aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-tic80.c
blob: f5b4e7992a68f63b0b96e03d776a51a8e7112652 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/* tc-tic80.c -- Assemble for the TI TMS320C80 (MV)
   Copyright (C) 1996, 1997 Free Software Foundation, Inc.

   This file is part of GAS, the GNU Assembler.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#include "as.h"
#include "opcode/tic80.h"

#define internal_error(what) \
  as_fatal("internal error:%s:%d: %s\n",__FILE__,__LINE__,what)
#define internal_error_a(what,arg) \
  as_fatal("internal error:%s:%d: %s %d\n",__FILE__,__LINE__,what,arg)


/* Generic assembler global variables which must be defined by all targets. */

/* Characters which always start a comment. */
const char comment_chars[] = ";";

/* Characters which start a comment at the beginning of a line.  */
const char line_comment_chars[] = ";*#";

/* Characters which may be used to separate multiple commands on a single
   line. The semicolon is such a character by default and should not be
   explicitly listed. */
const char line_separator_chars[] = "";

/* Characters which are used to indicate an exponent in a floating 
   point number.  */
const char EXP_CHARS[] = "eE";

/* Characters which mean that a number is a floating point constant, 
   as in 0f1.0.  */
const char FLT_CHARS[] = "fF";

/* This table describes all the machine specific pseudo-ops the assembler
   has to support.  The fields are:

   pseudo-op name without dot
   function to call to execute this pseudo-op
   integer arg to pass to the function */

extern void obj_coff_section ();

const pseudo_typeS md_pseudo_table[] =
{
  { "align",	s_align_bytes,		4 },	/* Do byte alignment, default is a 4 byte boundary */
  { "word",	cons,			4 },	/* FIXME: Should this be machine independent? */
  { "bss",	s_lcomm,		1 },
  { "sect",	obj_coff_section,	0},	/* For compatibility with TI tools */
  { "section",	obj_coff_section,	0},	/* Standard COFF .section pseudo-op */
  { NULL,	NULL,			0 }
};

/* Opcode hash table.  */
static struct hash_control *tic80_hash;

static struct tic80_opcode * find_opcode PARAMS ((struct tic80_opcode *, expressionS []));
static void build_insn PARAMS ((struct tic80_opcode *, expressionS *));
static int get_operands PARAMS ((expressionS exp[]));
static int const_overflow PARAMS ((unsigned long num, int bits, int flags));


int
md_estimate_size_before_relax (fragP, segment_type)
     fragS *fragP;
     segT segment_type;
{
  internal_error ("Relaxation is a luxury we can't afford");
  return (-1);
}

/* We have no need to default values of symbols.  */

/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
     char *name;
{
  return 0;
}

/* Turn a string in input_line_pointer into a floating point constant of type
   type, and store the appropriate bytes in *litP.  The number of LITTLENUMS
   emitted is stored in *sizeP .  An error message is returned, or NULL on OK.
 */

#define MAX_LITTLENUMS 4

char *
md_atof (type, litP, sizeP)
     int type;
     char *litP;
     int *sizeP;
{
  int prec;
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  char *t;
  char *atof_ieee ();
  
  switch (type)
    {
    case 'f':
    case 'F':
    case 's':
    case 'S':
      prec = 2;
      break;

    case 'd':
    case 'D':
    case 'r':
    case 'R':
      prec = 4;
      break;

    default:
      *sizeP = 0;
      return "bad call to md_atof ()";
    }

  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    {
      input_line_pointer = t;
    }
  
  *sizeP = prec * sizeof (LITTLENUM_TYPE);
  
  for (wordP = words; prec--;)
    {
      md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
      litP += sizeof (LITTLENUM_TYPE);
    }
  return (NULL);
}

/* Check to see if the constant value in NUM will fit in a field of
   width BITS if it has flags FLAGS. */

static int
const_overflow (num, bits, flags)
     unsigned long num;
     int bits;
     int flags;
{
  long min, max;
  int retval = 0;

  /* Only need to check fields less than 32 bits wide */
  if (bits < 32)
    if (flags & TIC80_OPERAND_SIGNED)
      {
	max = (1 << (bits - 1)) - 1; 
	min = - (1 << (bits - 1));  
	retval = ((long) num > max) || ((long) num < min);
      }
    else
      {
	max = (1 << bits) - 1;
	min = 0;
	retval = (num > max) || (num < min);
      }
  return (retval);
}

/* get_operands() parses a string of operands and fills in a passed array of
   expressions in EXP.

