1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
|
/* tc-mips.c -- assemble code for a MIPS chip.
Copyright (C) 1993-2017 Free Software Foundation, Inc.
Contributed by the OSF and Ralph Campbell.
Written by Keith Knowles and Ralph Campbell, working independently.
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
Support.
This file is part of GAS.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "as.h"
#include "config.h"
#include "subsegs.h"
#include "safe-ctype.h"
#include "opcode/mips.h"
#include "itbl-ops.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
/* Check assumptions made in this file. */
typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
#ifdef DEBUG
#define DBG(x) printf x
#else
#define DBG(x)
#endif
#define streq(a, b) (strcmp (a, b) == 0)
#define SKIP_SPACE_TABS(S) \
do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
/* Clean up namespace so we can include obj-elf.h too. */
static int mips_output_flavor (void);
static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
#undef OBJ_PROCESS_STAB
#undef OUTPUT_FLAVOR
#undef S_GET_ALIGN
#undef S_GET_SIZE
#undef S_SET_ALIGN
#undef S_SET_SIZE
#undef obj_frob_file
#undef obj_frob_file_after_relocs
#undef obj_frob_symbol
#undef obj_pop_insert
#undef obj_sec_sym_ok_for_reloc
#undef OBJ_COPY_SYMBOL_ATTRIBUTES
#include "obj-elf.h"
/* Fix any of them that we actually care about. */
#undef OUTPUT_FLAVOR
#define OUTPUT_FLAVOR mips_output_flavor()
#include "elf/mips.h"
#ifndef ECOFF_DEBUGGING
#define NO_ECOFF_DEBUGGING
#define ECOFF_DEBUGGING 0
#endif
int mips_flag_mdebug = -1;
/* Control generation of .pdr sections. Off by default on IRIX: the native
linker doesn't know about and discards them, but relocations against them
remain, leading to rld crashes. */
#ifdef TE_IRIX
int mips_flag_pdr = FALSE;
#else
int mips_flag_pdr = TRUE;
#endif
#include "ecoff.h"
static char *mips_regmask_frag;
static char *mips_flags_frag;
#define ZERO 0
#define ATREG 1
#define S0 16
#define S7 23
#define TREG 24
#define PIC_CALL_REG 25
#define KT0 26
#define KT1 27
#define GP 28
#define SP 29
#define FP 30
#define RA 31
#define ILLEGAL_REG (32)
#define AT mips_opts.at
extern int target_big_endian;
/* The name of the readonly data section. */
#define RDATA_SECTION_NAME ".rodata"
/* Ways in which an instruction can be "appended" to the output. */
enum append_method {
/* Just add it normally. */
APPEND_ADD,
/* Add it normally and then add a nop. */
APPEND_ADD_WITH_NOP,
/* Turn an instruction with a delay slot into a "compact" version. */
APPEND_ADD_COMPACT,
/* Insert the instruction before the last one. */
APPEND_SWAP
};
/* Information about an instruction, including its format, operands
and fixups. */
struct mips_cl_insn
{
/* The opcode's entry in mips_opcodes or mips16_opcodes. */
const struct mips_opcode *insn_mo;
/* The 16-bit or 32-bit bitstring of the instruction itself. This is
a copy of INSN_MO->match with the operands filled in. If we have
decided to use an extended MIPS16 instruction, this includes the
extension. */
unsigned long insn_opcode;
/* The frag that contains the instruction. */
struct frag *frag;
/* The offset into FRAG of the first instruction byte. */
long where;
/* The relocs associated with the instruction, if any. */
fixS *fixp[3];
/* True if this entry cannot be moved from its current position. */
unsigned int fixed_p : 1;
/* True if this instruction occurred in a .set noreorder block. */
unsigned int noreorder_p : 1;
/* True for mips16 instructions that jump to an absolute address. */
unsigned int mips16_absolute_jump_p : 1;
/* True if this instruction is complete. */
unsigned int complete_p : 1;
/* True if this instruction is cleared from history by unconditional
branch. */
unsigned int cleared_p : 1;
};
/* The ABI to use. */
enum mips_abi_level
{
NO_ABI = 0,
O32_ABI,
O64_ABI,
N32_ABI,
N64_ABI,
EABI_ABI
};
/* MIPS ABI we are using for this output file. */
static enum mips_abi_level mips_abi = NO_ABI;
/* Whether or not we have code that can call pic code. */
int mips_abicalls = FALSE;
/* Whether or not we have code which can be put into a shared
library. */
static bfd_boolean mips_in_shared = TRUE;
/* This is the set of options which may be modified by the .set
pseudo-op. We use a struct so that .set push and .set pop are more
reliable. */
struct mips_set_options
{
/* MIPS ISA (Instruction Set Architecture) level. This is set to -1
if it has not been initialized. Changed by `.set mipsN', and the
-mipsN command line option, and the default CPU. */
int isa;
/* Enabled Application Specific Extensions (ASEs). Changed by `.set
<asename>', by command line options, and based on the default
architecture. */
int ase;
/* Whether we are assembling for the mips16 processor. 0 if we are
not, 1 if we are, and -1 if the value has not been initialized.
Changed by `.set mips16' and `.set nomips16', and the -mips16 and
-nomips16 command line options, and the default CPU. */
int mips16;
/* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
1 if we are, and -1 if the value has not been initialized. Changed
by `.set micromips' and `.set nomicromips', and the -mmicromips
and -mno-micromips command line options, and the default CPU. */
int micromips;
/* Non-zero if we should not reorder instructions. Changed by `.set
reorder' and `.set noreorder'. */
int noreorder;
/* Non-zero if we should not permit the register designated "assembler
temporary" to be used in instructions. The value is the register
number, normally $at ($1). Changed by `.set at=REG', `.set noat'
(same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
unsigned int at;
/* Non-zero if we should warn when a macro instruction expands into
more than one machine instruction. Changed by `.set nomacro' and
`.set macro'. */
int warn_about_macros;
/* Non-zero if we should not move instructions. Changed by `.set
move', `.set volatile', `.set nomove', and `.set novolatile'. */
int nomove;
/* Non-zero if we should not optimize branches by moving the target
of the branch into the delay slot. Actually, we don't perform
this optimization anyhow. Changed by `.set bopt' and `.set
nobopt'. */
int nobopt;
/* Non-zero if we should not autoextend mips16 instructions.
Changed by `.set autoextend' and `.set noautoextend'. */
int noautoextend;
/* True if we should only emit 32-bit microMIPS instructions.
Changed by `.set insn32' and `.set noinsn32', and the -minsn32
and -mno-insn32 command line options. */
bfd_boolean insn32;
/* Restrict general purpose registers and floating point registers
to 32 bit. This is initially determined when -mgp32 or -mfp32
is passed but can changed if the assembler code uses .set mipsN. */
int gp;
int fp;
/* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
command line option, and the default CPU. */
int arch;
/* True if ".set sym32" is in effect. */
bfd_boolean sym32;
/* True if floating-point operations are not allowed. Changed by .set
softfloat or .set hardfloat, by command line options -msoft-float or
-mhard-float. The default is false. */
bfd_boolean soft_float;
/* True if only single-precision floating-point operations are allowed.
Changed by .set singlefloat or .set doublefloat, command-line options
-msingle-float or -mdouble-float. The default is false. */
bfd_boolean single_float;
/* 1 if single-precision operations on odd-numbered registers are
allowed. */
int oddspreg;
};
/* Specifies whether module level options have been checked yet. */
static bfd_boolean file_mips_opts_checked = FALSE;
/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
value has not been initialized. Changed by `.nan legacy' and
`.nan 2008', and the -mnan=legacy and -mnan=2008 command line
options, and the default CPU. */
static int mips_nan2008 = -1;
/* This is the struct we use to hold the module level set of options.
Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
fp fields to -1 to indicate that they have not been initialized. */
static struct mips_set_options file_mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
/* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
};
/* This is similar to file_mips_opts, but for the current set of options. */
static struct mips_set_options mips_opts =
{
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
/* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
/* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
};
/* Which bits of file_ase were explicitly set or cleared by ASE options. */
static unsigned int file_ase_explicit;
/* These variables are filled in with the masks of registers used.
The object format code reads them and puts them in the appropriate
place. */
unsigned long mips_gprmask;
unsigned long mips_cprmask[4];
/* True if any MIPS16 code was produced. */
static int file_ase_mips16;
#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5)
/* True if any microMIPS code was produced. */
static int file_ase_micromips;
/* True if we want to create R_MIPS_JALR for jalr $25. */
#ifdef TE_IRIX
#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
#else
/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
because there's no place for any addend, the only acceptable
expression is a bare symbol. */
#define MIPS_JALR_HINT_P(EXPR) \
(!HAVE_IN_PLACE_ADDENDS \
|| ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
#endif
/* The argument of the -march= flag. The architecture we are assembling. */
static const char *mips_arch_string;
/* The argument of the -mtune= flag. The architecture for which we
are optimizing. */
static int mips_tune = CPU_UNKNOWN;
static const char *mips_tune_string;
/* True when generating 32-bit code for a 64-bit processor. */
static int mips_32bitmode = 0;
/* True if the given ABI requires 32-bit registers. */
#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
/* Likewise 64-bit registers. */
#define ABI_NEEDS_64BIT_REGS(ABI) \
((ABI) == N32_ABI \
|| (ABI) == N64_ABI \
|| (ABI) == O64_ABI)
#define ISA_IS_R6(ISA) \
((ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide gp registers. */
#define ISA_HAS_64BIT_REGS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64 bit wide float registers. */
#define ISA_HAS_64BIT_FPRS(ISA) \
((ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports 64-bit right rotate (dror et al.)
instructions. */
#define ISA_HAS_DROR(ISA) \
((ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.micromips \
&& ISA_HAS_64BIT_REGS (ISA)) \
)
/* Return true if ISA supports 32-bit right rotate (ror et al.)
instructions. */
#define ISA_HAS_ROR(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (mips_opts.ase & ASE_SMARTMIPS) \
|| mips_opts.micromips \
)
/* Return true if ISA supports single-precision floats in odd registers. */
#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
(((ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6 \
|| (CPU) == CPU_R5900) \
&& (CPU) != CPU_LOONGSON_3A)
/* Return true if ISA supports move to/from high part of a 64-bit
floating-point register. */
#define ISA_HAS_MXHC1(ISA) \
((ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS32R6 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5 \
|| (ISA) == ISA_MIPS64R6)
/* Return true if ISA supports legacy NAN. */
#define ISA_HAS_LEGACY_NAN(ISA) \
((ISA) == ISA_MIPS1 \
|| (ISA) == ISA_MIPS2 \
|| (ISA) == ISA_MIPS3 \
|| (ISA) == ISA_MIPS4 \
|| (ISA) == ISA_MIPS5 \
|| (ISA) == ISA_MIPS32 \
|| (ISA) == ISA_MIPS32R2 \
|| (ISA) == ISA_MIPS32R3 \
|| (ISA) == ISA_MIPS32R5 \
|| (ISA) == ISA_MIPS64 \
|| (ISA) == ISA_MIPS64R2 \
|| (ISA) == ISA_MIPS64R3 \
|| (ISA) == ISA_MIPS64R5)
#define GPR_SIZE \
(mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
? 32 \
: mips_opts.gp)
#define FPR_SIZE \
(mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
? 32 \
: mips_opts.fp)
#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
/* True if relocations are stored in-place. */
#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
/* The ABI-derived address size. */
#define HAVE_64BIT_ADDRESSES \
(GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
/* The size of symbolic constants (i.e., expressions of the form
"SYMBOL" or "SYMBOL + OFFSET"). */
#define HAVE_32BIT_SYMBOLS \
(HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
/* Addresses are loaded in different ways, depending on the address size
in use. The n32 ABI Documentation also mandates the use of additions
with overflow checking, but existing implementations don't follow it. */
#define ADDRESS_ADD_INSN \
(HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
#define ADDRESS_ADDI_INSN \
(HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
#define ADDRESS_LOAD_INSN \
(HAVE_32BIT_ADDRESSES ? "lw" : "ld")
#define ADDRESS_STORE_INSN \
(HAVE_32BIT_ADDRESSES ? "sw" : "sd")
/* Return true if the given CPU supports the MIPS16 ASE. */
#define CPU_HAS_MIPS16(cpu) \
(strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
|| strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
/* Return true if the given CPU supports the microMIPS ASE. */
#define CPU_HAS_MICROMIPS(cpu) 0
/* True if CPU has a dror instruction. */
#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
/* True if CPU has a ror instruction. */
#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
/* True if CPU is in the Octeon family */
#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
|| (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
/* True if CPU has seq/sne and seqi/snei instructions. */
#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
/* True, if CPU has support for ldc1 and sdc1. */
#define CPU_HAS_LDC1_SDC1(CPU) \
((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
/* True if mflo and mfhi can be immediately followed by instructions
which write to the HI and LO registers.
According to MIPS specifications, MIPS ISAs I, II, and III need
(at least) two instructions between the reads of HI/LO and
instructions which write them, and later ISAs do not. Contradicting
the MIPS specifications, some MIPS IV processor user manuals (e.g.
the UM for the NEC Vr5000) document needing the instructions between
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
MIPS64 and later ISAs to have the interlocks, plus any specific
earlier-ISA CPUs for which CPU documentation declares that the
instructions are really interlocked. */
#define hilo_interlocks \
(mips_opts.isa == ISA_MIPS32 \
|| mips_opts.isa == ISA_MIPS32R2 \
|| mips_opts.isa == ISA_MIPS32R3 \
|| mips_opts.isa == ISA_MIPS32R5 \
|| mips_opts.isa == ISA_MIPS32R6 \
|| mips_opts.isa == ISA_MIPS64 \
|| mips_opts.isa == ISA_MIPS64R2 \
|| mips_opts.isa == ISA_MIPS64R3 \
|| mips_opts.isa == ISA_MIPS64R5 \
|| mips_opts.isa == ISA_MIPS64R6 \
|| mips_opts.arch == CPU_R4010 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.arch == CPU_R10000 \
|| mips_opts.arch == CPU_R12000 \
|| mips_opts.arch == CPU_R14000 \
|| mips_opts.arch == CPU_R16000 \
|| mips_opts.arch == CPU_RM7000 \
|| mips_opts.arch == CPU_VR5500 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from the GPRs after they are loaded from memory, and thus does not
require nops to be inserted. This applies to instructions marked
INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
level I and microMIPS mode instructions are always interlocked. */
#define gpr_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.arch == CPU_R3900 \
|| mips_opts.arch == CPU_R5900 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to avoid delays
required by coprocessor instructions, and thus does not require
nops to be inserted. This applies to instructions marked
INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
instructions marked INSN_WRITE_COND_CODE and ones marked
INSN_READ_COND_CODE. These nops are only required at MIPS ISA
levels I, II, and III and microMIPS mode instructions are always
interlocked. */
/* Itbl support may require additional care here. */
#define cop_interlocks \
((mips_opts.isa != ISA_MIPS1 \
&& mips_opts.isa != ISA_MIPS2 \
&& mips_opts.isa != ISA_MIPS3) \
|| mips_opts.arch == CPU_R4300 \
|| mips_opts.micromips \
)
/* Whether the processor uses hardware interlocks to protect reads
from coprocessor registers after they are loaded from memory, and
thus does not require nops to be inserted. This applies to
instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
requires at MIPS ISA level I and microMIPS mode instructions are
always interlocked. */
#define cop_mem_interlocks \
(mips_opts.isa != ISA_MIPS1 \
|| mips_opts.micromips \
)
/* Is this a mfhi or mflo instruction? */
#define MF_HILO_INSN(PINFO) \
((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
has been selected. This implies, in particular, that addresses of text
labels have their LSB set. */
#define HAVE_CODE_COMPRESSION \
((mips_opts.mips16 | mips_opts.micromips) != 0)
/* The minimum and maximum signed values that can be stored in a GPR. */
#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
#define GPR_SMIN (-GPR_SMAX - 1)
/* MIPS PIC level. */
enum mips_pic_level mips_pic;
/* 1 if we should generate 32 bit offsets from the $gp register in
SVR4_PIC mode. Currently has no meaning in other modes. */
static int mips_big_got = 0;
/* 1 if trap instructions should used for overflow rather than break
instructions. */
static int mips_trap = 0;
/* 1 if double width floating point constants should not be constructed
by assembling two single width halves into two single width floating
point registers which just happen to alias the double width destination
register. On some architectures this aliasing can be disabled by a bit
in the status register, and the setting of this bit cannot be determined
automatically at assemble time. */
static int mips_disable_float_construction;
/* Non-zero if any .set noreorder directives were used. */
static int mips_any_noreorder;
/* Non-zero if nops should be inserted when the register referenced in
an mfhi/mflo instruction is read in the next two instructions. */
static int mips_7000_hilo_fix;
/* The size of objects in the small data section. */
static unsigned int g_switch_value = 8;
/* Whether the -G option was used. */
static int g_switch_seen = 0;
#define N_RMASK 0xc4
#define N_VFP 0xd4
/* If we can determine in advance that GP optimization won't be
possible, we can skip the relaxation stuff that tries to produce
GP-relative references. This makes delay slot optimization work
better.
This function can only provide a guess, but it seems to work for
gcc output. It needs to guess right for gcc, otherwise gcc
will put what it thinks is a GP-relative instruction in a branch
delay slot.
I don't know if a fix is needed for the SVR4_PIC mode. I've only
fixed it for the non-PIC mode. KR 95/04/07 */
static int nopic_need_relax (symbolS *, int);
/* handle of the OPCODE hash table */
static struct hash_control *op_hash = NULL;
/* The opcode hash table we use for the mips16. */
static struct hash_control *mips16_op_hash = NULL;
/* The opcode hash table we use for the microMIPS ASE. */
static struct hash_control *micromips_op_hash = NULL;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "#";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that C style comments are always supported. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here.
*/
/* Types of printf format used for instruction-related error messages.
"I" means int ("%d") and "S" means string ("%s"). */
enum mips_insn_error_format {
ERR_FMT_PLAIN,
ERR_FMT_I,
ERR_FMT_SS,
};
/* Information about an error that was found while assembling the current
instruction. */
struct mips_insn_error {
/* We sometimes need to match an instruction against more than one
opcode table entry. Errors found during this matching are reported
against a particular syntactic argument rather than against the
instruction as a whole. We grade these messages so that errors
against argument N have a greater priority than an error against
any argument < N, since the former implies that arguments up to N
were acceptable and that the opcode entry was therefore a closer match.
If several matches report an error against the same argument,
we only use that error if it is the same in all cases.
min_argnum is the minimum argument number for which an error message
should be accepted. It is 0 if MSG is against the instruction as
a whole. */
int min_argnum;
/* The printf()-style message, including its format and arguments. */
enum mips_insn_error_format format;
const char *msg;
union {
int i;
const char *ss[2];
} u;
};
/* The error that should be reported for the current instruction. */
static struct mips_insn_error insn_error;
static int auto_align = 1;
/* When outputting SVR4 PIC code, the assembler needs to know the
offset in the stack frame from which to restore the $gp register.
This is set by the .cprestore pseudo-op, and saved in this
variable. */
static offsetT mips_cprestore_offset = -1;
/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
more optimizations, it can use a register value instead of a memory-saved
offset and even an other register than $gp as global pointer. */
static offsetT mips_cpreturn_offset = -1;
static int mips_cpreturn_register = -1;
static int mips_gp_register = GP;
static int mips_gprel_offset = 0;
/* Whether mips_cprestore_offset has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_cprestore_valid = 0;
/* This is the register which holds the stack frame, as set by the
.frame pseudo-op. This is needed to implement .cprestore. */
static int mips_frame_reg = SP;
/* Whether mips_frame_reg has been set in the current function
(or whether it has already been warned about, if not). */
static int mips_frame_reg_valid = 0;
/* To output NOP instructions correctly, we need to keep information
about the previous two instructions. */
/* Whether we are optimizing. The default value of 2 means to remove
unneeded NOPs and swap branch instructions when possible. A value
of 1 means to not swap branches. A value of 0 means to always
insert NOPs. */
static int mips_optimize = 2;
/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
equivalent to seeing no -g option at all. */
static int mips_debug = 0;
/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
#define MAX_VR4130_NOPS 4
/* The maximum number of NOPs needed to fill delay slots. */
#define MAX_DELAY_NOPS 2
/* The maximum number of NOPs needed for any purpose. */
#define MAX_NOPS 4
/* A list of previous instructions, with index 0 being the most recent.
We need to look back MAX_NOPS instructions when filling delay slots
or working around processor errata. We need to look back one
instruction further if we're thinking about using history[0] to
fill a branch delay slot. */
static struct mips_cl_insn history[1 + MAX_NOPS];
/* Arrays of operands for each instruction. */
#define MAX_OPERANDS 6
struct mips_operand_array {
const struct mips_operand *operand[MAX_OPERANDS];
};
static struct mips_operand_array *mips_operands;
static struct mips_operand_array *mips16_operands;
static struct mips_operand_array *micromips_operands;
/* Nop instructions used by emit_nop. */
static struct mips_cl_insn nop_insn;
static struct mips_cl_insn mips16_nop_insn;
static struct mips_cl_insn micromips_nop16_insn;
static struct mips_cl_insn micromips_nop32_insn;
/* The appropriate nop for the current mode. */
#define NOP_INSN (mips_opts.mips16 \
? &mips16_nop_insn \
: (mips_opts.micromips \
? (mips_opts.insn32 \
? µmips_nop32_insn \
: µmips_nop16_insn) \
: &nop_insn))
/* The size of NOP_INSN in bytes. */
#define NOP_INSN_SIZE ((mips_opts.mips16 \
|| (mips_opts.micromips && !mips_opts.insn32)) \
? 2 : 4)
/* If this is set, it points to a frag holding nop instructions which
were inserted before the start of a noreorder section. If those
nops turn out to be unnecessary, the size of the frag can be
decreased. */
static fragS *prev_nop_frag;
/* The number of nop instructions we created in prev_nop_frag. */
static int prev_nop_frag_holds;
/* The number of nop instructions that we know we need in
prev_nop_frag. */
static int prev_nop_frag_required;
/* The number of instructions we've seen since prev_nop_frag. */
static int prev_nop_frag_since;
/* Relocations against symbols are sometimes done in two parts, with a HI
relocation and a LO relocation. Each relocation has only 16 bits of
space to store an addend. This means that in order for the linker to
handle carries correctly, it must be able to locate both the HI and
the LO relocation. This means that the relocations must appear in
order in the relocation table.
In order to implement this, we keep track of each unmatched HI
relocation. We then sort them so that they immediately precede the
corresponding LO relocation. */
struct mips_hi_fixup
{
/* Next HI fixup. */
struct mips_hi_fixup *next;
/* This fixup. */
fixS *fixp;
/* The section this fixup is in. */
segT seg;
};
/* The list of unmatched HI relocs. */
static struct mips_hi_fixup *mips_hi_fixup_list;
/* The frag containing the last explicit relocation operator.
Null if explicit relocations have not been used. */
static fragS *prev_reloc_op_frag;
/* Map mips16 register numbers to normal MIPS register numbers. */
static const unsigned int mips16_to_32_reg_map[] =
{
16, 17, 2, 3, 4, 5, 6, 7
};
/* Map microMIPS register numbers to normal MIPS register numbers. */
#define micromips_to_32_reg_d_map mips16_to_32_reg_map
/* The microMIPS registers with type h. */
static const unsigned int micromips_to_32_reg_h_map1[] =
{
5, 5, 6, 4, 4, 4, 4, 4
};
static const unsigned int micromips_to_32_reg_h_map2[] =
{
6, 7, 7, 21, 22, 5, 6, 7
};
/* The microMIPS registers with type m. */
static const unsigned int micromips_to_32_reg_m_map[] =
{
0, 17, 2, 3, 16, 18, 19, 20
};
#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
/* Classifies the kind of instructions we're interested in when
implementing -mfix-vr4120. */
enum fix_vr4120_class
{
FIX_VR4120_MACC,
FIX_VR4120_DMACC,
FIX_VR4120_MULT,
FIX_VR4120_DMULT,
FIX_VR4120_DIV,
FIX_VR4120_MTHILO,
NUM_FIX_VR4120_CLASSES
};
/* ...likewise -mfix-loongson2f-jump. */
static bfd_boolean mips_fix_loongson2f_jump;
/* ...likewise -mfix-loongson2f-nop. */
static bfd_boolean mips_fix_loongson2f_nop;
/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
static bfd_boolean mips_fix_loongson2f;
/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
there must be at least one other instruction between an instruction
of type X and an instruction of type Y. */
static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
/* True if -mfix-vr4120 is in force. */
static int mips_fix_vr4120;
/* ...likewise -mfix-vr4130. */
static int mips_fix_vr4130;
/* ...likewise -mfix-24k. */
static int mips_fix_24k;
/* ...likewise -mfix-rm7000 */
static int mips_fix_rm7000;
/* ...likewise -mfix-cn63xxp1 */
static bfd_boolean mips_fix_cn63xxp1;
/* We don't relax branches by default, since this causes us to expand
`la .l2 - .l1' if there's a branch between .l1 and .l2, because we
fail to compute the offset before expanding the macro to the most
efficient expansion. */
static int mips_relax_branch;
/* TRUE if checks are suppressed for invalid branches between ISA modes.
Needed for broken assembly produced by some GCC versions and some
sloppy code out there, where branches to data labels are present. */
static bfd_boolean mips_ignore_branch_isa;
/* The expansion of many macros depends on the type of symbol that
they refer to. For example, when generating position-dependent code,
a macro that refers to a symbol may have two different expansions,
one which uses GP-relative addresses and one which uses absolute
addresses. When generating SVR4-style PIC, a macro may have
different expansions for local and global symbols.
We handle these situations by generating both sequences and putting
them in variant frags. In position-dependent code, the first sequence
will be the GP-relative one and the second sequence will be the
absolute one. In SVR4 PIC, the first sequence will be for global
symbols and the second will be for local symbols.
The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
SECOND are the lengths of the two sequences in bytes. These fields
can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
the subtype has the following flags:
RELAX_PIC
Set if generating PIC code.
RELAX_USE_SECOND
Set if it has been decided that we should use the second
sequence instead of the first.
RELAX_SECOND_LONGER
Set in the first variant frag if the macro's second implementation
is longer than its first. This refers to the macro as a whole,
not an individual relaxation.
RELAX_NOMACRO
Set in the first variant frag if the macro appeared in a .set nomacro
block and if one alternative requires a warning but the other does not.
RELAX_DELAY_SLOT
Like RELAX_NOMACRO, but indicates that the macro appears in a branch
delay slot.
RELAX_DELAY_SLOT_16BIT
Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
16-bit instruction.
RELAX_DELAY_SLOT_SIZE_FIRST
Like RELAX_DELAY_SLOT, but indicates that the first implementation of
the macro is of the wrong size for the branch delay slot.
RELAX_DELAY_SLOT_SIZE_SECOND
Like RELAX_DELAY_SLOT, but indicates that the second implementation of
the macro is of the wrong size for the branch delay slot.
The frag's "opcode" points to the first fixup for relaxable code.
Relaxable macros are generated using a sequence such as:
relax_start (SYMBOL);
... generate first expansion ...
relax_switch ();
... generate second expansion ...
relax_end ();
The code and fixups for the unwanted alternative are discarded
by md_convert_frag. */
#define RELAX_ENCODE(FIRST, SECOND, PIC) \
(((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
#define RELAX_SECOND(X) ((X) & 0xff)
#define RELAX_PIC(X) (((X) & 0x10000) != 0)
#define RELAX_USE_SECOND 0x20000
#define RELAX_SECOND_LONGER 0x40000
#define RELAX_NOMACRO 0x80000
#define RELAX_DELAY_SLOT 0x100000
#define RELAX_DELAY_SLOT_16BIT 0x200000
#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
/* Branch without likely bit. If label is out of range, we turn:
beq reg1, reg2, label
delay slot
into
bne reg1, reg2, 0f
nop
j label
0: delay slot
with the following opcode replacements:
beq <-> bne
blez <-> bgtz
bltz <-> bgez
bc1f <-> bc1t
bltzal <-> bgezal (with jal label instead of j label)
Even though keeping the delay slot instruction in the delay slot of
the branch would be more efficient, it would be very tricky to do
correctly, because we'd have to introduce a variable frag *after*
the delay slot instruction, and expand that instead. Let's do it
the easy way for now, even if the branch-not-taken case now costs
one additional instruction. Out-of-range branches are not supposed
to be common, anyway.
Branch likely. If label is out of range, we turn:
beql reg1, reg2, label
delay slot (annulled if branch not taken)
into
beql reg1, reg2, 1f
nop
beql $0, $0, 2f
nop
1: j[al] label
delay slot (executed only if branch taken)
2:
It would be possible to generate a shorter sequence by losing the
likely bit, generating something like:
bne reg1, reg2, 0f
nop
j[al] label
delay slot (executed only if branch taken)
0:
beql -> bne
bnel -> beq
blezl -> bgtz
bgtzl -> blez
bltzl -> bgez
bgezl -> bltz
bc1fl -> bc1t
bc1tl -> bc1f
bltzall -> bgezal (with jal label instead of j label)
bgezall -> bltzal (ditto)
but it's not clear that it would actually improve performance. */
#define RELAX_BRANCH_ENCODE(at, pic, \
uncond, likely, link, toofar) \
((relax_substateT) \
(0xc0000000 \
| ((at) & 0x1f) \
| ((pic) ? 0x20 : 0) \
| ((toofar) ? 0x40 : 0) \
| ((link) ? 0x80 : 0) \
| ((likely) ? 0x100 : 0) \
| ((uncond) ? 0x200 : 0)))
#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
/* For mips16 code, we use an entirely different form of relaxation.
mips16 supports two versions of most instructions which take
immediate values: a small one which takes some small value, and a
larger one which takes a 16 bit value. Since branches also follow
this pattern, relaxing these values is required.
We can assemble both mips16 and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use the high bit of the subtype field to distinguish these cases.
The information we store for this type of relaxation is the
argument code found in the opcode file for this relocation, whether
the user explicitly requested a small or extended form, and whether
the relocation is in a jump or jal delay slot. That tells us the
size of the value, and how it should be stored. We also store
whether the fragment is considered to be extended or not. We also
store whether this is known to be a branch to a different section,
whether we have tried to relax this frag yet, and whether we have
ever extended a PC relative fragment because of a shift count. */
#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
small, ext, \
dslot, jal_dslot) \
(0x80000000 \
| ((type) & 0xff) \
| ((e2) ? 0x100 : 0) \
| ((pic) ? 0x200 : 0) \
| ((sym32) ? 0x400 : 0) \
| ((nomacro) ? 0x800 : 0) \
| ((small) ? 0x1000 : 0) \
| ((ext) ? 0x2000 : 0) \
| ((dslot) ? 0x4000 : 0) \
| ((jal_dslot) ? 0x8000 : 0))
#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
/* For microMIPS code, we use relaxation similar to one we use for
MIPS16 code. Some instructions that take immediate values support
two encodings: a small one which takes some small value, and a
larger one which takes a 16 bit value. As some branches also follow
this pattern, relaxing these values is required.
We can assemble both microMIPS and normal MIPS code in a single
object. Therefore, we need to support this type of relaxation at
the same time that we support the relaxation described above. We
use one of the high bits of the subtype field to distinguish these
cases.
The information we store for this type of relaxation is the argument
code found in the opcode file for this relocation, the register
selected as the assembler temporary, whether in the 32-bit
instruction mode, whether the branch is unconditional, whether it is
compact, whether there is no delay-slot instruction available to fill
in, whether it stores the link address implicitly in $ra, whether
relaxation of out-of-range 32-bit branches to a sequence of
instructions is enabled, and whether the displacement of a branch is
too large to fit as an immediate argument of a 16-bit and a 32-bit
branch, respectively. */
#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
uncond, compact, link, nods, \
relax32, toofar16, toofar32) \
(0x40000000 \
| ((type) & 0xff) \
| (((at) & 0x1f) << 8) \
| ((insn32) ? 0x2000 : 0) \
| ((pic) ? 0x4000 : 0) \
| ((uncond) ? 0x8000 : 0) \
| ((compact) ? 0x10000 : 0) \
| ((link) ? 0x20000 : 0) \
| ((nods) ? 0x40000 : 0) \
| ((relax32) ? 0x80000 : 0) \
| ((toofar16) ? 0x100000 : 0) \
| ((toofar32) ? 0x200000 : 0))
#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
/* Sign-extend 16-bit value X. */
#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
/* Is the given value a sign-extended 32-bit value? */
#define IS_SEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fffffff) == 0 \
|| (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
/* Is the given value a sign-extended 16-bit value? */
#define IS_SEXT_16BIT_NUM(x) \
(((x) &~ (offsetT) 0x7fff) == 0 \
|| (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
/* Is the given value a sign-extended 12-bit value? */
#define IS_SEXT_12BIT_NUM(x) \
(((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
/* Is the given value a sign-extended 9-bit value? */
#define IS_SEXT_9BIT_NUM(x) \
(((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
/* Is the given value a zero-extended 32-bit value? Or a negated one? */
#define IS_ZEXT_32BIT_NUM(x) \
(((x) &~ (offsetT) 0xffffffff) == 0 \
|| (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
/* Extract bits MASK << SHIFT from STRUCT and shift them right
SHIFT places. */
#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
(((STRUCT) >> (SHIFT)) & (MASK))
/* Extract the operand given by FIELD from mips_cl_insn INSN. */
#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
(!(MICROMIPS) \
? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
: EXTRACT_BITS ((INSN).insn_opcode, \
MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
EXTRACT_BITS ((INSN).insn_opcode, \
MIPS16OP_MASK_##FIELD, \
MIPS16OP_SH_##FIELD)
/* The MIPS16 EXTEND opcode, shifted left 16 places. */
#define MIPS16_EXTEND (0xf000U << 16)
/* Whether or not we are emitting a branch-likely macro. */
static bfd_boolean emit_branch_likely_macro = FALSE;
/* Global variables used when generating relaxable macros. See the
comment above RELAX_ENCODE for more details about how relaxation
is used. */
static struct {
/* 0 if we're not emitting a relaxable macro.
1 if we're emitting the first of the two relaxation alternatives.
2 if we're emitting the second alternative. */
int sequence;
/* The first relaxable fixup in the current frag. (In other words,
the first fixup that refers to relaxable code.) */
fixS *first_fixup;
/* sizes[0] says how many bytes of the first alternative are stored in
the current frag. Likewise sizes[1] for the second alternative. */
unsigned int sizes[2];
/* The symbol on which the choice of sequence depends. */
symbolS *symbol;
} mips_relax;
/* Global variables used to decide whether a macro needs a warning. */
static struct {
/* True if the macro is in a branch delay slot. */
bfd_boolean delay_slot_p;
/* Set to the length in bytes required if the macro is in a delay slot
that requires a specific length of instruction, otherwise zero. */
unsigned int delay_slot_length;
/* For relaxable macros, sizes[0] is the length of the first alternative
in bytes and sizes[1] is the length of the second alternative.
For non-relaxable macros, both elements give the length of the
macro in bytes. */
unsigned int sizes[2];
/* For relaxable macros, first_insn_sizes[0] is the length of the first
instruction of the first alternative in bytes and first_insn_sizes[1]
is the length of the first instruction of the second alternative.
For non-relaxable macros, both elements give the length of the first
instruction in bytes.
Set to zero if we haven't yet seen the first instruction. */
unsigned int first_insn_sizes[2];
/* For relaxable macros, insns[0] is the number of instructions for the
first alternative and insns[1] is the number of instructions for the
second alternative.
