * comfortably fit into 32 bits, we re-scan the digits coding
 * them into a bignum. For decimal and octal numbers we are conservative: some
 * numbers may be assumed bignums when in fact they do fit into 32 bits.
 * Numbers of any radix can have excess leading zeros: we strive
 * to recognise this and cast them back into 32 bits.
 * We must check that the bignum really is more than 32
 * bits, and change it back to a 32-bit number if it fits.
 * The number we are looking for is expected to be positive, but
 * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
 * number. The cavalier approach is for speed in ordinary cases.
 */
	  digit_2 = input_line_pointer;
	  for (number=0;  (digit=hex_value[c])<maxdig;  c = * input_line_pointer ++)
	    {
	      number = number * radix + digit;
	    }
	  /* C contains character after number. */
	  /* Input_line_pointer->char after C. */
	  small = input_line_pointer - digit_2 < too_many_digits;
	  if (! small)
	    {
	      /*
	       * We saw a lot of digits. Manufacture a bignum the hard way.
 */
	      LITTLENUM_TYPE *	leader;	/*->high order littlenum of the bignum. */
	      LITTLENUM_TYPE *	pointer; /*->littlenum we are frobbing now. */
	      long carry;

	      leader = generic_bignum;
	      generic_bignum [0] = 0;
	      generic_bignum [1] = 0;
				/* We could just use digit_2, but lets be mnemonic. */
	      input_line_pointer = -- digit_2; /*->1st digit. */
	      c = *input_line_pointer ++;
	      for (;   (carry = hex_value [c]) < maxdig;   c = * input_line_pointer ++)
		{
		  for (pointer = generic_bignum;
		       pointer <= leader;
		       pointer ++)
		    {
		      long work;

		      work = carry + radix * * pointer;
		      * pointer = work & LITTLENUM_MASK;
		      carry = work >> LITTLENUM_NUMBER_OF_BITS;
		    }
		  if (carry)
		    {
		      if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
			{	/* Room to grow a longer bignum. */
			  * ++ leader = carry;
			}
		    }
		}
	      /* Again, C is char after number, */
	      /* input_line_pointer->after C. */
	      know(sizeof (int) * 8 == 32);
	      know(LITTLENUM_NUMBER_OF_BITS == 16);
	      /* Hence the constant "2" in the next line. */
	      if (leader < generic_bignum + 2)
		{		/* Will fit into 32 bits. */
		  number =
		    ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
		    | (generic_bignum [0] & LITTLENUM_MASK);
		  small = 1;
		}
	      else
		{
		  number = leader - generic_bignum + 1;	/* Number of littlenums in the bignum. */
		}
	    }
	  if (small)
	    {
	      /*
	       * Here with number, in correct radix. c is the next char.
	       * Note that unlike Un*x, we allow "011f" "0x9f" to
	       * both mean the same as the (conventional) "9f". This is simply easier
	       * than checking for strict canonical form. Syntax sux!
 */
	      if (number<10)
		{
		  if (0
#ifdef LOCAL_LABELS_FB
		       || c=='b'
#endif
#ifdef LOCAL_LABELS_DOLLAR
		       || (c=='$' && local_label_defined[number])
#endif
		      )
		    {
		      /*
		       * Backward ref to local label.
		       * Because it is backward, expect it to be DEFINED.
		       */
		      /*
		       * Construct a local label.
		       */
		      name = local_label_name ((int)number, 0);
		      if (((symbolP = symbol_find(name)) != NULL) /* seen before */
			  && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */
			{		/* Expected path: symbol defined. */
			  /* Local labels are never absolute. Don't waste time checking absoluteness. */
			  know((S_GET_SEGMENT(symbolP) == SEG_DATA) || (S_GET_SEGMENT(symbolP) == SEG_TEXT));
			  expressionP->X_add_symbol = symbolP;
			  expressionP->X_add_number = 0;
			  expressionP->X_seg = S_GET_SEGMENT(symbolP);
			}
		      else
			{		/* Either not seen or not defined. */
			  as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.",
				  number);
			  expressionP->X_add_number = 0;
			  expressionP->X_seg        = SEG_ABSOLUTE;
			}
		    }
		  else
		    {
		      if (0
#ifdef LOCAL_LABELS_FB
			  || c == 'f'
#endif
#ifdef LOCAL_LABELS_DOLLAR
		          || (c=='$' && !local_label_defined[number])
#endif
			  )
			{
			  /*
			   * Forward reference. Expect symbol to be undefined or
			   * unknown. Undefined: seen it before. Unknown: never seen
			   * it in this pass.
			   * Construct a local label name, then an undefined symbol.
			   * Don't create a XSEG frag for it: caller may do that.
			   * Just return it as never seen before.
			   */
			  name = local_label_name((int)number, 1);
			  symbolP = symbol_find_or_make(name);
			  /* We have no need to check symbol properties. */
			  know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN
			       || S_GET_SEGMENT(symbolP) == SEG_TEXT
			       || S_GET_SEGMENT(symbolP) == SEG_DATA);
			  expressionP->X_add_symbol      = symbolP;
			  expressionP->X_seg             = SEG_UNKNOWN;
			  expressionP->X_subtract_symbol = NULL;
			  expressionP->X_add_number      = 0;
			}
		      else
			{		/* Really a number, not a local label. */
			  expressionP->X_add_number = number;
			  expressionP->X_seg        = SEG_ABSOLUTE;
			  input_line_pointer --; /* Restore following character. */
			}		/* if (c=='f') */
		    }			/* if (c=='b') */
		}
	      else
		{			/* Really a number. */
		  expressionP->X_add_number = number;
		  expressionP->X_seg        = SEG_ABSOLUTE;
		  input_line_pointer --; /* Restore following character. */
		}			/* if (number<10) */
	    }
	  else
	    {
	      expressionP->X_add_number = number;
	      expressionP->X_seg = SEG_BIG;
	      input_line_pointer --; /*->char following number. */
	    }			/* if (small) */
	}			/* (If integer constant) */
      else
	{			/* input_line_pointer->*/
				/* floating-point constant. */
	  int error_code;

