1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
@c Copyright (C) 2013-2015 Free Software Foundation, Inc.
@c This is part of the GAS manual.
@c For copying conditions, see the file as.texinfo.
@c man end
@ifset GENERIC
@page
@node NDS32-Dependent
@chapter NDS32 Dependent Features
@end ifset
@ifclear GENERIC
@node Machine Dependencies
@chapter NDS32 Dependent Features
@end ifclear
@cindex NDS32 processor
The NDS32 processors family includes high-performance and low-power 32-bit
processors for high-end to low-end. @sc{gnu} @code{@value{AS}} for NDS32
architectures supports NDS32 ISA version 3. For detail about NDS32
instruction set, please see the AndeStar ISA User Manual which is availible
at http://www.andestech.com/en/index/index.htm
@menu
* NDS32 Options:: Assembler options
* NDS32 Syntax:: High-level assembly macros
@end menu
@node NDS32 Options
@section NDS32 Options
@cindex NDS32 options
@cindex options for NDS32
The NDS32 configurations of @sc{gnu} @code{@value{AS}} support these
special options:
@c man begin OPTIONS
@table @code
@item -O1
Optimize for performance.
@item -Os
Optimize for space.
@item -EL
Produce little endian data output.
@item -EB
Produce little endian data output.
@item -mpic
Generate PIC.
@item -mno-fp-as-gp-relax
Suppress fp-as-gp relaxation for this file.
@item -mb2bb-relax
Back-to-back branch optimization.
@item -mno-all-relax
Suppress all relaxation for this file.
@item -march=<arch name>
Assemble for architecture <arch name> which could be v3, v3j, v3m, v3f,
v3s, v2, v2j, v2f, v2s.
@item -mbaseline=<baseline>
Assemble for baseline <baseline> which could be v2, v3, v3m.
@item -mfpu-freg=@var{FREG}
Specify a FPU configuration.
@table @code
@item 0 8 SP / 4 DP registers
@item 1 16 SP / 8 DP registers
@item 2 32 SP / 16 DP registers
@item 3 32 SP / 32 DP registers
@end table
@item -mabi=@var{abi}
Specify a abi version <abi> could be v1, v2, v2fp, v2fpp.
@item -m[no-]mac
Enable/Disable Multiply instructions support.
@item -m[no-]div
Enable/Disable Divide instructions support.
@item -m[no-]16bit-ext
Enable/Disable 16-bit extension
@item -m[no-]dx-regs
Enable/Disable d0/d1 registers
@item -m[no-]perf-ext
Enable/Disable Performance extension
@item -m[no-]perf2-ext
Enable/Disable Performance extension 2
@item -m[no-]string-ext
Enable/Disable String extension
@item -m[no-]reduced-regs
Enable/Disable Reduced Register configuration (GPR16) option
@item -m[no-]audio-isa-ext
Enable/Disable AUDIO ISA extension
@item -m[no-]fpu-sp-ext
Enable/Disable FPU SP extension
@item -m[no-]fpu-dp-ext
Enable/Disable FPU DP extension
@item -m[no-]fpu-fma
Enable/Disable FPU fused-multiply-add instructions
@item -mall-ext
Turn on all extensions and instructions support
@end table
@c man end
@node NDS32 Syntax
@section Syntax
@menu
* NDS32-Chars:: Special Characters
* NDS32-Regs:: Register Names
* NDS32-Ops:: Pseudo Instructions
@end menu
@node NDS32-Chars
@subsection Special Characters
Use @samp{#} at column 1 and @samp{!} anywhere in the line except inside
quotes.
Multiple instructions in a line are allowed though not recommended and
should be separated by @samp{;}.
Assembler is not case-sensitive in general except user defined label.
For example, @samp{jral F1} is different from @samp{jral f1} while it is
the same as @samp{JRAL F1}.
@node NDS32-Regs
@subsection Register Names
@table @code
@item General purpose registers (GPR)
There are 32 32-bit general purpose registers $r0 to $r31.
@item Accumulators d0 and d1
64-bit accumulators: $d0.hi, $d0.lo, $d1.hi, and $d1.lo.
@item Assembler reserved register $ta
Register $ta ($r15) is reserved for assembler using.
@item Operating system reserved registers $p0 and $p1
Registers $p0 ($r26) and $p1 ($r27) are used by operating system as scratch
registers.
@item Frame pointer $fp
Register $r28 is regarded as the frame pointer.