For non-relaxable macros, both elements give the number of
instructions for the macro. */
unsigned int insns[2];
/* The first variant frag for this macro. */
fragS *first_frag;
} mips_macro_warning;
/* Prototypes for static functions. */
enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
static void append_insn
(struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
bfd_boolean expansionp);
static void mips_no_prev_insn (void);
static void macro_build (expressionS *, const char *, const char *, ...);
static void mips16_macro_build
(expressionS *, const char *, const char *, va_list *);
static void load_register (int, expressionS *, int);
static void macro_start (void);
static void macro_end (void);
static void macro (struct mips_cl_insn *ip, char *str);
static void mips16_macro (struct mips_cl_insn * ip);
static void mips_ip (char *str, struct mips_cl_insn * ip);
static void mips16_ip (char *str, struct mips_cl_insn * ip);
static unsigned long mips16_immed_extend (offsetT, unsigned int);
static void mips16_immed
(const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
unsigned int, unsigned long *);
static size_t my_getSmallExpression
(expressionS *, bfd_reloc_code_real_type *, char *);
static void my_getExpression (expressionS *, char *);
static void s_align (int);
static void s_change_sec (int);
static void s_change_section (int);
static void s_cons (int);
static void s_float_cons (int);
static void s_mips_globl (int);
static void s_option (int);
static void s_mipsset (int);
static void s_abicalls (int);
static void s_cpload (int);
static void s_cpsetup (int);
static void s_cplocal (int);
static void s_cprestore (int);
static void s_cpreturn (int);
static void s_dtprelword (int);
static void s_dtpreldword (int);
static void s_tprelword (int);
static void s_tpreldword (int);
static void s_gpvalue (int);
static void s_gpword (int);
static void s_gpdword (int);
static void s_ehword (int);
static void s_cpadd (int);
static void s_insn (int);
static void s_nan (int);
static void s_module (int);
static void s_mips_ent (int);
static void s_mips_end (int);
static void s_mips_frame (int);
static void s_mips_mask (int reg_type);
static void s_mips_stab (int);
static void s_mips_weakext (int);
static void s_mips_file (int);
static void s_mips_loc (int);
static bfd_boolean pic_need_relax (symbolS *);
static int relaxed_branch_length (fragS *, asection *, int);
static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
static void file_mips_check_options (void);
/* Table and functions used to map between CPU/ISA names, and
ISA levels, and CPU numbers. */
struct mips_cpu_info
{
const char *name; /* CPU or ISA name. */
int flags; /* MIPS_CPU_* flags. */
int ase; /* Set of ASEs implemented by the CPU. */
int isa; /* ISA level. */
int cpu; /* CPU number (default CPU if ISA). */
};
#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
/* Command-line options. */
const char *md_shortopts = "O::g::G:";
enum options
{
OPTION_MARCH = OPTION_MD_BASE,
OPTION_MTUNE,
OPTION_MIPS1,
OPTION_MIPS2,
OPTION_MIPS3,
OPTION_MIPS4,
OPTION_MIPS5,
OPTION_MIPS32,
OPTION_MIPS64,
OPTION_MIPS32R2,
OPTION_MIPS32R3,
OPTION_MIPS32R5,
OPTION_MIPS32R6,
OPTION_MIPS64R2,
OPTION_MIPS64R3,
OPTION_MIPS64R5,
OPTION_MIPS64R6,
OPTION_MIPS16,
OPTION_NO_MIPS16,
OPTION_MIPS3D,
OPTION_NO_MIPS3D,
OPTION_MDMX,
OPTION_NO_MDMX,
OPTION_DSP,
OPTION_NO_DSP,
OPTION_MT,
OPTION_NO_MT,
OPTION_VIRT,
OPTION_NO_VIRT,
OPTION_MSA,
OPTION_NO_MSA,
OPTION_SMARTMIPS,
OPTION_NO_SMARTMIPS,
OPTION_DSPR2,
OPTION_NO_DSPR2,
OPTION_DSPR3,
OPTION_NO_DSPR3,
OPTION_EVA,
OPTION_NO_EVA,
OPTION_XPA,
OPTION_NO_XPA,
OPTION_MICROMIPS,
OPTION_NO_MICROMIPS,
OPTION_MCU,
OPTION_NO_MCU,
OPTION_MIPS16E2,
OPTION_NO_MIPS16E2,
OPTION_COMPAT_ARCH_BASE,
OPTION_M4650,
OPTION_NO_M4650,
OPTION_M4010,
OPTION_NO_M4010,
OPTION_M4100,
OPTION_NO_M4100,
OPTION_M3900,
OPTION_NO_M3900,
OPTION_M7000_HILO_FIX,
OPTION_MNO_7000_HILO_FIX,
OPTION_FIX_24K,
OPTION_NO_FIX_24K,
OPTION_FIX_RM7000,
OPTION_NO_FIX_RM7000,
OPTION_FIX_LOONGSON2F_JUMP,
OPTION_NO_FIX_LOONGSON2F_JUMP,
OPTION_FIX_LOONGSON2F_NOP,
OPTION_NO_FIX_LOONGSON2F_NOP,
OPTION_FIX_VR4120,
OPTION_NO_FIX_VR4120,
OPTION_FIX_VR4130,
OPTION_NO_FIX_VR4130,
OPTION_FIX_CN63XXP1,
OPTION_NO_FIX_CN63XXP1,
OPTION_TRAP,
OPTION_BREAK,
OPTION_EB,
OPTION_EL,
OPTION_FP32,
OPTION_GP32,
OPTION_CONSTRUCT_FLOATS,
OPTION_NO_CONSTRUCT_FLOATS,
OPTION_FP64,
OPTION_FPXX,
OPTION_GP64,
OPTION_RELAX_BRANCH,
OPTION_NO_RELAX_BRANCH,
OPTION_IGNORE_BRANCH_ISA,
OPTION_NO_IGNORE_BRANCH_ISA,
OPTION_INSN32,
OPTION_NO_INSN32,
OPTION_MSHARED,
OPTION_MNO_SHARED,
OPTION_MSYM32,
OPTION_MNO_SYM32,
OPTION_SOFT_FLOAT,
OPTION_HARD_FLOAT,
OPTION_SINGLE_FLOAT,
OPTION_DOUBLE_FLOAT,
OPTION_32,
OPTION_CALL_SHARED,
OPTION_CALL_NONPIC,
OPTION_NON_SHARED,
OPTION_XGOT,
OPTION_MABI,
OPTION_N32,
OPTION_64,
OPTION_MDEBUG,
OPTION_NO_MDEBUG,
OPTION_PDR,
OPTION_NO_PDR,
OPTION_MVXWORKS_PIC,
OPTION_NAN,
OPTION_ODD_SPREG,
OPTION_NO_ODD_SPREG,
OPTION_END_OF_ENUM
};
struct option md_longopts[] =
{
/* Options which specify architecture. */
{"march", required_argument, NULL, OPTION_MARCH},
{"mtune", required_argument, NULL, OPTION_MTUNE},
{"mips0", no_argument, NULL, OPTION_MIPS1},
{"mips1", no_argument, NULL, OPTION_MIPS1},
{"mips2", no_argument, NULL, OPTION_MIPS2},
{"mips3", no_argument, NULL, OPTION_MIPS3},
{"mips4", no_argument, NULL, OPTION_MIPS4},
{"mips5", no_argument, NULL, OPTION_MIPS5},
{"mips32", no_argument, NULL, OPTION_MIPS32},
{"mips64", no_argument, NULL, OPTION_MIPS64},
{"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
{"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
{"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
{"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
{"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
{"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
{"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
{"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
/* Options which specify Application Specific Extensions (ASEs). */
{"mips16", no_argument, NULL, OPTION_MIPS16},
{"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
{"mips3d", no_argument, NULL, OPTION_MIPS3D},
{"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
{"mdmx", no_argument, NULL, OPTION_MDMX},
{"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
{"mdsp", no_argument, NULL, OPTION_DSP},
{"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
{"mmt", no_argument, NULL, OPTION_MT},
{"mno-mt", no_argument, NULL, OPTION_NO_MT},
{"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
{"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
{"mdspr2", no_argument, NULL, OPTION_DSPR2},
{"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
{"mdspr3", no_argument, NULL, OPTION_DSPR3},
{"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
{"meva", no_argument, NULL, OPTION_EVA},
{"mno-eva", no_argument, NULL, OPTION_NO_EVA},
{"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
{"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
{"mmcu", no_argument, NULL, OPTION_MCU},
{"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
{"mvirt", no_argument, NULL, OPTION_VIRT},
{"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
{"mmsa", no_argument, NULL, OPTION_MSA},
{"mno-msa", no_argument, NULL, OPTION_NO_MSA},
{"mxpa", no_argument, NULL, OPTION_XPA},
{"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
{"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
{"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
/* Old-style architecture options. Don't add more of these. */
{"m4650", no_argument, NULL, OPTION_M4650},
{"no-m4650", no_argument, NULL, OPTION_NO_M4650},
{"m4010", no_argument, NULL, OPTION_M4010},
{"no-m4010", no_argument, NULL, OPTION_NO_M4010},
{"m4100", no_argument, NULL, OPTION_M4100},
{"no-m4100", no_argument, NULL, OPTION_NO_M4100},
{"m3900", no_argument, NULL, OPTION_M3900},
{"no-m3900", no_argument, NULL, OPTION_NO_M3900},
/* Options which enable bug fixes. */
{"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
{"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
{"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
{"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
{"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
{"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
{"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
{"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
{"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
{"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
{"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
{"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
{"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
{"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
{"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
{"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
/* Miscellaneous options. */
{"trap", no_argument, NULL, OPTION_TRAP},
{"no-break", no_argument, NULL, OPTION_TRAP},
{"break", no_argument, NULL, OPTION_BREAK},
{"no-trap", no_argument, NULL, OPTION_BREAK},
{"EB", no_argument, NULL, OPTION_EB},
{"EL", no_argument, NULL, OPTION_EL},
{"mfp32", no_argument, NULL, OPTION_FP32},
{"mgp32", no_argument, NULL, OPTION_GP32},
{"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
{"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
{"mfp64", no_argument, NULL, OPTION_FP64},
{"mfpxx", no_argument, NULL, OPTION_FPXX},
{"mgp64", no_argument, NULL, OPTION_GP64},
{"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
{"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
{"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
{"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
{"minsn32", no_argument, NULL, OPTION_INSN32},
{"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
{"mshared", no_argument, NULL, OPTION_MSHARED},
{"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
{"msym32", no_argument, NULL, OPTION_MSYM32},
{"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
{"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
{"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
{"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
{"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
{"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
{"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
/* Strictly speaking this next option is ELF specific,
but we allow it for other ports as well in order to
make testing easier. */
{"32", no_argument, NULL, OPTION_32},
/* ELF-specific options. */
{"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
{"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
{"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
{"non_shared", no_argument, NULL, OPTION_NON_SHARED},
{"xgot", no_argument, NULL, OPTION_XGOT},
{"mabi", required_argument, NULL, OPTION_MABI},
{"n32", no_argument, NULL, OPTION_N32},
{"64", no_argument, NULL, OPTION_64},
{"mdebug", no_argument, NULL, OPTION_MDEBUG},
{"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
{"mpdr", no_argument, NULL, OPTION_PDR},
{"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
{"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
{"mnan", required_argument, NULL, OPTION_NAN},
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
/* Information about either an Application Specific Extension or an
optional architecture feature that, for simplicity, we treat in the
same way as an ASE. */
struct mips_ase
{
/* The name of the ASE, used in both the command-line and .set options. */
const char *name;
/* The associated ASE_* flags. If the ASE is available on both 32-bit
and 64-bit architectures, the flags here refer to the subset that
is available on both. */
unsigned int flags;
/* The ASE_* flag used for instructions that are available on 64-bit
architectures but that are not included in FLAGS. */
unsigned int flags64;
/* The command-line options that turn the ASE on and off. */
int option_on;
int option_off;
/* The minimum required architecture revisions for MIPS32, MIPS64,
microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
int mips32_rev;
int mips64_rev;
int micromips32_rev;
int micromips64_rev;
/* The architecture where the ASE was removed or -1 if the extension has not
been removed. */
int rem_rev;
};
/* A table of all supported ASEs. */
static const struct mips_ase mips_ases[] = {
{ "dsp", ASE_DSP, ASE_DSP64,
OPTION_DSP, OPTION_NO_DSP,
2, 2, 2, 2,
-1 },
{ "dspr2", ASE_DSP | ASE_DSPR2, 0,
OPTION_DSPR2, OPTION_NO_DSPR2,
2, 2, 2, 2,
-1 },
{ "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
OPTION_DSPR3, OPTION_NO_DSPR3,
6, 6, -1, -1,
-1 },
{ "eva", ASE_EVA, 0,
OPTION_EVA, OPTION_NO_EVA,
2, 2, 2, 2,
-1 },
{ "mcu", ASE_MCU, 0,
OPTION_MCU, OPTION_NO_MCU,
2, 2, 2, 2,
-1 },
/* Deprecated in MIPS64r5, but we don't implement that yet. */
{ "mdmx", ASE_MDMX, 0,
OPTION_MDMX, OPTION_NO_MDMX,
-1, 1, -1, -1,
6 },
/* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
{ "mips3d", ASE_MIPS3D, 0,
OPTION_MIPS3D, OPTION_NO_MIPS3D,
2, 1, -1, -1,
6 },
{ "mt", ASE_MT, 0,
OPTION_MT, OPTION_NO_MT,
2, 2, -1, -1,
-1 },
{ "smartmips", ASE_SMARTMIPS, 0,
OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1, -1, -1, -1,
6 },
{ "virt", ASE_VIRT, ASE_VIRT64,
OPTION_VIRT, OPTION_NO_VIRT,
2, 2, 2, 2,
-1 },
{ "msa", ASE_MSA, ASE_MSA64,
OPTION_MSA, OPTION_NO_MSA,
2, 2, 2, 2,
-1 },
{ "xpa", ASE_XPA, 0,
OPTION_XPA, OPTION_NO_XPA,
2, 2, 2, 2,
-1 },
{ "mips16e2", ASE_MIPS16E2, 0,
OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
2, 2, -1, -1,
6 },
};
/* The set of ASEs that require -mfp64. */
#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
/* Groups of ASE_* flags that represent different revisions of an ASE. */
static const unsigned int mips_ase_groups[] = {
ASE_DSP | ASE_DSPR2 | ASE_DSPR3
};
/* Pseudo-op table.
The following pseudo-ops from the Kane and Heinrich MIPS book
should be defined here, but are currently unsupported: .alias,
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
The following pseudo-ops from the Kane and Heinrich MIPS book are
specific to the type of debugging information being generated, and
should be defined by the object format: .aent, .begin, .bend,
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
.vreg.
The following pseudo-ops from the Kane and Heinrich MIPS book are
not MIPS CPU specific, but are also not specific to the object file
format. This file is probably the best place to define them, but
they are not currently supported: .asm0, .endr, .lab, .struct. */
static const pseudo_typeS mips_pseudo_table[] =
{
/* MIPS specific pseudo-ops. */
{"option", s_option, 0},
{"set", s_mipsset, 0},
{"rdata", s_change_sec, 'r'},
{"sdata", s_change_sec, 's'},
{"livereg", s_ignore, 0},
{"abicalls", s_abicalls, 0},
{"cpload", s_cpload, 0},
{"cpsetup", s_cpsetup, 0},
{"cplocal", s_cplocal, 0},
{"cprestore", s_cprestore, 0},
{"cpreturn", s_cpreturn, 0},
{"dtprelword", s_dtprelword, 0},
{"dtpreldword", s_dtpreldword, 0},
{"tprelword", s_tprelword, 0},
{"tpreldword", s_tpreldword, 0},
{"gpvalue", s_gpvalue, 0},
{"gpword", s_gpword, 0},
{"gpdword", s_gpdword, 0},
{"ehword", s_ehword, 0},
{"cpadd", s_cpadd, 0},
{"insn", s_insn, 0},
{"nan", s_nan, 0},
{"module", s_module, 0},
/* Relatively generic pseudo-ops that happen to be used on MIPS
chips. */
{"asciiz", stringer, 8 + 1},
{"bss", s_change_sec, 'b'},
{"err", s_err, 0},
{"half", s_cons, 1},
{"dword", s_cons, 3},
{"weakext", s_mips_weakext, 0},
{"origin", s_org, 0},
{"repeat", s_rept, 0},
/* For MIPS this is non-standard, but we define it for consistency. */
{"sbss", s_change_sec, 'B'},
/* These pseudo-ops are defined in read.c, but must be overridden
here for one reason or another. */
{"align", s_align, 0},
{"byte", s_cons, 0},
{"data", s_change_sec, 'd'},
{"double", s_float_cons, 'd'},
{"float", s_float_cons, 'f'},
{"globl", s_mips_globl, 0},
{"global", s_mips_globl, 0},
{"hword", s_cons, 1},
{"int", s_cons, 2},
{"long", s_cons, 2},
{"octa", s_cons, 4},
{"quad", s_cons, 3},
{"section", s_change_section, 0},
{"short", s_cons, 1},
{"single", s_float_cons, 'f'},
{"stabd", s_mips_stab, 'd'},
{"stabn", s_mips_stab, 'n'},
{"stabs", s_mips_stab, 's'},
{"text", s_change_sec, 't'},
{"word", s_cons, 2},
{ "extern", ecoff_directive_extern, 0},
{ NULL, NULL, 0 },
};
static const pseudo_typeS mips_nonecoff_pseudo_table[] =
{
/* These pseudo-ops should be defined by the object file format.
However, a.out doesn't support them, so we have versions here. */
{"aent", s_mips_ent, 1},
{"bgnb", s_ignore, 0},
{"end", s_mips_end, 0},
{"endb", s_ignore, 0},
{"ent", s_mips_ent, 0},
{"file", s_mips_file, 0},
{"fmask", s_mips_mask, 'F'},
{"frame", s_mips_frame, 0},
{"loc", s_mips_loc, 0},
{"mask", s_mips_mask, 'R'},
{"verstamp", s_ignore, 0},
{ NULL, NULL, 0 },
};
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
purpose of the `.dc.a' internal pseudo-op. */
int
mips_address_bytes (void)
{
file_mips_check_options ();
return HAVE_64BIT_ADDRESSES ? 8 : 4;
}
extern void pop_insert (const pseudo_typeS *);
void
mips_pop_insert (void)
{
pop_insert (mips_pseudo_table);
if (! ECOFF_DEBUGGING)
pop_insert (mips_nonecoff_pseudo_table);
}
/* Symbols labelling the current insn. */
struct insn_label_list
{
struct insn_label_list *next;
symbolS *label;
};
static struct insn_label_list *free_insn_labels;
#define label_list tc_segment_info_data.labels
static void mips_clear_insn_labels (void);
static void mips_mark_labels (void);
static void mips_compressed_mark_labels (void);
static inline void
mips_clear_insn_labels (void)
{
struct insn_label_list **pl;
segment_info_type *si;
if (now_seg)
{
for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
;
si = seg_info (now_seg);
*pl = si->label_list;
si->label_list = NULL;
}
}
/* Mark instruction labels in MIPS16/microMIPS mode. */
static inline void
mips_mark_labels (void)
{
if (HAVE_CODE_COMPRESSION)
mips_compressed_mark_labels ();
}
static char *expr_end;
/* An expression in a macro instruction. This is set by mips_ip and
mips16_ip and when populated is always an O_constant. */
static expressionS imm_expr;
/* The relocatable field in an instruction and the relocs associated
with it. These variables are used for instructions like LUI and
JAL as well as true offsets. They are also used for address
operands in macros. */
static expressionS offset_expr;
static bfd_reloc_code_real_type offset_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
/* This is set to the resulting size of the instruction to be produced
by mips16_ip if an explicit extension is used or by mips_ip if an
explicit size is supplied. */
static unsigned int forced_insn_length;
/* True if we are assembling an instruction. All dot symbols defined during
this time should be treated as code labels. */
static bfd_boolean mips_assembling_insn;
/* The pdr segment for per procedure frame/regmask info. Not used for
ECOFF debugging. */
static segT pdr_seg;
/* The default target format to use. */
#if defined (TE_FreeBSD)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
#elif defined (TE_TMIPS)
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
#else
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
#endif
const char *
mips_target_format (void)
{
switch (OUTPUT_FLAVOR)
{
case bfd_target_elf_flavour:
#ifdef TE_VXWORKS
if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
return (target_big_endian
? "elf32-bigmips-vxworks"
: "elf32-littlemips-vxworks");
#endif
return (target_big_endian
? (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "big")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "big")
: ELF_TARGET ("elf32-", "big")))
: (HAVE_64BIT_OBJECTS
? ELF_TARGET ("elf64-", "little")
: (HAVE_NEWABI
? ELF_TARGET ("elf32-n", "little")
: ELF_TARGET ("elf32-", "little"))));
default:
abort ();
return NULL;
}
}
/* Return the ISA revision that is currently in use, or 0 if we are
generating code for MIPS V or below. */
static int
mips_isa_rev (void)
{
if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
return 2;
if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
return 3;
if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
return 5;
if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
return 6;
/* microMIPS implies revision 2 or above. */
if (mips_opts.micromips)
return 2;
if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
return 1;
return 0;
}
/* Return the mask of all ASEs that are revisions of those in FLAGS. */
static unsigned int
mips_ase_mask (unsigned int flags)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
if (flags & mips_ase_groups[i])
flags |= mips_ase_groups[i];
return flags;
}
/* Check whether the current ISA supports ASE. Issue a warning if
appropriate. */
static void
mips_check_isa_supports_ase (const struct mips_ase *ase)
{
const char *base;
int min_rev, size;
static unsigned int warned_isa;
static unsigned int warned_fp32;
if (ISA_HAS_64BIT_REGS (mips_opts.isa))
min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
else
min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
if ((min_rev < 0 || mips_isa_rev () < min_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
if (min_rev < 0)
as_warn (_("the %d-bit %s architecture does not support the"
" `%s' extension"), size, base, ase->name);
else
as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
ase->name, base, size, min_rev);
}
else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
&& (warned_isa & ase->flags) != ase->flags)
{
warned_isa |= ase->flags;
base = mips_opts.micromips ? "microMIPS" : "MIPS";
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
as_warn (_("the `%s' extension was removed in %s%d revision %d"),
ase->name, base, size, ase->rem_rev);
}
if ((ase->flags & FP64_ASES)
&& mips_opts.fp != 64
&& (warned_fp32 & ase->flags) != ase->flags)
{
warned_fp32 |= ase->flags;
as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
}
}
/* Check all enabled ASEs to see whether they are supported by the
chosen architecture. */
static void
mips_check_isa_supports_ases (void)
{
unsigned int i, mask;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
{
mask = mips_ase_mask (mips_ases[i].flags);
if ((mips_opts.ase & mask) == mips_ases[i].flags)
mips_check_isa_supports_ase (&mips_ases[i]);
}
}
/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
that were affected. */
static unsigned int
mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
bfd_boolean enabled_p)
{
unsigned int mask;
mask = mips_ase_mask (ase->flags);
opts->ase &= ~mask;
/* Clear combination ASE flags, which need to be recalculated based on
updated regular ASE settings. */
opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
if (enabled_p)
opts->ase |= ase->flags;
/* The Virtualization ASE has eXtended Physical Addressing (XPA)
instructions which are only valid when both ASEs are enabled.
This sets the ASE_XPA_VIRT flag when both ASEs are present. */
if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
{
opts->ase |= ASE_XPA_VIRT;
mask |= ASE_XPA_VIRT;
}
if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
{
opts->ase |= ASE_MIPS16E2_MT;
mask |= ASE_MIPS16E2_MT;
}
return mask;
}
/* Return the ASE called NAME, or null if none. */
static const struct mips_ase *
mips_lookup_ase (const char *name)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (strcmp (name, mips_ases[i].name) == 0)
return &mips_ases[i];
return NULL;
}
/* Return the length of a microMIPS instruction in bytes. If bits of
the mask beyond the low 16 are 0, then it is a 16-bit instruction,
otherwise it is a 32-bit instruction. */
static inline unsigned int
micromips_insn_length (const struct mips_opcode *mo)
{
return mips_opcode_32bit_p (mo) ? 4 : 2;
}
/* Return the length of MIPS16 instruction OPCODE. */
static inline unsigned int
mips16_opcode_length (unsigned long opcode)
{
return (opcode >> 16) == 0 ? 2 : 4;
}
/* Return the length of instruction INSN. */
static inline unsigned int
insn_length (const struct mips_cl_insn *insn)
{
if (mips_opts.micromips)
return micromips_insn_length (insn->insn_mo);
else if (mips_opts.mips16)
return mips16_opcode_length (insn->insn_opcode);
else
return 4;
}
/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
static void
create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
{
size_t i;
insn->insn_mo = mo;
insn->insn_opcode = mo->match;
insn->frag = NULL;
insn->where = 0;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
insn->fixp[i] = NULL;
insn->fixed_p = (mips_opts.noreorder > 0);
insn->noreorder_p = (mips_opts.noreorder > 0);
insn->mips16_absolute_jump_p = 0;
insn->complete_p = 0;
insn->cleared_p = 0;
}
/* Get a list of all the operands in INSN. */
static const struct mips_operand_array *
insn_operands (const struct mips_cl_insn *insn)
{
if (insn->insn_mo >= &mips_opcodes[0]
&& insn->insn_mo < &mips_opcodes[NUMOPCODES])
return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
if (insn->insn_mo >= &mips16_opcodes[0]
&& insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
if (insn->insn_mo >= µmips_opcodes[0]
&& insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
abort ();
}
/* Get a description of operand OPNO of INSN. */
static const struct mips_operand *
insn_opno (const struct mips_cl_insn *insn, unsigned opno)
{
const struct mips_operand_array *operands;
operands = insn_operands (insn);
if (opno >= MAX_OPERANDS || !operands->operand[opno])
abort ();
return operands->operand[opno];
}
/* Install UVAL as the value of OPERAND in INSN. */
static inline void
insn_insert_operand (struct mips_cl_insn *insn,
const struct mips_operand *operand, unsigned int uval)
{
if (mips_opts.mips16
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (insn->insn_mo))
insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
else
insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
}
/* Extract the value of OPERAND from INSN. */
static inline unsigned
insn_extract_operand (const struct mips_cl_insn *insn,
const struct mips_operand *operand)
{
return mips_extract_operand (operand, insn->insn_opcode);
}
/* Record the current MIPS16/microMIPS mode in now_seg. */
static void
mips_record_compressed_mode (void)
{
segment_info_type *si;
si = seg_info (now_seg);
if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
si->tc_segment_info_data.mips16 = mips_opts.mips16;
if (si->tc_segment_info_data.micromips != mips_opts.micromips)
si->tc_segment_info_data.micromips = mips_opts.micromips;
}
/* Read a standard MIPS instruction from BUF. */
static unsigned long
read_insn (char *buf)
{
if (target_big_endian)
return bfd_getb32 ((bfd_byte *) buf);
else
return bfd_getl32 ((bfd_byte *) buf);
}
/* Write standard MIPS instruction INSN to BUF. Return a pointer to
the next byte. */
static char *
write_insn (char *buf, unsigned int insn)
{
md_number_to_chars (buf, insn, 4);
return buf + 4;
}
/* Read a microMIPS or MIPS16 opcode from BUF, given that it
has length LENGTH. */
static unsigned long
read_compressed_insn (char *buf, unsigned int length)
{
unsigned long insn;
unsigned int i;
insn = 0;
for (i = 0; i < length; i += 2)
{
insn <<= 16;
if (target_big_endian)
insn |= bfd_getb16 ((char *) buf);
else
insn |= bfd_getl16 ((char *) buf);
buf += 2;
}
return insn;
}
/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
instruction is LENGTH bytes long. Return a pointer to the next byte. */
static char *
write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
{
unsigned int i;
for (i = 0; i < length; i += 2)
md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
return buf + length;
}
/* Install INSN at the location specified by its "frag" and "where" fields. */
static void
install_insn (const struct mips_cl_insn *insn)
{
char *f = insn->frag->fr_literal + insn->where;
if (HAVE_CODE_COMPRESSION)
write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
else
write_insn (f, insn->insn_opcode);
mips_record_compressed_mode ();
}
/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
and install the opcode in the new location. */
static void
move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
{
size_t i;
insn->frag = frag;
insn->where = where;
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
if (insn->fixp[i] != NULL)
{
insn->fixp[i]->fx_frag = frag;
insn->fixp[i]->fx_where = where;
}
install_insn (insn);
}
/* Add INSN to the end of the output. */
static void
add_fixed_insn (struct mips_cl_insn *insn)
{
char *f = frag_more (insn_length (insn));
move_insn (insn, frag_now, f - frag_now->fr_literal);
}
/* Start a variant frag and move INSN to the start of the variant part,
marking it as fixed. The other arguments are as for frag_var. */
static void
add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
relax_substateT subtype, symbolS *symbol, offsetT offset)
{
frag_grow (max_chars);
move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
insn->fixed_p = 1;
frag_var (rs_machine_dependent, max_chars, var,
subtype, symbol, offset, NULL);
}
/* Insert N copies of INSN into the history buffer, starting at
position FIRST. Neither FIRST nor N need to be clipped. */
static void
insert_into_history (unsigned int first, unsigned int n,
const struct mips_cl_insn *insn)
{
if (mips_relax.sequence != 2)
{
unsigned int i;
for (i = ARRAY_SIZE (history); i-- > first;)
if (i >= first + n)
history[i] = history[i - n];
else
history[i] = *insn;
}
}
/* Clear the error in insn_error. */
static void
clear_insn_error (void)
{
memset (&insn_error, 0, sizeof (insn_error));
}
/* Possibly record error message MSG for the current instruction.
If the error is about a particular argument, ARGNUM is the 1-based
number of that argument, otherwise it is 0. FORMAT is the format
of MSG. Return true if MSG was used, false if the current message
was kept. */
static bfd_boolean
set_insn_error_format (int argnum, enum mips_insn_error_format format,
const char *msg)
{
if (argnum == 0)
{
/* Give priority to errors against specific arguments, and to
the first whole-instruction message. */
if (insn_error.msg)
return FALSE;
}
else
{
/* Keep insn_error if it is against a later argument. */
if (argnum < insn_error.min_argnum)
return FALSE;
/* If both errors are against the same argument but are different,
give up on reporting a specific error for this argument.
See the comment about mips_insn_error for details. */
if (argnum == insn_error.min_argnum
&& insn_error.msg
&& strcmp (insn_error.msg, msg) != 0)
{
insn_error.msg = 0;
insn_error.min_argnum += 1;
return FALSE;
}
}
insn_error.min_argnum = argnum;
insn_error.format = format;
insn_error.msg = msg;
return TRUE;
}
/* Record an instruction error with no % format fields. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error (int argnum, const char *msg)
{
set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
}
/* Record an instruction error with one %d field I. ARGNUM and MSG are
as for set_insn_error_format. */
static void
set_insn_error_i (int argnum, const char *msg, int i)
{
if (set_insn_error_format (argnum, ERR_FMT_I, msg))
insn_error.u.i = i;
}
/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
are as for set_insn_error_format. */
static void
set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
{
if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
{
insn_error.u.ss[0] = s1;
insn_error.u.ss[1] = s2;
}
}
/* Report the error in insn_error, which is against assembly code STR. */
static void
report_insn_error (const char *str)
{
const char *msg = concat (insn_error.msg, " `%s'", NULL);
switch (insn_error.format)
{
case ERR_FMT_PLAIN:
as_bad (msg, str);
break;
case ERR_FMT_I:
as_bad (msg, insn_error.u.i, str);
break;
case ERR_FMT_SS:
as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
break;
}
free ((char *) msg);
}
/* Initialize vr4120_conflicts. There is a bit of duplication here:
the idea is to make it obvious at a glance that each errata is
included. */
static void
init_vr4120_conflicts (void)
{
#define CONFLICT(FIRST, SECOND) \
vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
/* Errata 21 - [D]DIV[U] after [D]MACC */
CONFLICT (MACC, DIV);
CONFLICT (DMACC, DIV);
/* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
CONFLICT (DMULT, DMULT);
CONFLICT (DMULT, DMACC);
CONFLICT (DMACC, DMULT);
CONFLICT (DMACC, DMACC);
/* Errata 24 - MT{LO,HI} after [D]MACC */
CONFLICT (MACC, MTHILO);
CONFLICT (DMACC, MTHILO);
/* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
instruction is executed immediately after a MACC or DMACC
instruction, the result of [either instruction] is incorrect." */
CONFLICT (MACC, MULT);
CONFLICT (MACC, DMULT);
CONFLICT (DMACC, MULT);
CONFLICT (DMACC, DMULT);
/* VR4181A errata MD(4): "If a MACC or DMACC instruction is
executed immediately after a DMULT, DMULTU, DIV, DIVU,
DDIV or DDIVU instruction, the result of the MACC or
DMACC instruction is incorrect.". */
CONFLICT (DMULT, MACC);
CONFLICT (DMULT, DMACC);
CONFLICT (DIV, MACC);
CONFLICT (DIV, DMACC);
#undef CONFLICT
}
struct regname {
const char *name;
unsigned int num;
};
#define RNUM_MASK 0x00000ff
#define RTYPE_MASK 0x0ffff00
#define RTYPE_NUM 0x0000100
#define RTYPE_FPU 0x0000200
#define RTYPE_FCC 0x0000400
#define RTYPE_VEC 0x0000800
#define RTYPE_GP 0x0001000
#define RTYPE_CP0 0x0002000
#define RTYPE_PC 0x0004000
#define RTYPE_ACC 0x0008000
#define RTYPE_CCC 0x0010000
#define RTYPE_VI 0x0020000
#define RTYPE_VF 0x0040000
#define RTYPE_R5900_I 0x0080000
#define RTYPE_R5900_Q 0x0100000
#define RTYPE_R5900_R 0x0200000
#define RTYPE_R5900_ACC 0x0400000
#define RTYPE_MSA 0x0800000
#define RWARN 0x8000000
#define GENERIC_REGISTER_NUMBERS \
{"$0", RTYPE_NUM | 0}, \
{"$1", RTYPE_NUM | 1}, \
{"$2", RTYPE_NUM | 2}, \
{"$3", RTYPE_NUM | 3}, \
{"$4", RTYPE_NUM | 4}, \
{"$5", RTYPE_NUM | 5}, \
{"$6", RTYPE_NUM | 6}, \
{"$7", RTYPE_NUM | 7}, \
{"$8", RTYPE_NUM | 8}, \
{"$9", RTYPE_NUM | 9}, \
{"$10", RTYPE_NUM | 10}, \
{"$11", RTYPE_NUM | 11}, \
{"$12", RTYPE_NUM | 12}, \
{"$13", RTYPE_NUM | 13}, \
{"$14", RTYPE_NUM | 14}, \
{"$15", RTYPE_NUM | 15}, \
{"$16", RTYPE_NUM | 16}, \
{"$17", RTYPE_NUM | 17}, \
{"$18", RTYPE_NUM | 18}, \
{"$19", RTYPE_NUM | 19}, \
{"$20", RTYPE_NUM | 20}, \
{"$21", RTYPE_NUM | 21}, \
{"$22", RTYPE_NUM | 22}, \
{"$23", RTYPE_NUM | 23}, \
{"$24", RTYPE_NUM | 24}, \
{"$25", RTYPE_NUM | 25}, \
{"$26", RTYPE_NUM | 26}, \
{"$27", RTYPE_NUM | 27}, \
{"$28", RTYPE_NUM | 28}, \
{"$29", RTYPE_NUM | 29}, \
{"$30", RTYPE_NUM | 30}, \
{"$31", RTYPE_NUM | 31}
#define FPU_REGISTER_NAMES \
{"$f0", RTYPE_FPU | 0}, \
{"$f1", RTYPE_FPU | 1}, \
{"$f2", RTYPE_FPU | 2}, \
{"$f3", RTYPE_FPU | 3}, \
{"$f4", RTYPE_FPU | 4}, \
{"$f5", RTYPE_FPU | 5}, \
{"$f6", RTYPE_FPU | 6}, \
{"$f7", RTYPE_FPU | 7}, \
{"$f8", RTYPE_FPU | 8}, \
{"$f9", RTYPE_FPU | 9}, \
{"$f10", RTYPE_FPU | 10}, \
{"$f11", RTYPE_FPU | 11}, \
{"$f12", RTYPE_FPU | 12}, \
{"$f13", RTYPE_FPU | 13}, \
{"$f14", RTYPE_FPU | 14}, \
{"$f15", RTYPE_FPU | 15}, \
{"$f16", RTYPE_FPU | 16}, \
{"$f17", RTYPE_FPU | 17}, \
{"$f18", RTYPE_FPU | 18}, \
{"$f19", RTYPE_FPU | 19}, \
{"$f20", RTYPE_FPU | 20}, \
{"$f21", RTYPE_FPU | 21}, \
{"$f22", RTYPE_FPU | 22}, \
{"$f23", RTYPE_FPU | 23}, \
{"$f24", RTYPE_FPU | 24}, \
{"$f25", RTYPE_FPU | 25}, \
{"$f26", RTYPE_FPU | 26}, \
{"$f27", RTYPE_FPU | 27}, \
{"$f28", RTYPE_FPU | 28}, \
{"$f29", RTYPE_FPU | 29}, \
{"$f30", RTYPE_FPU | 30}, \
{"$f31", RTYPE_FPU | 31}
#define FPU_CONDITION_CODE_NAMES \
{"$fcc0", RTYPE_FCC | 0}, \
{"$fcc1", RTYPE_FCC | 1}, \
{"$fcc2", RTYPE_FCC | 2}, \
{"$fcc3", RTYPE_FCC | 3}, \
{"$fcc4", RTYPE_FCC | 4}, \
{"$fcc5", RTYPE_FCC | 5}, \
{"$fcc6", RTYPE_FCC | 6}, \
{"$fcc7", RTYPE_FCC | 7}
#define COPROC_CONDITION_CODE_NAMES \
{"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
{"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
{"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
{"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
{"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
{"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
{"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
{"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
#define N32N64_SYMBOLIC_REGISTER_NAMES \
{"$a4", RTYPE_GP | 8}, \
{"$a5", RTYPE_GP | 9}, \
{"$a6", RTYPE_GP | 10}, \
{"$a7", RTYPE_GP | 11}, \
{"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
{"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
{"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
{"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
{"$t0", RTYPE_GP | 12}, \
{"$t1", RTYPE_GP | 13}, \
{"$t2", RTYPE_GP | 14}, \
{"$t3", RTYPE_GP | 15}
#define O32_SYMBOLIC_REGISTER_NAMES \
{"$t0", RTYPE_GP | 8}, \
{"$t1", RTYPE_GP | 9}, \
{"$t2", RTYPE_GP | 10}, \
{"$t3", RTYPE_GP | 11}, \
{"$t4", RTYPE_GP | 12}, \
{"$t5", RTYPE_GP | 13}, \
{"$t6", RTYPE_GP | 14}, \
{"$t7", RTYPE_GP | 15}, \
{"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
{"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
{"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
{"$ta3", RTYPE_GP | 15} /* alias for $t7 */
/* Remaining symbolic register names */
#define SYMBOLIC_REGISTER_NAMES \
{"$zero", RTYPE_GP | 0}, \
{"$at", RTYPE_GP | 1}, \
{"$AT", RTYPE_GP | 1}, \
{"$v0", RTYPE_GP | 2}, \
{"$v1", RTYPE_GP | 3}, \
{"$a0", RTYPE_GP | 4}, \
{"$a1", RTYPE_GP | 5}, \
{"$a2", RTYPE_GP | 6}, \
{"$a3", RTYPE_GP | 7}, \
{"$s0", RTYPE_GP | 16}, \
{"$s1", RTYPE_GP | 17}, \
{"$s2", RTYPE_GP | 18}, \
{"$s3", RTYPE_GP | 19}, \
{"$s4", RTYPE_GP | 20}, \
{"$s5", RTYPE_GP | 21}, \
{"$s6", RTYPE_GP | 22}, \
{"$s7", RTYPE_GP | 23}, \
{"$t8", RTYPE_GP | 24}, \
{"$t9", RTYPE_GP | 25}, \
{"$k0", RTYPE_GP | 26}, \
{"$kt0", RTYPE_GP | 26}, \
{"$k1", RTYPE_GP | 27}, \
{"$kt1", RTYPE_GP | 27}, \
{"$gp", RTYPE_GP | 28}, \
{"$sp", RTYPE_GP | 29}, \
{"$s8", RTYPE_GP | 30}, \
{"$fp", RTYPE_GP | 30}, \
{"$ra", RTYPE_GP | 31}
#define MIPS16_SPECIAL_REGISTER_NAMES \
{"$pc", RTYPE_PC | 0}
#define MDMX_VECTOR_REGISTER_NAMES \
/* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
/* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
{"$v2", RTYPE_VEC | 2}, \
{"$v3", RTYPE_VEC | 3}, \
{"$v4", RTYPE_VEC | 4}, \
{"$v5", RTYPE_VEC | 5}, \
{"$v6", RTYPE_VEC | 6}, \
{"$v7", RTYPE_VEC | 7}, \
{"$v8", RTYPE_VEC | 8}, \
{"$v9", RTYPE_VEC | 9}, \
{"$v10", RTYPE_VEC | 10}, \
{"$v11", RTYPE_VEC | 11}, \
{"$v12", RTYPE_VEC | 12}, \
{"$v13", RTYPE_VEC | 13}, \
{"$v14", RTYPE_VEC | 14}, \
{"$v15", RTYPE_VEC | 15}, \
{"$v16", RTYPE_VEC | 16}, \
{"$v17", RTYPE_VEC | 17}, \
{"$v18", RTYPE_VEC | 18}, \
{"$v19", RTYPE_VEC | 19}, \
{"$v20", RTYPE_VEC | 20}, \
{"$v21", RTYPE_VEC | 21}, \
{"$v22", RTYPE_VEC | 22}, \
{"$v23", RTYPE_VEC | 23}, \
{"$v24", RTYPE_VEC | 24}, \
{"$v25", RTYPE_VEC | 25}, \
{"$v26", RTYPE_VEC | 26}, \
{"$v27", RTYPE_VEC | 27}, \
{"$v28", RTYPE_VEC | 28}, \
{"$v29", RTYPE_VEC | 29}, \
{"$v30", RTYPE_VEC | 30}, \
{"$v31", RTYPE_VEC | 31}
#define R5900_I_NAMES \
{"$I", RTYPE_R5900_I | 0}
#define R5900_Q_NAMES \
{"$Q", RTYPE_R5900_Q | 0}
#define R5900_R_NAMES \
{"$R", RTYPE_R5900_R | 0}
#define R5900_ACC_NAMES \
{"$ACC", RTYPE_R5900_ACC | 0 }
#define MIPS_DSP_ACCUMULATOR_NAMES \
{"$ac0", RTYPE_ACC | 0}, \
{"$ac1", RTYPE_ACC | 1}, \
{"$ac2", RTYPE_ACC | 2}, \
{"$ac3", RTYPE_ACC | 3}
static const struct regname reg_names[] = {
GENERIC_REGISTER_NUMBERS,
FPU_REGISTER_NAMES,
FPU_CONDITION_CODE_NAMES,
COPROC_CONDITION_CODE_NAMES,
/* The $txx registers depends on the abi,
these will be added later into the symbol table from
one of the tables below once mips_abi is set after
parsing of arguments from the command line. */
SYMBOLIC_REGISTER_NAMES,
MIPS16_SPECIAL_REGISTER_NAMES,
MDMX_VECTOR_REGISTER_NAMES,
R5900_I_NAMES,
R5900_Q_NAMES,
R5900_R_NAMES,
R5900_ACC_NAMES,
MIPS_DSP_ACCUMULATOR_NAMES,
{0, 0}
};
static const struct regname reg_names_o32[] = {
O32_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
static const struct regname reg_names_n32n64[] = {
N32N64_SYMBOLIC_REGISTER_NAMES,
{0, 0}
};
/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
interpreted as vector registers 0 and 1. If SYMVAL is the value of one
of these register symbols, return the associated vector register,
otherwise return SYMVAL itself. */
static unsigned int
mips_prefer_vec_regno (unsigned int symval)
{
if ((symval & -2) == (RTYPE_GP | 2))
return RTYPE_VEC | (symval & 1);
return symval;
}
/* Return true if string [S, E) is a valid register name, storing its
symbol value in *SYMVAL_PTR if so. */
static bfd_boolean
mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
{
char save_c;
symbolS *symbol;
/* Terminate name. */
save_c = *e;
*e = '\0';
/* Look up the name. */
symbol = symbol_find (s);
*e = save_c;
if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
return FALSE;
*symval_ptr = S_GET_VALUE (symbol);
return TRUE;
}
/* Return true if the string at *SPTR is a valid register name. Allow it
to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
is nonnull.
When returning true, move *SPTR past the register, store the
register's symbol value in *SYMVAL_PTR and the channel mask in
*CHANNELS_PTR (if nonnull). The symbol value includes the register
number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
static bfd_boolean
mips_parse_register (char **sptr, unsigned int *symval_ptr,
unsigned int *channels_ptr)
{
char *s, *e, *m;
const char *q;
unsigned int channels, symval, bit;
/* Find end of name. */
s = e = *sptr;
if (is_name_beginner (*e))
++e;
while (is_part_of_name (*e))
++e;
channels = 0;
if (!mips_parse_register_1 (s, e, &symval))
{
if (!channels_ptr)
return FALSE;
/* Eat characters from the end of the string that are valid
channel suffixes. The preceding register must be $ACC or
end with a digit, so there is no ambiguity. */
bit = 1;
m = e;
for (q = "wzyx"; *q; q++, bit <<= 1)
if (m > s && m[-1] == *q)
{
--m;
channels |= bit;
}
if (channels == 0
|| !mips_parse_register_1 (s, m, &symval)
|| (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
return FALSE;
}
*sptr = e;
*symval_ptr = symval;
if (channels_ptr)
*channels_ptr = channels;
return TRUE;
}
/* Check if SPTR points at a valid register specifier according to TYPES.
If so, then return 1, advance S to consume the specifier and store
the register's number in REGNOP, otherwise return 0. */
static int
reg_lookup (char **s, unsigned int types, unsigned int *regnop)
{
unsigned int regno;
if (mips_parse_register (s, ®no, NULL))
{
if (types & RTYPE_VEC)
regno = mips_prefer_vec_regno (regno);
if (regno & types)
regno &= RNUM_MASK;
else
regno = ~0;
}
else
{
if (types & RWARN)
as_warn (_("unrecognized register name `%s'"), *s);
regno = ~0;
}
if (regnop)
*regnop = regno;
return regno <= RNUM_MASK;
}
/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
mask in *CHANNELS. Return a pointer to the first unconsumed character. */
static char *
mips_parse_vu0_channels (char *s, unsigned int *channels)
{
unsigned int i;
*channels = 0;
for (i = 0; i < 4; i++)
if (*s == "xyzw"[i])
{
*channels |= 1 << (3 - i);
++s;
}
return s;
}
/* Token types for parsed operand lists. */
enum mips_operand_token_type {
/* A plain register, e.g. $f2. */
OT_REG,
/* A 4-bit XYZW channel mask. */
OT_CHANNELS,
/* A constant vector index, e.g. [1]. */
OT_INTEGER_INDEX,
/* A register vector index, e.g. [$2]. */
OT_REG_INDEX,
/* A continuous range of registers, e.g. $s0-$s4. */
OT_REG_RANGE,
/* A (possibly relocated) expression. */
OT_INTEGER,
/* A floating-point value. */
OT_FLOAT,
/* A single character. This can be '(', ')' or ',', but '(' only appears
before OT_REGs. */
OT_CHAR,
/* A doubled character, either "--" or "++". */
OT_DOUBLE_CHAR,
/* The end of the operand list. */
OT_END
};
/* A parsed operand token. */
struct mips_operand_token
{
/* The type of token. */
enum mips_operand_token_type type;
union
{
/* The register symbol value for an OT_REG or OT_REG_INDEX. */
unsigned int regno;
/* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
unsigned int channels;
/* The integer value of an OT_INTEGER_INDEX. */
addressT index;
/* The two register symbol values involved in an OT_REG_RANGE. */
struct {
unsigned int regno1;
unsigned int regno2;
} reg_range;
/* The value of an OT_INTEGER. The value is represented as an
expression and the relocation operators that were applied to
that expression. The reloc entries are BFD_RELOC_UNUSED if no
relocation operators were used. */
struct {
expressionS value;
bfd_reloc_code_real_type relocs[3];
} integer;
/* The binary data for an OT_FLOAT constant, and the number of bytes
in the constant. */
struct {
unsigned char data[8];
int length;
} flt;
/* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
char ch;
} u;
};
/* An obstack used to construct lists of mips_operand_tokens. */
static struct obstack mips_operand_tokens;
/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
static void
mips_add_token (struct mips_operand_token *token,
enum mips_operand_token_type type)
{
token->type = type;
obstack_grow (&mips_operand_tokens, token, sizeof (*token));
}
/* Check whether S is '(' followed by a register name. Add OT_CHAR
and OT_REG tokens for them if so, and return a pointer to the first
unconsumed character. Return null otherwise. */
static char *
mips_parse_base_start (char *s)
{
struct mips_operand_token token;
unsigned int regno, channels;
bfd_boolean decrement_p;
if (*s != '(')
return 0;
++s;
SKIP_SPACE_TABS (s);
/* Only match "--" as part of a base expression. In other contexts "--X"
is a double negative. */
decrement_p = (s[0] == '-' && s[1] == '-');
if (decrement_p)
{
s += 2;
SKIP_SPACE_TABS (s);
}
/* Allow a channel specifier because that leads to better error messages
than treating something like "$vf0x++" as an expression. */
if (!mips_parse_register (&s, ®no, &channels))
return 0;
token.u.ch = '(';
mips_add_token (&token, OT_CHAR);
if (decrement_p)
{
token.u.ch = '-';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
token.u.regno = regno;
mips_add_token (&token, OT_REG);
if (channels)
{
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
}
/* For consistency, only match "++" as part of base expressions too. */
SKIP_SPACE_TABS (s);
if (s[0] == '+' && s[1] == '+')
{
s += 2;
token.u.ch = '+';
mips_add_token (&token, OT_DOUBLE_CHAR);
}
return s;
}
/* Parse one or more tokens from S. Return a pointer to the first
unconsumed character on success. Return null if an error was found
and store the error text in insn_error. FLOAT_FORMAT is as for
mips_parse_arguments. */
static char *
mips_parse_argument_token (char *s, char float_format)
{
char *end, *save_in;
const char *err;
unsigned int regno1, regno2, channels;
struct mips_operand_token token;
/* First look for "($reg", since we want to treat that as an
OT_CHAR and OT_REG rather than an expression. */
end = mips_parse_base_start (s);
if (end)
return end;
/* Handle other characters that end up as OT_CHARs. */
if (*s == ')' || *s == ',')
{
token.u.ch = *s;
mips_add_token (&token, OT_CHAR);
++s;
return s;
}
/* Handle tokens that start with a register. */
if (mips_parse_register (&s, ®no1, &channels))
{
if (channels)
{
/* A register and a VU0 channel suffix. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
token.u.channels = channels;
mips_add_token (&token, OT_CHANNELS);
return s;
}
SKIP_SPACE_TABS (s);
if (*s == '-')
{
/* A register range. */
++s;
SKIP_SPACE_TABS (s);
if (!mips_parse_register (&s, ®no2, NULL))
{
set_insn_error (0, _("invalid register range"));
return 0;
}
token.u.reg_range.regno1 = regno1;
token.u.reg_range.regno2 = regno2;
mips_add_token (&token, OT_REG_RANGE);
return s;
}
/* Add the register itself. */
token.u.regno = regno1;
mips_add_token (&token, OT_REG);
/* Check for a vector index. */
if (*s == '[')
{
++s;
SKIP_SPACE_TABS (s);
if (mips_parse_register (&s, &token.u.regno, NULL))
mips_add_token (&token, OT_REG_INDEX);
else
{
expressionS element;
my_getExpression (&element, s);
if (element.X_op != O_constant)
{
set_insn_error (0, _("vector element must be constant"));
return 0;
}
s = expr_end;
token.u.index = element.X_add_number;
mips_add_token (&token, OT_INTEGER_INDEX);
}
SKIP_SPACE_TABS (s);
if (*s != ']')
{
set_insn_error (0, _("missing `]'"));
return 0;
}
++s;
}
return s;
}
if (float_format)
{
/* First try to treat expressions as floats. */
save_in = input_line_pointer;
input_line_pointer = s;
err = md_atof (float_format, (char *) token.u.flt.data,
&token.u.flt.length);
end = input_line_pointer;
input_line_pointer = save_in;
if (err && *err)
{
set_insn_error (0, err);
return 0;
}
if (s != end)
{
mips_add_token (&token, OT_FLOAT);
return end;
}
}
/* Treat everything else as an integer expression. */
token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
s = expr_end;
mips_add_token (&token, OT_INTEGER);
return s;
}
/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
if expressions should be treated as 32-bit floating-point constants,
'd' if they should be treated as 64-bit floating-point constants,
or 0 if they should be treated as integer expressions (the usual case).