	  error_code = atof_generic
	    (& input_line_pointer, ".", EXP_CHARS,
	     & generic_floating_point_number);

	  if (error_code)
	    {
	      if (error_code == ERROR_EXPONENT_OVERFLOW)
		{
		  as_bad("Bad floating-point constant: exponent overflow, probably assembling junk");
		}
	      else
		{
		  as_bad("Bad floating-point constant: unknown error code=%d.", error_code);
		}
	    }
	  expressionP->X_seg = SEG_BIG;
				/* input_line_pointer->just after constant, */
				/* which may point to whitespace. */
	  know(expressionP->X_add_number < 0); /* < 0 means "floating point". */
	}			/* if (not floating-point constant) */
    }
  else if(c=='.' && !is_part_of_name(*input_line_pointer)) {
    extern struct obstack frags;

    /*
       JF:  '.' is pseudo symbol with value of current location in current
       segment. . .
 */
    symbolP = symbol_new("L0\001",
			 now_seg,
			 (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
			 frag_now);

    expressionP->X_add_number=0;
    expressionP->X_add_symbol=symbolP;
    expressionP->X_seg = now_seg;

  } else if (is_name_beginner(c)) /* here if did not begin with a digit */
    {
      /*
       * Identifier begins here.
       * This is kludged for speed, so code is repeated.
       */
      name =  -- input_line_pointer;
      c = get_symbol_end();
      symbolP = symbol_find_or_make(name);
      /*
       * If we have an absolute symbol or a reg, then we know its value now.
       */
      expressionP->X_seg = S_GET_SEGMENT(symbolP);
      switch (expressionP->X_seg)
	{
	case SEG_ABSOLUTE:
	case SEG_REGISTER:
	  expressionP->X_add_number = S_GET_VALUE(symbolP);
	  break;