@item Global pointer
Register $r29 is regarded as the global pointer.
@item Link pointer
Register $r30 is regarded as the link pointer.
@item Stack pointer
Register $r31 is regarded as the stack pointer.
@end table
@node NDS32-Ops
@subsection Pseudo Instructions
@table @code
@item li rt5,imm32
load 32-bit integer into register rt5. @samp{sethi rt5,hi20(imm32)} and then
@samp{ori rt5,reg,lo12(imm32)}.
@item la rt5,var
Load 32-bit address of var into register rt5. @samp{sethi rt5,hi20(var)} and
then @samp{ori reg,rt5,lo12(var)}
@item l.[bhw] rt5,var
Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then
@samp{l[bhw]i rt5,[$ta+lo12(var)]}
@item l.[bh]s rt5,var
Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then
@samp{l[bh]si rt5,[$ta+lo12(var)]}
@item l.[bhw]p rt5,var,inc
Load value of var into register rt5 and increment $ta by amount inc.
@samp{la $ta,var} and then @samp{l[bhw]i.bi rt5,[$ta],inc}
@item l.[bhw]pc rt5,inc
Continue loading value of var into register rt5 and increment $ta by amount inc.
@samp{l[bhw]i.bi rt5,[$ta],inc.}
@item l.[bh]sp rt5,var,inc
Load value of var into register rt5 and increment $ta by amount inc.
@samp{la $ta,var} and then @samp{l[bh]si.bi rt5,[$ta],inc}
@item l.[bh]spc rt5,inc
Continue loading value of var into register rt5 and increment $ta by amount inc.
@samp{l[bh]si.bi rt5,[$ta],inc.}
@item s.[bhw] rt5,var
Store register rt5 to var.
@samp{sethi $ta,hi20(var)} and then @samp{s[bhw]i rt5,[$ta+lo12(var)]}
@item s.[bhw]p rt5,var,inc
Store register rt5 to var and increment $ta by amount inc.
@samp{la $ta,var} and then @samp{s[bhw]i.bi rt5,[$ta],inc}
@item s.[bhw]pc rt5,inc
Continue storing register rt5 to var and increment $ta by amount inc.
@samp{s[bhw]i.bi rt5,[$ta],inc.}
@item not rt5,ra5
Alias of @samp{nor rt5,ra5,ra5}.
@item neg rt5,ra5
Alias of @samp{subri rt5,ra5,0}.
@item br rb5
Depending on how it is assembled, it is translated into @samp{r5 rb5}
or @samp{jr rb5}.
@item b label
Branch to label depending on how it is assembled, it is translated into
@samp{j8 label}, @samp{j label}, or "@samp{la $ta,label} @samp{br $ta}".
@item bral rb5
Alias of jral br5 depending on how it is assembled, it is translated
into @samp{jral5 rb5} or @samp{jral rb5}.
@item bal fname
Alias of jal fname depending on how it is assembled, it is translated into
@samp{jal fname} or "@samp{la $ta,fname} @samp{bral $ta}".
@item call fname
Call function fname same as @samp{jal fname}.
@item move rt5,ra5
For 16-bit, this is @samp{mov55 rt5,ra5}.
For no 16-bit, this is @samp{ori rt5,ra5,0}.
@item move rt5,var
This is the same as @samp{l.w rt5,var}.
@item move rt5,imm32
This is the same as @samp{li rt5,imm32}.
@item pushm ra5,rb5
Push contents of registers from ra5 to rb5 into stack.
@item push ra5
Push content of register ra5 into stack. (same @samp{pushm ra5,ra5}).
@item push.d var
Push value of double-word variable var into stack.
@item push.w var
Push value of word variable var into stack.
@item push.h var
Push value of half-word variable var into stack.
@item push.b var
Push value of byte variable var into stack.
@item pusha var
Push 32-bit address of variable var into stack.
@item pushi imm32
Push 32-bit immediate value into stack.
@item popm ra5,rb5
Pop top of stack values into registers ra5 to rb5.
@item pop rt5
Pop top of stack value into register. (same as @samp{popm rt5,rt5}.)
@item pop.d var,ra5
Pop value of double-word variable var from stack using register ra5
as 2nd scratch register. (1st is $ta)
@item pop.w var,ra5
Pop value of word variable var from stack using register ra5.
@item pop.h var,ra5
Pop value of half-word variable var from stack using register ra5.
@item pop.b var,ra5
Pop value of byte variable var from stack using register ra5.
@end table
|