Return a list of tokens on success, otherwise return 0. The caller
must obstack_free the list after use. */
static struct mips_operand_token *
mips_parse_arguments (char *s, char float_format)
{
struct mips_operand_token token;
SKIP_SPACE_TABS (s);
while (*s)
{
s = mips_parse_argument_token (s, float_format);
if (!s)
{
obstack_free (&mips_operand_tokens,
obstack_finish (&mips_operand_tokens));
return 0;
}
SKIP_SPACE_TABS (s);
}
mips_add_token (&token, OT_END);
return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
}
/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
static bfd_boolean
is_opcode_valid (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
int fp_s, fp_d;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
return FALSE;
/* Check whether the instruction or macro requires single-precision or
double-precision floating-point support. Note that this information is
stored differently in the opcode table for insns and macros. */
if (mo->pinfo == INSN_MACRO)
{
fp_s = mo->pinfo2 & INSN2_M_FP_S;
fp_d = mo->pinfo2 & INSN2_M_FP_D;
}
else
{
fp_s = mo->pinfo & FP_S;
fp_d = mo->pinfo & FP_D;
}
if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
return FALSE;
if (fp_s && mips_opts.soft_float)
return FALSE;
return TRUE;
}
/* Return TRUE if the MIPS16 opcode MO is valid on the currently
selected ISA and architecture. */
static bfd_boolean
is_opcode_valid_16 (const struct mips_opcode *mo)
{
int isa = mips_opts.isa;
int ase = mips_opts.ase;
unsigned int i;
if (ISA_HAS_64BIT_REGS (isa))
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
ase |= mips_ases[i].flags64;
return opcode_is_member (mo, isa, ase, mips_opts.arch);
}
/* Return TRUE if the size of the microMIPS opcode MO matches one
explicitly requested. Always TRUE in the standard MIPS mode.
Use is_size_valid_16 for MIPS16 opcodes. */
static bfd_boolean
is_size_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return TRUE;
if (mips_opts.insn32)
{
if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
return FALSE;
if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
return FALSE;
}
if (!forced_insn_length)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return FALSE;
return forced_insn_length == micromips_insn_length (mo);
}
/* Return TRUE if the size of the MIPS16 opcode MO matches one
explicitly requested. */
static bfd_boolean
is_size_valid_16 (const struct mips_opcode *mo)
{
if (!forced_insn_length)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return FALSE;
if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
return FALSE;
if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
return FALSE;
return TRUE;
}
/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
of the preceding instruction. Always TRUE in the standard MIPS mode.
We don't accept macros in 16-bit delay slots to avoid a case where
a macro expansion fails because it relies on a preceding 32-bit real
instruction to have matched and does not handle the operands correctly.
The only macros that may expand to 16-bit instructions are JAL that
cannot be placed in a delay slot anyway, and corner cases of BALIGN
and BGT (that likewise cannot be placed in a delay slot) that decay to
a NOP. In all these cases the macros precede any corresponding real
instruction definitions in the opcode table, so they will match in the
second pass where the size of the delay slot is ignored and therefore
produce correct code. */
static bfd_boolean
is_delay_slot_valid (const struct mips_opcode *mo)
{
if (!mips_opts.micromips)
return TRUE;
if (mo->pinfo == INSN_MACRO)
return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (mo) != 4)
return FALSE;
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (mo) != 2)
return FALSE;
return TRUE;
}
/* For consistency checking, verify that all bits of OPCODE are specified
either by the match/mask part of the instruction definition, or by the
operand list. Also build up a list of operands in OPERANDS.
INSN_BITS says which bits of the instruction are significant.
If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
provides the mips_operand description of each operand. DECODE_OPERAND
is null for MIPS16 instructions. */
static int
validate_mips_insn (const struct mips_opcode *opcode,
unsigned long insn_bits,
const struct mips_operand *(*decode_operand) (const char *),
struct mips_operand_array *operands)
{
const char *s;
unsigned long used_bits, doubled, undefined, opno, mask;
const struct mips_operand *operand;
mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
if ((mask & opcode->match) != opcode->match)
{
as_bad (_("internal: bad mips opcode (mask error): %s %s"),
opcode->name, opcode->args);
return 0;
}
used_bits = 0;
opno = 0;
if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
for (s = opcode->args; *s; ++s)
switch (*s)
{
case ',':
case '(':
case ')':
break;
case '#':
s++;
break;
default:
if (!decode_operand)
operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
else
operand = decode_operand (s);
if (!operand && opcode->pinfo != INSN_MACRO)
{
as_bad (_("internal: unknown operand type: %s %s"),
opcode->name, opcode->args);
return 0;
}
gas_assert (opno < MAX_OPERANDS);
operands->operand[opno] = operand;
if (!decode_operand && operand
&& operand->type == OP_INT && operand->lsb == 0
&& mips_opcode_32bit_p (opcode))
used_bits |= mips16_immed_extend (-1, operand->size);
else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
{
used_bits = mips_insert_operand (operand, used_bits, -1);
if (operand->type == OP_MDMX_IMM_REG)
/* Bit 5 is the format selector (OB vs QH). The opcode table
has separate entries for each format. */
used_bits &= ~(1 << (operand->lsb + 5));
if (operand->type == OP_ENTRY_EXIT_LIST)
used_bits &= ~(mask & 0x700);
/* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
operand field that cannot be fully described with LSB/SIZE. */
if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
used_bits &= ~0x6000;
}
/* Skip prefix characters. */
if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
++s;
opno += 1;
break;
}
doubled = used_bits & mask & insn_bits;
if (doubled)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
" %s %s"), doubled, opcode->name, opcode->args);
return 0;
}
used_bits |= mask;
undefined = ~used_bits & insn_bits;
if (opcode->pinfo != INSN_MACRO && undefined)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
undefined, opcode->name, opcode->args);
return 0;
}
used_bits &= ~insn_bits;
if (used_bits)
{
as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
used_bits, opcode->name, opcode->args);
return 0;
}
return 1;
}
/* The MIPS16 version of validate_mips_insn. */
static int
validate_mips16_insn (const struct mips_opcode *opcode,
struct mips_operand_array *operands)
{
unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
return validate_mips_insn (opcode, insn_bits, 0, operands);
}
/* The microMIPS version of validate_mips_insn. */
static int
validate_micromips_insn (const struct mips_opcode *opc,
struct mips_operand_array *operands)
{
unsigned long insn_bits;
unsigned long major;
unsigned int length;
if (opc->pinfo == INSN_MACRO)
return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
operands);
length = micromips_insn_length (opc);
if (length != 2 && length != 4)
{
as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
"%s %s"), length, opc->name, opc->args);
return 0;
}
major = opc->match >> (10 + 8 * (length - 2));
if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
|| (length == 4 && (major & 7) != 0 && (major & 4) != 4))
{
as_bad (_("internal error: bad microMIPS opcode "
"(opcode/length mismatch): %s %s"), opc->name, opc->args);
return 0;
}
/* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
insn_bits = 1 << 4 * length;
insn_bits <<= 4 * length;
insn_bits -= 1;
return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
operands);
}
/* This function is called once, at assembler startup time. It should set up
all the tables, etc. that the MD part of the assembler will need. */
void
md_begin (void)
{
const char *retval = NULL;
int i = 0;
int broken = 0;
if (mips_pic != NO_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used in position-independent code"));
g_switch_value = 0;
}
else if (mips_abicalls)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G may not be used with abicalls"));
g_switch_value = 0;
}
if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
op_hash = hash_new ();
mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
for (i = 0; i < NUMOPCODES;)
{
const char *name = mips_opcodes[i].name;
retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
mips_opcodes[i].name, retval);
/* Probably a memory allocation problem? Give up now. */
as_fatal (_("broken assembler, no assembly attempted"));
}
do
{
if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
decode_mips_operand, &mips_operands[i]))
broken = 1;
if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&nop_insn, mips_opcodes + i);
if (mips_fix_loongson2f_nop)
nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
nop_insn.fixed_p = 1;
}
++i;
}
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
}
mips16_op_hash = hash_new ();
mips16_operands = XCNEWVEC (struct mips_operand_array,
bfd_mips16_num_opcodes);
i = 0;
while (i < bfd_mips16_num_opcodes)
{
const char *name = mips16_opcodes[i].name;
retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
if (retval != NULL)
as_fatal (_("internal: can't hash `%s': %s"),
mips16_opcodes[i].name, retval);
do
{
if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
broken = 1;
if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
{
create_insn (&mips16_nop_insn, mips16_opcodes + i);
mips16_nop_insn.fixed_p = 1;
}
++i;
}
while (i < bfd_mips16_num_opcodes
&& strcmp (mips16_opcodes[i].name, name) == 0);
}
micromips_op_hash = hash_new ();
micromips_operands = XCNEWVEC (struct mips_operand_array,
bfd_micromips_num_opcodes);
i = 0;
while (i < bfd_micromips_num_opcodes)
{
const char *name = micromips_opcodes[i].name;
retval = hash_insert (micromips_op_hash, name,
(void *) µmips_opcodes[i]);
if (retval != NULL)
as_fatal (_("internal: can't hash `%s': %s"),
micromips_opcodes[i].name, retval);
do
{
struct mips_cl_insn *micromips_nop_insn;
if (!validate_micromips_insn (µmips_opcodes[i],
µmips_operands[i]))
broken = 1;
if (micromips_opcodes[i].pinfo != INSN_MACRO)
{
if (micromips_insn_length (micromips_opcodes + i) == 2)
micromips_nop_insn = µmips_nop16_insn;
else if (micromips_insn_length (micromips_opcodes + i) == 4)
micromips_nop_insn = µmips_nop32_insn;
else
continue;
if (micromips_nop_insn->insn_mo == NULL
&& strcmp (name, "nop") == 0)
{
create_insn (micromips_nop_insn, micromips_opcodes + i);
micromips_nop_insn->fixed_p = 1;
}
}
}
while (++i < bfd_micromips_num_opcodes
&& strcmp (micromips_opcodes[i].name, name) == 0);
}
if (broken)
as_fatal (_("broken assembler, no assembly attempted"));
/* We add all the general register names to the symbol table. This
helps us detect invalid uses of them. */
for (i = 0; reg_names[i].name; i++)
symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
reg_names[i].num, /* & RNUM_MASK, */
&zero_address_frag));
if (HAVE_NEWABI)
for (i = 0; reg_names_n32n64[i].name; i++)
symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
reg_names_n32n64[i].num, /* & RNUM_MASK, */
&zero_address_frag));
else
for (i = 0; reg_names_o32[i].name; i++)
symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
reg_names_o32[i].num, /* & RNUM_MASK, */
&zero_address_frag));
for (i = 0; i < 32; i++)
{
char regname[6];
/* R5900 VU0 floating-point register. */
sprintf (regname, "$vf%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_VF | i, &zero_address_frag));
/* R5900 VU0 integer register. */
sprintf (regname, "$vi%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_VI | i, &zero_address_frag));
/* MSA register. */
sprintf (regname, "$w%d", i);
symbol_table_insert (symbol_new (regname, reg_section,
RTYPE_MSA | i, &zero_address_frag));
}
obstack_init (&mips_operand_tokens);
mips_no_prev_insn ();
mips_gprmask = 0;
mips_cprmask[0] = 0;
mips_cprmask[1] = 0;
mips_cprmask[2] = 0;
mips_cprmask[3] = 0;
/* set the default alignment for the text section (2**2) */
record_alignment (text_section, 2);
bfd_set_gp_size (stdoutput, g_switch_value);
/* On a native system other than VxWorks, sections must be aligned
to 16 byte boundaries. When configured for an embedded ELF
target, we don't bother. */
if (strncmp (TARGET_OS, "elf", 3) != 0
&& strncmp (TARGET_OS, "vxworks", 7) != 0)
{
(void) bfd_set_section_alignment (stdoutput, text_section, 4);
(void) bfd_set_section_alignment (stdoutput, data_section, 4);
(void) bfd_set_section_alignment (stdoutput, bss_section, 4);
}
/* Create a .reginfo section for register masks and a .mdebug
section for debugging information. */
{
segT seg;
subsegT subseg;
flagword flags;
segT sec;
seg = now_seg;
subseg = now_subseg;
/* The ABI says this section should be loaded so that the
running program can access it. However, we don't load it
if we are configured for an embedded target */
flags = SEC_READONLY | SEC_DATA;
if (strncmp (TARGET_OS, "elf", 3) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
if (mips_abi != N64_ABI)
{
sec = subseg_new (".reginfo", (subsegT) 0);
bfd_set_section_flags (stdoutput, sec, flags);
bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
}
else
{
/* The 64-bit ABI uses a .MIPS.options section rather than
.reginfo section. */
sec = subseg_new (".MIPS.options", (subsegT) 0);
bfd_set_section_flags (stdoutput, sec, flags);
bfd_set_section_alignment (stdoutput, sec, 3);
/* Set up the option header. */
{
Elf_Internal_Options opthdr;
char *f;
opthdr.kind = ODK_REGINFO;
opthdr.size = (sizeof (Elf_External_Options)
+ sizeof (Elf64_External_RegInfo));
opthdr.section = 0;
opthdr.info = 0;
f = frag_more (sizeof (Elf_External_Options));
bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
(Elf_External_Options *) f);
mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
}
}
sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
bfd_set_section_flags (stdoutput, sec,
SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
bfd_set_section_alignment (stdoutput, sec, 3);
mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
if (ECOFF_DEBUGGING)
{
sec = subseg_new (".mdebug", (subsegT) 0);
(void) bfd_set_section_flags (stdoutput, sec,
SEC_HAS_CONTENTS | SEC_READONLY);
(void) bfd_set_section_alignment (stdoutput, sec, 2);
}
else if (mips_flag_pdr)
{
pdr_seg = subseg_new (".pdr", (subsegT) 0);
(void) bfd_set_section_flags (stdoutput, pdr_seg,
SEC_READONLY | SEC_RELOC
| SEC_DEBUGGING);
(void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
}
subseg_set (seg, subseg);
}
if (mips_fix_vr4120)
init_vr4120_conflicts ();
}
static inline void
fpabi_incompatible_with (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
static inline void
fpabi_requires (int fpabi, const char *what)
{
as_warn (_(".gnu_attribute %d,%d requires `%s'"),
Tag_GNU_MIPS_ABI_FP, fpabi, what);
}
/* Check -mabi and register sizes against the specified FP ABI. */
static void
check_fpabi (int fpabi)
{
switch (fpabi)
{
case Val_GNU_MIPS_ABI_FP_DOUBLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
fpabi_incompatible_with (fpabi, "gp=64 fp=32");
else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
fpabi_incompatible_with (fpabi, "gp=32 fp=64");
break;
case Val_GNU_MIPS_ABI_FP_XX:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 0)
fpabi_requires (fpabi, "fp=xx");
break;
case Val_GNU_MIPS_ABI_FP_64A:
case Val_GNU_MIPS_ABI_FP_64:
if (mips_abi != O32_ABI)
fpabi_requires (fpabi, "-mabi=32");
else if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (file_mips_opts.single_float)
fpabi_incompatible_with (fpabi, "singlefloat");
else if (file_mips_opts.fp != 64)
fpabi_requires (fpabi, "fp=64");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
fpabi_incompatible_with (fpabi, "nooddspreg");
else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
fpabi_requires (fpabi, "nooddspreg");
break;
case Val_GNU_MIPS_ABI_FP_SINGLE:
if (file_mips_opts.soft_float)
fpabi_incompatible_with (fpabi, "softfloat");
else if (!file_mips_opts.single_float)
fpabi_requires (fpabi, "singlefloat");
break;
case Val_GNU_MIPS_ABI_FP_SOFT:
if (!file_mips_opts.soft_float)
fpabi_requires (fpabi, "softfloat");
break;
case Val_GNU_MIPS_ABI_FP_OLD_64:
as_warn (_(".gnu_attribute %d,%d is no longer supported"),
Tag_GNU_MIPS_ABI_FP, fpabi);
break;
case Val_GNU_MIPS_ABI_FP_NAN2008:
/* Silently ignore compatibility value. */
break;
default:
as_warn (_(".gnu_attribute %d,%d is not a recognized"
" floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
break;
}
}
/* Perform consistency checks on the current options. */
static void
mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
{
/* Check the size of integer registers agrees with the ABI and ISA. */
if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
as_bad (_("`gp=64' used with a 32-bit processor"));
else if (abi_checks
&& opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
as_bad (_("`gp=32' used with a 64-bit ABI"));
else if (abi_checks
&& opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
as_bad (_("`gp=64' used with a 32-bit ABI"));
/* Check the size of the float registers agrees with the ABI and ISA. */
switch (opts->fp)
{
case 0:
if (!CPU_HAS_LDC1_SDC1 (opts->arch))
as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
else if (opts->single_float == 1)
as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
break;
case 64:
if (!ISA_HAS_64BIT_FPRS (opts->isa))
as_bad (_("`fp=64' used with a 32-bit fpu"));
else if (abi_checks
&& ABI_NEEDS_32BIT_REGS (mips_abi)
&& !ISA_HAS_MXHC1 (opts->isa))
as_warn (_("`fp=64' used with a 32-bit ABI"));
break;
case 32:
if (abi_checks
&& ABI_NEEDS_64BIT_REGS (mips_abi))
as_warn (_("`fp=32' used with a 64-bit ABI"));
if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
as_bad (_("`fp=32' used with a MIPS R6 cpu"));
break;
default:
as_bad (_("Unknown size of floating point registers"));
break;
}
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
if (opts->micromips == 1 && opts->mips16 == 1)
as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
else if (ISA_IS_R6 (opts->isa)
&& (opts->micromips == 1
|| opts->mips16 == 1))
as_fatal (_("`%s' cannot be used with `%s'"),
opts->micromips ? "micromips" : "mips16",
mips_cpu_info_from_isa (opts->isa)->name);
if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
as_fatal (_("branch relaxation is not supported in `%s'"),
mips_cpu_info_from_isa (opts->isa)->name);
}
/* Perform consistency checks on the module level options exactly once.
This is a deferred check that happens:
at the first .set directive
or, at the first pseudo op that generates code (inc .dc.a)
or, at the first instruction
or, at the end. */
static void
file_mips_check_options (void)
{
const struct mips_cpu_info *arch_info = 0;
if (file_mips_opts_checked)
return;
/* The following code determines the register size.
Similar code was added to GCC 3.3 (see override_options() in
config/mips/mips.c). The GAS and GCC code should be kept in sync
as much as possible. */
if (file_mips_opts.gp < 0)
{
/* Infer the integer register size from the ABI and processor.
Restrict ourselves to 32-bit registers if that's all the
processor has, or if the ABI cannot handle 64-bit registers. */
file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
|| !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
? 32 : 64;
}
if (file_mips_opts.fp < 0)
{
/* No user specified float register size.
??? GAS treats single-float processors as though they had 64-bit
float registers (although it complains when double-precision
instructions are used). As things stand, saying they have 32-bit
registers would lead to spurious "register must be even" messages.
So here we assume float registers are never smaller than the
integer ones. */
if (file_mips_opts.gp == 64)
/* 64-bit integer registers implies 64-bit float registers. */
file_mips_opts.fp = 64;
else if ((file_mips_opts.ase & FP64_ASES)
&& ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
/* Handle ASEs that require 64-bit float registers, if possible. */
file_mips_opts.fp = 64;
else if (ISA_IS_R6 (mips_opts.isa))
/* R6 implies 64-bit float registers. */
file_mips_opts.fp = 64;
else
/* 32-bit float registers. */
file_mips_opts.fp = 32;
}
arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
/* Disable operations on odd-numbered floating-point registers by default
when using the FPXX ABI. */
if (file_mips_opts.oddspreg < 0)
{
if (file_mips_opts.fp == 0)
file_mips_opts.oddspreg = 0;
else
file_mips_opts.oddspreg = 1;
}
/* End of GCC-shared inference code. */
/* This flag is set when we have a 64-bit capable CPU but use only
32-bit wide registers. Note that EABI does not use it. */
if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
&& ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
|| mips_abi == O32_ABI))
mips_32bitmode = 1;
if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
as_bad (_("trap exception not supported at ISA 1"));
/* If the selected architecture includes support for ASEs, enable
generation of code for them. */
if (file_mips_opts.mips16 == -1)
file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
if (file_mips_opts.micromips == -1)
file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
? 1 : 0;
if (mips_nan2008 == -1)
mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
as_fatal (_("`%s' does not support legacy NaN"),
mips_cpu_info_from_arch (file_mips_opts.arch)->name);
/* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
being selected implicitly. */
if (file_mips_opts.fp != 64)
file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
/* If the user didn't explicitly select or deselect a particular ASE,
use the default setting for the CPU. */
file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
/* Set up the current options. These may change throughout assembly. */
mips_opts = file_mips_opts;
mips_check_isa_supports_ases ();
mips_check_options (&file_mips_opts, TRUE);
file_mips_opts_checked = TRUE;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
as_warn (_("could not set architecture and machine"));
}
void
md_assemble (char *str)
{
struct mips_cl_insn insn;
bfd_reloc_code_real_type unused_reloc[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
file_mips_check_options ();
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
mips_mark_labels ();
mips_assembling_insn = TRUE;
clear_insn_error ();
if (mips_opts.mips16)
mips16_ip (str, &insn);
else
{
mips_ip (str, &insn);
DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
str, insn.insn_opcode));
}
if (insn_error.msg)
report_insn_error (str);
else if (insn.insn_mo->pinfo == INSN_MACRO)
{
macro_start ();
if (mips_opts.mips16)
mips16_macro (&insn);
else
macro (&insn, str);
macro_end ();
}
else
{
if (offset_expr.X_op != O_absent)
append_insn (&insn, &offset_expr, offset_reloc, FALSE);
else
append_insn (&insn, NULL, unused_reloc, FALSE);
}
mips_assembling_insn = FALSE;
}
/* Convenience functions for abstracting away the differences between
MIPS16 and non-MIPS16 relocations. */
static inline bfd_boolean
mips16_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MIPS16_JMP:
case BFD_RELOC_MIPS16_GPREL:
case BFD_RELOC_MIPS16_GOT16:
case BFD_RELOC_MIPS16_CALL16:
case BFD_RELOC_MIPS16_HI16_S:
case BFD_RELOC_MIPS16_HI16:
case BFD_RELOC_MIPS16_LO16:
case BFD_RELOC_MIPS16_16_PCREL_S1:
return TRUE;
default:
return FALSE;
}
}
static inline bfd_boolean
micromips_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_GPREL16:
case BFD_RELOC_MICROMIPS_JMP:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MICROMIPS_LITERAL:
case BFD_RELOC_MICROMIPS_GOT16:
case BFD_RELOC_MICROMIPS_CALL16:
case BFD_RELOC_MICROMIPS_GOT_HI16:
case BFD_RELOC_MICROMIPS_GOT_LO16:
case BFD_RELOC_MICROMIPS_CALL_HI16:
case BFD_RELOC_MICROMIPS_CALL_LO16:
case BFD_RELOC_MICROMIPS_SUB:
case BFD_RELOC_MICROMIPS_GOT_PAGE:
case BFD_RELOC_MICROMIPS_GOT_OFST:
case BFD_RELOC_MICROMIPS_GOT_DISP:
case BFD_RELOC_MICROMIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHER:
case BFD_RELOC_MICROMIPS_SCN_DISP:
case BFD_RELOC_MICROMIPS_JALR:
return TRUE;
default:
return FALSE;
}
}
static inline bfd_boolean
jmp_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
}
static inline bfd_boolean
b_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
|| reloc == BFD_RELOC_MIPS_21_PCREL_S2
|| reloc == BFD_RELOC_16_PCREL_S2
|| reloc == BFD_RELOC_MIPS16_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
}
static inline bfd_boolean
got16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
|| reloc == BFD_RELOC_MICROMIPS_GOT16);
}
static inline bfd_boolean
hi16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
|| reloc == BFD_RELOC_MICROMIPS_HI16_S);
}
static inline bfd_boolean
lo16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
|| reloc == BFD_RELOC_MICROMIPS_LO16);
}
static inline bfd_boolean
jalr_reloc_p (bfd_reloc_code_real_type reloc)
{
return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
}
static inline bfd_boolean
gprel16_reloc_p (bfd_reloc_code_real_type reloc)
{
return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
|| reloc == BFD_RELOC_MICROMIPS_GPREL16);
}
/* Return true if RELOC is a PC-relative relocation that does not have
full address range. */
static inline bfd_boolean
limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
{
switch (reloc)
{
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_18_PCREL_S3:
case BFD_RELOC_MIPS_19_PCREL_S2:
return TRUE;
case BFD_RELOC_32_PCREL:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
return HAVE_64BIT_ADDRESSES;
default:
return FALSE;
}
}
/* Return true if the given relocation might need a matching %lo().
This is only "might" because SVR4 R_MIPS_GOT16 relocations only
need a matching %lo() when applied to local symbols. */
static inline bfd_boolean
reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
{
return (HAVE_IN_PLACE_ADDENDS
&& (hi16_reloc_p (reloc)
/* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
all GOT16 relocations evaluate to "G". */
|| (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
}
/* Return the type of %lo() reloc needed by RELOC, given that
reloc_needs_lo_p. */
static inline bfd_reloc_code_real_type
matching_lo_reloc (bfd_reloc_code_real_type reloc)
{
return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
: (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
: BFD_RELOC_LO16));
}
/* Return true if the given fixup is followed by a matching R_MIPS_LO16
relocation. */
static inline bfd_boolean
fixup_has_matching_lo_p (fixS *fixp)
{
return (fixp->fx_next != NULL
&& fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
&& fixp->fx_addsy == fixp->fx_next->fx_addsy
&& fixp->fx_offset == fixp->fx_next->fx_offset);
}
/* Move all labels in LABELS to the current insertion point. TEXT_P
says whether the labels refer to text or data. */
static void
mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
{
struct insn_label_list *l;
valueT val;
for (l = labels; l != NULL; l = l->next)
{
gas_assert (S_GET_SEGMENT (l->label) == now_seg);
symbol_set_frag (l->label, frag_now);
val = (valueT) frag_now_fix ();
/* MIPS16/microMIPS text labels are stored as odd. */
if (text_p && HAVE_CODE_COMPRESSION)
++val;
S_SET_VALUE (l->label, val);
}
}
/* Move all labels in insn_labels to the current insertion point
and treat them as text labels. */
static void
mips_move_text_labels (void)
{
mips_move_labels (seg_info (now_seg)->label_list, TRUE);
}
/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
static bfd_boolean
s_is_linkonce (symbolS *sym, segT from_seg)
{
bfd_boolean linkonce = FALSE;
segT symseg = S_GET_SEGMENT (sym);
if (symseg != from_seg && !S_IS_LOCAL (sym))
{
if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
linkonce = TRUE;
/* The GNU toolchain uses an extension for ELF: a section
beginning with the magic string .gnu.linkonce is a
linkonce section. */
if (strncmp (segment_name (symseg), ".gnu.linkonce",
sizeof ".gnu.linkonce" - 1) == 0)
linkonce = TRUE;
}
return linkonce;
}
/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
linker to handle them specially, such as generating jalx instructions
when needed. We also make them odd for the duration of the assembly,
in order to generate the right sort of code. We will make them even
in the adjust_symtab routine, while leaving them marked. This is
convenient for the debugger and the disassembler. The linker knows
to make them odd again. */
static void
mips_compressed_mark_label (symbolS *label)
{
gas_assert (HAVE_CODE_COMPRESSION);
if (mips_opts.mips16)
S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
else
S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
if ((S_GET_VALUE (label) & 1) == 0
/* Don't adjust the address if the label is global or weak, or
in a link-once section, since we'll be emitting symbol reloc
references to it which will be patched up by the linker, and
the final value of the symbol may or may not be MIPS16/microMIPS. */
&& !S_IS_WEAK (label)
&& !S_IS_EXTERNAL (label)
&& !s_is_linkonce (label, now_seg))
S_SET_VALUE (label, S_GET_VALUE (label) | 1);
}
/* Mark preceding MIPS16 or microMIPS instruction labels. */
static void
mips_compressed_mark_labels (void)
{
struct insn_label_list *l;
for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
mips_compressed_mark_label (l->label);
}
/* End the current frag. Make it a variant frag and record the
relaxation info. */
static void
relax_close_frag (void)
{
mips_macro_warning.first_frag = frag_now;
frag_var (rs_machine_dependent, 0, 0,
RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
mips_pic != NO_PIC),
mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
mips_relax.first_fixup = 0;
}
/* Start a new relaxation sequence whose expansion depends on SYMBOL.
See the comment above RELAX_ENCODE for more details. */
static void
relax_start (symbolS *symbol)
{
gas_assert (mips_relax.sequence == 0);
mips_relax.sequence = 1;
mips_relax.symbol = symbol;
}
/* Start generating the second version of a relaxable sequence.
See the comment above RELAX_ENCODE for more details. */
static void
relax_switch (void)
{
gas_assert (mips_relax.sequence == 1);
mips_relax.sequence = 2;
}
/* End the current relaxable sequence. */
static void
relax_end (void)
{
gas_assert (mips_relax.sequence == 2);
relax_close_frag ();
mips_relax.sequence = 0;
}
/* Return true if IP is a delayed branch or jump. */
static inline bfd_boolean
delayed_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)) != 0;
}
/* Return true if IP is a compact branch or jump. */
static inline bfd_boolean
compact_branch_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
| INSN2_COND_BRANCH)) != 0;
}
/* Return true if IP is an unconditional branch or jump. */
static inline bfd_boolean
uncond_branch_p (const struct mips_cl_insn *ip)
{
return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
|| (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
}
/* Return true if IP is a branch-likely instruction. */
static inline bfd_boolean
branch_likely_p (const struct mips_cl_insn *ip)
{
return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
}
/* Return the type of nop that should be used to fill the delay slot
of delayed branch IP. */
static struct mips_cl_insn *
get_delay_slot_nop (const struct mips_cl_insn *ip)
{
if (mips_opts.micromips
&& (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
return µmips_nop32_insn;
return NOP_INSN;
}
/* Return a mask that has bit N set if OPCODE reads the register(s)
in operand N. */
static unsigned int
insn_read_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
}
/* Return a mask that has bit N set if OPCODE writes to the register(s)
in operand N. */
static unsigned int
insn_write_mask (const struct mips_opcode *opcode)
{
return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
}
/* Return a mask of the registers specified by operand OPERAND of INSN.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
operand_reg_mask (const struct mips_cl_insn *insn,
const struct mips_operand *operand,
unsigned int type_mask)
{
unsigned int uval, vsel;
switch (operand->type)
{
case OP_INT:
case OP_MAPPED_INT:
case OP_MSB:
case OP_PCREL:
case OP_PERF_REG:
case OP_ADDIUSP_INT:
case OP_ENTRY_EXIT_LIST:
case OP_REPEAT_DEST_REG:
case OP_REPEAT_PREV_REG:
case OP_PC:
case OP_VU0_SUFFIX:
case OP_VU0_MATCH_SUFFIX:
case OP_IMM_INDEX:
abort ();
case OP_REG28:
return 1 << 28;
case OP_REG:
case OP_OPTIONAL_REG:
{
const struct mips_reg_operand *reg_op;
reg_op = (const struct mips_reg_operand *) operand;
if (!(type_mask & (1 << reg_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1 << mips_decode_reg_operand (reg_op, uval);
}
case OP_REG_PAIR:
{
const struct mips_reg_pair_operand *pair_op;
pair_op = (const struct mips_reg_pair_operand *) operand;
if (!(type_mask & (1 << pair_op->reg_type)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
}
case OP_CLO_CLZ_DEST:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return (1 << (uval & 31)) | (1 << (uval >> 5));
case OP_SAME_RS_RT:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
gas_assert ((uval & 31) == (uval >> 5));
return 1 << (uval & 31);
case OP_CHECK_PREV:
case OP_NON_ZERO_REG:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
uval = insn_extract_operand (insn, operand);
return 1 << (uval & 31);
case OP_LWM_SWM_LIST:
abort ();
case OP_SAVE_RESTORE_LIST:
abort ();
case OP_MDMX_IMM_REG:
if (!(type_mask & (1 << OP_REG_VEC)))
return 0;
uval = insn_extract_operand (insn, operand);
vsel = uval >> 5;
if ((vsel & 0x18) == 0x18)
return 0;
return 1 << (uval & 31);
case OP_REG_INDEX:
if (!(type_mask & (1 << OP_REG_GP)))
return 0;
return 1 << insn_extract_operand (insn, operand);
}
abort ();
}
/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
where bit N of OPNO_MASK is set if operand N should be included.
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
is set. */
static unsigned int
insn_reg_mask (const struct mips_cl_insn *insn,
unsigned int type_mask, unsigned int opno_mask)
{
unsigned int opno, reg_mask;
opno = 0;
reg_mask = 0;
while (opno_mask != 0)
{
if (opno_mask & 1)
reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
opno_mask >>= 1;
opno += 1;
}
return reg_mask;
}
/* Return the mask of core registers that IP reads. */
static unsigned int
gpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_UDI)
{
/* UDI instructions have traditionally been assumed to read RS
and RT. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
}
if (pinfo & INSN_READ_GPR_24)
mask |= 1 << 24;
if (pinfo2 & INSN2_READ_GPR_16)
mask |= 1 << 16;
if (pinfo2 & INSN2_READ_SP)
mask |= 1 << SP;
if (pinfo2 & INSN2_READ_GPR_31)
mask |= 1 << 31;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of core registers that IP writes. */
static unsigned int
gpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo, pinfo2;
unsigned int mask;
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
pinfo2 = ip->insn_mo->pinfo2;
if (pinfo & INSN_WRITE_GPR_24)
mask |= 1 << 24;
if (pinfo & INSN_WRITE_GPR_31)
mask |= 1 << 31;
if (pinfo & INSN_UDI)
/* UDI instructions have traditionally been assumed to write to RD. */
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
if (pinfo2 & INSN2_WRITE_SP)
mask |= 1 << SP;
/* Don't include register 0. */
return mask & ~1;
}
/* Return the mask of floating-point registers that IP reads. */
static unsigned int
fpr_read_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_read_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.d.s.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Return the mask of floating-point registers that IP writes. */
static unsigned int
fpr_write_mask (const struct mips_cl_insn *ip)
{
unsigned long pinfo;
unsigned int mask;
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
| (1 << OP_REG_MSA)),
insn_write_mask (ip->insn_mo));
pinfo = ip->insn_mo->pinfo;
/* Conservatively treat all operands to an FP_D instruction are doubles.
(This is overly pessimistic for things like cvt.s.d.) */
if (FPR_SIZE != 64 && (pinfo & FP_D))
mask |= mask << 1;
return mask;
}
/* Operand OPNUM of INSN is an odd-numbered floating-point register.
Check whether that is allowed. */
static bfd_boolean
mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
{
const char *s = insn->name;
bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
|| FPR_SIZE == 64)
&& mips_opts.oddspreg;
if (insn->pinfo == INSN_MACRO)
/* Let a macro pass, we'll catch it later when it is expanded. */
return TRUE;
/* Single-precision coprocessor loads and moves are OK for 32-bit registers,
otherwise it depends on oddspreg. */
if ((insn->pinfo & FP_S)
&& (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
| INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
return FPR_SIZE == 32 || oddspreg;
/* Allow odd registers for single-precision ops and double-precision if the
floating-point registers are 64-bit wide. */
switch (insn->pinfo & (FP_S | FP_D))
{
case FP_S:
case 0:
return oddspreg;
case FP_D:
return FPR_SIZE == 64;
default:
break;
}
/* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
s = strchr (insn->name, '.');
if (s != NULL && opnum == 2)
s = strchr (s + 1, '.');
if (s != NULL && (s[1] == 'w' || s[1] == 's'))
return oddspreg;
return FPR_SIZE == 64;
}
/* Information about an instruction argument that we're trying to match. */
struct mips_arg_info
{
/* The instruction so far. */
struct mips_cl_insn *insn;
/* The first unconsumed operand token. */
struct mips_operand_token *token;
/* The 1-based operand number, in terms of insn->insn_mo->args. */
int opnum;
/* The 1-based argument number, for error reporting. This does not
count elided optional registers, etc.. */
int argnum;
/* The last OP_REG operand seen, or ILLEGAL_REG if none. */
unsigned int last_regno;
/* If the first operand was an OP_REG, this is the register that it
specified, otherwise it is ILLEGAL_REG. */
unsigned int dest_regno;
/* The value of the last OP_INT operand. Only used for OP_MSB,
where it gives the lsb position. */
unsigned int last_op_int;
/* If true, match routines should assume that no later instruction
alternative matches and should therefore be as accommodating as
possible. Match routines should not report errors if something
is only invalid for !LAX_MATCH. */
bfd_boolean lax_match;
/* True if a reference to the current AT register was seen. */
bfd_boolean seen_at;
};
/* Record that the argument is out of range. */
static void
match_out_of_range (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
}
/* Record that the argument isn't constant but needs to be. */
static void
match_not_constant (struct mips_arg_info *arg)
{
set_insn_error_i (arg->argnum, _("operand %d must be constant"),
arg->argnum);
}
/* Try to match an OT_CHAR token for character CH. Consume the token
and return true on success, otherwise return false. */
static bfd_boolean
match_char (struct mips_arg_info *arg, char ch)
{
if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
{
++arg->token;
if (ch == ',')
arg->argnum += 1;
return TRUE;
}
return FALSE;
}
/* Try to get an expression from the next tokens in ARG. Consume the
tokens and return true on success, storing the expression value in
VALUE and relocation types in R. */
static bfd_boolean
match_expression (struct mips_arg_info *arg, expressionS *value,
bfd_reloc_code_real_type *r)
{
/* If the next token is a '(' that was parsed as being part of a base
expression, assume we have an elided offset. The later match will fail
if this turns out to be wrong. */
if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
{
value->X_op = O_constant;
value->X_add_number = 0;
r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
return TRUE;
}
/* Reject register-based expressions such as "0+$2" and "(($2))".