   Note that we use O_absent expressions to record additional information
   about the previous non-O_absent expression, such as ":m" or ":s"
   modifiers or register numbers enclosed in parens like "(r10)".

   Returns the number of expressions that were placed in EXP.

   */

static int
get_operands (exp) 
     expressionS exp[];
{
  char *p = input_line_pointer;
  int numexp = 0;
  int mflag = 0;
  int sflag = 0;
  int parens = 0;

  while (*p)  
    {
      /* Skip leading whitespace */
      while (*p == ' ' || *p == '\t' || *p == ',') 
	{
	  p++;
	}

      /* Check to see if we have any operands left to parse */
      if (*p == 0 || *p == '\n' || *p == '\r') 
	{
	  break;
	}
      
      /* Notice scaling or direct memory operand modifiers and save them in
	 an O_absent expression after the expression that they modify. */

      if (*p == ':') 
	{
	  p++;
	  exp[numexp].X_op = O_absent;
	  if (*p == 'm') 
	    {
	      p++;
	      /* This is a ":m" modifier */
	      exp[numexp].X_add_number = TIC80_OPERAND_M_SI | TIC80_OPERAND_M_LI;
	    }
	  else if (*p == 's')
	    {
	      p++;
	      /* This is a ":s" modifier */
	      exp[numexp].X_add_number = TIC80_OPERAND_SCALED;
	    }
	  else
	    {
	      as_bad ("':' not followed by 'm' or 's'");
	    }
	  numexp++;
	  continue;
	}

      /* Handle leading '(' on operands that use them, by recording that we
	 have entered a paren nesting level and then continuing.  We complain
	 about multiple nesting. */

      if (*p == '(')
	{
	  if (++parens != 1)
	    {
	      as_bad ("paren nesting");
	    }
	  p++;
	  continue;
	}

      /* Handle trailing ')' on operands that use them, by reducing the
	 nesting level and then continuing.  We complain if there were too
	 many closures. */

      if (*p == ')') 
	{
	  /* Record that we have left a paren group and continue */
	  if (--parens < 0)
	    {
	      as_bad ("mismatched parenthesis");
	    }
	  p++;
	  continue;
	}

      /* Begin operand parsing at the current scan point. */

      input_line_pointer = p;
      expression (&exp[numexp]);

      if (exp[numexp].X_op == O_illegal)
	{
	  as_bad ("illegal operand");
	}
      else if (exp[numexp].X_op == O_absent)
	{
	  as_bad ("missing operand");
	}

      numexp++;
      p = input_line_pointer;
    }

  if (parens)
    {
      exp[numexp].X_op = O_absent;
      exp[numexp++].X_add_number = TIC80_OPERAND_PARENS;
    }

  /* Mark the end of the valid operands with an illegal expression. */
  exp[numexp].X_op = O_illegal;

  return (numexp);
}

/* find_opcode() gets a pointer to the entry in the opcode table that
   matches the instruction being assembled, or returns NULL if no such match
   is found.

   First it parses all the operands and save them as expressions.  Note that
   we use O_absent expressions to record additional information about the
   previous non-O_absent expression, such as ":m" or ":s" modifiers or
   register numbers enclosed in parens like "(r10)".