        default:
	  expressionP->X_add_number  = 0;
	  expressionP->X_add_symbol  = symbolP;
	}
      * input_line_pointer = c;
      expressionP->X_subtract_symbol = NULL;
    }
  else if (c=='(')/* didn't begin with digit & not a name */
    {
      (void)expression(expressionP);
      /* Expression() will pass trailing whitespace */
      if (* input_line_pointer ++ != ')')
	{
	  as_bad("Missing ')' assumed");
	  input_line_pointer --;
	}
      /* here with input_line_pointer->char after "(...)" */
    }
  else if (c == '~' || c == '-' || c == '+') {
	  /* unary operator: hope for SEG_ABSOLUTE */
      switch (operand (expressionP)) {
      case SEG_ABSOLUTE:
	      /* input_line_pointer->char after operand */
	      if (c=='-') {
		      expressionP->X_add_number = - expressionP->X_add_number;
		      /*
		       * Notice: '-' may  overflow: no warning is given. This is compatible
		       * with other people's assemblers. Sigh.
		       */
	      } else if (c == '~') {
		      expressionP->X_add_number = ~ expressionP->X_add_number;
	      } else if (c != '+') {
		      know(0);
	      } /* switch on unary operator */
	      break;

      case SEG_TEXT:
      case SEG_DATA:
      case SEG_BSS:
      case SEG_PASS1:
      case SEG_UNKNOWN:
	if(c=='-') {		/* JF I hope this hack works */
	  expressionP->X_subtract_symbol=expressionP->X_add_symbol;
	  expressionP->X_add_symbol=0;
	  expressionP->X_seg=SEG_DIFFERENCE;
	  break;
	}
      default:		/* unary on non-absolute is unsuported */
	as_bad("Unary operator %c ignored because bad operand follows", c);
	break;
	/* Expression undisturbed from operand(). */
      }
    }
  else if (c=='\'')
    {
/*
 * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
 * for a single quote. The next character, parity errors and all, is taken
 * as the value of the operand. VERY KINKY.
 */
      expressionP->X_add_number = * input_line_pointer ++;
      expressionP->X_seg        = SEG_ABSOLUTE;
    }
  else
    {
		      /* can't imagine any other kind of operand */
      expressionP->X_seg = SEG_ABSENT;
      input_line_pointer --;
      md_operand (expressionP);
    }
/*
 * It is more 'efficient' to clean up the expressions when they are created.
 * Doing it here saves lines of code.
 */
  clean_up_expression (expressionP);
  SKIP_WHITESPACE();		/*->1st char after operand. */
  know(* input_line_pointer != ' ');
  return (expressionP->X_seg);
} /* operand() */

/* Internal. Simplify a struct expression for use by expr() */

/*
 * In:	address of a expressionS.
 *	The X_seg field of the expressionS may only take certain values.
 *	Now, we permit SEG_PASS1 to make code smaller & faster.
 *	Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
 * Out:	expressionS may have been modified:
 *	'foo-foo' symbol references cancelled to 0,
 *		which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
 *	Unused fields zeroed to help expr().
 */

static void
clean_up_expression (expressionP)
     register expressionS * expressionP;
{
  switch (expressionP->X_seg)
    {
    case SEG_ABSENT:
    case SEG_PASS1:
      expressionP->X_add_symbol	= NULL;
      expressionP->X_subtract_symbol	= NULL;
      expressionP->X_add_number	= 0;
      break;

    case SEG_BIG:
    case SEG_ABSOLUTE:
      expressionP->X_subtract_symbol	= NULL;
      expressionP->X_add_symbol	= NULL;
      break;

    case SEG_TEXT:
    case SEG_DATA:
    case SEG_BSS:
    case SEG_UNKNOWN:
      expressionP->X_subtract_symbol	= NULL;
      break;

    case SEG_DIFFERENCE:
      /*
       * It does not hurt to 'cancel' NULL==NULL
       * when comparing symbols for 'eq'ness.
       * It is faster to re-cancel them to NULL
       * than to check for this special case.
 */
      if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
          || (expressionP->X_subtract_symbol
	      && expressionP->X_add_symbol
  	      && expressionP->X_subtract_symbol->sy_frag==expressionP->X_add_symbol->sy_frag
	      && S_GET_VALUE(expressionP->X_subtract_symbol) == S_GET_VALUE(expressionP->X_add_symbol))) {
	      expressionP->X_subtract_symbol	= NULL;
	      expressionP->X_add_symbol		= NULL;
	      expressionP->X_seg			= SEG_ABSOLUTE;
      }
      break;

    case SEG_REGISTER:
      expressionP->X_add_symbol	= NULL;
      expressionP->X_subtract_symbol	= NULL;
      break;

    default:
      BAD_CASE (expressionP->X_seg);
      break;
    }
} /* clean_up_expression() */