For plain registers the default error seems more appropriate. */
if (arg->token->type == OT_INTEGER
&& arg->token->u.integer.value.X_op == O_register)
{
set_insn_error (arg->argnum, _("register value used as expression"));
return FALSE;
}
if (arg->token->type == OT_INTEGER)
{
*value = arg->token->u.integer.value;
memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
++arg->token;
return TRUE;
}
set_insn_error_i
(arg->argnum, _("operand %d must be an immediate expression"),
arg->argnum);
return FALSE;
}
/* Try to get a constant expression from the next tokens in ARG. Consume
the tokens and return true on success, storing the constant value
in *VALUE. */
static bfd_boolean
match_const_int (struct mips_arg_info *arg, offsetT *value)
{
expressionS ex;
bfd_reloc_code_real_type r[3];
if (!match_expression (arg, &ex, r))
return FALSE;
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
*value = ex.X_add_number;
else
{
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
match_out_of_range (arg);
else
match_not_constant (arg);
return FALSE;
}
return TRUE;
}
/* Return the RTYPE_* flags for a register operand of type TYPE that
appears in instruction OPCODE. */
static unsigned int
convert_reg_type (const struct mips_opcode *opcode,
enum mips_reg_operand_type type)
{
switch (type)
{
case OP_REG_GP:
return RTYPE_NUM | RTYPE_GP;
case OP_REG_FP:
/* Allow vector register names for MDMX if the instruction is a 64-bit
FPR load, store or move (including moves to and from GPRs). */
if ((mips_opts.ase & ASE_MDMX)
&& (opcode->pinfo & FP_D)
&& (opcode->pinfo & (INSN_COPROC_MOVE
| INSN_COPROC_MEMORY_DELAY
| INSN_LOAD_COPROC
| INSN_LOAD_MEMORY
| INSN_STORE_MEMORY)))
return RTYPE_FPU | RTYPE_VEC;
return RTYPE_FPU;
case OP_REG_CCC:
if (opcode->pinfo & (FP_D | FP_S))
return RTYPE_CCC | RTYPE_FCC;
return RTYPE_CCC;
case OP_REG_VEC:
if (opcode->membership & INSN_5400)
return RTYPE_FPU;
return RTYPE_FPU | RTYPE_VEC;
case OP_REG_ACC:
return RTYPE_ACC;
case OP_REG_COPRO:
if (opcode->name[strlen (opcode->name) - 1] == '0')
return RTYPE_NUM | RTYPE_CP0;
return RTYPE_NUM;
case OP_REG_HW:
return RTYPE_NUM;
case OP_REG_VI:
return RTYPE_NUM | RTYPE_VI;
case OP_REG_VF:
return RTYPE_NUM | RTYPE_VF;
case OP_REG_R5900_I:
return RTYPE_R5900_I;
case OP_REG_R5900_Q:
return RTYPE_R5900_Q;
case OP_REG_R5900_R:
return RTYPE_R5900_R;
case OP_REG_R5900_ACC:
return RTYPE_R5900_ACC;
case OP_REG_MSA:
return RTYPE_MSA;
case OP_REG_MSA_CTRL:
return RTYPE_NUM;
}
abort ();
}
/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
static void
check_regno (struct mips_arg_info *arg,
enum mips_reg_operand_type type, unsigned int regno)
{
if (AT && type == OP_REG_GP && regno == AT)
arg->seen_at = TRUE;
if (type == OP_REG_FP
&& (regno & 1) != 0
&& !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
{
/* This was a warning prior to introducing O32 FPXX and FP64 support
so maintain a warning for FP32 but raise an error for the new
cases. */
if (FPR_SIZE == 32)
as_warn (_("float register should be even, was %d"), regno);
else
as_bad (_("float register should be even, was %d"), regno);
}
if (type == OP_REG_CCC)
{
const char *name;
size_t length;
name = arg->insn->insn_mo->name;
length = strlen (name);
if ((regno & 1) != 0
&& ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
|| (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
as_warn (_("condition code register should be even for %s, was %d"),
name, regno);
if ((regno & 3) != 0
&& (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
name, regno);
}
}
/* ARG is a register with symbol value SYMVAL. Try to interpret it as
a register of type TYPE. Return true on success, storing the register
number in *REGNO and warning about any dubious uses. */
static bfd_boolean
match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int symval, unsigned int *regno)
{
if (type == OP_REG_VEC)
symval = mips_prefer_vec_regno (symval);
if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
return FALSE;
*regno = symval & RNUM_MASK;
check_regno (arg, type, *regno);
return TRUE;
}
/* Try to interpret the next token in ARG as a register of type TYPE.
Consume the token and return true on success, storing the register
number in *REGNO. Return false on failure. */
static bfd_boolean
match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno)
{
if (arg->token->type == OT_REG
&& match_regno (arg, type, arg->token->u.regno, regno))
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* Try to interpret the next token in ARG as a range of registers of type TYPE.
Consume the token and return true on success, storing the register numbers
in *REGNO1 and *REGNO2. Return false on failure. */
static bfd_boolean
match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
unsigned int *regno1, unsigned int *regno2)
{
if (match_reg (arg, type, regno1))
{
*regno2 = *regno1;
return TRUE;
}
if (arg->token->type == OT_REG_RANGE
&& match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
&& match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
&& *regno1 <= *regno2)
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_INT matcher. */
static bfd_boolean
match_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_int_operand *operand;
unsigned int uval;
int min_val, max_val, factor;
offsetT sval;
operand = (const struct mips_int_operand *) operand_base;
factor = 1 << operand->shift;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (operand_base->lsb == 0
&& operand_base->size == 16
&& operand->shift == 0
&& operand->bias == 0
&& (operand->max_val == 32767 || operand->max_val == 65535))
{
/* The operand can be relocated. */
if (!match_expression (arg, &offset_expr, offset_reloc))
return FALSE;
if (offset_expr.X_op == O_big)
{
match_out_of_range (arg);
return FALSE;
}
if (offset_reloc[0] != BFD_RELOC_UNUSED)
/* Relocation operators were used. Accept the argument and
leave the relocation value in offset_expr and offset_relocs
for the caller to process. */
return TRUE;
if (offset_expr.X_op != O_constant)
{
/* Accept non-constant operands if no later alternative matches,
leaving it for the caller to process. */
if (!arg->lax_match)
{
match_not_constant (arg);
return FALSE;
}
offset_reloc[0] = BFD_RELOC_LO16;
return TRUE;
}
/* Clear the global state; we're going to install the operand
ourselves. */
sval = offset_expr.X_add_number;
offset_expr.X_op = O_absent;
/* For compatibility with older assemblers, we accept
0x8000-0xffff as signed 16-bit numbers when only
signed numbers are allowed. */
if (sval > max_val)
{
max_val = ((1 << operand_base->size) - 1) << operand->shift;
if (!arg->lax_match && sval <= max_val)
{
match_out_of_range (arg);
return FALSE;
}
}
}
else
{
if (!match_const_int (arg, &sval))
return FALSE;
}
arg->last_op_int = sval;
if (sval < min_val || sval > max_val || sval % factor)
{
match_out_of_range (arg);
return FALSE;
}
uval = (unsigned int) sval >> operand->shift;
uval -= operand->bias;
/* Handle -mfix-cn63xxp1. */
if (arg->opnum == 1
&& mips_fix_cn63xxp1
&& !mips_opts.micromips
&& strcmp ("pref", arg->insn->insn_mo->name) == 0)
switch (uval)
{
case 5:
case 25:
case 26:
case 27:
case 28:
case 29:
case 30:
case 31:
/* These are ok. */
break;
default:
/* The rest must be changed to 28. */
uval = 28;
break;
}
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_MAPPED_INT matcher. */
static bfd_boolean
match_mapped_int_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_mapped_int_operand *operand;
unsigned int uval, num_vals;
offsetT sval;
operand = (const struct mips_mapped_int_operand *) operand_base;
if (!match_const_int (arg, &sval))
return FALSE;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->int_map[uval] == sval)
break;
if (uval == num_vals)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_MSB matcher. */
static bfd_boolean
match_msb_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_msb_operand *operand;
int min_val, max_val, max_high;
offsetT size, sval, high;
operand = (const struct mips_msb_operand *) operand_base;
min_val = operand->bias;
max_val = min_val + (1 << operand_base->size) - 1;
max_high = operand->opsize;
if (!match_const_int (arg, &size))
return FALSE;
high = size + arg->last_op_int;
sval = operand->add_lsb ? high : size;
if (size < 0 || high > max_high || sval < min_val || sval > max_val)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand_base, sval - min_val);
return TRUE;
}
/* OP_REG matcher. */
static bfd_boolean
match_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_operand *operand;
unsigned int regno, uval, num_vals;
operand = (const struct mips_reg_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, ®no))
return FALSE;
if (operand->reg_map)
{
num_vals = 1 << operand->root.size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg_map[uval] == regno)
break;
if (num_vals == uval)
return FALSE;
}
else
uval = regno;
arg->last_regno = regno;
if (arg->opnum == 1)
arg->dest_regno = regno;
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_REG_PAIR matcher. */
static bfd_boolean
match_reg_pair_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_reg_pair_operand *operand;
unsigned int regno1, regno2, uval, num_vals;
operand = (const struct mips_reg_pair_operand *) operand_base;
if (!match_reg (arg, operand->reg_type, ®no1)
|| !match_char (arg, ',')
|| !match_reg (arg, operand->reg_type, ®no2))
return FALSE;
num_vals = 1 << operand_base->size;
for (uval = 0; uval < num_vals; uval++)
if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
break;
if (uval == num_vals)
return FALSE;
insn_insert_operand (arg->insn, operand_base, uval);
return TRUE;
}
/* OP_PCREL matcher. The caller chooses the relocation type. */
static bfd_boolean
match_pcrel_operand (struct mips_arg_info *arg)
{
bfd_reloc_code_real_type r[3];
return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
}
/* OP_PERF_REG matcher. */
static bfd_boolean
match_perf_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval != 0
&& (sval != 1
|| (mips_opts.arch == CPU_R5900
&& (strcmp (arg->insn->insn_mo->name, "mfps") == 0
|| strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
{
set_insn_error (arg->argnum, _("invalid performance register"));
return FALSE;
}
insn_insert_operand (arg->insn, operand, sval);
return TRUE;
}
/* OP_ADDIUSP matcher. */
static bfd_boolean
match_addiusp_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
offsetT sval;
unsigned int uval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval % 4)
{
match_out_of_range (arg);
return FALSE;
}
sval /= 4;
if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
{
match_out_of_range (arg);
return FALSE;
}
uval = (unsigned int) sval;
uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* OP_CLO_CLZ_DEST matcher. */
static bfd_boolean
match_clo_clz_dest_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return TRUE;
}
/* OP_CHECK_PREV matcher. */
static bfd_boolean
match_check_prev_operand (struct mips_arg_info *arg,
const struct mips_operand *operand_base)
{
const struct mips_check_prev_operand *operand;
unsigned int regno;
operand = (const struct mips_check_prev_operand *) operand_base;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (!operand->zero_ok && regno == 0)
return FALSE;
if ((operand->less_than_ok && regno < arg->last_regno)
|| (operand->greater_than_ok && regno > arg->last_regno)
|| (operand->equal_ok && regno == arg->last_regno))
{
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand_base, regno);
return TRUE;
}
return FALSE;
}
/* OP_SAME_RS_RT matcher. */
static bfd_boolean
match_same_rs_rt_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (regno == 0)
{
set_insn_error (arg->argnum, _("the source register must not be $0"));
return FALSE;
}
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
return TRUE;
}
/* OP_LWM_SWM_LIST matcher. */
static bfd_boolean
match_lwm_swm_list_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int reglist, sregs, ra, regno1, regno2;
struct mips_arg_info reset;
reglist = 0;
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
return FALSE;
do
{
if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
{
reglist |= 1 << FP;
regno2 = S7;
}
reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
reset = *arg;
}
while (match_char (arg, ',')
&& match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
*arg = reset;
if (operand->size == 2)
{
/* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
s0, ra
s0, s1, ra, s2, s3
s0-s2, ra
and any permutations of these. */
if ((reglist & 0xfff1ffff) != 0x80010000)
return FALSE;
sregs = (reglist >> 17) & 7;
ra = 0;
}
else
{
/* The list must include at least one of ra and s0-sN,
for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
which are $23 and $30 respectively.) E.g.:
ra
s0
ra, s0, s1, s2
s0-s8
s0-s5, ra
and any permutations of these. */
if ((reglist & 0x3f00ffff) != 0)
return FALSE;
ra = (reglist >> 27) & 0x10;
sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
}
sregs += 1;
if ((sregs & -sregs) != sregs)
return FALSE;
insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
return TRUE;
}
/* OP_ENTRY_EXIT_LIST matcher. */
static unsigned int
match_entry_exit_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int mask;
bfd_boolean is_exit;
/* The format is the same for both ENTRY and EXIT, but the constraints
are different. */
is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
mask = (is_exit ? 7 << 3 : 0);
do
{
unsigned int regno1, regno2;
bfd_boolean is_freg;
if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
is_freg = FALSE;
else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
is_freg = TRUE;
else
return FALSE;
if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
{
mask &= ~(7 << 3);
mask |= (5 + regno2) << 3;
}
else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
mask |= (regno2 - 3) << 3;
else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
mask |= (regno2 - 15) << 1;
else if (regno1 == RA && regno2 == RA)
mask |= 1;
else
return FALSE;
}
while (match_char (arg, ','));
insn_insert_operand (arg->insn, operand, mask);
return TRUE;
}
/* Encode regular MIPS SAVE/RESTORE instruction operands according to
the argument register mask AMASK, the number of static registers
saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
| (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
}
/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
argument register mask AMASK, the number of static registers saved
NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
respectively, and the frame size FRAME_SIZE. */
static unsigned int
mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
unsigned int ra, unsigned int s0, unsigned int s1,
unsigned int frame_size)
{
unsigned int args;
args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
if (nsreg || amask || frame_size == 0 || frame_size > 16)
args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
| ((frame_size & 0xf0) << 16));
return args;
}
/* OP_SAVE_RESTORE_LIST matcher. */
static bfd_boolean
match_save_restore_list_operand (struct mips_arg_info *arg)
{
unsigned int opcode, args, statics, sregs;
unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
unsigned int arg_mask, ra, s0, s1;
offsetT frame_size;
opcode = arg->insn->insn_opcode;
frame_size = 0;
num_frame_sizes = 0;
args = 0;
statics = 0;
sregs = 0;
ra = 0;
s0 = 0;
s1 = 0;
do
{
unsigned int regno1, regno2;
if (arg->token->type == OT_INTEGER)
{
/* Handle the frame size. */
if (!match_const_int (arg, &frame_size))
return FALSE;
num_frame_sizes += 1;
}
else
{
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
return FALSE;
while (regno1 <= regno2)
{
if (regno1 >= 4 && regno1 <= 7)
{
if (num_frame_sizes == 0)
/* args $a0-$a3 */
args |= 1 << (regno1 - 4);
else
/* statics $a0-$a3 */
statics |= 1 << (regno1 - 4);
}
else if (regno1 >= 16 && regno1 <= 23)
/* $s0-$s7 */
sregs |= 1 << (regno1 - 16);
else if (regno1 == 30)
/* $s8 */
sregs |= 1 << 8;
else if (regno1 == 31)
/* Add $ra to insn. */
ra = 1;
else
return FALSE;
regno1 += 1;
if (regno1 == 24)
regno1 = 30;
}
}
}
while (match_char (arg, ','));
/* Encode args/statics combination. */
if (args & statics)
return FALSE;
else if (args == 0xf)
/* All $a0-$a3 are args. */
arg_mask = MIPS_SVRS_ALL_ARGS;
else if (statics == 0xf)
/* All $a0-$a3 are statics. */
arg_mask = MIPS_SVRS_ALL_STATICS;
else
{
/* Count arg registers. */
num_args = 0;
while (args & 0x1)
{
args >>= 1;
num_args += 1;
}
if (args != 0)
return FALSE;
/* Count static registers. */
num_statics = 0;
while (statics & 0x8)
{
statics = (statics << 1) & 0xf;
num_statics += 1;
}
if (statics != 0)
return FALSE;
/* Encode args/statics. */
arg_mask = (num_args << 2) | num_statics;
}
/* Encode $s0/$s1. */
if (sregs & (1 << 0)) /* $s0 */
s0 = 1;
if (sregs & (1 << 1)) /* $s1 */
s1 = 1;
sregs >>= 2;
/* Encode $s2-$s8. */
num_sregs = 0;
while (sregs & 1)
{
sregs >>= 1;
num_sregs += 1;
}
if (sregs != 0)
return FALSE;
/* Encode frame size. */
if (num_frame_sizes == 0)
{
set_insn_error (arg->argnum, _("missing frame size"));
return FALSE;
}
if (num_frame_sizes > 1)
{
set_insn_error (arg->argnum, _("frame size specified twice"));
return FALSE;
}
if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
{
set_insn_error (arg->argnum, _("invalid frame size"));
return FALSE;
}
frame_size /= 8;
/* Finally build the instruction. */
if (mips_opts.mips16)
opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else if (!mips_opts.micromips)
opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
frame_size);
else
abort ();
arg->insn->insn_opcode = opcode;
return TRUE;
}
/* OP_MDMX_IMM_REG matcher. */
static bfd_boolean
match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno, uval;
bfd_boolean is_qh;
const struct mips_opcode *opcode;
/* The mips_opcode records whether this is an octobyte or quadhalf
instruction. Start out with that bit in place. */
opcode = arg->insn->insn_mo;
uval = mips_extract_operand (operand, opcode->match);
is_qh = (uval != 0);
if (arg->token->type == OT_REG)
{
if ((opcode->membership & INSN_5400)
&& strcmp (opcode->name, "rzu.ob") == 0)
{
set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
arg->argnum);
return FALSE;
}
if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
return FALSE;
++arg->token;
/* Check whether this is a vector register or a broadcast of
a single element. */
if (arg->token->type == OT_INTEGER_INDEX)
{
if (arg->token->u.index > (is_qh ? 3 : 7))
{
set_insn_error (arg->argnum, _("invalid element selector"));
return FALSE;
}
uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
++arg->token;
}
else
{
/* A full vector. */
if ((opcode->membership & INSN_5400)
&& (strcmp (opcode->name, "sll.ob") == 0
|| strcmp (opcode->name, "srl.ob") == 0))
{
set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
arg->argnum);
return FALSE;
}
if (is_qh)
uval |= MDMX_FMTSEL_VEC_QH << 5;
else
uval |= MDMX_FMTSEL_VEC_OB << 5;
}
uval |= regno;
}
else
{
offsetT sval;
if (!match_const_int (arg, &sval))
return FALSE;
if (sval < 0 || sval > 31)
{
match_out_of_range (arg);
return FALSE;
}
uval |= (sval & 31);
if (is_qh)
uval |= MDMX_FMTSEL_IMM_QH << 5;
else
uval |= MDMX_FMTSEL_IMM_OB << 5;
}
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* OP_IMM_INDEX matcher. */
static bfd_boolean
match_imm_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int max_val;
if (arg->token->type != OT_INTEGER_INDEX)
return FALSE;
max_val = (1 << operand->size) - 1;
if (arg->token->u.index > max_val)
{
match_out_of_range (arg);
return FALSE;
}
insn_insert_operand (arg->insn, operand, arg->token->u.index);
++arg->token;
return TRUE;
}
/* OP_REG_INDEX matcher. */
static bfd_boolean
match_reg_index_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (arg->token->type != OT_REG_INDEX)
return FALSE;
if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
return FALSE;
insn_insert_operand (arg->insn, operand, regno);
++arg->token;
return TRUE;
}
/* OP_PC matcher. */
static bfd_boolean
match_pc_operand (struct mips_arg_info *arg)
{
if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_REG28 matcher. */
static bfd_boolean
match_reg28_operand (struct mips_arg_info *arg)
{
unsigned int regno;
if (arg->token->type == OT_REG
&& match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no)
&& regno == GP)
{
++arg->token;
return TRUE;
}
return FALSE;
}
/* OP_NON_ZERO_REG matcher. */
static bfd_boolean
match_non_zero_reg_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
unsigned int regno;
if (!match_reg (arg, OP_REG_GP, ®no))
return FALSE;
if (regno == 0)
return FALSE;
arg->last_regno = regno;
insn_insert_operand (arg->insn, operand, regno);
return TRUE;
}
/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
register that we need to match. */
static bfd_boolean
match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
{
unsigned int regno;
return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
}
/* Try to match a floating-point constant from ARG for LI.S or LI.D.
LENGTH is the length of the value in bytes (4 for float, 8 for double)
and USING_GPRS says whether the destination is a GPR rather than an FPR.
Return the constant in IMM and OFFSET as follows:
- If the constant should be loaded via memory, set IMM to O_absent and
OFFSET to the memory address.
- Otherwise, if the constant should be loaded into two 32-bit registers,
set IMM to the O_constant to load into the high register and OFFSET
to the corresponding value for the low register.
- Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
These constants only appear as the last operand in an instruction,
and every instruction that accepts them in any variant accepts them
in all variants. This means we don't have to worry about backing out
any changes if the instruction does not match. We just match
unconditionally and report an error if the constant is invalid. */
static bfd_boolean
match_float_constant (struct mips_arg_info *arg, expressionS *imm,
expressionS *offset, int length, bfd_boolean using_gprs)
{
char *p;
segT seg, new_seg;
subsegT subseg;
const char *newname;
unsigned char *data;
/* Where the constant is placed is based on how the MIPS assembler
does things:
length == 4 && using_gprs -- immediate value only
length == 8 && using_gprs -- .rdata or immediate value
length == 4 && !using_gprs -- .lit4 or immediate value
length == 8 && !using_gprs -- .lit8 or immediate value
The .lit4 and .lit8 sections are only used if permitted by the
-G argument. */
if (arg->token->type != OT_FLOAT)
{
set_insn_error (arg->argnum, _("floating-point expression required"));
return FALSE;
}
gas_assert (arg->token->u.flt.length == length);
data = arg->token->u.flt.data;
++arg->token;
/* Handle 32-bit constants for which an immediate value is best. */
if (length == 4
&& (using_gprs
|| g_switch_value < 4
|| (data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0)))
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl32 (data);
else
imm->X_add_number = bfd_getb32 (data);
offset->X_op = O_absent;
return TRUE;
}
/* Handle 64-bit constants for which an immediate value is best. */
if (length == 8
&& !mips_disable_float_construction
/* Constants can only be constructed in GPRs and copied to FPRs if the
GPRs are at least as wide as the FPRs or MTHC1 is available.
Unlike most tests for 32-bit floating-point registers this check
specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
permit 64-bit moves without MXHC1.
Force the constant into memory otherwise. */
&& (using_gprs
|| GPR_SIZE == 64
|| ISA_HAS_MXHC1 (mips_opts.isa)
|| FPR_SIZE == 32)
&& ((data[0] == 0 && data[1] == 0)
|| (data[2] == 0 && data[3] == 0))
&& ((data[4] == 0 && data[5] == 0)
|| (data[6] == 0 && data[7] == 0)))
{
/* The value is simple enough to load with a couple of instructions.
If using 32-bit registers, set IMM to the high order 32 bits and
OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
64 bit constant. */
if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
{
imm->X_op = O_constant;
offset->X_op = O_constant;
if (!target_big_endian)
{
imm->X_add_number = bfd_getl32 (data + 4);
offset->X_add_number = bfd_getl32 (data);
}
else
{
imm->X_add_number = bfd_getb32 (data);
offset->X_add_number = bfd_getb32 (data + 4);
}
if (offset->X_add_number == 0)
offset->X_op = O_absent;
}
else
{
imm->X_op = O_constant;
if (!target_big_endian)
imm->X_add_number = bfd_getl64 (data);
else
imm->X_add_number = bfd_getb64 (data);
offset->X_op = O_absent;
}
return TRUE;
}
/* Switch to the right section. */
seg = now_seg;
subseg = now_subseg;
if (length == 4)
{
gas_assert (!using_gprs && g_switch_value >= 4);
newname = ".lit4";
}
else
{
if (using_gprs || g_switch_value < 8)
newname = RDATA_SECTION_NAME;
else
newname = ".lit8";
}
new_seg = subseg_new (newname, (subsegT) 0);
bfd_set_section_flags (stdoutput, new_seg,
SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
frag_align (length == 4 ? 2 : 3, 0, 0);
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (new_seg, 4);
else
record_alignment (new_seg, length == 4 ? 2 : 3);
if (seg == now_seg)
as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
/* Set the argument to the current address in the section. */
imm->X_op = O_absent;
offset->X_op = O_symbol;
offset->X_add_symbol = symbol_temp_new_now ();
offset->X_add_number = 0;
/* Put the floating point number into the section. */
p = frag_more (length);
memcpy (p, data, length);
/* Switch back to the original section. */
subseg_set (seg, subseg);
return TRUE;
}
/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
them. */
static bfd_boolean
match_vu0_suffix_operand (struct mips_arg_info *arg,
const struct mips_operand *operand,
bfd_boolean match_p)
{
unsigned int uval;
/* The operand can be an XYZW mask or a single 2-bit channel index
(with X being 0). */
gas_assert (operand->size == 2 || operand->size == 4);
/* The suffix can be omitted when it is already part of the opcode. */
if (arg->token->type != OT_CHANNELS)
return match_p;
uval = arg->token->u.channels;
if (operand->size == 2)
{
/* Check that a single bit is set and convert it into a 2-bit index. */
if ((uval & -uval) != uval)
return FALSE;
uval = 4 - ffs (uval);
}
if (match_p && insn_extract_operand (arg->insn, operand) != uval)
return FALSE;
++arg->token;
if (!match_p)
insn_insert_operand (arg->insn, operand, uval);
return TRUE;
}
/* Try to match a token from ARG against OPERAND. Consume the token
and return true on success, otherwise return false. */
static bfd_boolean
match_operand (struct mips_arg_info *arg,
const struct mips_operand *operand)
{
switch (operand->type)
{
case OP_INT:
return match_int_operand (arg, operand);
case OP_MAPPED_INT:
return match_mapped_int_operand (arg, operand);
case OP_MSB:
return match_msb_operand (arg, operand);
case OP_REG:
case OP_OPTIONAL_REG:
return match_reg_operand (arg, operand);
case OP_REG_PAIR:
return match_reg_pair_operand (arg, operand);
case OP_PCREL:
return match_pcrel_operand (arg);
case OP_PERF_REG:
return match_perf_reg_operand (arg, operand);
case OP_ADDIUSP_INT:
return match_addiusp_operand (arg, operand);
case OP_CLO_CLZ_DEST:
return match_clo_clz_dest_operand (arg, operand);
case OP_LWM_SWM_LIST:
return match_lwm_swm_list_operand (arg, operand);
case OP_ENTRY_EXIT_LIST:
return match_entry_exit_operand (arg, operand);
case OP_SAVE_RESTORE_LIST:
return match_save_restore_list_operand (arg);
case OP_MDMX_IMM_REG:
return match_mdmx_imm_reg_operand (arg, operand);
case OP_REPEAT_DEST_REG:
return match_tied_reg_operand (arg, arg->dest_regno);
case OP_REPEAT_PREV_REG:
return match_tied_reg_operand (arg, arg->last_regno);
case OP_PC:
return match_pc_operand (arg);
case OP_REG28:
return match_reg28_operand (arg);
case OP_VU0_SUFFIX:
return match_vu0_suffix_operand (arg, operand, FALSE);
case OP_VU0_MATCH_SUFFIX:
return match_vu0_suffix_operand (arg, operand, TRUE);
case OP_IMM_INDEX:
return match_imm_index_operand (arg, operand);
case OP_REG_INDEX:
return match_reg_index_operand (arg, operand);
case OP_SAME_RS_RT:
return match_same_rs_rt_operand (arg, operand);
case OP_CHECK_PREV:
return match_check_prev_operand (arg, operand);
case OP_NON_ZERO_REG:
return match_non_zero_reg_operand (arg, operand);
}
abort ();
}
/* ARG is the state after successfully matching an instruction.
Issue any queued-up warnings. */
static void
check_completed_insn (struct mips_arg_info *arg)
{
if (arg->seen_at)
{
if (AT == ATREG)
as_warn (_("used $at without \".set noat\""));
else
as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
}
}
/* Return true if modifying general-purpose register REG needs a delay. */
static bfd_boolean
reg_needs_delay (unsigned int reg)
{
unsigned long prev_pinfo;
prev_pinfo = history[0].insn_mo->pinfo;
if (!mips_opts.noreorder
&& (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
|| ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
&& (gpr_write_mask (&history[0]) & (1 << reg)))
return TRUE;
return FALSE;
}
/* Classify an instruction according to the FIX_VR4120_* enumeration.
Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
by VR4120 errata. */
static unsigned int
classify_vr4120_insn (const char *name)
{
if (strncmp (name, "macc", 4) == 0)
return FIX_VR4120_MACC;
if (strncmp (name, "dmacc", 5) == 0)
return FIX_VR4120_DMACC;
if (strncmp (name, "mult", 4) == 0)
return FIX_VR4120_MULT;
if (strncmp (name, "dmult", 5) == 0)
return FIX_VR4120_DMULT;
if (strstr (name, "div"))
return FIX_VR4120_DIV;
if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
return FIX_VR4120_MTHILO;
return NUM_FIX_VR4120_CLASSES;
}
#define INSN_ERET 0x42000018
#define INSN_DERET 0x4200001f
#define INSN_DMULT 0x1c
#define INSN_DMULTU 0x1d
/* Return the number of instructions that must separate INSN1 and INSN2,
where INSN1 is the earlier instruction. Return the worst-case value
for any INSN2 if INSN2 is null. */
static unsigned int
insns_between (const struct mips_cl_insn *insn1,
const struct mips_cl_insn *insn2)
{
unsigned long pinfo1, pinfo2;
unsigned int mask;
/* If INFO2 is null, pessimistically assume that all flags are set for
the second instruction. */
pinfo1 = insn1->insn_mo->pinfo;
pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
/* For most targets, write-after-read dependencies on the HI and LO
registers must be separated by at least two instructions. */
if (!hilo_interlocks)
{
if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
return 2;
if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
return 2;
}
/* If we're working around r7000 errata, there must be two instructions
between an mfhi or mflo and any instruction that uses the result. */
if (mips_7000_hilo_fix
&& !mips_opts.micromips
&& MF_HILO_INSN (pinfo1)
&& (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
return 2;
/* If we're working around 24K errata, one instruction is required
if an ERET or DERET is followed by a branch instruction. */
if (mips_fix_24k && !mips_opts.micromips)
{
if (insn1->insn_opcode == INSN_ERET
|| insn1->insn_opcode == INSN_DERET)
{
if (insn2 == NULL
|| insn2->insn_opcode == INSN_ERET
|| insn2->insn_opcode == INSN_DERET
|| delayed_branch_p (insn2))
return 1;
}
}
/* If we're working around PMC RM7000 errata, there must be three
nops between a dmult and a load instruction. */
if (mips_fix_rm7000 && !mips_opts.micromips)
{
if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
|| (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
{
if (pinfo2 & INSN_LOAD_MEMORY)
return 3;
}
}
/* If working around VR4120 errata, check for combinations that need
a single intervening instruction. */
if (mips_fix_vr4120 && !mips_opts.micromips)
{
unsigned int class1, class2;
class1 = classify_vr4120_insn (insn1->insn_mo->name);
if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
{
if (insn2 == NULL)
return 1;
class2 = classify_vr4120_insn (insn2->insn_mo->name);
if (vr4120_conflicts[class1] & (1 << class2))
return 1;
}
}
if (!HAVE_CODE_COMPRESSION)
{
/* Check for GPR or coprocessor load delays. All such delays
are on the RT register. */
/* Itbl support may require additional care here. */
if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
|| (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
{
if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
return 1;
}
/* Check for generic coprocessor hazards.
This case is not handled very well. There is no special
knowledge of CP0 handling, and the coprocessors other than
the floating point unit are not distinguished at all. */
/* Itbl support may require additional care here. FIXME!
Need to modify this to include knowledge about
user specified delays! */
else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
|| (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
{
/* Handle cases where INSN1 writes to a known general coprocessor
register. There must be a one instruction delay before INSN2
if INSN2 reads that register, otherwise no delay is needed. */
mask = fpr_write_mask (insn1);
if (mask != 0)
{
if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
return 1;
}
else
{
/* Read-after-write dependencies on the control registers
require a two-instruction gap. */
if ((pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 2;
/* We don't know exactly what INSN1 does. If INSN2 is
also a coprocessor instruction, assume there must be
a one instruction gap. */
if (pinfo2 & INSN_COP)
return 1;
}
}
/* Check for read-after-write dependencies on the coprocessor
control registers in cases where INSN1 does not need a general
coprocessor delay. This means that INSN1 is a floating point
comparison instruction. */
/* Itbl support may require additional care here. */
else if (!cop_interlocks
&& (pinfo1 & INSN_WRITE_COND_CODE)
&& (pinfo2 & INSN_READ_COND_CODE))
return 1;
}
/* Forbidden slots can not contain Control Transfer Instructions (CTIs)
CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
and pause. */
if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
&& ((pinfo2 & INSN_NO_DELAY_SLOT)
|| (insn2 && delayed_branch_p (insn2))))
return 1;
return 0;
}
/* Return the number of nops that would be needed to work around the
VR4130 mflo/mfhi errata if instruction INSN immediately followed
the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
that are contained within the first IGNORE instructions of HIST. */
static int
nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, j;
unsigned int mask;
/* Check if the instruction writes to HI or LO. MTHI and MTLO
are not affected by the errata. */
if (insn != 0
&& ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
|| strcmp (insn->insn_mo->name, "mtlo") == 0
|| strcmp (insn->insn_mo->name, "mthi") == 0))
return 0;
/* Search for the first MFLO or MFHI. */
for (i = 0; i < MAX_VR4130_NOPS; i++)
if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
{
/* Extract the destination register. */
mask = gpr_write_mask (&hist[i]);
/* No nops are needed if INSN reads that register. */
if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
return 0;
/* ...or if any of the intervening instructions do. */
for (j = 0; j < i; j++)
if (gpr_read_mask (&hist[j]) & mask)
return 0;
if (i >= ignore)
return MAX_VR4130_NOPS - i;
}
return 0;
}
#define BASE_REG_EQ(INSN1, INSN2) \
((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
== (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
/* Return the minimum alignment for this store instruction. */
static int
fix_24k_align_to (const struct mips_opcode *mo)
{
if (strcmp (mo->name, "sh") == 0)
return 2;
if (strcmp (mo->name, "swc1") == 0
|| strcmp (mo->name, "swc2") == 0
|| strcmp (mo->name, "sw") == 0
|| strcmp (mo->name, "sc") == 0
|| strcmp (mo->name, "s.s") == 0)
return 4;
if (strcmp (mo->name, "sdc1") == 0
|| strcmp (mo->name, "sdc2") == 0
|| strcmp (mo->name, "s.d") == 0)
return 8;
/* sb, swl, swr */
return 1;
}
struct fix_24k_store_info
{
/* Immediate offset, if any, for this store instruction. */
short off;
/* Alignment required by this store instruction. */
int align_to;
/* True for register offsets. */
int register_offset;
};
/* Comparison function used by qsort. */
static int
fix_24k_sort (const void *a, const void *b)
{
const struct fix_24k_store_info *pos1 = a;
const struct fix_24k_store_info *pos2 = b;
return (pos1->off - pos2->off);
}
/* INSN is a store instruction. Try to record the store information
in STINFO. Return false if the information isn't known. */
static bfd_boolean
fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
const struct mips_cl_insn *insn)
{
/* The instruction must have a known offset. */
if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
return FALSE;
stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
stinfo->align_to = fix_24k_align_to (insn->insn_mo);
return TRUE;
}
/* Return the number of nops that would be needed to work around the 24k
"lost data on stores during refill" errata if instruction INSN
immediately followed the 2 instructions described by HIST.
Ignore hazards that are contained within the first IGNORE
instructions of HIST.
Problem: The FSB (fetch store buffer) acts as an intermediate buffer
for the data cache refills and store data. The following describes
the scenario where the store data could be lost.
* A data cache miss, due to either a load or a store, causing fill
data to be supplied by the memory subsystem
* The first three doublewords of fill data are returned and written
into the cache
* A sequence of four stores occurs in consecutive cycles around the
final doubleword of the fill:
* Store A
* Store B
* Store C
* Zero, One or more instructions
* Store D
The four stores A-D must be to different doublewords of the line that
is being filled. The fourth instruction in the sequence above permits
the fill of the final doubleword to be transferred from the FSB into
the cache. In the sequence above, the stores may be either integer
(sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
swxc1, sdxc1, suxc1) stores, as long as the four stores are to
different doublewords on the line. If the floating point unit is
running in 1:2 mode, it is not possible to create the sequence above
using only floating point store instructions.
In this case, the cache line being filled is incorrectly marked
invalid, thereby losing the data from any store to the line that
occurs between the original miss and the completion of the five
cycle sequence shown above.
The workarounds are:
* Run the data cache in write-through mode.
* Insert a non-store instruction between
Store A and Store B or Store B and Store C. */
static int
nops_for_24k (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
struct fix_24k_store_info pos[3];
int align, i, base_offset;
if (ignore >= 2)
return 0;
/* If the previous instruction wasn't a store, there's nothing to
worry about. */
if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If the instructions after the previous one are unknown, we have
to assume the worst. */
if (!insn)
return 1;
/* Check whether we are dealing with three consecutive stores. */
if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
|| (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
return 0;
/* If we don't know the relationship between the store addresses,
assume the worst. */
if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
|| !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
return 1;
if (!fix_24k_record_store_info (&pos[0], insn)
|| !fix_24k_record_store_info (&pos[1], &hist[0])
|| !fix_24k_record_store_info (&pos[2], &hist[1]))
return 1;
qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
/* Pick a value of ALIGN and X such that all offsets are adjusted by
X bytes and such that the base register + X is known to be aligned
to align bytes. */
if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
align = 8;
else
{
align = pos[0].align_to;
base_offset = pos[0].off;
for (i = 1; i < 3; i++)
if (align < pos[i].align_to)
{
align = pos[i].align_to;
base_offset = pos[i].off;
}
for (i = 0; i < 3; i++)
pos[i].off -= base_offset;
}
pos[0].off &= ~align + 1;
pos[1].off &= ~align + 1;
pos[2].off &= ~align + 1;
/* If any two stores write to the same chunk, they also write to the
same doubleword. The offsets are still sorted at this point. */
if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
return 0;
/* A range of at least 9 bytes is needed for the stores to be in
non-overlapping doublewords. */
if (pos[2].off - pos[0].off <= 8)
return 0;
if (pos[2].off - pos[1].off >= 24
|| pos[1].off - pos[0].off >= 24
|| pos[2].off - pos[0].off >= 32)
return 0;
return 1;
}
/* Return the number of nops that would be needed if instruction INSN
immediately followed the MAX_NOPS instructions given by HIST,
where HIST[0] is the most recent instruction. Ignore hazards
between INSN and the first IGNORE instructions in HIST.
If INSN is null, return the worse-case number of nops for any
instruction. */
static int
nops_for_insn (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int i, nops, tmp_nops;
nops = 0;
for (i = ignore; i < MAX_DELAY_NOPS; i++)
{
tmp_nops = insns_between (hist + i, insn) - i;
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_vr4130 && !mips_opts.micromips)
{
tmp_nops = nops_for_vr4130 (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
if (mips_fix_24k && !mips_opts.micromips)
{
tmp_nops = nops_for_24k (ignore, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* The variable arguments provide NUM_INSNS extra instructions that
might be added to HIST. Return the largest number of nops that
would be needed after the extended sequence, ignoring hazards
in the first IGNORE instructions. */
static int
nops_for_sequence (int num_insns, int ignore,
const struct mips_cl_insn *hist, ...)
{
va_list args;
struct mips_cl_insn buffer[MAX_NOPS];
struct mips_cl_insn *cursor;
int nops;
va_start (args, hist);
cursor = buffer + num_insns;
memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
while (cursor > buffer)
*--cursor = *va_arg (args, const struct mips_cl_insn *);
nops = nops_for_insn (ignore, buffer, NULL);
va_end (args);
return nops;
}
/* Like nops_for_insn, but if INSN is a branch, take into account the
worst-case delay for the branch target. */
static int
nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
const struct mips_cl_insn *insn)
{
int nops, tmp_nops;
nops = nops_for_insn (ignore, hist, insn);
if (delayed_branch_p (insn))
{
tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
hist, insn, get_delay_slot_nop (insn));
if (tmp_nops > nops)
nops = tmp_nops;
}
else if (compact_branch_p (insn))
{
tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
if (tmp_nops > nops)
nops = tmp_nops;
}
return nops;
}
/* Fix NOP issue: Replace nops by "or at,at,zero". */
static void
fix_loongson2f_nop (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "nop") == 0)
ip->insn_opcode = LOONGSON2F_NOP_INSN;
}
/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
jr target pc &= 'hffff_ffff_cfff_ffff. */
static void
fix_loongson2f_jump (struct mips_cl_insn * ip)
{
gas_assert (!HAVE_CODE_COMPRESSION);
if (strcmp (ip->insn_mo->name, "j") == 0
|| strcmp (ip->insn_mo->name, "jr") == 0
|| strcmp (ip->insn_mo->name, "jalr") == 0)
{
int sreg;
expressionS ep;
if (! mips_opts.at)
return;
sreg = EXTRACT_OPERAND (0, RS, *ip);
if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
return;
ep.X_op = O_constant;
ep.X_add_number = 0xcfff0000;
macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
ep.X_add_number = 0xffff;
macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
}
}
static void
fix_loongson2f (struct mips_cl_insn * ip)
{
if (mips_fix_loongson2f_nop)
fix_loongson2f_nop (ip);
if (mips_fix_loongson2f_jump)
fix_loongson2f_jump (ip);
}
/* IP is a branch that has a delay slot, and we need to fill it
automatically. Return true if we can do that by swapping IP
with the previous instruction.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static bfd_boolean
can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
unsigned int fpr_read, prev_fpr_write;
/* -O2 and above is required for this optimization. */
if (mips_optimize < 2)
return FALSE;
/* If we have seen .set volatile or .set nomove, don't optimize. */
if (mips_opts.nomove)
return FALSE;
/* We can't swap if the previous instruction's position is fixed. */
if (history[0].fixed_p)
return FALSE;
/* If the previous previous insn was in a .set noreorder, we can't
swap. Actually, the MIPS assembler will swap in this situation.
However, gcc configured -with-gnu-as will generate code like
.set noreorder
lw $4,XXX
.set reorder
INSN
bne $4,$0,foo
in which we can not swap the bne and INSN. If gcc is not configured
-with-gnu-as, it does not output the .set pseudo-ops. */
if (history[1].noreorder_p)
return FALSE;
/* If the previous instruction had a fixup in mips16 mode, we can not swap.
This means that the previous instruction was a 4-byte one anyhow. */
if (mips_opts.mips16 && history[0].fixp[0])
return FALSE;
/* If the branch is itself the target of a branch, we can not swap.