   It then looks at all opcodes with the same name and uses the operands to
   choose the correct opcode.  */

static struct tic80_opcode *
find_opcode (opcode, myops)
     struct tic80_opcode *opcode;
     expressionS myops[];
{
  int numexp;				/* Number of expressions from parsing operands */
  int expi;				/* Index of current expression to match */
  int opi;				/* Index of current operand to match */
  int match = 0;			/* Set to 1 when an operand match is found */
  struct tic80_opcode *opc = opcode;	/* Pointer to current opcode table entry */
  const struct tic80_opcode *end;	/* Pointer to end of opcode table */

  /* First parse all the operands so we only have to do it once.  There may
     be more expressions generated than there are operands. */

  numexp = get_operands (myops);

  /* For each opcode with the same name, try to match it against the parsed
     operands. */

  end = tic80_opcodes + tic80_num_opcodes;
  while (!match && (opc < end) && (strcmp (opc -> name, opcode -> name) == 0))
    {
      /* Start off assuming a match.  If we find a mismatch, then this is
	 reset and the operand/expr matching loop terminates with match
	 equal to zero, which allows us to try the next opcode. */

      match = 1;

      /* For each expression, try to match it against the current operand
	 for the current opcode.  Upon any mismatch, we abandon further
	 matching for the current opcode table entry.  */

      for (expi = 0, opi = -1; (expi < numexp) && match; expi++)
	{
	  int bits, flags, X_op, num;

	  X_op = myops[expi].X_op;
	  num = myops[expi].X_add_number;

	  /* The O_absent expressions apply to the same operand as the most
	     recent non O_absent expression.  So only increment the operand
	     index when the current expression is not one of these special
	     expressions. */

	  if (X_op != O_absent)
	    {
	      opi++;
	    }

	  flags = tic80_operands[opc -> operands[opi]].flags;
	  bits = tic80_operands[opc -> operands[opi]].bits;

	  switch (X_op)
	    {
	    case O_register:
	      /* Also check that registers that are supposed to be even actually
		 are even. */
	      if (((flags & TIC80_OPERAND_GPR) != (num & TIC80_OPERAND_GPR)) ||
		  ((flags & TIC80_OPERAND_FPA) != (num & TIC80_OPERAND_FPA)) ||
		  ((flags & TIC80_OPERAND_CR) != (num & TIC80_OPERAND_CR)) ||
		  ((flags & TIC80_OPERAND_EVEN) && (num & 1)) ||
		  const_overflow (num & ~TIC80_OPERAND_MASK, bits, flags))
		{
		  match = 0;
		}
	      break;
	    case O_constant:
	      if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
		{
		  /* Endmask values of 0 and 32 give identical results */
		  num = 0;
		}
	      if ((flags & (TIC80_OPERAND_FPA | TIC80_OPERAND_GPR)) ||
		  const_overflow (num, bits, flags))
		{
		  match = 0;
		}
	      break;
	    case O_symbol:
	      if ((bits < 32) && (flags & TIC80_OPERAND_PCREL))
		{
		  /* For now we only allow PC relative relocations in the
		     short immediate fields, like the TI assembler.
		     FIXME: Should be able to choose "best-fit". */
		}
	      else if ((bits == 32) /* && (flags & TIC80_OPERAND_BASEREL) */)
		{
		  /* For now we only allow base relative relocations in
		     the long immediate fields, like the TI assembler.
		     FIXME: Should be able to choose "best-fit". */
		}
	      else
		{
		  /* Symbols that don't match one of the above cases are
		     rejected as an operand. */
		  match = 0;
		}
	      break;
	    case O_absent:
	      /* If this is an O_absent expression, then it may be an expression that
		 supplies additional information about the operand, such as ":m" or
		 ":s" modifiers. Check to see that the operand matches this requirement. */
	      if (!((num & TIC80_OPERAND_M_SI) && (flags & TIC80_OPERAND_M_SI) ||
		    (num & TIC80_OPERAND_M_LI) && (flags & TIC80_OPERAND_M_LI) ||
		    (num & TIC80_OPERAND_SCALED) && (flags & TIC80_OPERAND_SCALED)))
		{
		  match = 0;
		}
	      break;
	    case O_big:
	      if ((num > 0) || !(flags & TIC80_OPERAND_FLOAT))
		{
		  match = 0;
		}
	      break;
	    case O_illegal:
	    case O_symbol_rva:
	    case O_uminus:
	    case O_bit_not:
	    case O_logical_not:
	    case O_multiply:
	    case O_divide:
	    case O_modulus:
	    case O_left_shift:
	    case O_right_shift:
	    case O_bit_inclusive_or:
	    case O_bit_or_not:
	    case O_bit_exclusive_or:
	    case O_bit_and:
	    case O_add:
	    case O_subtract:
	    case O_eq:
	    case O_ne:
	    case O_lt:
	    case O_le:
	    case O_ge:
	    case O_gt:
	    case O_logical_and:
	    case O_logical_or:
	    case O_max:
	    default:
	      internal_error_a ("unhandled expression type", X_op);
	    }
	}
      if (!match)
	{
	  opc++;
	}
    }  