/*
 *			expr_part ()
 *
 * Internal. Made a function because this code is used in 2 places.
 * Generate error or correct X_?????_symbol of expressionS.
 */

/*
 * symbol_1 += symbol_2 ... well ... sort of.
 */

static segT
expr_part (symbol_1_PP, symbol_2_P)
     symbolS **	symbol_1_PP;
     symbolS *	symbol_2_P;
{
  segT			return_value;

  know((* symbol_1_PP)           		== NULL
       || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT)
       || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA)
       || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS)
       || (!S_IS_DEFINED(* symbol_1_PP)));
  know(symbol_2_P             == NULL
       || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT)
       || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA)
       || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS)
       || (!S_IS_DEFINED(symbol_2_P)));
  if (* symbol_1_PP)
    {
      if (!S_IS_DEFINED(* symbol_1_PP))
	{
	  if (symbol_2_P)
	    {
	      return_value = SEG_PASS1;
	      * symbol_1_PP = NULL;
	    }
	  else
	    {
	      know(!S_IS_DEFINED(* symbol_1_PP));
	      return_value = SEG_UNKNOWN;
	    }
	}
      else
	{
	  if (symbol_2_P)
	    {
	      if (!S_IS_DEFINED(symbol_2_P))
		{
		  * symbol_1_PP = NULL;
		  return_value = SEG_PASS1;
		}
	      else
		{
		  /* {seg1} - {seg2} */
		  as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
			  S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
		  * symbol_1_PP = NULL;
		  return_value = SEG_ABSOLUTE;
		}
	    }
	  else
	    {
	      return_value = S_GET_SEGMENT(* symbol_1_PP);
	    }
	}
    }
  else
    {				/* (* symbol_1_PP) == NULL */
      if (symbol_2_P)
	{
	  * symbol_1_PP = symbol_2_P;
	  return_value = S_GET_SEGMENT(symbol_2_P);
	}
      else
	{
	  * symbol_1_PP = NULL;
	  return_value = SEG_ABSOLUTE;
	}
    }
  know(return_value == SEG_ABSOLUTE
       || return_value == SEG_TEXT
       || return_value == SEG_DATA
       || return_value == SEG_BSS
       || return_value == SEG_UNKNOWN
       || return_value == SEG_PASS1);
  know((* symbol_1_PP) == NULL
       || (S_GET_SEGMENT(* symbol_1_PP) == return_value));
  return (return_value);
}				/* expr_part() */

/* Expression parser. */

/*
 * We allow an empty expression, and just assume (absolute,0) silently.
 * Unary operators and parenthetical expressions are treated as operands.
 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
 *
 * We used to do a aho/ullman shift-reduce parser, but the logic got so
 * warped that I flushed it and wrote a recursive-descent parser instead.
 * Now things are stable, would anybody like to write a fast parser?
 * Most expressions are either register (which does not even reach here)
 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
 * So I guess it doesn't really matter how inefficient more complex expressions
 * are parsed.
 *
 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
 * Also, we have consumed any leading or trailing spaces (operand does that)
 * and done all intervening operators.
 */

typedef enum
{
O_illegal,			/* (0)  what we get for illegal op */

O_multiply,			/* (1)  * */
O_divide,			/* (2)  / */
O_modulus,			/* (3)  % */
O_left_shift,			/* (4)  < */
O_right_shift,			/* (5)  > */
O_bit_inclusive_or,		/* (6)  | */
O_bit_or_not,			/* (7)  ! */
O_bit_exclusive_or,		/* (8)  ^ */
O_bit_and,			/* (9)  & */
O_add,				/* (10) + */
O_subtract			/* (11) - */
}
operatorT;

#define __ O_illegal

static const operatorT op_encoding [256] = {	/* maps ASCII->operators */

__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,

__, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
__, __, O_multiply, O_add, __, O_subtract, __, O_divide,
__, __, __, __, __, __, __, __,
__, __, __, __, O_left_shift, __, O_right_shift, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, O_bit_exclusive_or, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, O_bit_inclusive_or, __, __, __,