We cheat on this; all we check for is whether there is a label on
this instruction. If there are any branches to anything other than
a label, users must use .set noreorder. */
if (seg_info (now_seg)->label_list)
return FALSE;
/* If the previous instruction is in a variant frag other than this
branch's one, we cannot do the swap. This does not apply to
MIPS16 code, which uses variant frags for different purposes. */
if (!mips_opts.mips16
&& history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent)
return FALSE;
/* We do not swap with instructions that cannot architecturally
be placed in a branch delay slot, such as SYNC or ERET. We
also refrain from swapping with a trap instruction, since it
complicates trap handlers to have the trap instruction be in
a delay slot. */
prev_pinfo = history[0].insn_mo->pinfo;
if (prev_pinfo & INSN_NO_DELAY_SLOT)
return FALSE;
/* Check for conflicts between the branch and the instructions
before the candidate delay slot. */
if (nops_for_insn (0, history + 1, ip) > 0)
return FALSE;
/* Check for conflicts between the swapped sequence and the
target of the branch. */
if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
return FALSE;
/* If the branch reads a register that the previous
instruction sets, we can not swap. */
gpr_read = gpr_read_mask (ip);
prev_gpr_write = gpr_write_mask (&history[0]);
if (gpr_read & prev_gpr_write)
return FALSE;
fpr_read = fpr_read_mask (ip);
prev_fpr_write = fpr_write_mask (&history[0]);
if (fpr_read & prev_fpr_write)
return FALSE;
/* If the branch writes a register that the previous
instruction sets, we can not swap. */
gpr_write = gpr_write_mask (ip);
if (gpr_write & prev_gpr_write)
return FALSE;
/* If the branch writes a register that the previous
instruction reads, we can not swap. */
prev_gpr_read = gpr_read_mask (&history[0]);
if (gpr_write & prev_gpr_read)
return FALSE;
/* If one instruction sets a condition code and the
other one uses a condition code, we can not swap. */
pinfo = ip->insn_mo->pinfo;
if ((pinfo & INSN_READ_COND_CODE)
&& (prev_pinfo & INSN_WRITE_COND_CODE))
return FALSE;
if ((pinfo & INSN_WRITE_COND_CODE)
&& (prev_pinfo & INSN_READ_COND_CODE))
return FALSE;
/* If the previous instruction uses the PC, we can not swap. */
prev_pinfo2 = history[0].insn_mo->pinfo2;
if (prev_pinfo2 & INSN2_READ_PC)
return FALSE;
/* If the previous instruction has an incorrect size for a fixed
branch delay slot in microMIPS mode, we cannot swap. */
pinfo2 = ip->insn_mo->pinfo2;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
&& insn_length (history) != 2)
return FALSE;
if (mips_opts.micromips
&& (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
&& insn_length (history) != 4)
return FALSE;
/* On R5900 short loops need to be fixed by inserting a nop in
the branch delay slots.
A short loop can be terminated too early. */
if (mips_opts.arch == CPU_R5900
/* Check if instruction has a parameter, ignore "j $31". */
&& (address_expr != NULL)
/* Parameter must be 16 bit. */
&& (*reloc_type == BFD_RELOC_16_PCREL_S2)
/* Branch to same segment. */
&& (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
/* Branch to same code fragment. */
&& (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
/* Can only calculate branch offset if value is known. */
&& symbol_constant_p (address_expr->X_add_symbol)
/* Check if branch is really conditional. */
&& !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
int distance;
/* Check if loop is shorter than 6 instructions including
branch and delay slot. */
distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
if (distance <= 20)
{
int i;
int rv;
rv = FALSE;
/* When the loop includes branches or jumps,
it is not a short loop. */
for (i = 0; i < (distance / 4); i++)
{
if ((history[i].cleared_p)
|| delayed_branch_p (&history[i]))
{
rv = TRUE;
break;
}
}
if (!rv)
{
/* Insert nop after branch to fix short loop. */
return FALSE;
}
}
}
return TRUE;
}
/* Decide how we should add IP to the instruction stream.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. */
static enum append_method
get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type)
{
/* The relaxed version of a macro sequence must be inherently
hazard-free. */
if (mips_relax.sequence == 2)
return APPEND_ADD;
/* We must not dabble with instructions in a ".set noreorder" block. */
if (mips_opts.noreorder)
return APPEND_ADD;
/* Otherwise, it's our responsibility to fill branch delay slots. */
if (delayed_branch_p (ip))
{
if (!branch_likely_p (ip)
&& can_swap_branch_p (ip, address_expr, reloc_type))
return APPEND_SWAP;
if (mips_opts.mips16
&& ISA_SUPPORTS_MIPS16E
&& gpr_read_mask (ip) != 0)
return APPEND_ADD_COMPACT;
if (mips_opts.micromips
&& ((ip->insn_opcode & 0xffe0) == 0x4580
|| (!forced_insn_length
&& ((ip->insn_opcode & 0xfc00) == 0xcc00
|| (ip->insn_opcode & 0xdc00) == 0x8c00))
|| (ip->insn_opcode & 0xdfe00000) == 0x94000000
|| (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
return APPEND_ADD_COMPACT;
return APPEND_ADD_WITH_NOP;
}
return APPEND_ADD;
}
/* IP is an instruction whose opcode we have just changed, END points
to the end of the opcode table processed. Point IP->insn_mo to the
new opcode's definition. */
static void
find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
{
const struct mips_opcode *mo;
for (mo = ip->insn_mo; mo < end; mo++)
if (mo->pinfo != INSN_MACRO
&& (ip->insn_opcode & mo->mask) == mo->match)
{
ip->insn_mo = mo;
return;
}
abort ();
}
/* IP is a MIPS16 instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_mips16_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
}
/* IP is a microMIPS instruction whose opcode we have just changed.
Point IP->insn_mo to the new opcode's definition. */
static void
find_altered_micromips_opcode (struct mips_cl_insn *ip)
{
find_altered_opcode (ip, µmips_opcodes[bfd_micromips_num_opcodes]);
}
/* For microMIPS macros, we need to generate a local number label
as the target of branches. */
#define MICROMIPS_LABEL_CHAR '\037'
static unsigned long micromips_target_label;
static char micromips_target_name[32];
static char *
micromips_label_name (void)
{
char *p = micromips_target_name;
char symbol_name_temporary[24];
unsigned long l;
int i;
if (*p)
return p;
i = 0;
l = micromips_target_label;
#ifdef LOCAL_LABEL_PREFIX
*p++ = LOCAL_LABEL_PREFIX;
#endif
*p++ = 'L';
*p++ = MICROMIPS_LABEL_CHAR;
do
{
symbol_name_temporary[i++] = l % 10 + '0';
l /= 10;
}
while (l != 0);
while (i > 0)
*p++ = symbol_name_temporary[--i];
*p = '\0';
return micromips_target_name;
}
static void
micromips_label_expr (expressionS *label_expr)
{
label_expr->X_op = O_symbol;
label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
label_expr->X_add_number = 0;
}
static void
micromips_label_inc (void)
{
micromips_target_label++;
*micromips_target_name = '\0';
}
static void
micromips_add_label (void)
{
symbolS *s;
s = colon (micromips_label_name ());
micromips_label_inc ();
S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
}
/* If assembling microMIPS code, then return the microMIPS reloc
corresponding to the requested one if any. Otherwise return
the reloc unchanged. */
static bfd_reloc_code_real_type
micromips_map_reloc (bfd_reloc_code_real_type reloc)
{
static const bfd_reloc_code_real_type relocs[][2] =
{
/* Keep sorted incrementally by the left-hand key. */
{ BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
{ BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
{ BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
{ BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
{ BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
{ BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
{ BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
{ BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
{ BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
{ BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
{ BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
{ BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
{ BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
{ BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
{ BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
{ BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
{ BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
{ BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
{ BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
{ BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
{ BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
{ BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
{ BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
{ BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
{ BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
{ BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
};
bfd_reloc_code_real_type r;
size_t i;
if (!mips_opts.micromips)
return reloc;
for (i = 0; i < ARRAY_SIZE (relocs); i++)
{
r = relocs[i][0];
if (r > reloc)
return reloc;
if (r == reloc)
return relocs[i][1];
}
return reloc;
}
/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
Return true on success, storing the resolved value in RESULT. */
static bfd_boolean
calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
offsetT *result)
{
switch (reloc)
{
case BFD_RELOC_MIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHEST:
*result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
return TRUE;
case BFD_RELOC_MIPS_HIGHER:
case BFD_RELOC_MICROMIPS_HIGHER:
*result = ((operand + 0x80008000ull) >> 32) & 0xffff;
return TRUE;
case BFD_RELOC_HI16_S:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MIPS16_HI16_S:
*result = ((operand + 0x8000) >> 16) & 0xffff;
return TRUE;
case BFD_RELOC_HI16:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MIPS16_HI16:
*result = (operand >> 16) & 0xffff;
return TRUE;
case BFD_RELOC_LO16:
case BFD_RELOC_LO16_PCREL:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MIPS16_LO16:
*result = operand & 0xffff;
return TRUE;
case BFD_RELOC_UNUSED:
*result = operand;
return TRUE;
default:
return FALSE;
}
}
/* Output an instruction. IP is the instruction information.
ADDRESS_EXPR is an operand of the instruction to be used with
RELOC_TYPE. EXPANSIONP is true if the instruction is part of
a macro expansion. */
static void
append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
{
unsigned long prev_pinfo2, pinfo;
bfd_boolean relaxed_branch = FALSE;
enum append_method method;
bfd_boolean relax32;
int branch_disp;
if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
fix_loongson2f (ip);
file_ase_mips16 |= mips_opts.mips16;
file_ase_micromips |= mips_opts.micromips;
prev_pinfo2 = history[0].insn_mo->pinfo2;
pinfo = ip->insn_mo->pinfo;
/* Don't raise alarm about `nods' frags as they'll fill in the right
kind of nop in relaxation if required. */
if (mips_opts.micromips
&& !expansionp
&& !(history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
&& (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 2)
|| ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
&& micromips_insn_length (ip->insn_mo) != 4)))
as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
(prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
if (address_expr == NULL)
ip->complete_p = 1;
else if (reloc_type[0] <= BFD_RELOC_UNUSED
&& reloc_type[1] == BFD_RELOC_UNUSED
&& reloc_type[2] == BFD_RELOC_UNUSED
&& address_expr->X_op == O_constant)
{
switch (*reloc_type)
{
case BFD_RELOC_MIPS_JMP:
{
int shift;
/* Shift is 2, unusually, for microMIPS JALX. */
shift = (mips_opts.micromips
&& strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
ip->complete_p = 1;
}
break;
case BFD_RELOC_MIPS16_JMP:
if ((address_expr->X_add_number & 3) != 0)
as_bad (_("jump to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |=
(((address_expr->X_add_number & 0x7c0000) << 3)
| ((address_expr->X_add_number & 0xf800000) >> 7)
| ((address_expr->X_add_number & 0x3fffc) >> 2));
ip->complete_p = 1;
break;
case BFD_RELOC_16_PCREL_S2:
{
int shift;
shift = mips_opts.micromips ? 1 : 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if (!mips_relax_branch)
{
if ((address_expr->X_add_number + (1 << (shift + 15)))
& ~((1 << (shift + 16)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0xffff);
}
}
break;
case BFD_RELOC_MIPS_21_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 20)))
& ~((1 << (shift + 21)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x1fffff);
}
break;
case BFD_RELOC_MIPS_26_PCREL_S2:
{
int shift;
shift = 2;
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) address_expr->X_add_number);
if ((address_expr->X_add_number + (1 << (shift + 25)))
& ~((1 << (shift + 26)) - 1))
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) address_expr->X_add_number);
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
& 0x3ffffff);
}
break;
default:
{
offsetT value;
if (calculate_reloc (*reloc_type, address_expr->X_add_number,
&value))
{
ip->insn_opcode |= value & 0xffff;
ip->complete_p = 1;
}
}
break;
}
}
if (mips_relax.sequence != 2 && !mips_opts.noreorder)
{
/* There are a lot of optimizations we could do that we don't.
In particular, we do not, in general, reorder instructions.
If you use gcc with optimization, it will reorder
instructions and generally do much more optimization then we
do here; repeating all that work in the assembler would only
benefit hand written assembly code, and does not seem worth
it. */
int nops = (mips_optimize == 0
? nops_for_insn (0, history, NULL)
: nops_for_insn_or_target (0, history, ip));
if (nops > 0)
{
fragS *old_frag;
unsigned long old_frag_offset;
int i;
old_frag = frag_now;
old_frag_offset = frag_now_fix ();
for (i = 0; i < nops; i++)
add_fixed_insn (NOP_INSN);
insert_into_history (0, nops, NOP_INSN);
if (listing)
{
listing_prev_line ();
/* We may be at the start of a variant frag. In case we
are, make sure there is enough space for the frag
after the frags created by listing_prev_line. The
argument to frag_grow here must be at least as large
as the argument to all other calls to frag_grow in
this file. We don't have to worry about being in the
middle of a variant frag, because the variants insert
all needed nop instructions themselves. */
frag_grow (40);
}
mips_move_text_labels ();
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING)
ecoff_fix_loc (old_frag, old_frag_offset);
#endif
}
}
else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
{
int nops;
/* Work out how many nops in prev_nop_frag are needed by IP,
ignoring hazards generated by the first prev_nop_frag_since
instructions. */
nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
gas_assert (nops <= prev_nop_frag_holds);
/* Enforce NOPS as a minimum. */
if (nops > prev_nop_frag_required)
prev_nop_frag_required = nops;
if (prev_nop_frag_holds == prev_nop_frag_required)
{
/* Settle for the current number of nops. Update the history
accordingly (for the benefit of any future .set reorder code). */
prev_nop_frag = NULL;
insert_into_history (prev_nop_frag_since,
prev_nop_frag_holds, NOP_INSN);
}
else
{
/* Allow this instruction to replace one of the nops that was
tentatively added to prev_nop_frag. */
prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
prev_nop_frag_holds--;
prev_nop_frag_since++;
}
}
method = get_append_method (ip, address_expr, reloc_type);
branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
dwarf2_emit_insn (0);
/* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
so "move" the instruction address accordingly.
Also, it doesn't seem appropriate for the assembler to reorder .loc
entries. If this instruction is a branch that we are going to swap
with the previous instruction, the two instructions should be
treated as a unit, and the debug information for both instructions
should refer to the start of the branch sequence. Using the
current position is certainly wrong when swapping a 32-bit branch
and a 16-bit delay slot, since the current position would then be
in the middle of a branch. */
dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
relax32 = (mips_relax_branch
/* Don't try branch relaxation within .set nomacro, or within
.set noat if we use $at for PIC computations. If it turns
out that the branch was out-of-range, we'll get an error. */
&& !mips_opts.warn_about_macros
&& (mips_opts.at || mips_pic == NO_PIC)
/* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
as they have no complementing branches. */
&& !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
if (!HAVE_CODE_COMPRESSION
&& address_expr
&& relax32
&& *reloc_type == BFD_RELOC_16_PCREL_S2
&& delayed_branch_p (ip))
{
relaxed_branch = TRUE;
add_relaxed_insn (ip, (relaxed_branch_length
(NULL, NULL,
uncond_branch_p (ip) ? -1
: branch_likely_p (ip) ? 1
: 0)), 4,
RELAX_BRANCH_ENCODE
(AT, mips_pic != NO_PIC,
uncond_branch_p (ip),
branch_likely_p (ip),
pinfo & INSN_WRITE_GPR_31,
0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.micromips
&& address_expr
&& ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
|| *reloc_type > BFD_RELOC_UNUSED)
&& (delayed_branch_p (ip) || compact_branch_p (ip))
/* Don't try branch relaxation when users specify
16-bit/32-bit instructions. */
&& !forced_insn_length)
{
bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
&& *reloc_type > BFD_RELOC_UNUSED);
int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
int uncond = uncond_branch_p (ip) ? -1 : 0;
int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
int nods = method == APPEND_ADD_WITH_NOP;
int al = pinfo & INSN_WRITE_GPR_31;
int length32 = nods ? 8 : 4;
gas_assert (address_expr != NULL);
gas_assert (!mips_relax.sequence);
relaxed_branch = TRUE;
if (nods)
method = APPEND_ADD;
if (relax32)
length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
mips_pic != NO_PIC,
uncond, compact, al, nods,
relax32, 0, 0),
address_expr->X_add_symbol,
address_expr->X_add_number);
*reloc_type = BFD_RELOC_UNUSED;
}
else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
{
bfd_boolean require_unextended;
bfd_boolean require_extended;
symbolS *symbol;
offsetT offset;
if (forced_insn_length != 0)
{
require_unextended = forced_insn_length == 2;
require_extended = forced_insn_length == 4;
}
else
{
require_unextended = (mips_opts.noautoextend
&& !mips_opcode_32bit_p (ip->insn_mo));
require_extended = 0;
}
/* We need to set up a variant frag. */
gas_assert (address_expr != NULL);
/* Pass any `O_symbol' expression unchanged as an `expr_section'
symbol created by `make_expr_symbol' may not get a necessary
external relocation produced. */
if (address_expr->X_op == O_symbol)
{
symbol = address_expr->X_add_symbol;
offset = address_expr->X_add_number;
}
else
{
symbol = make_expr_symbol (address_expr);
symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
offset = 0;
}
add_relaxed_insn (ip, 12, 0,
RELAX_MIPS16_ENCODE
(*reloc_type - BFD_RELOC_UNUSED,
mips_opts.ase & ASE_MIPS16E2,
mips_pic != NO_PIC,
HAVE_32BIT_SYMBOLS,
mips_opts.warn_about_macros,
require_unextended, require_extended,
delayed_branch_p (&history[0]),
history[0].mips16_absolute_jump_p),
symbol, offset);
}
else if (mips_opts.mips16 && insn_length (ip) == 2)
{
if (!delayed_branch_p (ip))
/* Make sure there is enough room to swap this instruction with
a following jump instruction. */
frag_grow (6);
add_fixed_insn (ip);
}
else
{
if (mips_opts.mips16
&& mips_opts.noreorder
&& delayed_branch_p (&history[0]))
as_warn (_("extended instruction in delay slot"));
if (mips_relax.sequence)
{
/* If we've reached the end of this frag, turn it into a variant
frag and record the information for the instructions we've
written so far. */
if (frag_room () < 4)
relax_close_frag ();
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
}
if (mips_relax.sequence != 2)
{
if (mips_macro_warning.first_insn_sizes[0] == 0)
mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
mips_macro_warning.sizes[0] += insn_length (ip);
mips_macro_warning.insns[0]++;
}
if (mips_relax.sequence != 1)
{
if (mips_macro_warning.first_insn_sizes[1] == 0)
mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
mips_macro_warning.sizes[1] += insn_length (ip);
mips_macro_warning.insns[1]++;
}
if (mips_opts.mips16)
{
ip->fixed_p = 1;
ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
}
add_fixed_insn (ip);
}
if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
{
bfd_reloc_code_real_type final_type[3];
reloc_howto_type *howto0;
reloc_howto_type *howto;
int i;
/* Perform any necessary conversion to microMIPS relocations
and find out how many relocations there actually are. */
for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
final_type[i] = micromips_map_reloc (reloc_type[i]);
/* In a compound relocation, it is the final (outermost)
operator that determines the relocated field. */
howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
if (!howto)
abort ();
if (i > 1)
howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
bfd_get_reloc_size (howto),
address_expr,
howto0 && howto0->pc_relative,
final_type[0]);
/* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
/* Tag symbols that have a R_MIPS16_26 relocation against them. */
if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
*symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
/* These relocations can have an addend that won't fit in
4 octets for 64bit assembly. */
if (GPR_SIZE == 64
&& ! howto->partial_inplace
&& (reloc_type[0] == BFD_RELOC_16
|| reloc_type[0] == BFD_RELOC_32
|| reloc_type[0] == BFD_RELOC_MIPS_JMP
|| reloc_type[0] == BFD_RELOC_GPREL16
|| reloc_type[0] == BFD_RELOC_MIPS_LITERAL
|| reloc_type[0] == BFD_RELOC_GPREL32
|| reloc_type[0] == BFD_RELOC_64
|| reloc_type[0] == BFD_RELOC_CTOR
|| reloc_type[0] == BFD_RELOC_MIPS_SUB
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHER
|| reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
|| reloc_type[0] == BFD_RELOC_MIPS_REL16
|| reloc_type[0] == BFD_RELOC_MIPS_RELGOT
|| reloc_type[0] == BFD_RELOC_MIPS16_GPREL
|| hi16_reloc_p (reloc_type[0])
|| lo16_reloc_p (reloc_type[0])))
ip->fixp[0]->fx_no_overflow = 1;
/* These relocations can have an addend that won't fit in 2 octets. */
if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
ip->fixp[0]->fx_no_overflow = 1;
if (mips_relax.sequence)
{
if (mips_relax.first_fixup == 0)
mips_relax.first_fixup = ip->fixp[0];
}
else if (reloc_needs_lo_p (*reloc_type))
{
struct mips_hi_fixup *hi_fixup;
/* Reuse the last entry if it already has a matching %lo. */
hi_fixup = mips_hi_fixup_list;
if (hi_fixup == 0
|| !fixup_has_matching_lo_p (hi_fixup->fixp))
{
hi_fixup = XNEW (struct mips_hi_fixup);
hi_fixup->next = mips_hi_fixup_list;
mips_hi_fixup_list = hi_fixup;
}
hi_fixup->fixp = ip->fixp[0];
hi_fixup->seg = now_seg;
}
/* Add fixups for the second and third relocations, if given.
Note that the ABI allows the second relocation to be
against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
moment we only use RSS_UNDEF, but we could add support
for the others if it ever becomes necessary. */
for (i = 1; i < 3; i++)
if (reloc_type[i] != BFD_RELOC_UNUSED)
{
ip->fixp[i] = fix_new (ip->frag, ip->where,
ip->fixp[0]->fx_size, NULL, 0,
FALSE, final_type[i]);
/* Use fx_tcbit to mark compound relocs. */
ip->fixp[0]->fx_tcbit = 1;
ip->fixp[i]->fx_tcbit = 1;
}
}
/* Update the register mask information. */
mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
switch (method)
{
case APPEND_ADD:
insert_into_history (0, 1, ip);
break;
case APPEND_ADD_WITH_NOP:
{
struct mips_cl_insn *nop;
insert_into_history (0, 1, ip);
nop = get_delay_slot_nop (ip);
add_fixed_insn (nop);
insert_into_history (0, 1, nop);
if (mips_relax.sequence)
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
}
break;
case APPEND_ADD_COMPACT:
/* Convert MIPS16 jr/jalr into a "compact" jump. */
if (mips_opts.mips16)
{
ip->insn_opcode |= 0x0080;
find_altered_mips16_opcode (ip);
}
/* Convert microMIPS instructions. */
else if (mips_opts.micromips)
{
/* jr16->jrc */
if ((ip->insn_opcode & 0xffe0) == 0x4580)
ip->insn_opcode |= 0x0020;
/* b16->bc */
else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
ip->insn_opcode = 0x40e00000;
/* beqz16->beqzc, bnez16->bnezc */
else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
{
unsigned long regno;
regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
regno &= MICROMIPSOP_MASK_MD;
regno = micromips_to_32_reg_d_map[regno];
ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
| (regno << MICROMIPSOP_SH_RS)
| 0x40a00000) ^ 0x00400000;
}
/* beqz->beqzc, bnez->bnezc */
else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
/* beq $0->beqzc, bne $0->bnezc */
else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
ip->insn_opcode = (((ip->insn_opcode >>
(MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
& (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
| ((ip->insn_opcode >> 7) & 0x00400000)
| 0x40a00000) ^ 0x00400000;
else
abort ();
find_altered_micromips_opcode (ip);
}
else
abort ();
install_insn (ip);
insert_into_history (0, 1, ip);
break;
case APPEND_SWAP:
{
struct mips_cl_insn delay = history[0];
if (relaxed_branch || delay.frag != ip->frag)
{
/* Add the delay slot instruction to the end of the
current frag and shrink the fixed part of the
original frag. If the branch occupies the tail of
the latter, move it backwards to cover the gap. */
delay.frag->fr_fix -= branch_disp;
if (delay.frag == ip->frag)
move_insn (ip, ip->frag, ip->where - branch_disp);
add_fixed_insn (&delay);
}
else
{
/* If this is not a relaxed branch and we are in the
same frag, then just swap the instructions. */
move_insn (ip, delay.frag, delay.where);
move_insn (&delay, ip->frag, ip->where + insn_length (ip));
}
history[0] = *ip;
delay.fixed_p = 1;
insert_into_history (0, 1, &delay);
}
break;
}
/* If we have just completed an unconditional branch, clear the history. */
if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
|| (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
{
unsigned int i;
mips_no_prev_insn ();
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].cleared_p = 1;
}
/* We need to emit a label at the end of branch-likely macros. */
if (emit_branch_likely_macro)
{
emit_branch_likely_macro = FALSE;
micromips_add_label ();
}
/* We just output an insn, so the next one doesn't have a label. */
mips_clear_insn_labels ();
}
/* Forget that there was any previous instruction or label.
When BRANCH is true, the branch history is also flushed. */
static void
mips_no_prev_insn (void)
{
prev_nop_frag = NULL;
insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
mips_clear_insn_labels ();
}
/* This function must be called before we emit something other than
instructions. It is like mips_no_prev_insn except that it inserts
any NOPS that might be needed by previous instructions. */
void
mips_emit_delays (void)
{
if (! mips_opts.noreorder)
{
int nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
while (nops-- > 0)
add_fixed_insn (NOP_INSN);
mips_move_text_labels ();
}
}
mips_no_prev_insn ();
}
/* Start a (possibly nested) noreorder block. */
static void
start_noreorder (void)
{
if (mips_opts.noreorder == 0)
{
unsigned int i;
int nops;
/* None of the instructions before the .set noreorder can be moved. */
for (i = 0; i < ARRAY_SIZE (history); i++)
history[i].fixed_p = 1;
/* Insert any nops that might be needed between the .set noreorder
block and the previous instructions. We will later remove any
nops that turn out not to be needed. */
nops = nops_for_insn (0, history, NULL);
if (nops > 0)
{
if (mips_optimize != 0)
{
/* Record the frag which holds the nop instructions, so
that we can remove them if we don't need them. */
frag_grow (nops * NOP_INSN_SIZE);
prev_nop_frag = frag_now;
prev_nop_frag_holds = nops;
prev_nop_frag_required = 0;
prev_nop_frag_since = 0;
}
for (; nops > 0; --nops)
add_fixed_insn (NOP_INSN);
/* Move on to a new frag, so that it is safe to simply
decrease the size of prev_nop_frag. */
frag_wane (frag_now);
frag_new (0);
mips_move_text_labels ();
}
mips_mark_labels ();
mips_clear_insn_labels ();
}
mips_opts.noreorder++;
mips_any_noreorder = 1;
}
/* End a nested noreorder block. */
static void
end_noreorder (void)
{
mips_opts.noreorder--;
if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
{
/* Commit to inserting prev_nop_frag_required nops and go back to
handling nop insertion the .set reorder way. */
prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
* NOP_INSN_SIZE);
insert_into_history (prev_nop_frag_since,
prev_nop_frag_required, NOP_INSN);
prev_nop_frag = NULL;
}
}
/* Sign-extend 32-bit mode constants that have bit 31 set and all
higher bits unset. */
static void
normalize_constant_expr (expressionS *ex)
{
if (ex->X_op == O_constant
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Sign-extend 32-bit mode address offsets that have bit 31 set and
all higher bits unset. */
static void
normalize_address_expr (expressionS *ex)
{
if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
|| (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
- 0x80000000);
}
/* Try to match TOKENS against OPCODE, storing the result in INSN.
Return true if the match was successful.
OPCODE_EXTRA is a value that should be ORed into the opcode
(used for VU0 channel suffixes, etc.). MORE_ALTS is true if
there are more alternatives after OPCODE and SOFT_MATCH is
as for mips_arg_info. */
static bfd_boolean
match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens, unsigned int opcode_extra,
bfd_boolean lax_match, bfd_boolean complete_p)
{
const char *args;
struct mips_arg_info arg;
const struct mips_operand *operand;
char c;
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
create_insn (insn, opcode);
/* When no opcode suffix is specified, assume ".xyzw". */
if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
else
insn->insn_opcode |= opcode_extra;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
arg.lax_match = lax_match;
for (args = opcode->args;; ++args)
{
if (arg.token->type == OT_END)
{
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = (mips_opts.micromips
? decode_micromips_operand (args + 1)
: decode_mips_operand (args + 1));
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Treat elided base registers as $0. */
if (strcmp (args, "(b)") == 0)
args += 3;
if (args[0] == '+')
switch (args[1])
{
case 'K':
case 'N':
/* The register suffix is optional. */
args += 2;
break;
}
/* Fail the match if there were too few operands. */
if (*args)
return FALSE;
/* Successful match. */
if (!complete_p)
return TRUE;
clear_insn_error ();
if (arg.dest_regno == arg.last_regno
&& strncmp (insn->insn_mo->name, "jalr", 4) == 0)
{
if (arg.opnum == 2)
set_insn_error
(0, _("source and destination must be different"));
else if (arg.last_regno == 31)
set_insn_error
(0, _("a destination register must be supplied"));
}
else if (arg.last_regno == 31
&& (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
|| strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
set_insn_error (0, _("the source register must not be $31"));
check_completed_insn (&arg);
return TRUE;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return FALSE;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return FALSE;
}
if (*args == '#')
{
++args;
if (arg.token->type == OT_DOUBLE_CHAR
&& arg.token->u.ch == *args)
{
++arg.token;
continue;
}
return FALSE;
}
/* Handle special macro operands. Work out the properties of
other operands. */
arg.opnum += 1;
switch (*args)
{
case '-':
switch (args[1])
{
case 'A':
*offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
break;
case 'B':
*offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
break;
}
break;
case '+':
switch (args[1])
{
case 'i':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case '\'':
*offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
break;
case '\"':
*offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
break;
}
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return FALSE;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'A':
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
/* Assume that the offset has been elided and that what
we saw was a base register. The match will fail later
if that assumption turns out to be wrong. */
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
{
if (!match_expression (&arg, &offset_expr, offset_reloc))
return FALSE;
normalize_address_expr (&offset_expr);
}
continue;
case 'F':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, TRUE))
return FALSE;
continue;
case 'L':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8, FALSE))
return FALSE;
continue;
case 'f':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, TRUE))
return FALSE;
continue;
case 'l':
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
4, FALSE))
return FALSE;
continue;
case 'p':
*offset_reloc = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
*offset_reloc = BFD_RELOC_MIPS_JMP;
break;
case 'm':
gas_assert (mips_opts.micromips);
c = args[1];
switch (c)
{
case 'D':
case 'E':
if (!forced_insn_length)
*offset_reloc = (int) BFD_RELOC_UNUSED + c;
else if (c == 'D')
*offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
else
*offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
break;
}
break;
}
operand = (mips_opts.micromips
? decode_micromips_operand (args)
: decode_mips_operand (args));
if (!operand)
abort ();
/* Skip prefixes. */
if (*args == '+' || *args == 'm' || *args == '-')
args++;
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return FALSE;
}
}
/* Like match_insn, but for MIPS16. */
static bfd_boolean
match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
struct mips_operand_token *tokens)
{
const char *args;
const struct mips_operand *operand;
const struct mips_operand *ext_operand;
bfd_boolean pcrel = FALSE;
int required_insn_length;
struct mips_arg_info arg;
int relax_char;
if (forced_insn_length)
required_insn_length = forced_insn_length;
else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
required_insn_length = 2;
else
required_insn_length = 0;
create_insn (insn, opcode);
imm_expr.X_op = O_absent;
offset_expr.X_op = O_absent;
offset_reloc[0] = BFD_RELOC_UNUSED;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
relax_char = 0;
memset (&arg, 0, sizeof (arg));
arg.insn = insn;
arg.token = tokens;
arg.argnum = 1;
arg.last_regno = ILLEGAL_REG;
arg.dest_regno = ILLEGAL_REG;
relax_char = 0;
for (args = opcode->args;; ++args)
{
int c;
if (arg.token->type == OT_END)
{
offsetT value;
/* Handle unary instructions in which only one operand is given.
The source is then the same as the destination. */
if (arg.opnum == 1 && *args == ',')
{
operand = decode_mips16_operand (args[1], FALSE);
if (operand && mips_optional_operand_p (operand))
{
arg.token = tokens;
arg.argnum = 1;
continue;
}
}
/* Fail the match if there were too few operands. */
if (*args)
return FALSE;
/* Successful match. Stuff the immediate value in now, if
we can. */
clear_insn_error ();
if (opcode->pinfo == INSN_MACRO)
{
gas_assert (relax_char == 0 || relax_char == 'p');
gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
}
else if (relax_char
&& offset_expr.X_op == O_constant
&& !pcrel
&& calculate_reloc (*offset_reloc,
offset_expr.X_add_number,
&value))
{
mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
required_insn_length, &insn->insn_opcode);
offset_expr.X_op = O_absent;
*offset_reloc = BFD_RELOC_UNUSED;
}
else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
{
if (required_insn_length == 2)
set_insn_error (0, _("invalid unextended operand value"));
else if (!mips_opcode_32bit_p (opcode))
{
forced_insn_length = 4;
insn->insn_opcode |= MIPS16_EXTEND;
}
}
else if (relax_char)
*offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
check_completed_insn (&arg);
return TRUE;
}
/* Fail the match if the line has too many operands. */
if (*args == 0)
return FALSE;
/* Handle characters that need to match exactly. */
if (*args == '(' || *args == ')' || *args == ',')
{
if (match_char (&arg, *args))
continue;
return FALSE;
}
arg.opnum += 1;
c = *args;
switch (c)
{
case 'p':
case 'q':
case 'A':
case 'B':
case 'E':
case 'V':
case 'u':
relax_char = c;
break;
case 'I':
if (!match_const_int (&arg, &imm_expr.X_add_number))
return FALSE;
imm_expr.X_op = O_constant;
if (GPR_SIZE == 32)
normalize_constant_expr (&imm_expr);
continue;
case 'a':
case 'i':
*offset_reloc = BFD_RELOC_MIPS16_JMP;
break;
}
operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
if (!operand)
abort ();
if (operand->type == OP_PCREL)
pcrel = TRUE;
else
{
ext_operand = decode_mips16_operand (c, TRUE);
if (operand != ext_operand)
{
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
{
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
relax_char = c;
continue;
}
if (!match_expression (&arg, &offset_expr, offset_reloc))
return FALSE;
/* '8' is used for SLTI(U) and has traditionally not
been allowed to take relocation operators. */
if (offset_reloc[0] != BFD_RELOC_UNUSED
&& (ext_operand->size != 16 || c == '8'))
{
match_not_constant (&arg);
return FALSE;
}
if (offset_expr.X_op == O_big)
{
match_out_of_range (&arg);
return FALSE;
}
relax_char = c;
continue;
}
}
if (mips_optional_operand_p (operand)
&& args[1] == ','
&& (arg.token[0].type != OT_REG
|| arg.token[1].type == OT_END))
{
/* Assume that the register has been elided and is the
same as the first operand. */
arg.token = tokens;
arg.argnum = 1;
}
if (!match_operand (&arg, operand))
return FALSE;
}
}
/* Record that the current instruction is invalid for the current ISA. */
static void
match_invalid_for_isa (void)
{
set_insn_error_ss
(0, _("opcode not supported on this processor: %s (%s)"),
mips_cpu_info_from_arch (mips_opts.arch)->name,
mips_cpu_info_from_isa (mips_opts.isa)->name);
}
/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
Return true if a definite match or failure was found, storing any match
in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
(to handle things like VU0 suffixes). LAX_MATCH is true if we have already
tried and failed to match under normal conditions and now want to try a
more relaxed match. */
static bfd_boolean
match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
const struct mips_opcode *past, struct mips_operand_token *tokens,
int opcode_extra, bfd_boolean lax_match)
{
const struct mips_opcode *opcode;
const struct mips_opcode *invalid_delay_slot;
bfd_boolean seen_valid_for_isa, seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA or forced_length. */
invalid_delay_slot = 0;
seen_valid_for_isa = FALSE;
seen_valid_for_size = FALSE;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid (opcode))
{
seen_valid_for_isa = TRUE;
if (is_size_valid (opcode))
{
bfd_boolean delay_slot_ok;
seen_valid_for_size = TRUE;
delay_slot_ok = is_delay_slot_valid (opcode);
if (match_insn (insn, opcode, tokens, opcode_extra,
lax_match, delay_slot_ok))
{
if (!delay_slot_ok)
{
if (!invalid_delay_slot)
invalid_delay_slot = opcode;
}
else
return TRUE;
}
}
}
++opcode;
}
while (opcode < past && strcmp (opcode->name, first->name) == 0);
/* If the only matches we found had the wrong length for the delay slot,
pick the first such match. We'll issue an appropriate warning later. */
if (invalid_delay_slot)
{
if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
lax_match, TRUE))
return TRUE;
abort ();
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return TRUE;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (mips_opts.insn32)
set_insn_error (0, _("opcode not supported in the `insn32' mode"));
else
set_insn_error_i
(0, _("unrecognized %d-bit version of microMIPS opcode"),
8 * forced_insn_length);
return TRUE;
}
return FALSE;
}
/* Like match_insns, but for MIPS16. */
static bfd_boolean
match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
struct mips_operand_token *tokens)
{
const struct mips_opcode *opcode;
bfd_boolean seen_valid_for_isa;
bfd_boolean seen_valid_for_size;
/* Search for a match, ignoring alternatives that don't satisfy the
current ISA. There are no separate entries for extended forms so
we deal with forced_length later. */
seen_valid_for_isa = FALSE;
seen_valid_for_size = FALSE;
opcode = first;
do
{
gas_assert (strcmp (opcode->name, first->name) == 0);
if (is_opcode_valid_16 (opcode))
{
seen_valid_for_isa = TRUE;
if (is_size_valid_16 (opcode))
{
seen_valid_for_size = TRUE;
if (match_mips16_insn (insn, opcode, tokens))
return TRUE;
}
}
++opcode;
}
while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
&& strcmp (opcode->name, first->name) == 0);
/* Handle the case where we didn't try to match an instruction because
all the alternatives were incompatible with the current ISA. */
if (!seen_valid_for_isa)
{
match_invalid_for_isa ();
return TRUE;
}
/* Handle the case where we didn't try to match an instruction because
all the alternatives were of the wrong size. */
if (!seen_valid_for_size)
{
if (forced_insn_length == 2)
set_insn_error
(0, _("unrecognized unextended version of MIPS16 opcode"));
else
set_insn_error
(0, _("unrecognized extended version of MIPS16 opcode"));
return TRUE;
}
return FALSE;
}
/* Set up global variables for the start of a new macro. */
static void
macro_start (void)
{
memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
memset (&mips_macro_warning.first_insn_sizes, 0,
sizeof (mips_macro_warning.first_insn_sizes));
memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
mips_macro_warning.delay_slot_p = (mips_opts.noreorder
&& delayed_branch_p (&history[0]));
if (history[0].frag
&& history[0].frag->fr_type == rs_machine_dependent
&& RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
&& RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
mips_macro_warning.delay_slot_length = 0;
else
switch (history[0].insn_mo->pinfo2
& (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
{
case INSN2_BRANCH_DELAY_32BIT:
mips_macro_warning.delay_slot_length = 4;
break;
case INSN2_BRANCH_DELAY_16BIT:
mips_macro_warning.delay_slot_length = 2;
break;
default:
mips_macro_warning.delay_slot_length = 0;
break;
}
mips_macro_warning.first_frag = NULL;
}
/* Given that a macro is longer than one instruction or of the wrong size,
return the appropriate warning for it. Return null if no warning is
needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
and RELAX_NOMACRO. */
static const char *
macro_warning (relax_substateT subtype)
{
if (subtype & RELAX_DELAY_SLOT)
return _("macro instruction expanded into multiple instructions"
" in a branch delay slot");
else if (subtype & RELAX_NOMACRO)
return _("macro instruction expanded into multiple instructions");
else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND))
return ((subtype & RELAX_DELAY_SLOT_16BIT)
? _("macro instruction expanded into a wrong size instruction"
" in a 16-bit branch delay slot")
: _("macro instruction expanded into a wrong size instruction"
" in a 32-bit branch delay slot"));
else
return 0;
}
/* Finish up a macro. Emit warnings as appropriate. */
static void
macro_end (void)
{
/* Relaxation warning flags. */
relax_substateT subtype = 0;
/* Check delay slot size requirements. */
if (mips_macro_warning.delay_slot_length == 2)
subtype |= RELAX_DELAY_SLOT_16BIT;
if (mips_macro_warning.delay_slot_length != 0)
{
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[0])
subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
if (mips_macro_warning.delay_slot_length
!= mips_macro_warning.first_insn_sizes[1])
subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
}
/* Check instruction count requirements. */
if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
{
if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
subtype |= RELAX_SECOND_LONGER;
if (mips_opts.warn_about_macros)
subtype |= RELAX_NOMACRO;
if (mips_macro_warning.delay_slot_p)
subtype |= RELAX_DELAY_SLOT;
}
/* If both alternatives fail to fill a delay slot correctly,
emit the warning now. */
if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
&& (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_DELAY_SLOT_16BIT
| RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If both implementations are longer than 1 instruction, then emit the
warning now. */
if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
msg = macro_warning (s);
if (msg != NULL)
as_warn ("%s", msg);
subtype &= ~s;
}
/* If any flags still set, then one implementation might need a warning
and the other either will need one of a different kind or none at all.
Pass any remaining flags over to relaxation. */
if (mips_macro_warning.first_frag != NULL)
mips_macro_warning.first_frag->fr_subtype |= subtype;
}
/* Instruction operand formats used in macros that vary between
standard MIPS and microMIPS code. */
static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
static const char * const jalr_fmt[2] = { "d,s", "t,s" };
static const char * const lui_fmt[2] = { "t,u", "s,u" };
static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
: cop12_fmt[mips_opts.micromips])
#define JALR_FMT (jalr_fmt[mips_opts.micromips])
#define LUI_FMT (lui_fmt[mips_opts.micromips])
#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
: mem12_fmt[mips_opts.micromips])
#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
#define SHFT_FMT (shft_fmt[mips_opts.micromips])
#define TRAP_FMT (trap_fmt[mips_opts.micromips])
/* Read a macro's relocation codes from *ARGS and store them in *R.
The first argument in *ARGS will be either the code for a single
relocation or -1 followed by the three codes that make up a
composite relocation. */
static void
macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
{
int i, next;
next = va_arg (*args, int);
if (next >= 0)
r[0] = (bfd_reloc_code_real_type) next;
else
{
for (i = 0; i < 3; i++)
r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
/* This function is only used for 16-bit relocation fields.
To make the macro code simpler, treat an unrelocated value
in the same way as BFD_RELOC_LO16. */
if (r[0] == BFD_RELOC_UNUSED)
r[0] = BFD_RELOC_LO16;
}
}
/* Build an instruction created by a macro expansion. This is passed
a pointer to the count of instructions created so far, an
expression, the name of the instruction to build, an operand format
string, and corresponding arguments. */
static void
macro_build (expressionS *ep, const char *name, const char *fmt, ...)