  return (match ? opc : NULL);

#if 0

  /* Now search the opcode table table for one with operands that
     matches what we've got. */

  while (!match)
    {
      match = 1;
      for (i = 0; opcode -> operands[i]; i++) 
	{
	  int flags = tic80_operands[opcode->operands[i]].flags;
	  int X_op = myops[i].X_op;
	  int num = myops[i].X_add_number;

	  if (X_op == 0) 
	    {
	      match = 0;
	      break;
	    }
	      
	  if (flags & (TIC80_OPERAND_GPR | TIC80_OPERAND_FPA | TIC80_OPERAND_CR)) 
	    {
	      if ((X_op != O_register) ||
		  ((flags & TIC80_OPERAND_GPR) != (num & TIC80_OPERAND_GPR)) ||
		  ((flags & TIC80_OPERAND_FPA) != (num & TIC80_OPERAND_FPA)) ||
		  ((flags & TIC80_OPERAND_CR) != (num & TIC80_OPERAND_CR)))
		{
		  match=0;
		  break;
		}	  
	    }
	      
	  if (((flags & TIC80_OPERAND_MINUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_MINUS))) ||
	      ((flags & TIC80_OPERAND_PLUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_PLUS))) ||
	      ((flags & TIC80_OPERAND_ATMINUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATMINUS))) ||
	      ((flags & TIC80_OPERAND_ATPAR) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATPAR))) ||
	      ((flags & TIC80_OPERAND_ATSIGN) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATSIGN)))) 
	    {
	      match=0;
	      break;
	    }	      
	}
      /* we're only done if the operands matched so far AND there
	 are no more to check */
      if (match && myops[i].X_op==0) 
	break;
      else
	match = 0;

      next_opcode = opcode+1;
      if (next_opcode->opcode == 0) 
	break;
      if (strcmp(next_opcode->name, opcode->name))
	break;
      opcode = next_opcode;
    }

  if (!match)  
    {
      as_bad ("bad opcode or operands");
      return (0);
    }

  /* Check that all registers that are required to be even are. */
  /* Also, if any operands were marked as registers, but were really symbols */
  /* fix that here. */
  for (i=0; opcode->operands[i]; i++) 
    {
      if ((tic80_operands[opcode->operands[i]].flags & TIC80_OPERAND_EVEN) &&
	  (myops[i].X_add_number & 1)) 
	as_fatal ("Register number must be EVEN");
      if (myops[i].X_op == O_register)
	{
	  if (!(tic80_operands[opcode->operands[i]].flags & TIC80_OPERAND_REG)) 
	    {
	      myops[i].X_op = O_symbol;
	      myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
	      myops[i].X_add_number = 0;
	      myops[i].X_op_symbol = NULL;
	    }
	}
    }

#endif
}

/* build_insn takes a pointer to the opcode entry in the opcode table
   and the array of operand expressions and writes out the instruction. */

static void
build_insn (opcode, opers) 
     struct tic80_opcode *opcode;
     expressionS *opers;
{
  int expi;				/* Index of current expression to match */
  int opi;				/* Index of current operand to match */
  unsigned long insn[2];		/* Instruction and long immediate (if any) */
  int extended = 0;			/* Nonzero if instruction is 8 bytes */
  char *f;				/* Temporary pointer to output location */

  /* Start with the raw opcode bits from the opcode table. */
  insn[0] = opcode -> opcode;