__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
};


/*
 *	Rank	Examples
 *	0	operand, (expression)
 *	1	+ -
 *	2	& ^ ! |
 *	3	* / % << >>
 */
static const operator_rankT
op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };

/* Return resultP->X_seg. */
segT expr(rank, resultP)
register operator_rankT	rank; /* Larger # is higher rank. */
register expressionS *resultP; /* Deliver result here. */
{
  expressionS		right;
  register operatorT	op_left;
  register char c_left;	/* 1st operator character. */
  register operatorT	op_right;
  register char c_right;

  know(rank >= 0);
  (void)operand (resultP);
  know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */
  c_left = * input_line_pointer; /* Potential operator character. */
  op_left = op_encoding [c_left];
  while (op_left != O_illegal && op_rank [(int) op_left] > rank)
    {
      input_line_pointer ++;	/*->after 1st character of operator. */
				/* Operators "<<" and ">>" have 2 characters. */
      if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
	{
	  input_line_pointer ++;
	}			/*->after operator. */
      if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
	{
	  as_warn("Missing operand value assumed absolute 0.");
	  resultP->X_add_number	= 0;
	  resultP->X_subtract_symbol	= NULL;
	  resultP->X_add_symbol	= NULL;
	  resultP->X_seg = SEG_ABSOLUTE;
	}
      know(* input_line_pointer != ' ');
      c_right = * input_line_pointer;
      op_right = op_encoding [c_right];
      if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
	{
	  input_line_pointer ++;
	}			/*->after operator. */
      know((int) op_right == 0
	   || op_rank [(int) op_right] <= op_rank[(int) op_left]);
      /* input_line_pointer->after right-hand quantity. */
      /* left-hand quantity in resultP */
      /* right-hand quantity in right. */
      /* operator in op_left. */
      if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1)
	{
	  resultP->X_seg = SEG_PASS1;
	}
      else
	{
	  if (resultP->X_seg == SEG_BIG)
	    {
	      as_warn("Left operand of %c is a %s.  Integer 0 assumed.",
		      c_left, resultP->X_add_number > 0 ? "bignum" : "float");
	      resultP->X_seg = SEG_ABSOLUTE;
	      resultP->X_add_symbol = 0;
	      resultP->X_subtract_symbol = 0;
	      resultP->X_add_number = 0;
	    }
	  if (right . X_seg == SEG_BIG)
	    {
	      as_warn("Right operand of %c is a %s.  Integer 0 assumed.",
		      c_left, right . X_add_number > 0 ? "bignum" : "float");
	      right . X_seg = SEG_ABSOLUTE;
	      right . X_add_symbol = 0;
	      right . X_subtract_symbol = 0;
	      right . X_add_number = 0;
	    }
	  if (op_left == O_subtract)
	    {
	      /*
	       * Convert - into + by exchanging symbols and negating number.
	       * I know -infinity can't be negated in 2's complement:
	       * but then it can't be subtracted either. This trick
	       * does not cause any further inaccuracy.
	       */

	      register symbolS *	symbolP;

	      right . X_add_number      = - right . X_add_number;
	      symbolP                   = right . X_add_symbol;
	      right . X_add_symbol	= right . X_subtract_symbol;
	      right . X_subtract_symbol = symbolP;
	      if (symbolP)
		{
		  right . X_seg		= SEG_DIFFERENCE;
		}
	      op_left = O_add;
	    }

	  if (op_left == O_add)
	    {
	      segT	seg1;
	      segT	seg2;

	      know(resultP->X_seg == SEG_DATA
		   || resultP->X_seg == SEG_TEXT
		   || resultP->X_seg == SEG_BSS
		   || resultP->X_seg == SEG_UNKNOWN
		   || resultP->X_seg == SEG_DIFFERENCE
		   || resultP->X_seg == SEG_ABSOLUTE
		   || resultP->X_seg == SEG_PASS1);
	      know(right .  X_seg == SEG_DATA
		   ||   right .  X_seg == SEG_TEXT
		   ||   right .  X_seg == SEG_BSS
		   ||   right .  X_seg == SEG_UNKNOWN
		   ||   right .  X_seg == SEG_DIFFERENCE
		   ||   right .  X_seg == SEG_ABSOLUTE
		   ||   right .  X_seg == SEG_PASS1);