{
const struct mips_opcode *mo = NULL;
bfd_reloc_code_real_type r[3];
const struct mips_opcode *amo;
const struct mips_operand *operand;
struct hash_control *hash;
struct mips_cl_insn insn;
va_list args;
unsigned int uval;
va_start (args, fmt);
if (mips_opts.mips16)
{
mips16_macro_build (ep, name, fmt, &args);
va_end (args);
return;
}
r[0] = BFD_RELOC_UNUSED;
r[1] = BFD_RELOC_UNUSED;
r[2] = BFD_RELOC_UNUSED;
hash = mips_opts.micromips ? micromips_op_hash : op_hash;
amo = (struct mips_opcode *) hash_find (hash, name);
gas_assert (amo);
gas_assert (strcmp (name, amo->name) == 0);
do
{
/* Search until we get a match for NAME. It is assumed here that
macros will never generate MDMX, MIPS-3D, or MT instructions.
We try to match an instruction that fulfills the branch delay
slot instruction length requirement (if any) of the previous
instruction. While doing this we record the first instruction
seen that matches all the other conditions and use it anyway
if the requirement cannot be met; we will issue an appropriate
warning later on. */
if (strcmp (fmt, amo->args) == 0
&& amo->pinfo != INSN_MACRO
&& is_opcode_valid (amo)
&& is_size_valid (amo))
{
if (is_delay_slot_valid (amo))
{
mo = amo;
break;
}
else if (!mo)
mo = amo;
}
++amo;
gas_assert (amo->name);
}
while (strcmp (name, amo->name) == 0);
gas_assert (mo);
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
switch (*fmt)
{
case ',':
case '(':
case ')':
case 'z':
break;
case 'i':
case 'j':
macro_read_relocs (&args, r);
gas_assert (*r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_HIGHER
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_LO16
|| *r == BFD_RELOC_MIPS_GOT_OFST);
break;
case 'o':
macro_read_relocs (&args, r);
break;
case 'u':
macro_read_relocs (&args, r);
gas_assert (ep != NULL
&& (ep->X_op == O_constant
|| (ep->X_op == O_symbol
&& (*r == BFD_RELOC_MIPS_HIGHEST
|| *r == BFD_RELOC_HI16_S
|| *r == BFD_RELOC_HI16
|| *r == BFD_RELOC_GPREL16
|| *r == BFD_RELOC_MIPS_GOT_HI16
|| *r == BFD_RELOC_MIPS_CALL_HI16))));
break;
case 'p':
gas_assert (ep != NULL);
/*
* This allows macro() to pass an immediate expression for
* creating short branches without creating a symbol.
*
* We don't allow branch relaxation for these branches, as
* they should only appear in ".set nomacro" anyway.
*/
if (ep->X_op == O_constant)
{
/* For microMIPS we always use relocations for branches.
So we should not resolve immediate values. */
gas_assert (!mips_opts.micromips);
if ((ep->X_add_number & 3) != 0)
as_bad (_("branch to misaligned address (0x%lx)"),
(unsigned long) ep->X_add_number);
if ((ep->X_add_number + 0x20000) & ~0x3ffff)
as_bad (_("branch address range overflow (0x%lx)"),
(unsigned long) ep->X_add_number);
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
ep = NULL;
}
else
*r = BFD_RELOC_16_PCREL_S2;
break;
case 'a':
gas_assert (ep != NULL);
*r = BFD_RELOC_MIPS_JMP;
break;
default:
operand = (mips_opts.micromips
? decode_micromips_operand (fmt)
: decode_mips_operand (fmt));
if (!operand)
abort ();
uval = va_arg (args, int);
if (operand->type == OP_CLO_CLZ_DEST)
uval |= (uval << 5);
insn_insert_operand (&insn, operand, uval);
if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
++fmt;
break;
}
}
va_end (args);
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, TRUE);
}
static void
mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
va_list *args)
{
struct mips_opcode *mo;
struct mips_cl_insn insn;
const struct mips_operand *operand;
bfd_reloc_code_real_type r[3]
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
gas_assert (mo);
gas_assert (strcmp (name, mo->name) == 0);
while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
{
++mo;
gas_assert (mo->name);
gas_assert (strcmp (name, mo->name) == 0);
}
create_insn (&insn, mo);
for (; *fmt; ++fmt)
{
int c;
c = *fmt;
switch (c)
{
case ',':
case '(':
case ')':
break;
case '.':
case 'S':
case 'P':
case 'R':
break;
case '<':
case '5':
case 'F':
case 'H':
case 'W':
case 'D':
case 'j':
case '8':
case 'V':
case 'C':
case 'U':
case 'k':
case 'K':
case 'p':
case 'q':
{
offsetT value;
gas_assert (ep != NULL);
if (ep->X_op != O_constant)
*r = (int) BFD_RELOC_UNUSED + c;
else if (calculate_reloc (*r, ep->X_add_number, &value))
{
mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
ep = NULL;
*r = BFD_RELOC_UNUSED;
}
}
break;
default:
operand = decode_mips16_operand (c, FALSE);
if (!operand)
abort ();
insn_insert_operand (&insn, operand, va_arg (*args, int));
break;
}
}
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
append_insn (&insn, ep, r, TRUE);
}
/*
* Generate a "jalr" instruction with a relocation hint to the called
* function. This occurs in NewABI PIC code.
*/
static void
macro_build_jalr (expressionS *ep, int cprestore)
{
static const bfd_reloc_code_real_type jalr_relocs[2]
= { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
const char *jalr;
char *f = NULL;
if (MIPS_JALR_HINT_P (ep))
{
frag_grow (8);
f = frag_more (0);
}
if (mips_opts.micromips)
{
jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
? "jalr" : "jalrs");
if (MIPS_JALR_HINT_P (ep)
|| mips_opts.insn32
|| (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
else
macro_build (NULL, jalr, "mj", PIC_CALL_REG);
}
else
macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
if (MIPS_JALR_HINT_P (ep))
fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
}
/*
* Generate a "lui" instruction.
*/
static void
macro_build_lui (expressionS *ep, int regnum)
{
gas_assert (! mips_opts.mips16);
if (ep->X_op != O_constant)
{
gas_assert (ep->X_op == O_symbol);
/* _gp_disp is a special case, used from s_cpload.
__gnu_local_gp is used if mips_no_shared. */
gas_assert (mips_pic == NO_PIC
|| (! HAVE_NEWABI
&& strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
|| (! mips_in_shared
&& strcmp (S_GET_NAME (ep->X_add_symbol),
"__gnu_local_gp") == 0));
}
macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
}
/* Generate a sequence of instructions to do a load or store from a constant
offset off of a base register (breg) into/from a target register (treg),
using AT if necessary. */
static void
macro_build_ldst_constoffset (expressionS *ep, const char *op,
int treg, int breg, int dbl)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
/* Right now, this routine can only handle signed 32-bit constants. */
if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
as_warn (_("operand overflow"));
if (IS_SEXT_16BIT_NUM(ep->X_add_number))
{
/* Signed 16-bit offset will fit in the op. Easy! */
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
}
else
{
/* 32-bit offset, need multiple instructions and AT, like:
lui $tempreg,const_hi (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
to handle the complete offset. */
macro_build_lui (ep, AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
if (!mips_opts.at)
as_bad (_("macro used $at after \".set noat\""));
}
}
/* set_at()
* Generates code to set the $at register to true (one)
* if reg is less than the immediate expression.
*/
static void
set_at (int reg, int unsignedp)
{
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
AT, reg, BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
}
}
/* Count the leading zeroes by performing a binary chop. This is a
bulky bit of source, but performance is a LOT better for the
majority of values than a simple loop to count the bits:
for (lcnt = 0; (lcnt < 32); lcnt++)
if ((v) & (1 << (31 - lcnt)))
break;
However it is not code size friendly, and the gain will drop a bit
on certain cached systems.
*/
#define COUNT_TOP_ZEROES(v) \
(((v) & ~0xffff) == 0 \
? ((v) & ~0xff) == 0 \
? ((v) & ~0xf) == 0 \
? ((v) & ~0x3) == 0 \
? ((v) & ~0x1) == 0 \
? !(v) \
? 32 \
: 31 \
: 30 \
: ((v) & ~0x7) == 0 \
? 29 \
: 28 \
: ((v) & ~0x3f) == 0 \
? ((v) & ~0x1f) == 0 \
? 27 \
: 26 \
: ((v) & ~0x7f) == 0 \
? 25 \
: 24 \
: ((v) & ~0xfff) == 0 \
? ((v) & ~0x3ff) == 0 \
? ((v) & ~0x1ff) == 0 \
? 23 \
: 22 \
: ((v) & ~0x7ff) == 0 \
? 21 \
: 20 \
: ((v) & ~0x3fff) == 0 \
? ((v) & ~0x1fff) == 0 \
? 19 \
: 18 \
: ((v) & ~0x7fff) == 0 \
? 17 \
: 16 \
: ((v) & ~0xffffff) == 0 \
? ((v) & ~0xfffff) == 0 \
? ((v) & ~0x3ffff) == 0 \
? ((v) & ~0x1ffff) == 0 \
? 15 \
: 14 \
: ((v) & ~0x7ffff) == 0 \
? 13 \
: 12 \
: ((v) & ~0x3fffff) == 0 \
? ((v) & ~0x1fffff) == 0 \
? 11 \
: 10 \
: ((v) & ~0x7fffff) == 0 \
? 9 \
: 8 \
: ((v) & ~0xfffffff) == 0 \
? ((v) & ~0x3ffffff) == 0 \
? ((v) & ~0x1ffffff) == 0 \
? 7 \
: 6 \
: ((v) & ~0x7ffffff) == 0 \
? 5 \
: 4 \
: ((v) & ~0x3fffffff) == 0 \
? ((v) & ~0x1fffffff) == 0 \
? 3 \
: 2 \
: ((v) & ~0x7fffffff) == 0 \
? 1 \
: 0)
/* load_register()
* This routine generates the least number of instructions necessary to load
* an absolute expression value into a register.
*/
static void
load_register (int reg, expressionS *ep, int dbl)
{
int freg;
expressionS hi32, lo32;
if (ep->X_op != O_big)
{
gas_assert (ep->X_op == O_constant);
/* Sign-extending 32-bit constants makes their handling easier. */
if (!dbl)
normalize_constant_expr (ep);
if (IS_SEXT_16BIT_NUM (ep->X_add_number))
{
/* We can handle 16 bit signed values with an addiu to
$zero. No need to ever use daddiu here, since $zero and
the result are always correct in 32 bit mode. */
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
{
/* We can handle 16 bit unsigned values with an ori to
$zero. */
macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
return;
}
else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
{
/* 32 bit values require an lui. */
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if ((ep->X_add_number & 0xffff) != 0)
macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* The value is larger than 32 bits. */
if (!dbl || GPR_SIZE == 32)
{
char value[32];
sprintf_vma (value, ep->X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (ep->X_op != O_big)
{
hi32 = *ep;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
hi32.X_add_number &= 0xffffffff;
lo32 = *ep;
lo32.X_add_number &= 0xffffffff;
}
else
{
gas_assert (ep->X_add_number > 2);
if (ep->X_add_number == 3)
generic_bignum[3] = 0;
else if (ep->X_add_number > 4)
as_bad (_("number larger than 64 bits"));
lo32.X_op = O_constant;
lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
hi32.X_op = O_constant;
hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
}
if (hi32.X_add_number == 0)
freg = 0;
else
{
int shift, bit;
unsigned long hi, lo;
if (hi32.X_add_number == (offsetT) 0xffffffff)
{
if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
{
macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
return;
}
if (lo32.X_add_number & 0x80000000)
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
if (lo32.X_add_number & 0xffff)
macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
return;
}
}
/* Check for 16bit shifted constant. We know that hi32 is
non-zero, so start the mask on the first bit of the hi32
value. */
shift = 17;
do
{
unsigned long himask, lomask;
if (shift < 32)
{
himask = 0xffff >> (32 - shift);
lomask = (0xffff << shift) & 0xffffffff;
}
else
{
himask = 0xffff << (shift - 32);
lomask = 0;
}
if ((hi32.X_add_number & ~(offsetT) himask) == 0
&& (lo32.X_add_number & ~(offsetT) lomask) == 0)
{
expressionS tmp;
tmp.X_op = O_constant;
if (shift < 32)
tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
| (lo32.X_add_number >> shift));
else
tmp.X_add_number = hi32.X_add_number >> (shift - 32);
macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
++shift;
}
while (shift <= (64 - 16));
/* Find the bit number of the lowest one bit, and store the
shifted value in hi/lo. */
hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
if (lo != 0)
{
bit = 0;
while ((lo & 1) == 0)
{
lo >>= 1;
++bit;
}
lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
hi >>= bit;
}
else
{
bit = 32;
while ((hi & 1) == 0)
{
hi >>= 1;
++bit;
}
lo = hi;
hi = 0;
}
/* Optimize if the shifted value is a (power of 2) - 1. */
if ((hi == 0 && ((lo + 1) & lo) == 0)
|| (lo == 0xffffffff && ((hi + 1) & hi) == 0))
{
shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
if (shift != 0)
{
expressionS tmp;
/* This instruction will set the register to be all
ones. */
tmp.X_op = O_constant;
tmp.X_add_number = (offsetT) -1;
macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
if (bit != 0)
{
bit += shift;
macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
reg, reg, (bit >= 32) ? bit - 32 : bit);
}
macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
reg, reg, (shift >= 32) ? shift - 32 : shift);
return;
}
}
/* Sign extend hi32 before calling load_register, because we can
generally get better code when we load a sign extended value. */
if ((hi32.X_add_number & 0x80000000) != 0)
hi32.X_add_number |= ~(offsetT) 0xffffffff;
load_register (reg, &hi32, 0);
freg = reg;
}
if ((lo32.X_add_number & 0xffff0000) == 0)
{
if (freg != 0)
{
macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
freg = reg;
}
}
else
{
expressionS mid16;
if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
{
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
return;
}
if (freg != 0)
{
macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
freg = reg;
}
mid16 = lo32;
mid16.X_add_number >>= 16;
macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
freg = reg;
}
if ((lo32.X_add_number & 0xffff) != 0)
macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
}
static inline void
load_delay_nop (void)
{
if (!gpr_interlocks)
macro_build (NULL, "nop", "");
}
/* Load an address into a register. */
static void
load_address (int reg, expressionS *ep, int *used_at)
{
if (ep->X_op != O_constant
&& ep->X_op != O_symbol)
{
as_bad (_("expression too complex"));
ep->X_op = O_constant;
}
if (ep->X_op == O_constant)
{
load_register (reg, ep, HAVE_64BIT_ADDRESSES);
return;
}
if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $reg,<sym> (BFD_RELOC_HI16_S)
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If we have an addend, we always use the latter form.
With 64bit address space and a usable $at we want
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $reg,0
daddu $reg,$reg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_HI16_S)
dsll $reg,16
daddiu $reg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (*used_at == 0 && mips_opts.at)
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
*used_at = 1;
}
else
{
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
macro_build (ep, "daddiu", "t,r,j", reg, reg,
BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (ep->X_add_symbol, 1))
{
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
macro_build_lui (ep, reg);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
expressionS ex;
/* If this is a reference to an external symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
Otherwise we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
If we have NewABI, we want
lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
unless we're referencing a global symbol with a non-zero
offset, in which case cst must be added separately. */
if (HAVE_NEWABI)
{
if (ep->X_add_number)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
ep->X_add_number = ex.X_add_number;
relax_switch ();
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (mips_relax.sequence)
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
relax_start (ep->X_add_symbol);
relax_switch ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
reg, reg, BFD_RELOC_LO16);
}
}
}
else if (mips_big_got)
{
expressionS ex;
/* This is the large GOT case. If this is a reference to an
external symbol, we want
lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $reg,$reg,$gp
lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
Otherwise, for a reference to a local symbol in old ABI, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
If there is a constant, it must be added in after.
In the NewABI, for local symbols, with or without offsets, we want:
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
*/
if (HAVE_NEWABI)
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
else if (ex.X_add_number)
{
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
ep->X_add_number = ex.X_add_number;
relax_switch ();
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
else
{
ex.X_add_number = ep->X_add_number;
ep->X_add_number = 0;
relax_start (ep->X_add_symbol);
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
reg, reg, mips_gp_register);
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
relax_switch ();
if (reg_needs_delay (mips_gp_register))
{
/* We need a nop before loading from $gp. This special
check is required because the lui which starts the main
instruction stream does not refer to $gp, and so will not
insert the nop which may be required. */
macro_build (NULL, "nop", "");
}
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
relax_end ();
if (ex.X_add_number != 0)
{
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
ex.X_op = O_constant;
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
BFD_RELOC_LO16);
}
}
}
else
abort ();
if (!mips_opts.at && *used_at == 1)
as_bad (_("macro used $at after \".set noat\""));
}
/* Move the contents of register SOURCE into register DEST. */
static void
move_register (int dest, int source)
{
/* Prefer to use a 16-bit microMIPS instruction unless the previous
instruction specifically requires a 32-bit one. */
if (mips_opts.micromips
&& !mips_opts.insn32
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, "move", "mp,mj", dest, source);
else
macro_build (NULL, "or", "d,v,t", dest, source, 0);
}
/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
The two alternatives are:
Global symbol Local symbol
------------- ------------
lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
... ...
addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
load_got_offset emits the first instruction and add_got_offset
emits the second for a 16-bit offset or add_got_offset_hilo emits
a sequence to add a 32-bit offset using a scratch register. */
static void
load_got_offset (int dest, expressionS *local)
{
expressionS global;
global = *local;
global.X_add_number = 0;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_switch ();
macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
relax_end ();
}
static void
add_got_offset (int dest, expressionS *local)
{
expressionS global;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
dest, dest, BFD_RELOC_LO16);
relax_switch ();
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
relax_end ();
}
static void
add_got_offset_hilo (int dest, expressionS *local, int tmp)
{
expressionS global;
int hold_mips_optimize;
global.X_op = O_constant;
global.X_op_symbol = NULL;
global.X_add_symbol = NULL;
global.X_add_number = local->X_add_number;
relax_start (local->X_add_symbol);
load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
relax_switch ();
/* Set mips_optimize around the lui instruction to avoid
inserting an unnecessary nop after the lw. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
macro_build_lui (&global, tmp);
mips_optimize = hold_mips_optimize;
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
relax_end ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
}
/* Emit a sequence of instructions to emulate a branch likely operation.
BR is an ordinary branch corresponding to one to be emulated. BRNEG
is its complementing branch with the original condition negated.
CALL is set if the original branch specified the link operation.
EP, FMT, SREG and TREG specify the usual macro_build() parameters.
Code like this is produced in the noreorder mode:
BRNEG <args>, 1f
nop
b <sym>
delay slot (executed only if branch taken)
1:
or, if CALL is set:
BRNEG <args>, 1f
nop
bal <sym>
delay slot (executed only if branch taken)
1:
In the reorder mode the delay slot would be filled with a nop anyway,
so code produced is simply:
BR <args>, <sym>
nop
This function is used when producing code for the microMIPS ASE that
does not implement branch likely instructions in hardware. */
static void
macro_build_branch_likely (const char *br, const char *brneg,
int call, expressionS *ep, const char *fmt,
unsigned int sreg, unsigned int treg)
{
int noreorder = mips_opts.noreorder;
expressionS expr1;
gas_assert (mips_opts.micromips);
start_noreorder ();
if (noreorder)
{
micromips_label_expr (&expr1);
macro_build (&expr1, brneg, fmt, sreg, treg);
macro_build (NULL, "nop", "");
macro_build (ep, call ? "bal" : "b", "p");
/* Set to true so that append_insn adds a label. */
emit_branch_likely_macro = TRUE;
}
else
{
macro_build (ep, br, fmt, sreg, treg);
macro_build (NULL, "nop", "");
}
end_noreorder ();
}
/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
the condition code tested. EP specifies the branch target. */
static void
macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
{
const int call = 0;
const char *brneg;
const char *br;
switch (type)
{
case M_BC1FL:
br = "bc1f";
brneg = "bc1t";
break;
case M_BC1TL:
br = "bc1t";
brneg = "bc1f";
break;
case M_BC2FL:
br = "bc2f";
brneg = "bc2t";
break;
case M_BC2TL:
br = "bc2t";
brneg = "bc2f";
break;
default:
abort ();
}
macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
}
/* Emit a two-argument branch macro specified by TYPE, using SREG as
the register tested. EP specifies the branch target. */
static void
macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
{
const char *brneg = NULL;
const char *br;
int call = 0;
switch (type)
{
case M_BGEZ:
br = "bgez";
break;
case M_BGEZL:
br = mips_opts.micromips ? "bgez" : "bgezl";
brneg = "bltz";
break;
case M_BGEZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bgezal" : "bgezals";
brneg = "bltz";
call = 1;
break;
case M_BGTZ:
br = "bgtz";
break;
case M_BGTZL:
br = mips_opts.micromips ? "bgtz" : "bgtzl";
brneg = "blez";
break;
case M_BLEZ:
br = "blez";
break;
case M_BLEZL:
br = mips_opts.micromips ? "blez" : "blezl";
brneg = "bgtz";
break;
case M_BLTZ:
br = "bltz";
break;
case M_BLTZL:
br = mips_opts.micromips ? "bltz" : "bltzl";
brneg = "bgez";
break;
case M_BLTZALL:
gas_assert (mips_opts.micromips);
br = mips_opts.insn32 ? "bltzal" : "bltzals";
brneg = "bgez";
call = 1;
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
else
macro_build (ep, br, "s,p", sreg);
}
/* Emit a three-argument branch macro specified by TYPE, using SREG and
TREG as the registers tested. EP specifies the branch target. */
static void
macro_build_branch_rsrt (int type, expressionS *ep,
unsigned int sreg, unsigned int treg)
{
const char *brneg = NULL;
const int call = 0;
const char *br;
switch (type)
{
case M_BEQ:
case M_BEQ_I:
br = "beq";
break;
case M_BEQL:
case M_BEQL_I:
br = mips_opts.micromips ? "beq" : "beql";
brneg = "bne";
break;
case M_BNE:
case M_BNE_I:
br = "bne";
break;
case M_BNEL:
case M_BNEL_I:
br = mips_opts.micromips ? "bne" : "bnel";
brneg = "beq";
break;
default:
abort ();
}
if (mips_opts.micromips && brneg)
macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
else
macro_build (ep, br, "s,t,p", sreg, treg);
}
/* Return the high part that should be loaded in order to make the low
part of VALUE accessible using an offset of OFFBITS bits. */
static offsetT
offset_high_part (offsetT value, unsigned int offbits)
{
offsetT bias;
addressT low_mask;
if (offbits == 0)
return value;
bias = 1 << (offbits - 1);
low_mask = bias * 2 - 1;
return (value + bias) & ~low_mask;
}
/* Return true if the value stored in offset_expr and offset_reloc
fits into a signed offset of OFFBITS bits. RANGE is the maximum
amount that the caller wants to add without inducing overflow
and ALIGN is the known alignment of the value in bytes. */
static bfd_boolean
small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
{
if (offbits == 16)
{
/* Accept any relocation operator if overflow isn't a concern. */
if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
return TRUE;
/* These relocations are guaranteed not to overflow in correct links. */
if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
|| gprel16_reloc_p (*offset_reloc))
return TRUE;
}
if (offset_expr.X_op == O_constant
&& offset_high_part (offset_expr.X_add_number, offbits) == 0
&& offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
return TRUE;
return FALSE;
}
/*
* Build macros
* This routine implements the seemingly endless macro or synthesized
* instructions and addressing modes in the mips assembly language. Many
* of these macros are simple and are similar to each other. These could
* probably be handled by some kind of table or grammar approach instead of
* this verbose method. Others are not simple macros but are more like
* optimizing code generation.
* One interesting optimization is when several store macros appear
* consecutively that would load AT with the upper half of the same address.
* The ensuing load upper instructions are omitted. This implies some kind
* of global optimization. We currently only optimize within a single macro.
* For many of the load and store macros if the address is specified as a
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
* first load register 'at' with zero and use it as the base register. The
* mips assembler simply uses register $zero. Just one tiny optimization
* we're missing.
*/
static void
macro (struct mips_cl_insn *ip, char *str)
{
const struct mips_operand_array *operands;
unsigned int breg, i;
unsigned int tempreg;
int mask;
int used_at = 0;
expressionS label_expr;
expressionS expr1;
expressionS *ep;
const char *s;
const char *s2;
const char *fmt;
int likely = 0;
int coproc = 0;
int offbits = 16;
int call = 0;
int jals = 0;
int dbl = 0;
int imm = 0;
int ust = 0;
int lp = 0;
bfd_boolean large_offset;
int off;
int hold_mips_optimize;
unsigned int align;
unsigned int op[MAX_OPERANDS];
gas_assert (! mips_opts.mips16);
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
mask = ip->insn_mo->mask;
label_expr.X_op = O_constant;
label_expr.X_op_symbol = NULL;
label_expr.X_add_symbol = NULL;
label_expr.X_add_number = 0;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
align = 1;
switch (mask)
{
case M_DABS:
dbl = 1;
/* Fall through. */
case M_ABS:
/* bgez $a0,1f
move v0,$a0
sub v0,$zero,$a0
1:
*/
start_noreorder ();
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bgez", "s,p", op[1]);
if (op[0] == op[1])
macro_build (NULL, "nop", "");
else
move_register (op[0], op[1]);
macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
if (mips_opts.micromips)
micromips_add_label ();
end_noreorder ();
break;
case M_ADD_I:
s = "addi";
s2 = "add";
goto do_addi;
case M_ADDU_I:
s = "addiu";
s2 = "addu";
goto do_addi;
case M_DADD_I:
dbl = 1;
s = "daddi";
s2 = "dadd";
if (!mips_opts.micromips)
goto do_addi;
if (imm_expr.X_add_number >= -0x200
&& imm_expr.X_add_number < 0x200)
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
goto do_addi_i;
case M_DADDU_I:
dbl = 1;
s = "daddiu";
s2 = "daddu";
do_addi:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_addi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_AND_I:
s = "andi";
s2 = "and";
goto do_bit;
case M_OR_I:
s = "ori";
s2 = "or";
goto do_bit;
case M_NOR_I:
s = "";
s2 = "nor";
goto do_bit;
case M_XOR_I:
s = "xori";
s2 = "xor";
do_bit:
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
if (mask != M_NOR_I)
macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (&imm_expr, "ori", "t,r,i",
op[0], op[1], BFD_RELOC_LO16);
macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
}
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_BALIGN:
switch (imm_expr.X_add_number)
{
case 0:
macro_build (NULL, "nop", "");
break;
case 2:
macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
break;
case 1:
case 3:
macro_build (NULL, "balign", "t,s,2", op[0], op[1],
(int) imm_expr.X_add_number);
break;
default:
as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
(unsigned long) imm_expr.X_add_number);
break;
}
break;
case M_BC1FL:
case M_BC1TL:
case M_BC2FL:
case M_BC2TL:
gas_assert (mips_opts.micromips);
macro_build_branch_ccl (mask, &offset_expr,
EXTRACT_OPERAND (1, BCC, *ip));
break;
case M_BEQ_I:
case M_BEQL_I:
case M_BNE_I:
case M_BNEL_I:
if (imm_expr.X_add_number == 0)
op[1] = 0;
else
{
op[1] = AT;
used_at = 1;
load_register (op[1], &imm_expr, GPR_SIZE == 64);
}
/* Fall through. */
case M_BEQL:
case M_BNEL:
macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
break;
case M_BGEL:
likely = 1;
/* Fall through. */
case M_BGE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGEZL:
case M_BGEZALL:
case M_BGTZL:
case M_BLEZL:
case M_BLTZL:
case M_BLTZALL:
macro_build_branch_rs (mask, &offset_expr, op[0]);
break;
case M_BGTL_I:
likely = 1;
/* Fall through. */
case M_BGT_I:
/* Check for > max integer. */
if (imm_expr.X_add_number >= GPR_SMAX)
{
do_false:
/* Result is always false. */
if (! likely)
macro_build (NULL, "nop", "");
else
macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
break;
}
++imm_expr.X_add_number;
/* FALLTHROUGH */
case M_BGE_I:
case M_BGEL_I:
if (mask == M_BGEL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
{
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number == 1)
{
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
&offset_expr, op[0]);
break;
}
if (imm_expr.X_add_number <= GPR_SMIN)
{
do_true:
/* result is always true */
as_warn (_("branch %s is always true"), ip->insn_mo->name);
macro_build (&offset_expr, "b", "p");
break;
}
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
break;
case M_BGEUL:
likely = 1;
/* Fall through. */
case M_BGEU:
if (op[1] == 0)
goto do_true;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL_I:
likely = 1;
/* Fall through. */
case M_BGTU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_false;
++imm_expr.X_add_number;
/* FALLTHROUGH */
case M_BGEU_I:
case M_BGEUL_I:
if (mask == M_BGEUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_true;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BGTL:
likely = 1;
/* Fall through. */
case M_BGT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BGTUL:
likely = 1;
/* Fall through. */
case M_BGTU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_false;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL:
likely = 1;
/* Fall through. */
case M_BLE:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEL_I:
likely = 1;
/* Fall through. */
case M_BLE_I:
if (imm_expr.X_add_number >= GPR_SMAX)
goto do_true;
++imm_expr.X_add_number;
/* FALLTHROUGH */
case M_BLT_I:
case M_BLTL_I:
if (mask == M_BLTL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (imm_expr.X_add_number == 1)
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
else
{
used_at = 1;
set_at (op[0], 0);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL:
likely = 1;
/* Fall through. */
case M_BLEU:
if (op[1] == 0)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else if (op[0] == 0)
goto do_true;
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, AT, ZERO);
}
break;
case M_BLEUL_I:
likely = 1;
/* Fall through. */
case M_BLEU_I:
if (op[0] == 0
|| (GPR_SIZE == 32
&& imm_expr.X_add_number == -1))
goto do_true;
++imm_expr.X_add_number;
/* FALLTHROUGH */
case M_BLTU_I:
case M_BLTUL_I:
if (mask == M_BLTUL_I)
likely = 1;
if (imm_expr.X_add_number == 0)
goto do_false;
else if (imm_expr.X_add_number == 1)
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
&offset_expr, op[0], ZERO);
else
{
used_at = 1;
set_at (op[0], 1);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTL:
likely = 1;
/* Fall through. */
case M_BLT:
if (op[1] == 0)
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
else if (op[0] == 0)
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
else
{
used_at = 1;
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_BLTUL:
likely = 1;
/* Fall through. */
case M_BLTU:
if (op[1] == 0)
goto do_false;
else if (op[0] == 0)
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, ZERO, op[1]);
else
{
used_at = 1;
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
&offset_expr, AT, ZERO);
}
break;
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
if (op[2] == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
expr1.X_add_number = -1;
used_at = 1;
load_register (AT, &expr1, dbl);
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
if (dbl)
{
expr1.X_add_number = 1;
load_register (AT, &expr1, dbl);
macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
}
else
{
expr1.X_add_number = 0x80000000;
macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
}
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
macro_build (NULL, "nop", "");
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 6);
}
if (mips_opts.micromips)
micromips_add_label ();
macro_build (NULL, s, MFHL_FMT, op[0]);
break;
case M_DIV_3I:
s = "div";
s2 = "mflo";
goto do_divi;
case M_DIVU_3I:
s = "divu";
s2 = "mflo";
goto do_divi;
case M_REM_3I:
s = "div";
s2 = "mfhi";
goto do_divi;
case M_REMU_3I:
s = "divu";
s2 = "mfhi";
goto do_divi;
case M_DDIV_3I:
dbl = 1;
s = "ddiv";
s2 = "mflo";
goto do_divi;
case M_DDIVU_3I:
dbl = 1;
s = "ddivu";
s2 = "mflo";
goto do_divi;
case M_DREM_3I:
dbl = 1;
s = "ddiv";
s2 = "mfhi";
goto do_divi;
case M_DREMU_3I:
dbl = 1;
s = "ddivu";
s2 = "mfhi";
do_divi:
if (imm_expr.X_add_number == 0)
{
as_warn (_("divide by zero"));
if (mips_trap)
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
else
macro_build (NULL, "break", BRK_FMT, 7);
break;
}
if (imm_expr.X_add_number == 1)
{
if (strcmp (s2, "mflo") == 0)
move_register (op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
{
if (strcmp (s2, "mflo") == 0)
macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
else
move_register (op[0], ZERO);
break;
}
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s, "z,s,t", op[1], AT);
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
if (mips_trap)
{
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
}
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
macro_build (NULL, s, "z,s,t", op[1], op[2]);
/* We want to close the noreorder block as soon as possible, so
that later insns are available for delay slot filling. */
end_noreorder ();
macro_build (NULL, "break", BRK_FMT, 7);
if (mips_opts.micromips)
micromips_add_label ();
}
macro_build (NULL, s2, MFHL_FMT, op[0]);
break;
case M_DLCA_AB:
dbl = 1;
/* Fall through. */
case M_LCA_AB:
call = 1;
goto do_la;
case M_DLA_AB:
dbl = 1;
/* Fall through. */
case M_LA_AB:
do_la:
/* Load the address of a symbol into a register. If breg is not
zero, we then add a base register to it. */
breg = op[2];
if (dbl && GPR_SIZE == 32)
as_warn (_("dla used to load 32-bit register; recommend using la "
"instead"));
if (!dbl && HAVE_64BIT_OBJECTS)
as_warn (_("la used to load 64-bit address; recommend using dla "
"instead"));
if (small_offset_p (0, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
-1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
break;
}
if (mips_opts.at && (op[0] == breg))
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (offset_expr.X_op == O_constant)
load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, we want
addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we may as well always use the latter form.
With 64bit address space and a usable $at we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddiu $at,<sym> (BFD_RELOC_LO16)
dsll32 $tempreg,0
daddu $tempreg,$tempreg,$at
If $at is already in use, we use a path which is suboptimal
on superscalar processors.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (&offset_expr, "daddiu", "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT,
tempreg, BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
relax_switch ();
}
if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
as_bad (_("offset too large"));
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got && !HAVE_NEWABI)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, and there
is no constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want the same instruction
sequence, but we output a BFD_RELOC_LO16 reloc on the
addiu instruction.
*/
if (offset_expr.X_add_number == 0)
{
if (mips_pic == SVR4_PIC
&& breg == 0
&& (call || tempreg == PIC_CALL_REG))
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
relax_end ();
/* FIXME: If breg == 0, and the next instruction uses
$tempreg, then if this variant case is used an extra
nop will be generated. */
}
else if (offset_expr.X_add_number >= -0x8000
&& offset_expr.X_add_number < 0x8000)
{
load_got_offset (tempreg, &offset_expr);
load_delay_nop ();
add_got_offset (tempreg, &offset_expr);
}
else
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number =
SEXT_16BIT (offset_expr.X_add_number);
load_got_offset (tempreg, &offset_expr);
offset_expr.X_add_number = expr1.X_add_number;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg == op[0])
{
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
breg = 0;
tempreg = op[0];
}
add_got_offset_hilo (tempreg, &offset_expr, AT);
used_at = 1;
}
}
else if (!mips_big_got && HAVE_NEWABI)
{
int add_breg_early = 0;
/* If this is a reference to an external, and there is no
constant, or local symbol (*), with or without a
constant, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
or for lca or if tempreg is PIC_CALL_REG
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
If we have a small constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
addiu $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
(*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
local symbols, even though it introduces an additional
instruction. */
if (offset_expr.X_add_number)
{
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_CALL16, mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
relax_end ();
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
}
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
nop
addiu $tempreg,$tempreg,<constant>
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant>
addu $tempreg,$tempreg,$at
For a local symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
lui $at,<hiconstant>
addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
addu $tempreg,$tempreg,$at
*/
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
relax_start (offset_expr.X_add_symbol);
gpdelay = reg_needs_delay (mips_gp_register);
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
{
if (breg != 0)
{
/* We're going to put in an addu instruction using
tempreg, so we may as well insert the nop right
now. */
load_delay_nop ();
}
}
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
relax_switch ();
if (gpdelay)
{
/* This is needed because this instruction uses $gp, but
the first instruction on the main stream does not. */
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
local_reloc_type, mips_gp_register);
if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
/* FIXME: If add_number is 0, and there was no base
register, the external symbol case ended with a load,
so if the symbol turns out to not be external, and
the next instruction uses tempreg, an unnecessary nop
will be inserted. */
}
else
{
if (breg == op[0])
{
/* We must add in the base register now, as in the
external symbol case. */
gas_assert (tempreg == AT);
load_delay_nop ();
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
tempreg = op[0];
/* We set breg to 0 because we have arranged to add
it in in both cases. */
breg = 0;
}
macro_build_lui (&expr1, AT);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
AT, AT, BFD_RELOC_LO16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, AT);
used_at = 1;
}
relax_end ();
}
else if (mips_big_got && HAVE_NEWABI)
{
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
int add_breg_early = 0;
/* This is the large GOT case. If this is a reference to an
external symbol, and there is no constant, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
or for lca or if tempreg is PIC_CALL_REG
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
If we have a small constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
addi $tempreg,$tempreg,<constant>
If we have a large constant, and this is a reference to
an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
lui $at,<hiconstant>
addi $at,$at,<loconstant>
add $tempreg,$tempreg,$at
If we have NewABI, and we know it's a local symbol, we want
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
otherwise we have to resort to GOT_HI16/GOT_LO16. */
relax_start (offset_expr.X_add_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number == 0 && breg == 0
&& (call || tempreg == PIC_CALL_REG))
{
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
}
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
tempreg, lw_reloc_type, tempreg);
if (expr1.X_add_number == 0)
;
else if (expr1.X_add_number >= -0x8000
&& expr1.X_add_number < 0x8000)
{
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, tempreg, BFD_RELOC_LO16);
}
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
{
unsigned int dreg;
/* If we are going to add in a base register, and the
target register and the base register are the same,
then we are using AT as a temporary register. Since
we want to load the constant into AT, we add our
current AT (from the global offset table) and the
register into the register now, and pretend we were
not using a base register. */
if (breg != op[0])
dreg = tempreg;
else
{
gas_assert (tempreg == AT);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], AT, breg);
dreg = op[0];
add_breg_early = 1;
}
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
used_at = 1;
}
else
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_GOT_OFST);
if (add_breg_early)
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
op[0], tempreg, breg);
breg = 0;
tempreg = op[0];
}
relax_end ();
}
else
abort ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
break;
case M_MSGSND:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
break;
case M_MSGLD:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 0x02);
break;
case M_MSGLD_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
break;
case M_MSGWAIT:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", 3);
break;
case M_MSGWAIT_T:
gas_assert (!mips_opts.micromips);
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
break;
case M_J_A:
/* The j instruction may not be used in PIC code, since it
requires an absolute address. We convert it to a b
instruction. */
if (mips_pic == NO_PIC)
macro_build (&offset_expr, "j", "a");
else
macro_build (&offset_expr, "b", "p");
break;
/* The jal instructions must be handled as macros because when
generating PIC code they expand to multi-instruction
sequences. Normally they are simple instructions. */
case M_JALS_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JALS_2:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
goto jal;
case M_JAL_1:
op[1] = op[0];
op[0] = RA;
/* Fall through. */
case M_JAL_2:
jal:
if (mips_pic == NO_PIC)
{
s = jals ? "jalrs" : "jalr";
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
}
else
{
int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
&& mips_cprestore_offset >= 0);
if (op[1] != PIC_CALL_REG)
as_warn (_("MIPS PIC call to register other than $25"));
s = ((mips_opts.micromips
&& !mips_opts.insn32
&& (!mips_opts.noreorder || cprestore))
? "jalrs" : "jalr");
if (mips_opts.micromips
&& !mips_opts.insn32
&& op[0] == RA
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
macro_build (NULL, s, "mj", op[1]);
else
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
{
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
break;
case M_JALS_A:
gas_assert (mips_opts.micromips);
if (mips_opts.insn32)
{
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
break;
}
jals = 1;
/* Fall through. */
case M_JAL_A:
if (mips_pic == NO_PIC)
macro_build (&offset_expr, jals ? "jals" : "jal", "a");
else if (mips_pic == SVR4_PIC)
{
/* If this is a reference to an external symbol, and we are
using a small GOT, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
The cprestore value is set using the .cprestore
pseudo-op. If we are using a big GOT, we want
lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
addu $25,$25,$gp
lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
nop
jalr $ra,$25
nop
lw $gp,cprestore($sp)
If the symbol is not external, we want
lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $25,$25,<sym> (BFD_RELOC_LO16)
jalr $ra,$25
nop
lw $gp,cprestore($sp)
For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
sequences above, minus nops, unless the symbol is local,
which enables us to use GOT_PAGE/GOT_OFST (big got) or
GOT_DISP. */
if (HAVE_NEWABI)
{
if (!mips_big_got)
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
mips_gp_register);
relax_end ();
}
else
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
relax_switch ();
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG,
BFD_RELOC_MIPS_GOT_OFST);
relax_end ();
}
macro_build_jalr (&offset_expr, 0);
}
else
{
relax_start (offset_expr.X_add_symbol);
if (!mips_big_got)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
mips_gp_register);
load_delay_nop ();
relax_switch ();
}
else
{
int gpdelay;
gpdelay = reg_needs_delay (mips_gp_register);
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
BFD_RELOC_MIPS_CALL_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
PIC_CALL_REG, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
PIC_CALL_REG);
load_delay_nop ();
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
}
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
relax_end ();
macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
if (mips_cprestore_offset < 0)
as_warn (_("no .cprestore pseudo-op used in PIC code"));
else
{
if (!mips_frame_reg_valid)
{
as_warn (_("no .frame pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_frame_reg_valid = 1;
}
if (!mips_cprestore_valid)
{
as_warn (_("no .cprestore pseudo-op used in PIC code"));
/* Quiet this warning. */
mips_cprestore_valid = 1;
}
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
expr1.X_add_number = mips_cprestore_offset;
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
mips_gp_register,
mips_frame_reg,
HAVE_64BIT_ADDRESSES);
}
}
}
else if (mips_pic == VXWORKS_PIC)
as_bad (_("non-PIC jump used in PIC library"));
else
abort ();
break;
case M_LBUE_AB:
s = "lbue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHUE_AB:
s = "lhue";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LBE_AB:
s = "lbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LHE_AB:
s = "lhe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LLE_AB:
s = "lle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWE_AB:
s = "lwe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWLE_AB:
s = "lwle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_LWRE_AB:
s = "lwre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SBE_AB:
s = "sbe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SCE_AB:
s = "sce";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SHE_AB:
s = "she";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWE_AB:
s = "swe";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWLE_AB:
s = "swle";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_SWRE_AB:
s = "swre";
fmt = "t,+j(b)";
offbits = 9;
goto ld_st;
case M_ACLR_AB:
s = "aclr";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_ASET_AB:
s = "aset";
fmt = "\\,~(b)";
offbits = 12;
goto ld_st;
case M_LB_AB:
s = "lb";
fmt = "t,o(b)";
goto ld;
case M_LBU_AB:
s = "lbu";
fmt = "t,o(b)";
goto ld;
case M_LH_AB:
s = "lh";
fmt = "t,o(b)";
goto ld;
case M_LHU_AB:
s = "lhu";
fmt = "t,o(b)";
goto ld;
case M_LW_AB:
s = "lw";
fmt = "t,o(b)";
goto ld;
case M_LWC0_AB:
gas_assert (!mips_opts.micromips);
s = "lwc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC1_AB:
s = "lwc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC2_AB:
s = "lwc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWC3_AB:
gas_assert (!mips_opts.micromips);
s = "lwc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LWL_AB:
s = "lwl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LWR_AB:
s = "lwr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDC1_AB:
s = "ldc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC2_AB:
s = "ldc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LQC2_AB:
s = "lqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDC3_AB:
s = "ldc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_LDL_AB:
s = "ldl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LDR_AB:
s = "ldr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_LL_AB:
s = "ll";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LLD_AB:
s = "lld";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld;
case M_LWU_AB:
s = "lwu";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld;
case M_LWP_AB:
gas_assert (mips_opts.micromips);
s = "lwp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LDP_AB:
gas_assert (mips_opts.micromips);
s = "ldp";
fmt = "t,~(b)";
offbits = 12;
lp = 1;
goto ld;
case M_LWM_AB:
gas_assert (mips_opts.micromips);
s = "lwm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_LDM_AB:
gas_assert (mips_opts.micromips);
s = "ldm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
ld:
/* We don't want to use $0 as tempreg. */
if (op[2] == op[0] + lp || op[0] + lp == ZERO)
goto ld_st;
else
tempreg = op[0] + lp;
goto ld_noat;
case M_SB_AB:
s = "sb";
fmt = "t,o(b)";
goto ld_st;
case M_SH_AB:
s = "sh";
fmt = "t,o(b)";
goto ld_st;
case M_SW_AB:
s = "sw";
fmt = "t,o(b)";
goto ld_st;
case M_SWC0_AB:
gas_assert (!mips_opts.micromips);
s = "swc0";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC1_AB:
s = "swc1";
fmt = "T,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC2_AB:
s = "swc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWC3_AB:
gas_assert (!mips_opts.micromips);
s = "swc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SWL_AB:
s = "swl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWR_AB:
s = "swr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SC_AB:
s = "sc";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_SCD_AB:
s = "scd";
fmt = LL_SC_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_CACHE_AB:
s = "cache";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_CACHEE_AB:
s = "cachee";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_PREF_AB:
s = "pref";
fmt = (mips_opts.micromips ? "k,~(b)"
: ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
: "k,o(b)");
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 9
: 16);
goto ld_st;
case M_PREFE_AB:
s = "prefe";
fmt = "k,+j(b)";
offbits = 9;
goto ld_st;
case M_SDC1_AB:
s = "sdc1";
fmt = "T,o(b)";
coproc = 1;
/* Itbl support may require additional care here. */
goto ld_st;
case M_SDC2_AB:
s = "sdc2";
fmt = COP12_FMT;
offbits = (mips_opts.micromips ? 12
: ISA_IS_R6 (mips_opts.isa) ? 11
: 16);
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SQC2_AB:
s = "sqc2";
fmt = "+7,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDC3_AB:
gas_assert (!mips_opts.micromips);
s = "sdc3";
fmt = "E,o(b)";
/* Itbl support may require additional care here. */
coproc = 1;
goto ld_st;
case M_SDL_AB:
s = "sdl";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SDR_AB:
s = "sdr";
fmt = MEM12_FMT;
offbits = (mips_opts.micromips ? 12 : 16);
goto ld_st;
case M_SWP_AB:
gas_assert (mips_opts.micromips);
s = "swp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SDP_AB:
gas_assert (mips_opts.micromips);
s = "sdp";
fmt = "t,~(b)";
offbits = 12;
goto ld_st;
case M_SWM_AB:
gas_assert (mips_opts.micromips);
s = "swm";
fmt = "n,~(b)";
offbits = 12;
goto ld_st;
case M_SDM_AB:
gas_assert (mips_opts.micromips);
s = "sdm";
fmt = "n,~(b)";
offbits = 12;
ld_st:
tempreg = AT;
ld_noat:
breg = op[2];
if (small_offset_p (0, align, 16))
{
/* The first case exists for M_LD_AB and M_SD_AB, which are
macros for o32 but which should act like normal instructions
otherwise. */
if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
else if (small_offset_p (0, align, offbits))
{
if (offbits == 0)
macro_build (NULL, s, fmt, op[0], breg);
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, breg);
}
else
{
if (tempreg == AT)
used_at = 1;
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
tempreg, breg, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2]);
if (offbits == 0)
macro_build (NULL, s, fmt, op[0], tempreg);
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
break;
}
if (tempreg == AT)
used_at = 1;
if (offset_expr.X_op != O_constant
&& offset_expr.X_op != O_symbol)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
/* A constant expression in PIC code can be handled just as it
is in non PIC code. */
if (offset_expr.X_op == O_constant)
{
expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
offbits == 0 ? 16 : offbits);
offset_expr.X_add_number -= expr1.X_add_number;
load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
{
if (offset_expr.X_add_number != 0)
macro_build (&offset_expr, ADDRESS_ADDI_INSN,
"t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
macro_build (NULL, s, fmt, op[0], tempreg);
}
else if (offbits == 16)
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
else
macro_build (NULL, s, fmt, op[0],
(int) offset_expr.X_add_number, tempreg);
}
else if (offbits != 16)
{
/* The offset field is too narrow to be used for a low-part
relocation, so load the whole address into the auxiliary
register. */
load_address (tempreg, &offset_expr, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
if (offbits == 0)
macro_build (NULL, s, fmt, op[0], tempreg);
else
macro_build (NULL, s, fmt, op[0], 0, tempreg);
}
else if (mips_pic == NO_PIC)
{
/* If this is a reference to a GP relative symbol, and there
is no base register, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
Otherwise, if there is no base register, we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a constant, we need two instructions anyhow,
so we always use the latter form.