  /* We are going to insert at least one 32 bit opcode so get the
     frag now. */

  f = frag_more (4);

  /* For each operand expression, insert the appropriate bits into the
     instruction . */
  for (expi = 0, opi = -1; opers[expi].X_op != O_illegal; expi++)
    {
      int bits, shift, flags, X_op, num;

      X_op = opers[expi].X_op;
      num = opers[expi].X_add_number;

      /* The O_absent expressions apply to the same operand as the most
	 recent non O_absent expression.  So only increment the operand
	 index when the current expression is not one of these special
	 expressions. */

      if (X_op != O_absent)
	{
	  opi++;
	}

      flags = tic80_operands[opcode -> operands[opi]].flags;
      bits = tic80_operands[opcode -> operands[opi]].bits;
      shift = tic80_operands[opcode -> operands[opi]].shift;

      switch (X_op)
	{
	case O_register:
	  num &= ~TIC80_OPERAND_MASK;
	  insn[0] = insn[0] | (num << shift);
	  break;
	case O_constant:
	  if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
	    {
	      /* Endmask values of 0 and 32 give identical results */
	      num = 0;
	    }
	  else if ((flags & TIC80_OPERAND_BITNUM))
	    {
	      /* BITNUM values are stored in one's complement form */
	      num = (~num & 0x1F);
	    }
	  /* Mask off upper bits, just it case it is signed and is negative */
	  if (bits < 32)
	    {
	      num &= (1 << bits) - 1;
	      insn[0] = insn[0] | (num << shift);
	    }
	  else
	    {
	      extended++;
	      insn[1] = num;
	    }
	  break;
	case O_symbol:
	  if (flags & TIC80_OPERAND_PCREL)
	    {
	      fix_new_exp (frag_now,
			   f - (frag_now -> fr_literal),
			   4,			/* FIXME! how is this used? */
			   &opers[expi],
			   1,
			   R_MPPCR);
	    }
	  else if (bits == 32)	/* was (flags & TIC80_OPERAND_BASEREL) */
	    {
	      extended++;
	      fix_new_exp (frag_now,
			   (f + 4) - (frag_now -> fr_literal),
			   4,
			   &opers[expi], 
			   0,
			   R_RELLONGX);
	    }
	  else
	    {
	      internal_error ("symbol reloc that is not PC relative or 32 bits");
	    }
	  break;
	case O_absent:
	  /* Each O_absent expression can indicate exactly one possible modifier. */
	  if ((num & TIC80_OPERAND_M_SI) && (flags & TIC80_OPERAND_M_SI))
	    {
	      insn[0] = insn[0] | (1 << 17);
	    }
	  else if ((num & TIC80_OPERAND_M_LI) && (flags & TIC80_OPERAND_M_LI))
	    {
	      insn[0] = insn[0] | (1 << 15);
	    }
	  else if ((num & TIC80_OPERAND_SCALED) && (flags & TIC80_OPERAND_SCALED))
	    {
	      insn[0] = insn[0] | (1 << 11);
	    }
	  else if ((num & TIC80_OPERAND_PARENS) && (flags & TIC80_OPERAND_PARENS))
	    {
	      /* No code to generate, just accept and discard this expression */
	    }
	  else
	    {
	      internal_error_a ("unhandled operand modifier", opers[expi].X_add_number);
	    }
	  break;
	case O_big:
	  extended++;
	  {
	    union {
	      unsigned long l;
	      LITTLENUM_TYPE words[10];
	    } u;
	    gen_to_words (u.words, 2, 8L);	/* FIXME: magic numbers */
	    /* FIXME: More magic, swap the littlenums */
	    u.words[2] = u.words[0];
	    u.words[0] = u.words [1];
	    u.words[1] = u.words [2];
	    insn[1] = u.l;
	  }
	  break;
	case O_illegal:
	case O_symbol_rva:
	case O_uminus:
	case O_bit_not:
	case O_logical_not:
	case O_multiply:
	case O_divide:
	case O_modulus:
	case O_left_shift:
	case O_right_shift:
	case O_bit_inclusive_or:
	case O_bit_or_not:
	case O_bit_exclusive_or:
	case O_bit_and:
	case O_add:
	case O_subtract:
	case O_eq:
	case O_ne:
	case O_lt:
	case O_le:
	case O_ge:
	case O_gt:
	case O_logical_and:
	case O_logical_or:
	case O_max:
	default:
	  internal_error_a ("unhandled expression", X_op);
	  break;
	}
    }