	      clean_up_expression (& right);
	      clean_up_expression (resultP);

	      seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol);
	      seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol);
	      if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
		      need_pass_2 = 1;
		      resultP->X_seg = SEG_PASS1;
	      } else if (seg2 == SEG_ABSOLUTE)
		  resultP->X_seg = seg1;
	      else if (seg1 != SEG_UNKNOWN
		       && seg1 != SEG_ABSOLUTE
		       && seg2 != SEG_UNKNOWN
		       && seg1 != seg2) {
		      know(seg2 != SEG_ABSOLUTE);
		      know(resultP->X_subtract_symbol);

		      know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS);
		      know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS);
		      know(resultP->X_add_symbol);
		      know(resultP->X_subtract_symbol);
		      as_bad("Expression too complex: forgetting %s - %s",
			      S_GET_NAME(resultP->X_add_symbol),
			      S_GET_NAME(resultP->X_subtract_symbol));
		      resultP->X_seg = SEG_ABSOLUTE;
		      /* Clean_up_expression() will do the rest. */
	      } else
		  resultP->X_seg = SEG_DIFFERENCE;

	      resultP->X_add_number += right . X_add_number;
	      clean_up_expression (resultP);
      }
	  else
	    {			/* Not +. */
	      if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN)
		{
		  resultP->X_seg = SEG_PASS1;
		  need_pass_2 = 1;
		}
	      else
		{
		  resultP->X_subtract_symbol = NULL;
		  resultP->X_add_symbol = NULL;
		  /* Will be SEG_ABSOLUTE. */
		  if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE)
		    {
		      as_bad("Relocation error. Absolute 0 assumed.");
		      resultP->X_seg        = SEG_ABSOLUTE;
		      resultP->X_add_number = 0;
		    }
		  else
		    {
		      switch (op_left)
			{
			case O_bit_inclusive_or:
			  resultP->X_add_number |= right . X_add_number;
			  break;

			case O_modulus:
			  if (right . X_add_number)
			    {
			      resultP->X_add_number %= right . X_add_number;
			    }
			  else
			    {
			      as_warn("Division by 0. 0 assumed.");
			      resultP->X_add_number = 0;
			    }
			  break;

			case O_bit_and:
			  resultP->X_add_number &= right . X_add_number;
			  break;

			case O_multiply:
			  resultP->X_add_number *= right . X_add_number;
			  break;

			case O_divide:
			  if (right . X_add_number)
			    {
			      resultP->X_add_number /= right . X_add_number;
			    }
			  else
			    {
			      as_warn("Division by 0. 0 assumed.");
			      resultP->X_add_number = 0;
			    }
			  break;

			case O_left_shift:
			  resultP->X_add_number <<= right . X_add_number;
			  break;

			case O_right_shift:
			  resultP->X_add_number >>= right . X_add_number;
			  break;

			case O_bit_exclusive_or:
			  resultP->X_add_number ^= right . X_add_number;
			  break;

			case O_bit_or_not:
			  resultP->X_add_number |= ~ right . X_add_number;
			  break;

			default:
			  BAD_CASE(op_left);
			  break;
			} /* switch(operator) */
		    }
		}		/* If we have to force need_pass_2. */
	    }			/* If operator was +. */
	}			/* If we didn't set need_pass_2. */
      op_left = op_right;
    }				/* While next operator is >= this rank. */
  return (resultP->X_seg);
}

/*
 *			get_symbol_end()
 *
 * This lives here because it belongs equally in expr.c & read.c.
 * Expr.c is just a branch office read.c anyway, and putting it
 * here lessens the crowd at read.c.
 *
 * Assume input_line_pointer is at start of symbol name.
 * Advance input_line_pointer past symbol name.
 * Turn that character into a '\0', returning its former value.
 * This allows a string compare (RMS wants symbol names to be strings)
 * of the symbol name.
 * There will always be a char following symbol name, because all good
 * lines end in end-of-line.
 */
char
get_symbol_end()
{
  register char c;

  while (is_part_of_name(c = * input_line_pointer ++))
    ;
  * -- input_line_pointer = 0;
  return (c);
}

/*
 * Local Variables:
 * comment-column: 0
 * fill-column: 131
 * End:
 */

/* end: expr.c */