If we have a base register, and this is a reference to a
GP relative symbol, we want
addu $tempreg,$breg,$gp
<op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
Otherwise we want
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
addu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
With a constant we always use the latter case.
With 64bit address space and no base register and $at usable,
we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
lui $at,<sym> (BFD_RELOC_HI16_S)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
daddu $at,$breg
dsll32 $tempreg,0
daddu $tempreg,$at
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
Without $at we can't generate the optimal path for superscalar
processors here since this would require two temporary registers.
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
If we have a base register, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
dsll $tempreg,16
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
dsll $tempreg,16
daddu $tempreg,$tempreg,$breg
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
For GP relative symbols in 64bit address space we can use
the same sequence as in 32bit address space. */
if (HAVE_64BIT_SYMBOLS)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, mips_gp_register);
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
}
relax_switch ();
}
if (used_at == 0 && mips_opts.at)
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "lui", LUI_FMT, AT,
BFD_RELOC_HI16_S);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
tempreg);
used_at = 1;
}
else
{
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_HIGHEST);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_MIPS_HIGHER);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
tempreg, BFD_RELOC_HI16_S);
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
if (breg != 0)
macro_build (NULL, "daddu", "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
}
if (mips_relax.sequence)
relax_end ();
break;
}
if (breg == 0)
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
mips_gp_register);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
else
{
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, breg, mips_gp_register);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_GPREL16, tempreg);
relax_switch ();
}
macro_build_lui (&offset_expr, tempreg);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_LO16, tempreg);
if (mips_relax.sequence)
relax_end ();
}
}
else if (!mips_big_got)
{
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
/* If this is a reference to an external symbol, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
For NewABI, we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
if (HAVE_NEWABI)
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
break;
}
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
lw_reloc_type, mips_gp_register);
load_delay_nop ();
relax_start (offset_expr.X_add_symbol);
relax_switch ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && !HAVE_NEWABI)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],0($tempreg)
Otherwise we want
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
<op> op[0],0($tempreg)
If there is a base register, we add it to $tempreg before
the <op>. If there is a constant, we stick it in the
<op> instruction. We don't handle constants larger than
16 bits, because we have no way to load the upper 16 bits
(actually, we could handle them for the subset of cases
in which we are not using $at). */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
relax_switch ();
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
tempreg, BFD_RELOC_LO16);
relax_end ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
}
else if (mips_big_got && HAVE_NEWABI)
{
/* If this is a reference to an external symbol, we want
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
add $tempreg,$tempreg,$gp
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
<op> op[0],<ofst>($tempreg)
Otherwise, for local symbols, we want:
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
gas_assert (offset_expr.X_op == O_symbol);
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_LO16, tempreg);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
macro_build (&offset_expr, s, fmt, op[0],
BFD_RELOC_MIPS_GOT_OFST, tempreg);
relax_end ();
}
else
abort ();
break;
case M_JRADDIUSP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
start_noreorder ();
macro_build (NULL, "jr", "s", RA);
expr1.X_add_number = op[0] << 2;
macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
end_noreorder ();
break;
case M_JRC:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
macro_build (NULL, "jr", "s", op[0]);
if (mips_opts.noreorder)
macro_build (NULL, "nop", "");
break;
case M_LI:
case M_LI_S:
load_register (op[0], &imm_expr, 0);
break;
case M_DLI:
load_register (op[0], &imm_expr, 1);
break;
case M_LI_SS:
if (imm_expr.X_op == O_constant)
{
used_at = 1;
load_register (AT, &imm_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
break;
}
else
{
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& strcmp (segment_name (S_GET_SEGMENT
(offset_expr.X_add_symbol)),
".lit4") == 0
&& offset_expr.X_add_number == 0);
macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
BFD_RELOC_MIPS_LITERAL, mips_gp_register);
break;
}
case M_LI_D:
/* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
order 32 bits of the value and the low order 32 bits are either
zero or in OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
if (GPR_SIZE == 64)
load_register (op[0], &imm_expr, 1);
else
{
int hreg, lreg;
if (target_big_endian)
{
hreg = op[0];
lreg = op[0] + 1;
}
else
{
hreg = op[0] + 1;
lreg = op[0];
}
if (hreg <= 31)
load_register (hreg, &imm_expr, 0);
if (lreg <= 31)
{
if (offset_expr.X_op == O_absent)
move_register (lreg, 0);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (lreg, &offset_expr, 0);
}
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent);
/* We know that sym is in the .rdata section. First we get the
upper 16 bits of the address. */
if (mips_pic == NO_PIC)
{
macro_build_lui (&offset_expr, AT);
used_at = 1;
}
else
{
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
used_at = 1;
}
/* Now we load the register(s). */
if (GPR_SIZE == 64)
{
used_at = 1;
macro_build (&offset_expr, "ld", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
}
else
{
used_at = 1;
macro_build (&offset_expr, "lw", "t,o(b)", op[0],
BFD_RELOC_LO16, AT);
if (op[0] != RA)
{
/* FIXME: How in the world do we deal with the possible
overflow here? */
offset_expr.X_add_number += 4;
macro_build (&offset_expr, "lw", "t,o(b)",
op[0] + 1, BFD_RELOC_LO16, AT);
}
}
break;
case M_LI_DD:
/* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
wide, IMM_EXPR is the entire value and the GPRs are known to be 64
bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
the value and the low order 32 bits are either zero or in
OFFSET_EXPR. */
if (imm_expr.X_op == O_constant)
{
used_at = 1;
load_register (AT, &imm_expr, FPR_SIZE == 64);
if (FPR_SIZE == 64 && GPR_SIZE == 64)
macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
else
{
if (ISA_HAS_MXHC1 (mips_opts.isa))
macro_build (NULL, "mthc1", "t,G", AT, op[0]);
else if (FPR_SIZE != 32)
as_bad (_("Unable to generate `%s' compliant code "
"without mthc1"),
(FPR_SIZE == 64) ? "fp64" : "fpxx");
else
macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
if (offset_expr.X_op == O_absent)
macro_build (NULL, "mtc1", "t,G", 0, op[0]);
else
{
gas_assert (offset_expr.X_op == O_constant);
load_register (AT, &offset_expr, 0);
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
}
}
break;
}
gas_assert (imm_expr.X_op == O_absent
&& offset_expr.X_op == O_symbol
&& offset_expr.X_add_number == 0);
s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
if (strcmp (s, ".lit8") == 0)
{
op[2] = mips_gp_register;
offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
else
{
gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
used_at = 1;
if (mips_pic != NO_PIC)
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
else
{
/* FIXME: This won't work for a 64 bit address. */
macro_build_lui (&offset_expr, AT);
}
op[2] = AT;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
align = 8;
/* Fall through */
case M_L_DAB:
/*
* The MIPS assembler seems to check for X_add_number not
* being double aligned and generating:
* lui at,%hi(foo+1)
* addu at,at,v1
* addiu at,at,%lo(foo+1)
* lwc1 f2,0(at)
* lwc1 f3,4(at)
* But, the resulting address is the same after relocation so why
* generate the extra instruction?
*/
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "ldc1";
goto ld_st;
}
s = "lwc1";
goto ldd_std;
case M_S_DAB:
gas_assert (!mips_opts.micromips);
/* Itbl support may require additional care here. */
coproc = 1;
fmt = "T,o(b)";
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
{
s = "sdc1";
goto ld_st;
}
s = "swc1";
goto ldd_std;
case M_LQ_AB:
fmt = "t,o(b)";
s = "lq";
goto ld;
case M_SQ_AB:
fmt = "t,o(b)";
s = "sq";
goto ld_st;
case M_LD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "ld";
goto ld;
}
s = "lw";
goto ldd_std;
case M_SD_AB:
fmt = "t,o(b)";
if (GPR_SIZE == 64)
{
s = "sd";
goto ld_st;
}
s = "sw";
ldd_std:
/* Even on a big endian machine $fn comes before $fn+1. We have
to adjust when loading from memory. We set coproc if we must
load $fn+1 first. */
/* Itbl support may require additional care here. */
if (!target_big_endian)
coproc = 0;
breg = op[2];
if (small_offset_p (0, align, 16))
{
ep = &offset_expr;
if (!small_offset_p (4, align, 16))
{
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
-1, offset_reloc[0], offset_reloc[1],
offset_reloc[2]);
expr1.X_add_number = 0;
ep = &expr1;
breg = AT;
used_at = 1;
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
}
if (strcmp (s, "lw") == 0 && op[0] == breg)
{
ep->X_add_number += 4;
macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
ep->X_add_number -= 4;
macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
offset_reloc[1], offset_reloc[2], breg);
}
else
{
macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
ep->X_add_number += 4;
macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2],
breg);
}
break;
}
if (offset_expr.X_op != O_symbol
&& offset_expr.X_op != O_constant)
{
as_bad (_("expression too complex"));
offset_expr.X_op = O_constant;
}
if (HAVE_32BIT_ADDRESSES
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
{
char value [32];
sprintf_vma (value, offset_expr.X_add_number);
as_bad (_("number (0x%s) larger than 32 bits"), value);
}
if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
{
/* If this is a reference to a GP relative symbol, we want
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
If we have a base register, we use this
addu $at,$breg,$gp
<op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
If this is not a GP relative symbol, we want
lui $at,<sym> (BFD_RELOC_HI16_S)
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register, we add it to $at after the
lui instruction. If there is a constant, we always use
the last case. */
if (offset_expr.X_op == O_symbol
&& (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
{
relax_start (offset_expr.X_add_symbol);
if (breg == 0)
{
tempreg = mips_gp_register;
}
else
{
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, breg, mips_gp_register);
tempreg = AT;
used_at = 1;
}
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_GPREL16, tempreg);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an
undesired nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_GPREL16, tempreg);
mips_optimize = hold_mips_optimize;
relax_switch ();
offset_expr.X_add_number -= 4;
}
used_at = 1;
if (offset_high_part (offset_expr.X_add_number, 16)
!= offset_high_part (offset_expr.X_add_number + 4, 16))
{
load_address (AT, &offset_expr, &used_at);
offset_expr.X_op = O_constant;
offset_expr.X_add_number = 0;
}
else
macro_build_lui (&offset_expr, AT);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
/* FIXME: How do we handle overflow here? */
offset_expr.X_add_number += 4;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
if (mips_relax.sequence)
relax_end ();
}
else if (!mips_big_got)
{
/* If this is a reference to an external symbol, we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
load_got_offset (AT, &offset_expr);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
relax_start (offset_expr.X_add_symbol);
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_switch ();
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
relax_end ();
mips_optimize = hold_mips_optimize;
}
else if (mips_big_got)
{
int gpdelay;
/* If this is a reference to an external symbol, we want
lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
addu $at,$at,$gp
lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
nop
<op> op[0],0($at)
<op> op[0]+1,4($at)
Otherwise we want
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
nop
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
If there is a base register we add it to $at before the
lwc1 instructions. If there is a constant we include it
in the lwc1 instructions. */
used_at = 1;
expr1.X_add_number = offset_expr.X_add_number;
offset_expr.X_add_number = 0;
if (expr1.X_add_number < -0x8000
|| expr1.X_add_number >= 0x8000 - 4)
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
gpdelay = reg_needs_delay (mips_gp_register);
relax_start (offset_expr.X_add_symbol);
macro_build (&offset_expr, "lui", LUI_FMT,
AT, BFD_RELOC_MIPS_GOT_HI16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
AT, AT, mips_gp_register);
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
AT, BFD_RELOC_MIPS_GOT_LO16, AT);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
expr1.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
expr1.X_add_number -= 4;
relax_switch ();
offset_expr.X_add_number = expr1.X_add_number;
if (gpdelay)
macro_build (NULL, "nop", "");
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
BFD_RELOC_MIPS_GOT16, mips_gp_register);
load_delay_nop ();
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
BFD_RELOC_LO16, AT);
offset_expr.X_add_number += 4;
/* Set mips_optimize to 2 to avoid inserting an undesired
nop. */
hold_mips_optimize = mips_optimize;
mips_optimize = 2;
/* Itbl support may require additional care here. */
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
BFD_RELOC_LO16, AT);
mips_optimize = hold_mips_optimize;
relax_end ();
}
else
abort ();
break;
case M_SAA_AB:
s = "saa";
goto saa_saad;
case M_SAAD_AB:
s = "saad";
saa_saad:
gas_assert (!mips_opts.micromips);
offbits = 0;
fmt = "t,(b)";
goto ld_st;
/* New code added to support COPZ instructions.
This code builds table entries out of the macros in mip_opcodes.
R4000 uses interlocks to handle coproc delays.
Other chips (like the R3000) require nops to be inserted for delays.
FIXME: Currently, we require that the user handle delays.
In order to fill delay slots for non-interlocked chips,
we must have a way to specify delays based on the coprocessor.
Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
What are the side-effects of the cop instruction?
What cache support might we have and what are its effects?
Both coprocessor & memory require delays. how long???
What registers are read/set/modified?
If an itbl is provided to interpret cop instructions,
this knowledge can be encoded in the itbl spec. */
case M_COP0:
s = "c0";
goto copz;
case M_COP1:
s = "c1";
goto copz;
case M_COP2:
s = "c2";
goto copz;
case M_COP3:
s = "c3";
copz:
gas_assert (!mips_opts.micromips);
/* For now we just do C (same as Cz). The parameter will be
stored in insn_opcode by mips_ip. */
macro_build (NULL, s, "C", (int) ip->insn_opcode);
break;
case M_MOVE:
move_register (op[0], op[1]);
break;
case M_MOVEP:
gas_assert (mips_opts.micromips);
gas_assert (mips_opts.insn32);
move_register (micromips_to_32_reg_h_map1[op[0]],
micromips_to_32_reg_m_map[op[1]]);
move_register (micromips_to_32_reg_h_map2[op[0]],
micromips_to_32_reg_n_map[op[2]]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
if (mips_opts.arch == CPU_R5900)
macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
op[2]);
else
{
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
}
break;
case M_DMUL_I:
dbl = 1;
/* Fall through. */
case M_MUL_I:
/* The MIPS assembler some times generates shifts and adds. I'm
not trying to be that fancy. GCC should do this for us
anyway. */
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULO_I:
dbl = 1;
/* Fall through. */
case M_MULO_I:
imm = 1;
goto do_mulo;
case M_DMULO:
dbl = 1;
/* Fall through. */
case M_MULO:
do_mulo:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
break;
case M_DMULOU_I:
dbl = 1;
/* Fall through. */
case M_MULOU_I:
imm = 1;
goto do_mulou;
case M_DMULOU:
dbl = 1;
/* Fall through. */
case M_MULOU:
do_mulou:
start_noreorder ();
used_at = 1;
if (imm)
load_register (AT, &imm_expr, dbl);
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
op[1], imm ? AT : op[2]);
macro_build (NULL, "mfhi", MFHL_FMT, AT);
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
if (mips_trap)
macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
else
{
if (mips_opts.micromips)
micromips_label_expr (&label_expr);
else
label_expr.X_add_number = 8;
macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
macro_build (NULL, "nop", "");
macro_build (NULL, "break", BRK_FMT, 6);
if (mips_opts.micromips)
micromips_add_label ();
}
end_noreorder ();
break;
case M_DROL:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROL:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
if (op[0] == op[1])
{
tempreg = AT;
used_at = 1;
}
else
tempreg = op[0];
macro_build (NULL, "negu", "d,w", tempreg, op[2]);
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROL_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
rot = (64 - rot) & 0x3f;
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
l = (rot < 0x20) ? "dsll" : "dsll32";
rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROL_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
(32 - rot) & 0x1f);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_DROR:
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_ROR:
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
break;
}
used_at = 1;
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
break;
case M_DROR_I:
{
unsigned int rot;
const char *l;
const char *rr;
rot = imm_expr.X_add_number & 0x3f;
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
{
if (rot >= 32)
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
else
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
break;
}
rr = (rot < 0x20) ? "dsrl" : "dsrl32";
l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
rot &= 0x1f;
used_at = 1;
macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_ROR_I:
{
unsigned int rot;
rot = imm_expr.X_add_number & 0x1f;
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
{
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
break;
}
if (rot == 0)
{
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
break;
}
used_at = 1;
macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
case M_SEQ:
if (op[1] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
else if (op[2] == 0)
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
}
break;
case M_SEQ_I:
if (imm_expr.X_add_number == 0)
{
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always false"),
ip->insn_mo->name);
move_register (op[0], 0);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE: /* X >= Y <==> not (X < Y) */
s = "slt";
goto sge;
case M_SGEU:
s = "sltu";
sge:
macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGE_I: /* X >= I <==> not (X < I) */
case M_SGEU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
op[0], op[1], BFD_RELOC_LO16);
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
op[0], op[1], AT);
used_at = 1;
}
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SGT: /* X > Y <==> Y < X */
s = "slt";
goto sgt;
case M_SGTU:
s = "sltu";
sgt:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
break;
case M_SGT_I: /* X > I <==> I < X */
s = "slt";
goto sgti;
case M_SGTU_I:
s = "sltu";
sgti:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
break;
case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
s = "slt";
goto sle;
case M_SLEU:
s = "sltu";
sle:
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
s = "slt";
goto slei;
case M_SLEU_I:
s = "sltu";
slei:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
break;
case M_SLT_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
break;
case M_SLTU_I:
if (imm_expr.X_add_number >= -0x8000
&& imm_expr.X_add_number < 0x8000)
{
macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
BFD_RELOC_LO16);
break;
}
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
break;
case M_SNE:
if (op[1] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
else if (op[2] == 0)
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
else
{
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
}
break;
case M_SNE_I:
if (imm_expr.X_add_number == 0)
{
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
break;
}
if (op[1] == 0)
{
as_warn (_("instruction %s: result is always true"),
ip->insn_mo->name);
macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
op[0], 0, BFD_RELOC_LO16);
break;
}
if (CPU_HAS_SEQ (mips_opts.arch)
&& -512 <= imm_expr.X_add_number
&& imm_expr.X_add_number < 512)
{
macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
(int) imm_expr.X_add_number);
break;
}
if (imm_expr.X_add_number >= 0
&& imm_expr.X_add_number < 0x10000)
{
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
BFD_RELOC_LO16);
}
else if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number < 0)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
}
else if (CPU_HAS_SEQ (mips_opts.arch))
{
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
break;
}
else
{
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
used_at = 1;
}
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
break;
case M_SUB_I:
s = "addi";
s2 = "sub";
goto do_subi;
case M_SUBU_I:
s = "addiu";
s2 = "subu";
goto do_subi;
case M_DSUB_I:
dbl = 1;
s = "daddi";
s2 = "dsub";
if (!mips_opts.micromips)
goto do_subi;
if (imm_expr.X_add_number > -0x200
&& imm_expr.X_add_number <= 0x200)
{
macro_build (NULL, s, "t,r,.", op[0], op[1],
(int) -imm_expr.X_add_number);
break;
}
goto do_subi_i;
case M_DSUBU_I:
dbl = 1;
s = "daddiu";
s2 = "dsubu";
do_subi:
if (imm_expr.X_add_number > -0x8000
&& imm_expr.X_add_number <= 0x8000)
{
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
break;
}
do_subi_i:
used_at = 1;
load_register (AT, &imm_expr, dbl);
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
break;
case M_TEQ_I:
s = "teq";
goto trap;
case M_TGE_I:
s = "tge";
goto trap;
case M_TGEU_I:
s = "tgeu";
goto trap;
case M_TLT_I:
s = "tlt";
goto trap;
case M_TLTU_I:
s = "tltu";
goto trap;
case M_TNE_I:
s = "tne";
trap:
used_at = 1;
load_register (AT, &imm_expr, GPR_SIZE == 64);
macro_build (NULL, s, "s,t", op[0], AT);
break;
case M_TRUNCWS:
case M_TRUNCWD:
gas_assert (!mips_opts.micromips);
gas_assert (mips_opts.isa == ISA_MIPS1);
used_at = 1;
/*
* Is the double cfc1 instruction a bug in the mips assembler;
* or is there a reason for it?
*/
start_noreorder ();
macro_build (NULL, "cfc1", "t,G", op[2], RA);
macro_build (NULL, "cfc1", "t,G", op[2], RA);
macro_build (NULL, "nop", "");
expr1.X_add_number = 3;
macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
expr1.X_add_number = 2;
macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
macro_build (NULL, "ctc1", "t,G", AT, RA);
macro_build (NULL, "nop", "");
macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
op[0], op[1]);
macro_build (NULL, "ctc1", "t,G", op[2], RA);
macro_build (NULL, "nop", "");
end_noreorder ();
break;
case M_ULH_AB:
s = "lb";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULHU_AB:
s = "lbu";
s2 = "lbu";
off = 1;
goto uld_st;
case M_ULW_AB:
s = "lwl";
s2 = "lwr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
goto uld_st;
case M_ULD_AB:
s = "ldl";
s2 = "ldr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
goto uld_st;
case M_USH_AB:
s = "sb";
s2 = "sb";
off = 1;
ust = 1;
goto uld_st;
case M_USW_AB:
s = "swl";
s2 = "swr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 3;
ust = 1;
goto uld_st;
case M_USD_AB:
s = "sdl";
s2 = "sdr";
offbits = (mips_opts.micromips ? 12 : 16);
off = 7;
ust = 1;
uld_st:
breg = op[2];
large_offset = !small_offset_p (off, align, offbits);
ep = &offset_expr;
expr1.X_add_number = 0;
if (large_offset)
{
used_at = 1;
tempreg = AT;
if (small_offset_p (0, align, 16))
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2]);
else
{
load_address (tempreg, ep, &used_at);
if (breg != 0)
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
tempreg, tempreg, breg);
}
offset_reloc[0] = BFD_RELOC_LO16;
offset_reloc[1] = BFD_RELOC_UNUSED;
offset_reloc[2] = BFD_RELOC_UNUSED;
breg = tempreg;
tempreg = op[0];
ep = &expr1;
}
else if (!ust && op[0] == breg)
{
used_at = 1;
tempreg = AT;
}
else
tempreg = op[0];
if (off == 1)
goto ulh_sh;
if (!target_big_endian)
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
if (!target_big_endian)
ep->X_add_number -= off;
else
ep->X_add_number += off;
if (offbits == 12)
macro_build (NULL, s2, "t,~(b)",
tempreg, (int) ep->X_add_number, breg);
else
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* If necessary, move the result in tempreg to the final destination. */
if (!ust && op[0] != tempreg)
{
/* Protect second load's delay slot. */
load_delay_nop ();
move_register (op[0], tempreg);
}
break;
ulh_sh:
used_at = 1;
if (target_big_endian == ust)
ep->X_add_number += off;
tempreg = ust || large_offset ? op[0] : AT;
macro_build (ep, s, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For halfword transfers we need a temporary register to shuffle
bytes. Unfortunately for M_USH_A we have none available before
the next store as AT holds the base address. We deal with this
case by clobbering TREG and then restoring it as with ULH. */
tempreg = ust == large_offset ? op[0] : AT;
if (ust)
macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
if (target_big_endian == ust)
ep->X_add_number -= off;
else
ep->X_add_number += off;
macro_build (ep, s2, "t,o(b)", tempreg, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
/* For M_USH_A re-retrieve the LSB. */
if (ust && large_offset)
{
if (target_big_endian)
ep->X_add_number += off;
else
ep->X_add_number -= off;
macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
}
/* For ULH and M_USH_A OR the LSB in. */
if (!ust || large_offset)
{
tempreg = !large_offset ? AT : op[0];
macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
}
break;
default:
/* FIXME: Check if this is one of the itbl macros, since they
are added dynamically. */
as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
break;
}
if (!mips_opts.at && used_at)
as_bad (_("macro used $at after \".set noat\""));
}
/* Implement macros in mips16 mode. */
static void
mips16_macro (struct mips_cl_insn *ip)
{
const struct mips_operand_array *operands;
int mask;
int tmp;
expressionS expr1;
int dbl;
const char *s, *s2, *s3;
unsigned int op[MAX_OPERANDS];
unsigned int i;
mask = ip->insn_mo->mask;
operands = insn_operands (ip);
for (i = 0; i < MAX_OPERANDS; i++)
if (operands->operand[i])
op[i] = insn_extract_operand (ip, operands->operand[i]);
else
op[i] = -1;
expr1.X_op = O_constant;
expr1.X_op_symbol = NULL;
expr1.X_add_symbol = NULL;
expr1.X_add_number = 1;
dbl = 0;
switch (mask)
{
default:
abort ();
case M_DDIV_3:
dbl = 1;
/* Fall through. */
case M_DIV_3:
s = "mflo";
goto do_div3;
case M_DREM_3:
dbl = 1;
/* Fall through. */
case M_REM_3:
s = "mfhi";
do_div3:
start_noreorder ();
macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
/* FIXME: The normal code checks for of -1 / -0x80000000 here,
since that causes an overflow. We should do that as well,
but I don't see how to do the comparisons without a temporary
register. */
end_noreorder ();
macro_build (NULL, s, "x", op[0]);
break;
case M_DIVU_3:
s = "divu";
s2 = "mflo";
goto do_divu3;
case M_REMU_3:
s = "divu";
s2 = "mfhi";
goto do_divu3;
case M_DDIVU_3:
s = "ddivu";
s2 = "mflo";
goto do_divu3;
case M_DREMU_3:
s = "ddivu";
s2 = "mfhi";
do_divu3:
start_noreorder ();
macro_build (NULL, s, ".,x,y", op[1], op[2]);
expr1.X_add_number = 2;
macro_build (&expr1, "bnez", "x,p", op[2]);
macro_build (NULL, "break", "6", 7);
end_noreorder ();
macro_build (NULL, s2, "x", op[0]);
break;
case M_DMUL:
dbl = 1;
/* Fall through. */
case M_MUL:
macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
macro_build (NULL, "mflo", "x", op[0]);
break;
case M_DSUBU_I:
dbl = 1;
goto do_subu;
case M_SUBU_I:
do_subu:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
break;
case M_SUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "addiu", "x,k", op[0]);
break;
case M_DSUBU_I_2:
imm_expr.X_add_number = -imm_expr.X_add_number;
macro_build (&imm_expr, "daddiu", "y,j", op[0]);
break;
case M_BEQ:
s = "cmp";
s2 = "bteqz";
goto do_branch;
case M_BNE:
s = "cmp";
s2 = "btnez";
goto do_branch;
case M_BLT:
s = "slt";
s2 = "btnez";
goto do_branch;
case M_BLTU:
s = "sltu";
s2 = "btnez";
goto do_branch;
case M_BLE:
s = "slt";
s2 = "bteqz";
goto do_reverse_branch;
case M_BLEU:
s = "sltu";
s2 = "bteqz";
goto do_reverse_branch;
case M_BGE:
s = "slt";
s2 = "bteqz";
goto do_branch;
case M_BGEU:
s = "sltu";
s2 = "bteqz";
goto do_branch;
case M_BGT:
s = "slt";
s2 = "btnez";
goto do_reverse_branch;
case M_BGTU:
s = "sltu";
s2 = "btnez";
do_reverse_branch:
tmp = op[1];
op[1] = op[0];
op[0] = tmp;
do_branch:
macro_build (NULL, s, "x,y", op[0], op[1]);
macro_build (&offset_expr, s2, "p");
break;
case M_BEQ_I:
s = "cmpi";
s2 = "bteqz";
s3 = "x,U";
goto do_branch_i;
case M_BNE_I:
s = "cmpi";
s2 = "btnez";
s3 = "x,U";
goto do_branch_i;
case M_BLT_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLTU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_branch_i;
case M_BLE_I:
s = "slti";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BLEU_I:
s = "sltiu";
s2 = "btnez";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGE_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGEU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
goto do_branch_i;
case M_BGT_I:
s = "slti";
s2 = "bteqz";
s3 = "x,8";
goto do_addone_branch_i;
case M_BGTU_I:
s = "sltiu";
s2 = "bteqz";
s3 = "x,8";
do_addone_branch_i:
++imm_expr.X_add_number;
do_branch_i:
macro_build (&imm_expr, s, s3, op[0]);
macro_build (&offset_expr, s2, "p");
break;
case M_ABS:
expr1.X_add_number = 0;
macro_build (&expr1, "slti", "x,8", op[1]);
if (op[0] != op[1])
macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
expr1.X_add_number = 2;
macro_build (&expr1, "bteqz", "p");
macro_build (NULL, "neg", "x,w", op[0], op[0]);
break;
}
}
/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
opcode bits in *OPCODE_EXTRA. */
static struct mips_opcode *
mips_lookup_insn (struct hash_control *hash, const char *start,
ssize_t length, unsigned int *opcode_extra)
{
char *name, *dot, *p;
unsigned int mask, suffix;
ssize_t opend;
struct mips_opcode *insn;
/* Make a copy of the instruction so that we can fiddle with it. */
name = xstrndup (start, length);
/* Look up the instruction as-is. */
insn = (struct mips_opcode *) hash_find (hash, name);
if (insn)
goto end;
dot = strchr (name, '.');
if (dot && dot[1])
{
/* Try to interpret the text after the dot as a VU0 channel suffix. */
p = mips_parse_vu0_channels (dot + 1, &mask);
if (*p == 0 && mask != 0)
{
*dot = 0;
insn = (struct mips_opcode *) hash_find (hash, name);
*dot = '.';
if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
{
*opcode_extra |= mask << mips_vu0_channel_mask.lsb;
goto end;
}
}
}
if (mips_opts.micromips)
{
/* See if there's an instruction size override suffix,
either `16' or `32', at the end of the mnemonic proper,
that defines the operation, i.e. before the first `.'
character if any. Strip it and retry. */
opend = dot != NULL ? dot - name : length;
if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
suffix = 2;
else if (name[opend - 2] == '3' && name[opend - 1] == '2')
suffix = 4;
else
suffix = 0;
if (suffix)
{
memcpy (name + opend - 2, name + opend, length - opend + 1);
insn = (struct mips_opcode *) hash_find (hash, name);
if (insn)
{
forced_insn_length = suffix;
goto end;
}
}
}
insn = NULL;
end:
free (name);
return insn;
}
/* Assemble an instruction into its binary format. If the instruction
is a macro, set imm_expr and offset_expr to the values associated
with "I" and "A" operands respectively. Otherwise store the value
of the relocatable field (if any) in offset_expr. In both cases
set offset_reloc to the relocation operators applied to offset_expr. */
static void
mips_ip (char *str, struct mips_cl_insn *insn)
{
const struct mips_opcode *first, *past;
struct hash_control *hash;
char format;
size_t end;
struct mips_operand_token *tokens;
unsigned int opcode_extra;
if (mips_opts.micromips)
{
hash = micromips_op_hash;
past = µmips_opcodes[bfd_micromips_num_opcodes];
}
else
{
hash = op_hash;
past = &mips_opcodes[NUMOPCODES];
}
forced_insn_length = 0;
opcode_extra = 0;
/* We first try to match an instruction up to a space or to the end. */
for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
continue;
first = mips_lookup_insn (hash, str, end, &opcode_extra);
if (first == NULL)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
if (strcmp (first->name, "li.s") == 0)
format = 'f';
else if (strcmp (first->name, "li.d") == 0)
format = 'd';
else
format = 0;
tokens = mips_parse_arguments (str + end, format);
if (!tokens)
return;
if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
&& !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* As for mips_ip, but used when assembling MIPS16 code.
Also set forced_insn_length to the resulting instruction size in
bytes if the user explicitly requested a small or extended instruction. */
static void
mips16_ip (char *str, struct mips_cl_insn *insn)
{
char *end, *s, c;
struct mips_opcode *first;
struct mips_operand_token *tokens;
unsigned int l;
for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
;
end = s;
c = *end;
l = 0;
switch (c)
{
case '\0':
break;
case ' ':
s++;
break;
case '.':
s++;
if (*s == 't')
{
l = 2;
s++;
}
else if (*s == 'e')
{
l = 4;
s++;
}
if (*s == '\0')
break;
else if (*s++ == ' ')
break;
set_insn_error (0, _("unrecognized opcode"));
return;
}
forced_insn_length = l;
*end = 0;
first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
*end = c;
if (!first)
{
set_insn_error (0, _("unrecognized opcode"));
return;
}
tokens = mips_parse_arguments (s, 0);
if (!tokens)
return;
if (!match_mips16_insns (insn, first, tokens))
set_insn_error (0, _("invalid operands"));
obstack_free (&mips_operand_tokens, tokens);
}
/* Marshal immediate value VAL for an extended MIPS16 instruction.
NBITS is the number of significant bits in VAL. */
static unsigned long
mips16_immed_extend (offsetT val, unsigned int nbits)
{
int extval;
extval = 0;
val &= (1U << nbits) - 1;
if (nbits == 16 || nbits == 9)
{
extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
val &= 0x1f;
}
else if (nbits == 15)
{
extval = ((val >> 11) & 0xf) | (val & 0x7f0);
val &= 0xf;
}
else if (nbits == 6)
{
extval = ((val & 0x1f) << 6) | (val & 0x20);
val = 0;
}
return (extval << 16) | val;
}
/* Like decode_mips16_operand, but require the operand to be defined and
require it to be an integer. */
static const struct mips_int_operand *
mips16_immed_operand (int type, bfd_boolean extended_p)
{
const struct mips_operand *operand;
operand = decode_mips16_operand (type, extended_p);
if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
abort ();
return (const struct mips_int_operand *) operand;
}
/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
static bfd_boolean
mips16_immed_in_range_p (const struct mips_int_operand *operand,
bfd_reloc_code_real_type reloc, offsetT sval)
{
int min_val, max_val;
min_val = mips_int_operand_min (operand);
max_val = mips_int_operand_max (operand);
if (reloc != BFD_RELOC_UNUSED)
{
if (min_val < 0)
sval = SEXT_16BIT (sval);
else
sval &= 0xffff;
}
return (sval >= min_val
&& sval <= max_val
&& (sval & ((1 << operand->shift) - 1)) == 0);
}
/* Install immediate value VAL into MIPS16 instruction *INSN,
extending it if necessary. The instruction in *INSN may
already be extended.
RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
if none. In the former case, VAL is a 16-bit number with no
defined signedness.
TYPE is the type of the immediate field. USER_INSN_LENGTH
is the length that the user requested, or 0 if none. */
static void
mips16_immed (const char *file, unsigned int line, int type,
bfd_reloc_code_real_type reloc, offsetT val,
unsigned int user_insn_length, unsigned long *insn)
{
const struct mips_int_operand *operand;
unsigned int uval, length;
operand = mips16_immed_operand (type, FALSE);
if (!mips16_immed_in_range_p (operand, reloc, val))
{
/* We need an extended instruction. */
if (user_insn_length == 2)
as_bad_where (file, line, _("invalid unextended operand value"));
else
*insn |= MIPS16_EXTEND;
}
else if (user_insn_length == 4)
{
/* The operand doesn't force an unextended instruction to be extended.
Warn if the user wanted an extended instruction anyway. */
*insn |= MIPS16_EXTEND;
as_warn_where (file, line,
_("extended operand requested but not required"));
}
length = mips16_opcode_length (*insn);
if (length == 4)
{
operand = mips16_immed_operand (type, TRUE);
if (!mips16_immed_in_range_p (operand, reloc, val))
as_bad_where (file, line,
_("operand value out of range for instruction"));
}
uval = ((unsigned int) val >> operand->shift) - operand->bias;
if (length == 2 || operand->root.lsb != 0)
*insn = mips_insert_operand (&operand->root, *insn, uval);
else
*insn |= mips16_immed_extend (uval, operand->root.size);
}
struct percent_op_match
{
const char *str;
bfd_reloc_code_real_type reloc;
};
static const struct percent_op_match mips_percent_op[] =
{
{"%lo", BFD_RELOC_LO16},
{"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
{"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
{"%call16", BFD_RELOC_MIPS_CALL16},
{"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
{"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
{"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
{"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
{"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
{"%got", BFD_RELOC_MIPS_GOT16},
{"%gp_rel", BFD_RELOC_GPREL16},
{"%gprel", BFD_RELOC_GPREL16},
{"%half", BFD_RELOC_16},
{"%highest", BFD_RELOC_MIPS_HIGHEST},
{"%higher", BFD_RELOC_MIPS_HIGHER},
{"%neg", BFD_RELOC_MIPS_SUB},
{"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
{"%hi", BFD_RELOC_HI16_S},
{"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
{"%pcrel_lo", BFD_RELOC_LO16_PCREL}
};
static const struct percent_op_match mips16_percent_op[] =
{
{"%lo", BFD_RELOC_MIPS16_LO16},
{"%gp_rel", BFD_RELOC_MIPS16_GPREL},
{"%gprel", BFD_RELOC_MIPS16_GPREL},
{"%got", BFD_RELOC_MIPS16_GOT16},
{"%call16", BFD_RELOC_MIPS16_CALL16},
{"%hi", BFD_RELOC_MIPS16_HI16_S},
{"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
{"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
{"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
{"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
{"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
{"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
{"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
};
/* Return true if *STR points to a relocation operator. When returning true,
move *STR over the operator and store its relocation code in *RELOC.