  /* Write out the instruction, either 4 or 8 bytes.  */

  md_number_to_chars (f, insn[0], 4);
  if (extended)
    {
      f = frag_more (4);
      md_number_to_chars (f, insn[1], 4);
    }
}

/* This is the main entry point for the machine-dependent assembler.  Gas
   calls this function for each input line which does not contain a
   pseudoop.

  STR points to a NULL terminated machine dependent instruction.  This
  function is supposed to emit the frags/bytes it assembles to.  */

void
md_assemble (str)
     char *str;
{
  char *scan;
  unsigned char *input_line_save;
  struct tic80_opcode *opcode;
  expressionS myops[16];
  unsigned long insn;

  /* Ensure there is something there to assemble. */
  assert (str);

  /* Drop any leading whitespace. */
  while (isspace (*str))
    {
      str++;
    }

  /* Isolate the mnemonic from the rest of the string by finding the first
     whitespace character and zapping it to a null byte. */
  for (scan = str; *scan != '\000' && !isspace (*scan); scan++) {;}
  if (*scan != '\000')
    {
      *scan++ = '\000';
    }

  /* Try to find this mnemonic in the hash table */
  if ((opcode = (struct tic80_opcode *) hash_find (tic80_hash, str)) == NULL)
    {
      as_bad ("Invalid mnemonic: '%s'", str);
      return;
    }

  str = scan;
  while (isspace (*scan))
    {
      scan++;
    }

  input_line_save = input_line_pointer;
  input_line_pointer = str;

  opcode = find_opcode (opcode, myops);
  if (opcode == NULL)
    {
      as_bad ("Invalid operands: '%s'", input_line_save);
    }

  input_line_pointer = input_line_save;
  build_insn (opcode, myops);
}

/* This function is called once at the start of assembly, after the command
   line arguments have been parsed and all the machine independent
   initializations have been completed.

   It should set up all the tables, etc., that the machine dependent part of
   the assembler will need.  */

void
md_begin ()
{
  char *prev_name = "";
  register const struct tic80_opcode *op;
  register const struct tic80_opcode *op_end;
  const struct predefined_symbol *pdsp;
  extern int coff_flags;			/* Defined in obj-coff.c */

  /* Set F_AR32WR in coff_flags, which will end up in the file header
     f_flags field. */

  coff_flags |= F_AR32WR;	/* TIc80 is 32 bit little endian */

  /* Insert unique names into hash table.  The TIc80 instruction set
     has many identical opcode names that have different opcodes based
     on the operands.  This hash table then provides a quick index to
     the first opcode with a particular name in the opcode table.  */

  tic80_hash = hash_new ();
  op_end = tic80_opcodes + tic80_num_opcodes;
  for (op = tic80_opcodes; op < op_end; op++)
    {
      if (strcmp (prev_name, op -> name) != 0) 
	{
	  prev_name = (char *) op -> name;
	  hash_insert (tic80_hash, op -> name, (char *) op);
	}
    }

  /* Insert the predefined symbols into the symbol table.  We use symbol_create
     rather than symbol_new so that these symbols don't end up in the object
     files' symbol table.  Note that the values of the predefined symbols include
     some upper bits that distinguish the type of the symbol (register, bitnum,
     condition code, etc) and these bits must be masked away before actually
     inserting the values into the instruction stream.  For registers we put
     these bits in the symbol table since we use them later and there is no
     question that they aren't part of the register number.  For constants we
     can't do that since the constant can be any value, so they are masked off
     before putting them into the symbol table. */

  pdsp = NULL;
  while ((pdsp = tic80_next_predefined_symbol (pdsp)) != NULL)
    {
      segT segment;
      valueT valu;
      int symtype;

      symtype = PDS_VALUE (pdsp) & TIC80_OPERAND_MASK;
      switch (symtype)
	{
	case TIC80_OPERAND_GPR:
	case TIC80_OPERAND_FPA:
	case TIC80_OPERAND_CR:
	  segment = reg_section;
	  valu = PDS_VALUE (pdsp);
	  break;
	case TIC80_OPERAND_CC:
	case TIC80_OPERAND_BITNUM:
	  segment = absolute_section;
	  valu = PDS_VALUE (pdsp) & ~TIC80_OPERAND_MASK;
	  break;
	default:
	  internal_error_a ("unhandled predefined symbol bits", symtype);
	  break;
	}
      symbol_table_insert (symbol_create (PDS_NAME (pdsp), segment, valu,
					  &zero_address_frag));
    }
}



/* The assembler adds md_shortopts to the string passed to getopt. */

CONST char *md_shortopts = "";

/* The assembler adds md_longopts to the machine independent long options
   that are passed to getopt. */

struct option md_longopts[] = {
  {NULL, no_argument, NULL, 0}
};

size_t md_longopts_size = sizeof(md_longopts);

/* The md_parse_option function will be called whenever getopt returns an
   unrecognized code, presumably indicating a special code value which
   appears in md_longopts for machine specific command line options. */

int
md_parse_option (c, arg)
     int c;
     char *arg;
{
  return (0);
}

/* The md_show_usage function will be called whenever a usage message is
   printed.  It should print a description of the machine specific options
   found in md_longopts. */

void
md_show_usage (stream)
     FILE *stream;
{
}


/* Attempt to simplify or even eliminate a fixup.  The return value is
   ignored; perhaps it was once meaningful, but now it is historical.
   To indicate that a fixup has been eliminated, set fixP->fx_done.
   */

void
md_apply_fix (fixP, val)
     fixS *fixP;
     long val;
{
  char *dest =  fixP -> fx_frag -> fr_literal + fixP -> fx_where;
  int overflow;

  switch (fixP -> fx_r_type)
    {
    case R_RELLONGX:
      md_number_to_chars (dest, (valueT) val, 4);
      break;
    case R_MPPCR:
      overflow = (val < -65536) || (val > 65532);
      if (overflow)
	{
	  as_bad_where (fixP -> fx_file, fixP -> fx_line, "PC relative target out of range");
	}
      else
	{
	  val >>= 2;
	  *dest++ = val & 0xFF;
	  val >>= 8;
	  *dest = (*dest & 0x80) | (val & 0x7F);
	}
      break;
    case R_ABS:
      md_number_to_chars (dest, (valueT) val, fixP -> fx_size);
      break;
    default:
      internal_error_a ("unhandled relocation type in fixup", fixP -> fx_r_type);
      break;
    }
}


/* Functions concerning relocs.  */

/* The location from which a PC relative jump should be calculated,
   given a PC relative reloc.

   For the TIc80, this is the address of the 32 bit opcode containing
   the PC relative field. */

long
md_pcrel_from (fixP)
     fixS *fixP;
{
  return (fixP -> fx_frag -> fr_address + fixP -> fx_where) ;
}

/*
 * Called after relax() is finished.
 * In:	Address of frag.
 *	fr_type == rs_machine_dependent.
 *	fr_subtype is what the address relaxed to.
 *
 * Out:	Any fixSs and constants are set up.
 *	Caller will turn frag into a ".space 0".
 */

void
md_convert_frag (headers, seg, fragP)
     object_headers *headers;
     segT seg;
     fragS *fragP;
{
  internal_error ("md_convert_frag() not implemented yet");
  abort ();
}


/*ARGSUSED*/
void
tc_coff_symbol_emit_hook (ignore)
     symbolS *ignore;
{
}

#if defined OBJ_COFF

short
tc_coff_fix2rtype (fixP)
     fixS *fixP;
{
  return (fixP -> fx_r_type);
}

#endif	/* OBJ_COFF */

/* end of tc-tic80.c */