Leave both *STR and *RELOC alone when returning false. */
static bfd_boolean
parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
{
const struct percent_op_match *percent_op;
size_t limit, i;
if (mips_opts.mips16)
{
percent_op = mips16_percent_op;
limit = ARRAY_SIZE (mips16_percent_op);
}
else
{
percent_op = mips_percent_op;
limit = ARRAY_SIZE (mips_percent_op);
}
for (i = 0; i < limit; i++)
if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
{
int len = strlen (percent_op[i].str);
if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
continue;
*str += strlen (percent_op[i].str);
*reloc = percent_op[i].reloc;
/* Check whether the output BFD supports this relocation.
If not, issue an error and fall back on something safe. */
if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
{
as_bad (_("relocation %s isn't supported by the current ABI"),
percent_op[i].str);
*reloc = BFD_RELOC_UNUSED;
}
return TRUE;
}
return FALSE;
}
/* Parse string STR as a 16-bit relocatable operand. Store the
expression in *EP and the relocations in the array starting
at RELOC. Return the number of relocation operators used.
On exit, EXPR_END points to the first character after the expression. */
static size_t
my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
char *str)
{
bfd_reloc_code_real_type reversed_reloc[3];
size_t reloc_index, i;
int crux_depth, str_depth;
char *crux;
/* Search for the start of the main expression, recoding relocations
in REVERSED_RELOC. End the loop with CRUX pointing to the start
of the main expression and with CRUX_DEPTH containing the number
of open brackets at that point. */
reloc_index = -1;
str_depth = 0;
do
{
reloc_index++;
crux = str;
crux_depth = str_depth;
/* Skip over whitespace and brackets, keeping count of the number
of brackets. */
while (*str == ' ' || *str == '\t' || *str == '(')
if (*str++ == '(')
str_depth++;
}
while (*str == '%'
&& reloc_index < (HAVE_NEWABI ? 3 : 1)
&& parse_relocation (&str, &reversed_reloc[reloc_index]));
my_getExpression (ep, crux);
str = expr_end;
/* Match every open bracket. */
while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
if (*str++ == ')')
crux_depth--;
if (crux_depth > 0)
as_bad (_("unclosed '('"));
expr_end = str;
if (reloc_index != 0)
{
prev_reloc_op_frag = frag_now;
for (i = 0; i < reloc_index; i++)
reloc[i] = reversed_reloc[reloc_index - 1 - i];
}
return reloc_index;
}
static void
my_getExpression (expressionS *ep, char *str)
{
char *save_in;
save_in = input_line_pointer;
input_line_pointer = str;
expression (ep);
expr_end = input_line_pointer;
input_line_pointer = save_in;
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, target_big_endian);
}
void
md_number_to_chars (char *buf, valueT val, int n)
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static int support_64bit_objects(void)
{
const char **list, **l;
int yes;
list = bfd_target_list ();
for (l = list; *l != NULL; l++)
if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
|| strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
break;
yes = (*l != NULL);
free (list);
return yes;
}
/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
NEW_VALUE. Warn if another value was already specified. Note:
we have to defer parsing the -march and -mtune arguments in order
to handle 'from-abi' correctly, since the ABI might be specified
in a later argument. */
static void
mips_set_option_string (const char **string_ptr, const char *new_value)
{
if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
as_warn (_("a different %s was already specified, is now %s"),
string_ptr == &mips_arch_string ? "-march" : "-mtune",
new_value);
*string_ptr = new_value;
}
int
md_parse_option (int c, const char *arg)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
{
file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c == mips_ases[i].option_on);
return 1;
}
switch (c)
{
case OPTION_CONSTRUCT_FLOATS:
mips_disable_float_construction = 0;
break;
case OPTION_NO_CONSTRUCT_FLOATS:
mips_disable_float_construction = 1;
break;
case OPTION_TRAP:
mips_trap = 1;
break;
case OPTION_BREAK:
mips_trap = 0;
break;
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
case 'O':
if (arg == NULL)
mips_optimize = 1;
else if (arg[0] == '0')
mips_optimize = 0;
else if (arg[0] == '1')
mips_optimize = 1;
else
mips_optimize = 2;
break;
case 'g':
if (arg == NULL)
mips_debug = 2;
else
mips_debug = atoi (arg);
break;
case OPTION_MIPS1:
file_mips_opts.isa = ISA_MIPS1;
break;
case OPTION_MIPS2:
file_mips_opts.isa = ISA_MIPS2;
break;
case OPTION_MIPS3:
file_mips_opts.isa = ISA_MIPS3;
break;
case OPTION_MIPS4:
file_mips_opts.isa = ISA_MIPS4;
break;
case OPTION_MIPS5:
file_mips_opts.isa = ISA_MIPS5;
break;
case OPTION_MIPS32:
file_mips_opts.isa = ISA_MIPS32;
break;
case OPTION_MIPS32R2:
file_mips_opts.isa = ISA_MIPS32R2;
break;
case OPTION_MIPS32R3:
file_mips_opts.isa = ISA_MIPS32R3;
break;
case OPTION_MIPS32R5:
file_mips_opts.isa = ISA_MIPS32R5;
break;
case OPTION_MIPS32R6:
file_mips_opts.isa = ISA_MIPS32R6;
break;
case OPTION_MIPS64R2:
file_mips_opts.isa = ISA_MIPS64R2;
break;
case OPTION_MIPS64R3:
file_mips_opts.isa = ISA_MIPS64R3;
break;
case OPTION_MIPS64R5:
file_mips_opts.isa = ISA_MIPS64R5;
break;
case OPTION_MIPS64R6:
file_mips_opts.isa = ISA_MIPS64R6;
break;
case OPTION_MIPS64:
file_mips_opts.isa = ISA_MIPS64;
break;
case OPTION_MTUNE:
mips_set_option_string (&mips_tune_string, arg);
break;
case OPTION_MARCH:
mips_set_option_string (&mips_arch_string, arg);
break;
case OPTION_M4650:
mips_set_option_string (&mips_arch_string, "4650");
mips_set_option_string (&mips_tune_string, "4650");
break;
case OPTION_NO_M4650:
break;
case OPTION_M4010:
mips_set_option_string (&mips_arch_string, "4010");
mips_set_option_string (&mips_tune_string, "4010");
break;
case OPTION_NO_M4010:
break;
case OPTION_M4100:
mips_set_option_string (&mips_arch_string, "4100");
mips_set_option_string (&mips_tune_string, "4100");
break;
case OPTION_NO_M4100:
break;
case OPTION_M3900:
mips_set_option_string (&mips_arch_string, "3900");
mips_set_option_string (&mips_tune_string, "3900");
break;
case OPTION_NO_M3900:
break;
case OPTION_MICROMIPS:
if (file_mips_opts.mips16 == 1)
{
as_bad (_("-mmicromips cannot be used with -mips16"));
return 0;
}
file_mips_opts.micromips = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MICROMIPS:
file_mips_opts.micromips = 0;
mips_no_prev_insn ();
break;
case OPTION_MIPS16:
if (file_mips_opts.micromips == 1)
{
as_bad (_("-mips16 cannot be used with -micromips"));
return 0;
}
file_mips_opts.mips16 = 1;
mips_no_prev_insn ();
break;
case OPTION_NO_MIPS16:
file_mips_opts.mips16 = 0;
mips_no_prev_insn ();
break;
case OPTION_FIX_24K:
mips_fix_24k = 1;
break;
case OPTION_NO_FIX_24K:
mips_fix_24k = 0;
break;
case OPTION_FIX_RM7000:
mips_fix_rm7000 = 1;
break;
case OPTION_NO_FIX_RM7000:
mips_fix_rm7000 = 0;
break;
case OPTION_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = TRUE;
break;
case OPTION_NO_FIX_LOONGSON2F_JUMP:
mips_fix_loongson2f_jump = FALSE;
break;
case OPTION_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = TRUE;
break;
case OPTION_NO_FIX_LOONGSON2F_NOP:
mips_fix_loongson2f_nop = FALSE;
break;
case OPTION_FIX_VR4120:
mips_fix_vr4120 = 1;
break;
case OPTION_NO_FIX_VR4120:
mips_fix_vr4120 = 0;
break;
case OPTION_FIX_VR4130:
mips_fix_vr4130 = 1;
break;
case OPTION_NO_FIX_VR4130:
mips_fix_vr4130 = 0;
break;
case OPTION_FIX_CN63XXP1:
mips_fix_cn63xxp1 = TRUE;
break;
case OPTION_NO_FIX_CN63XXP1:
mips_fix_cn63xxp1 = FALSE;
break;
case OPTION_RELAX_BRANCH:
mips_relax_branch = 1;
break;
case OPTION_NO_RELAX_BRANCH:
mips_relax_branch = 0;
break;
case OPTION_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = TRUE;
break;
case OPTION_NO_IGNORE_BRANCH_ISA:
mips_ignore_branch_isa = FALSE;
break;
case OPTION_INSN32:
file_mips_opts.insn32 = TRUE;
break;
case OPTION_NO_INSN32:
file_mips_opts.insn32 = FALSE;
break;
case OPTION_MSHARED:
mips_in_shared = TRUE;
break;
case OPTION_MNO_SHARED:
mips_in_shared = FALSE;
break;
case OPTION_MSYM32:
file_mips_opts.sym32 = TRUE;
break;
case OPTION_MNO_SYM32:
file_mips_opts.sym32 = FALSE;
break;
/* When generating ELF code, we permit -KPIC and -call_shared to
select SVR4_PIC, and -non_shared to select no PIC. This is
intended to be compatible with Irix 5. */
case OPTION_CALL_SHARED:
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
break;
case OPTION_CALL_NONPIC:
mips_pic = NO_PIC;
mips_abicalls = TRUE;
break;
case OPTION_NON_SHARED:
mips_pic = NO_PIC;
mips_abicalls = FALSE;
break;
/* The -xgot option tells the assembler to use 32 bit offsets
when accessing the got in SVR4_PIC mode. It is for Irix
compatibility. */
case OPTION_XGOT:
mips_big_got = 1;
break;
case 'G':
g_switch_value = atoi (arg);
g_switch_seen = 1;
break;
/* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
and -mabi=64. */
case OPTION_32:
mips_abi = O32_ABI;
break;
case OPTION_N32:
mips_abi = N32_ABI;
break;
case OPTION_64:
mips_abi = N64_ABI;
if (!support_64bit_objects())
as_fatal (_("no compiled in support for 64 bit object file format"));
break;
case OPTION_GP32:
file_mips_opts.gp = 32;
break;
case OPTION_GP64:
file_mips_opts.gp = 64;
break;
case OPTION_FP32:
file_mips_opts.fp = 32;
break;
case OPTION_FPXX:
file_mips_opts.fp = 0;
break;
case OPTION_FP64:
file_mips_opts.fp = 64;
break;
case OPTION_ODD_SPREG:
file_mips_opts.oddspreg = 1;
break;
case OPTION_NO_ODD_SPREG:
file_mips_opts.oddspreg = 0;
break;
case OPTION_SINGLE_FLOAT:
file_mips_opts.single_float = 1;
break;
case OPTION_DOUBLE_FLOAT:
file_mips_opts.single_float = 0;
break;
case OPTION_SOFT_FLOAT:
file_mips_opts.soft_float = 1;
break;
case OPTION_HARD_FLOAT:
file_mips_opts.soft_float = 0;
break;
case OPTION_MABI:
if (strcmp (arg, "32") == 0)
mips_abi = O32_ABI;
else if (strcmp (arg, "o64") == 0)
mips_abi = O64_ABI;
else if (strcmp (arg, "n32") == 0)
mips_abi = N32_ABI;
else if (strcmp (arg, "64") == 0)
{
mips_abi = N64_ABI;
if (! support_64bit_objects())
as_fatal (_("no compiled in support for 64 bit object file "
"format"));
}
else if (strcmp (arg, "eabi") == 0)
mips_abi = EABI_ABI;
else
{
as_fatal (_("invalid abi -mabi=%s"), arg);
return 0;
}
break;
case OPTION_M7000_HILO_FIX:
mips_7000_hilo_fix = TRUE;
break;
case OPTION_MNO_7000_HILO_FIX:
mips_7000_hilo_fix = FALSE;
break;
case OPTION_MDEBUG:
mips_flag_mdebug = TRUE;
break;
case OPTION_NO_MDEBUG:
mips_flag_mdebug = FALSE;
break;
case OPTION_PDR:
mips_flag_pdr = TRUE;
break;
case OPTION_NO_PDR:
mips_flag_pdr = FALSE;
break;
case OPTION_MVXWORKS_PIC:
mips_pic = VXWORKS_PIC;
break;
case OPTION_NAN:
if (strcmp (arg, "2008") == 0)
mips_nan2008 = 1;
else if (strcmp (arg, "legacy") == 0)
mips_nan2008 = 0;
else
{
as_fatal (_("invalid NaN setting -mnan=%s"), arg);
return 0;
}
break;
default:
return 0;
}
mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
return 1;
}
/* Set up globals to tune for the ISA or processor described by INFO. */
static void
mips_set_tune (const struct mips_cpu_info *info)
{
if (info != 0)
mips_tune = info->cpu;
}
void
mips_after_parse_args (void)
{
const struct mips_cpu_info *arch_info = 0;
const struct mips_cpu_info *tune_info = 0;
/* GP relative stuff not working for PE */
if (strncmp (TARGET_OS, "pe", 2) == 0)
{
if (g_switch_seen && g_switch_value != 0)
as_bad (_("-G not supported in this configuration"));
g_switch_value = 0;
}
if (mips_abi == NO_ABI)
mips_abi = MIPS_DEFAULT_ABI;
/* The following code determines the architecture.
Similar code was added to GCC 3.3 (see override_options() in
config/mips/mips.c). The GAS and GCC code should be kept in sync
as much as possible. */
if (mips_arch_string != 0)
arch_info = mips_parse_cpu ("-march", mips_arch_string);
if (file_mips_opts.isa != ISA_UNKNOWN)
{
/* Handle -mipsN. At this point, file_mips_opts.isa contains the
ISA level specified by -mipsN, while arch_info->isa contains
the -march selection (if any). */
if (arch_info != 0)
{
/* -march takes precedence over -mipsN, since it is more descriptive.
There's no harm in specifying both as long as the ISA levels
are the same. */
if (file_mips_opts.isa != arch_info->isa)
as_bad (_("-%s conflicts with the other architecture options,"
" which imply -%s"),
mips_cpu_info_from_isa (file_mips_opts.isa)->name,
mips_cpu_info_from_isa (arch_info->isa)->name);
}
else
arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
}
if (arch_info == 0)
{
arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
gas_assert (arch_info);
}
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
as_bad (_("-march=%s is not compatible with the selected ABI"),
arch_info->name);
file_mips_opts.arch = arch_info->cpu;
file_mips_opts.isa = arch_info->isa;
/* Set up initial mips_opts state. */
mips_opts = file_mips_opts;
/* The register size inference code is now placed in
file_mips_check_options. */
/* Optimize for file_mips_opts.arch, unless -mtune selects a different
processor. */
if (mips_tune_string != 0)
tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
if (tune_info == 0)
mips_set_tune (arch_info);
else
mips_set_tune (tune_info);
if (mips_flag_mdebug < 0)
mips_flag_mdebug = 0;
}
void
mips_init_after_args (void)
{
/* initialize opcodes */
bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
}
long
md_pcrel_from (fixS *fixP)
{
valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
/* Return the address of the delay slot. */
return addr + 2;
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_JMP:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_JMP:
/* Return the address of the delay slot. */
return addr + 4;
case BFD_RELOC_MIPS_18_PCREL_S3:
/* Return the aligned address of the doubleword containing
the instruction. */
return addr & ~7;
default:
return addr;
}
}
/* This is called before the symbol table is processed. In order to
work with gcc when using mips-tfile, we must keep all local labels.
However, in other cases, we want to discard them. If we were
called with -g, but we didn't see any debugging information, it may
mean that gcc is smuggling debugging information through to
mips-tfile, in which case we must generate all local labels. */
void
mips_frob_file_before_adjust (void)
{
#ifndef NO_ECOFF_DEBUGGING
if (ECOFF_DEBUGGING
&& mips_debug != 0
&& ! ecoff_debugging_seen)
flag_keep_locals = 1;
#endif
}
/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
the corresponding LO16 reloc. This is called before md_apply_fix and
tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
relocation operators.
For our purposes, a %lo() expression matches a %got() or %hi()
expression if:
(a) it refers to the same symbol; and
(b) the offset applied in the %lo() expression is no lower than
the offset applied in the %got() or %hi().
(b) allows us to cope with code like:
lui $4,%hi(foo)
lh $4,%lo(foo+2)($4)
...which is legal on RELA targets, and has a well-defined behaviour
if the user knows that adding 2 to "foo" will not induce a carry to
the high 16 bits.
When several %lo()s match a particular %got() or %hi(), we use the
following rules to distinguish them:
(1) %lo()s with smaller offsets are a better match than %lo()s with
higher offsets.
(2) %lo()s with no matching %got() or %hi() are better than those
that already have a matching %got() or %hi().
(3) later %lo()s are better than earlier %lo()s.
These rules are applied in order.
(1) means, among other things, that %lo()s with identical offsets are
chosen if they exist.
(2) means that we won't associate several high-part relocations with
the same low-part relocation unless there's no alternative. Having
several high parts for the same low part is a GNU extension; this rule
allows careful users to avoid it.
(3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
with the last high-part relocation being at the front of the list.
It therefore makes sense to choose the last matching low-part
relocation, all other things being equal. It's also easier
to code that way. */
void
mips_frob_file (void)
{
struct mips_hi_fixup *l;
bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
for (l = mips_hi_fixup_list; l != NULL; l = l->next)
{
segment_info_type *seginfo;
bfd_boolean matched_lo_p;
fixS **hi_pos, **lo_pos, **pos;
gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
/* If a GOT16 relocation turns out to be against a global symbol,
there isn't supposed to be a matching LO. Ignore %gots against
constants; we'll report an error for those later. */
if (got16_reloc_p (l->fixp->fx_r_type)
&& !(l->fixp->fx_addsy
&& pic_need_relax (l->fixp->fx_addsy)))
continue;
/* Check quickly whether the next fixup happens to be a matching %lo. */
if (fixup_has_matching_lo_p (l->fixp))
continue;
seginfo = seg_info (l->seg);
/* Set HI_POS to the position of this relocation in the chain.
Set LO_POS to the position of the chosen low-part relocation.
MATCHED_LO_P is true on entry to the loop if *POS is a low-part
relocation that matches an immediately-preceding high-part
relocation. */
hi_pos = NULL;
lo_pos = NULL;
matched_lo_p = FALSE;
looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
{
if (*pos == l->fixp)
hi_pos = pos;
if ((*pos)->fx_r_type == looking_for_rtype
&& symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
&& (*pos)->fx_offset >= l->fixp->fx_offset
&& (lo_pos == NULL
|| (*pos)->fx_offset < (*lo_pos)->fx_offset
|| (!matched_lo_p
&& (*pos)->fx_offset == (*lo_pos)->fx_offset)))
lo_pos = pos;
matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
&& fixup_has_matching_lo_p (*pos));
}
/* If we found a match, remove the high-part relocation from its
current position and insert it before the low-part relocation.
Make the offsets match so that fixup_has_matching_lo_p()
will return true.
We don't warn about unmatched high-part relocations since some
versions of gcc have been known to emit dead "lui ...%hi(...)"
instructions. */
if (lo_pos != NULL)
{
l->fixp->fx_offset = (*lo_pos)->fx_offset;
if (l->fixp->fx_next != *lo_pos)
{
*hi_pos = l->fixp->fx_next;
l->fixp->fx_next = *lo_pos;
*lo_pos = l->fixp;
}
}
}
}
int
mips_force_relocation (fixS *fixp)
{
if (generic_force_reloc (fixp))
return 1;
/* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
so that the linker relaxation can update targets. */
if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
return 1;
/* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
microMIPS symbols so that we can do cross-mode branch diagnostics
and BAL to JALX conversion by the linker. */
if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
&& fixp->fx_addsy
&& ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
return 1;
/* We want all PC-relative relocations to be kept for R6 relaxation. */
if (ISA_IS_R6 (file_mips_opts.isa)
&& (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
|| fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
|| fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
return 1;
return 0;
}
/* Implement TC_FORCE_RELOCATION_ABS. */
bfd_boolean
mips_force_relocation_abs (fixS *fixp)
{
if (generic_force_reloc (fixp))
return TRUE;
/* These relocations do not have enough bits in the in-place addend
to hold an arbitrary absolute section's offset. */
if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
return TRUE;
return FALSE;
}
/* Read the instruction associated with RELOC from BUF. */
static unsigned int
read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
{
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
return read_compressed_insn (buf, 4);
else
return read_insn (buf);
}
/* Write instruction INSN to BUF, given that it has been relocated
by RELOC. */
static void
write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
unsigned long insn)
{
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
write_compressed_insn (buf, insn, 4);
else
write_insn (buf, insn);
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
to a symbol in another ISA mode, which cannot be converted to JALX. */
static bfd_boolean
fix_bad_cross_mode_jump_p (fixS *fixP)
{
unsigned long opcode;
int other;
char *buf;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_JMP:
return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MICROMIPS_JMP:
return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
default:
return FALSE;
}
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
jump to a symbol in the same ISA mode. */
static bfd_boolean
fix_bad_same_mode_jalx_p (fixS *fixP)
{
unsigned long opcode;
int other;
char *buf;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_JMP:
return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MIPS16_JMP:
return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MICROMIPS_JMP:
return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
default:
return FALSE;
}
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
to a symbol whose value plus addend is not aligned according to the
ultimate (after linker relaxation) jump instruction's immediate field
requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
regular MIPS code, to (1 << 2). */
static bfd_boolean
fix_bad_misaligned_jump_p (fixS *fixP, int shift)
{
bfd_boolean micro_to_mips_p;
valueT val;
int other;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
other = S_GET_OTHER (fixP->fx_addsy);
val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
val += fixP->fx_offset;
micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& !ELF_ST_IS_MICROMIPS (other));
return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
!= ELF_ST_IS_COMPRESSED (other));
}
/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
to a symbol whose annotation indicates another ISA mode. For absolute
symbols check the ISA bit instead.
We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
MIPS symbols and associated with BAL instructions as these instructions
may be converted to JALX by the linker. */
static bfd_boolean
fix_bad_cross_mode_branch_p (fixS *fixP)
{
bfd_boolean absolute_p;
unsigned long opcode;
asection *symsec;
valueT val;
int other;
char *buf;
if (mips_ignore_branch_isa)
return FALSE;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
symsec = S_GET_SEGMENT (fixP->fx_addsy);
absolute_p = bfd_is_abs_section (symsec);
val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
other = S_GET_OTHER (fixP->fx_addsy);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
switch (fixP->fx_r_type)
{
case BFD_RELOC_16_PCREL_S2:
return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
&& opcode != 0x0411);
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
&& opcode != 0x4060);
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
case BFD_RELOC_MIPS16_16_PCREL_S1:
return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
default:
abort ();
}
}
/* Return TRUE if the symbol plus addend associated with a regular MIPS
branch instruction pointed to by FIXP is not aligned according to the
branch instruction's immediate field requirement. We need the addend
to preserve the ISA bit and also the sum must not have bit 2 set. We
must explicitly OR in the ISA bit from symbol annotation as the bit
won't be set in the symbol's value then. */
static bfd_boolean
fix_bad_misaligned_branch_p (fixS *fixP)
{
bfd_boolean absolute_p;
asection *symsec;
valueT isa_bit;
valueT val;
valueT off;
int other;
if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
return FALSE;
symsec = S_GET_SEGMENT (fixP->fx_addsy);
absolute_p = bfd_is_abs_section (symsec);
val = S_GET_VALUE (fixP->fx_addsy);
other = S_GET_OTHER (fixP->fx_addsy);
off = fixP->fx_offset;
isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
val |= ELF_ST_IS_COMPRESSED (other);
val += off;
return (val & 0x3) != isa_bit;
}
/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
and its calculated value VAL. */
static void
fix_validate_branch (fixS *fixP, valueT val)
{
if (fixP->fx_done && (val & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) (val + md_pcrel_from (fixP)));
else if (fix_bad_cross_mode_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to a symbol in another ISA mode"));
else if (fix_bad_misaligned_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
}
/* Apply a fixup to the object file. */
void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
char *buf;
unsigned long insn;
reloc_howto_type *howto;
if (fixP->fx_pcrel)
switch (fixP->fx_r_type)
{
case BFD_RELOC_16_PCREL_S2:
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
case BFD_RELOC_32_PCREL:
case BFD_RELOC_MIPS_21_PCREL_S2:
case BFD_RELOC_MIPS_26_PCREL_S2:
case BFD_RELOC_MIPS_18_PCREL_S3:
case BFD_RELOC_MIPS_19_PCREL_S2:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
break;
case BFD_RELOC_32:
fixP->fx_r_type = BFD_RELOC_32_PCREL;
break;
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative reference to a different section"));
break;
}
/* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
that have no MIPS ELF equivalent. */
if (fixP->fx_r_type != BFD_RELOC_8)
{
howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
if (!howto)
return;
}
gas_assert (fixP->fx_size == 2
|| fixP->fx_size == 4
|| fixP->fx_r_type == BFD_RELOC_8
|| fixP->fx_r_type == BFD_RELOC_16
|| fixP->fx_r_type == BFD_RELOC_64
|| fixP->fx_r_type == BFD_RELOC_CTOR
|| fixP->fx_r_type == BFD_RELOC_MIPS_SUB
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
|| fixP->fx_r_type == BFD_RELOC_NONE);
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
/* Don't treat parts of a composite relocation as done. There are two
reasons for this:
(1) The second and third parts will be against 0 (RSS_UNDEF) but
should nevertheless be emitted if the first part is.
(2) In normal usage, composite relocations are never assembly-time
constants. The easiest way of dealing with the pathological
exceptions is to generate a relocation against STN_UNDEF and
leave everything up to the linker. */
if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
fixP->fx_done = 1;
switch (fixP->fx_r_type)
{
case BFD_RELOC_MIPS_TLS_GD:
case BFD_RELOC_MIPS_TLS_LDM:
case BFD_RELOC_MIPS_TLS_DTPREL32:
case BFD_RELOC_MIPS_TLS_DTPREL64:
case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
case BFD_RELOC_MIPS_TLS_GOTTPREL:
case BFD_RELOC_MIPS_TLS_TPREL32:
case BFD_RELOC_MIPS_TLS_TPREL64:
case BFD_RELOC_MIPS_TLS_TPREL_HI16:
case BFD_RELOC_MIPS_TLS_TPREL_LO16:
case BFD_RELOC_MICROMIPS_TLS_GD:
case BFD_RELOC_MICROMIPS_TLS_LDM:
case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
case BFD_RELOC_MIPS16_TLS_GD:
case BFD_RELOC_MIPS16_TLS_LDM:
case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
case BFD_RELOC_MIPS16_TLS_GOTTPREL:
case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
if (fixP->fx_addsy)
S_SET_THREAD_LOCAL (fixP->fx_addsy);
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("TLS relocation against a constant"));
break;
case BFD_RELOC_MIPS_JMP:
case BFD_RELOC_MIPS16_JMP:
case BFD_RELOC_MICROMIPS_JMP:
{
int shift;
gas_assert (!fixP->fx_done);
/* Shift is 2, unusually, for microMIPS JALX. */
if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& (read_compressed_insn (buf, 4) >> 26) != 0x3c)
shift = 1;
else
shift = 2;
if (fix_bad_cross_mode_jump_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("jump to a symbol in another ISA mode"));
else if (fix_bad_same_mode_jalx_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("JALX to a symbol in the same ISA mode"));
else if (fix_bad_misaligned_jump_p (fixP, shift))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("jump to misaligned address (0x%lx)"),
(long) (S_GET_VALUE (fixP->fx_addsy)
+ fixP->fx_offset));
else if (HAVE_IN_PLACE_ADDENDS
&& (fixP->fx_offset & ((1 << shift) - 1)) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
}
/* Fall through. */
case BFD_RELOC_MIPS_SHIFT5:
case BFD_RELOC_MIPS_SHIFT6:
case BFD_RELOC_MIPS_GOT_DISP:
case BFD_RELOC_MIPS_GOT_PAGE:
case BFD_RELOC_MIPS_GOT_OFST:
case BFD_RELOC_MIPS_SUB:
case BFD_RELOC_MIPS_INSERT_A:
case BFD_RELOC_MIPS_INSERT_B:
case BFD_RELOC_MIPS_DELETE:
case BFD_RELOC_MIPS_HIGHEST:
case BFD_RELOC_MIPS_HIGHER:
case BFD_RELOC_MIPS_SCN_DISP:
case BFD_RELOC_MIPS_REL16:
case BFD_RELOC_MIPS_RELGOT:
case BFD_RELOC_MIPS_JALR:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
case BFD_RELOC_LO16:
case BFD_RELOC_GPREL16:
case BFD_RELOC_MIPS_LITERAL:
case BFD_RELOC_MIPS_CALL16:
case BFD_RELOC_MIPS_GOT16:
case BFD_RELOC_GPREL32:
case BFD_RELOC_MIPS_GOT_HI16:
case BFD_RELOC_MIPS_GOT_LO16:
case BFD_RELOC_MIPS_CALL_HI16:
case BFD_RELOC_MIPS_CALL_LO16:
case BFD_RELOC_HI16_S_PCREL:
case BFD_RELOC_LO16_PCREL:
case BFD_RELOC_MIPS16_GPREL:
case BFD_RELOC_MIPS16_GOT16:
case BFD_RELOC_MIPS16_CALL16:
case BFD_RELOC_MIPS16_HI16:
case BFD_RELOC_MIPS16_HI16_S:
case BFD_RELOC_MIPS16_LO16:
case BFD_RELOC_MICROMIPS_GOT_DISP:
case BFD_RELOC_MICROMIPS_GOT_PAGE:
case BFD_RELOC_MICROMIPS_GOT_OFST:
case BFD_RELOC_MICROMIPS_SUB:
case BFD_RELOC_MICROMIPS_HIGHEST:
case BFD_RELOC_MICROMIPS_HIGHER:
case BFD_RELOC_MICROMIPS_SCN_DISP:
case BFD_RELOC_MICROMIPS_JALR:
case BFD_RELOC_MICROMIPS_HI16:
case BFD_RELOC_MICROMIPS_HI16_S:
case BFD_RELOC_MICROMIPS_LO16:
case BFD_RELOC_MICROMIPS_GPREL16:
case BFD_RELOC_MICROMIPS_LITERAL:
case BFD_RELOC_MICROMIPS_CALL16:
case BFD_RELOC_MICROMIPS_GOT16:
case BFD_RELOC_MICROMIPS_GOT_HI16:
case BFD_RELOC_MICROMIPS_GOT_LO16:
case BFD_RELOC_MICROMIPS_CALL_HI16:
case BFD_RELOC_MICROMIPS_CALL_LO16:
case BFD_RELOC_MIPS_EH:
if (fixP->fx_done)
{
offsetT value;
if (calculate_reloc (fixP->fx_r_type, *valP, &value))
{
insn = read_reloc_insn (buf, fixP->fx_r_type);
if (mips16_reloc_p (fixP->fx_r_type))
insn |= mips16_immed_extend (value, 16);
else
insn |= (value & 0xffff);
write_reloc_insn (buf, fixP->fx_r_type, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("unsupported constant in relocation"));
}
break;
case BFD_RELOC_64:
/* This is handled like BFD_RELOC_32, but we output a sign
extended value if we are only 32 bits. */
if (fixP->fx_done)
{
if (8 <= sizeof (valueT))
md_number_to_chars (buf, *valP, 8);
else
{
valueT hiv;
if ((*valP & 0x80000000) != 0)
hiv = 0xffffffff;
else
hiv = 0;
md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
}
}
break;
case BFD_RELOC_RVA:
case BFD_RELOC_32:
case BFD_RELOC_32_PCREL:
case BFD_RELOC_16:
case BFD_RELOC_8:
/* If we are deleting this reloc entry, we must fill in the
value now. This can happen if we have a .word which is not
resolved when it appears but is later defined. */
if (fixP->fx_done)
md_number_to_chars (buf, *valP, fixP->fx_size);
break;
case BFD_RELOC_MIPS_21_PCREL_S2:
fix_validate_branch (fixP, *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x400000 <= 0x7fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x1fffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
break;
case BFD_RELOC_MIPS_26_PCREL_S2:
fix_validate_branch (fixP, *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x8000000 <= 0xfffffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x3ffffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
break;
case BFD_RELOC_MIPS_18_PCREL_S3:
if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access using misaligned symbol (%lx)"),
(long) S_GET_VALUE (fixP->fx_addsy));
if ((fixP->fx_offset & 0x7) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access using misaligned offset (%lx)"),
(long) fixP->fx_offset);
if (!fixP->fx_done)
break;
if (*valP + 0x100000 <= 0x1fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 3) & 0x3ffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access out of range"));
break;
case BFD_RELOC_MIPS_19_PCREL_S2:
if ((*valP & 0x3) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access to misaligned address (%lx)"),
(long) *valP);
if (!fixP->fx_done)
break;
if (*valP + 0x100000 <= 0x1fffff)
{
insn = read_insn (buf);
insn |= (*valP >> 2) & 0x7ffff;
write_insn (buf, insn);
}
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("PC-relative access out of range"));
break;
case BFD_RELOC_16_PCREL_S2:
fix_validate_branch (fixP, *valP);
/* We need to save the bits in the instruction since fixup_segment()
might be deleting the relocation entry (i.e., a branch within
the current segment). */
if (! fixP->fx_done)
break;
/* Update old instruction data. */
insn = read_insn (buf);
if (*valP + 0x20000 <= 0x3ffff)
{
insn |= (*valP >> 2) & 0xffff;
write_insn (buf, insn);
}
else if (fixP->fx_tcbit2
&& fixP->fx_done
&& fixP->fx_frag->fr_address >= text_section->vma
&& (fixP->fx_frag->fr_address
< text_section->vma + bfd_get_section_size (text_section))
&& ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|| (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
|| (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
{
/* The branch offset is too large. If this is an
unconditional branch, and we are not generating PIC code,
we can convert it to an absolute jump instruction. */
if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
insn = 0x0c000000; /* jal */
else
insn = 0x08000000; /* j */
fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
fixP->fx_done = 0;
fixP->fx_addsy = section_symbol (text_section);
*valP += md_pcrel_from (fixP);
write_insn (buf, insn);
}
else
{
/* If we got here, we have branch-relaxation disabled,
and there's nothing we can do to fix this instruction
without turning it into a longer sequence. */
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
}
break;
case BFD_RELOC_MIPS16_16_PCREL_S1:
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
gas_assert (!fixP->fx_done);
if (fix_bad_cross_mode_branch_p (fixP))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to a symbol in another ISA mode"));
else if (fixP->fx_addsy
&& !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
&& !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
&& (fixP->fx_offset & 0x1) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch to misaligned address (0x%lx)"),
(long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("cannot encode misaligned addend "
"in the relocatable field (0x%lx)"),
(long) fixP->fx_offset);
break;
case BFD_RELOC_VTABLE_INHERIT:
fixP->fx_done = 0;
if (fixP->fx_addsy
&& !S_IS_DEFINED (fixP->fx_addsy)
&& !S_IS_WEAK (fixP->fx_addsy))
S_SET_WEAK (fixP->fx_addsy);
break;
case BFD_RELOC_NONE:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
break;
default:
abort ();
}
/* Remember value for tc_gen_reloc. */
fixP->fx_addnumber = *valP;
}
static symbolS *
get_symbol (void)
{
int c;
char *name;
symbolS *p;
c = get_symbol_name (&name);
p = (symbolS *) symbol_find_or_make (name);
(void) restore_line_pointer (c);
return p;
}
/* Align the current frag to a given power of two. If a particular
fill byte should be used, FILL points to an integer that contains
that byte, otherwise FILL is null.
This function used to have the comment:
The MIPS assembler also automatically adjusts any preceding label.
The implementation therefore applied the adjustment to a maximum of
one label. However, other label adjustments are applied to batches
of labels, and adjusting just one caused problems when new labels
were added for the sake of debugging or unwind information.
We therefore adjust all preceding labels (given as LABELS) instead. */
static void
mips_align (int to, int *fill, struct insn_label_list *labels)
{
mips_emit_delays ();
mips_record_compressed_mode ();
if (fill == NULL && subseg_text_p (now_seg))
frag_align_code (to, 0);
else
frag_align (to, fill ? *fill : 0, 0);
record_alignment (now_seg, to);
mips_move_labels (labels, FALSE);
}
/* Align to a given power of two. .align 0 turns off the automatic
alignment used by the data creating pseudo-ops. */
static void
s_align (int x ATTRIBUTE_UNUSED)
{
int temp, fill_value, *fill_ptr;
long max_alignment = 28;
/* o Note that the assembler pulls down any immediately preceding label
to the aligned address.
o It's not documented but auto alignment is reinstated by
a .align pseudo instruction.
o Note also that after auto alignment is turned off the mips assembler
issues an error on attempt to assemble an improperly aligned data item.
We don't. */
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
else if (temp < 0)
{
as_warn (_("alignment negative, 0 assumed"));
temp = 0;
}
if (*input_line_pointer == ',')
{
++input_line_pointer;
fill_value = get_absolute_expression ();
fill_ptr = &fill_value;
}
else
fill_ptr = 0;
if (temp)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
/* Auto alignment should be switched on by next section change. */
auto_align = 1;
mips_align (temp, fill_ptr, l);
}
else
{
auto_align = 0;
}
demand_empty_rest_of_line ();
}
static void
s_change_sec (int sec)
{
segT seg;
/* The ELF backend needs to know that we are changing sections, so
that .previous works correctly. We could do something like check
for an obj_section_change_hook macro, but that might be confusing
as it would not be appropriate to use it in the section changing
functions in read.c, since obj-elf.c intercepts those. FIXME:
This should be cleaner, somehow. */
obj_elf_section_change_hook ();
mips_emit_delays ();
switch (sec)
{
case 't':
s_text (0);
break;
case 'd':
s_data (0);
break;
case 'b':
subseg_set (bss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
break;
case 'r':
seg = subseg_new (RDATA_SECTION_NAME,
(subsegT) get_absolute_expression ());
bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
| SEC_READONLY | SEC_RELOC
| SEC_DATA));
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
case 's':
seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
bfd_set_section_flags (stdoutput, seg,
SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
case 'B':
seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
if (strncmp (TARGET_OS, "elf", 3) != 0)
record_alignment (seg, 4);
demand_empty_rest_of_line ();
break;
}
auto_align = 1;
}
void
s_change_section (int ignore ATTRIBUTE_UNUSED)
{
char *saved_ilp;
char *section_name;
char c, endc;
char next_c = 0;
int section_type;
int section_flag;
int section_entry_size;
int section_alignment;
saved_ilp = input_line_pointer;
endc = get_symbol_name (§ion_name);
c = (endc == '"' ? input_line_pointer[1] : endc);
if (c)
next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
/* Do we have .section Name<,"flags">? */
if (c != ',' || (c == ',' && next_c == '"'))
{
/* Just after name is now '\0'. */
(void) restore_line_pointer (endc);
input_line_pointer = saved_ilp;
obj_elf_section (ignore);
return;
}
section_name = xstrdup (section_name);
c = restore_line_pointer (endc);
input_line_pointer++;
/* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
if (c == ',')
section_type = get_absolute_expression ();
else
section_type = 0;
if (*input_line_pointer++ == ',')
section_flag = get_absolute_expression ();
else
section_flag = 0;
if (*input_line_pointer++ == ',')
section_entry_size = get_absolute_expression ();
else
section_entry_size = 0;
if (*input_line_pointer++ == ',')
section_alignment = get_absolute_expression ();
else
section_alignment = 0;
/* FIXME: really ignore? */
(void) section_alignment;
/* When using the generic form of .section (as implemented by obj-elf.c),
there's no way to set the section type to SHT_MIPS_DWARF. Users have
traditionally had to fall back on the more common @progbits instead.
There's nothing really harmful in this, since bfd will correct
SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
means that, for backwards compatibility, the special_section entries
for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
Even so, we shouldn't force users of the MIPS .section syntax to
incorrectly label the sections as SHT_PROGBITS. The best compromise
seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
generic type-checking code. */
if (section_type == SHT_MIPS_DWARF)
section_type = SHT_PROGBITS;
obj_elf_change_section (section_name, section_type, 0, section_flag,
section_entry_size, 0, 0, 0);
if (now_seg->name != section_name)
free (section_name);
}
void
mips_enable_auto_align (void)
{
auto_align = 1;
}
static void
s_cons (int log_size)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
mips_emit_delays ();
if (log_size > 0 && auto_align)
mips_align (log_size, 0, l);
cons (1 << log_size);
mips_clear_insn_labels ();
}
static void
s_float_cons (int type)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l = si->label_list;
mips_emit_delays ();
if (auto_align)
{
if (type == 'd')
mips_align (3, 0, l);
else
mips_align (2, 0, l);
}
float_cons (type);
mips_clear_insn_labels ();
}
/* Handle .globl. We need to override it because on Irix 5 you are
permitted to say
.globl foo .text
where foo is an undefined symbol, to mean that foo should be
considered to be the address of a function. */
static void
s_mips_globl (int x ATTRIBUTE_UNUSED)
{
char *name;
int c;
symbolS *symbolP;
flagword flag;
do
{
c = get_symbol_name (&name);
symbolP = symbol_find_or_make (name);
S_SET_EXTERNAL (symbolP);
*input_line_pointer = c;
SKIP_WHITESPACE_AFTER_NAME ();
/* On Irix 5, every global symbol that is not explicitly labelled as
being a function is apparently labelled as being an object. */
flag = BSF_OBJECT;
if (!is_end_of_line[(unsigned char) *input_line_pointer]
&& (*input_line_pointer != ','))
{
char *secname;
asection *sec;
c = get_symbol_name (&secname);
sec = bfd_get_section_by_name (stdoutput, secname);
if (sec == NULL)
as_bad (_("%s: no such section"), secname);
(void) restore_line_pointer (c);
if (sec != NULL && (sec->flags & SEC_CODE) != 0)
flag = BSF_FUNCTION;
}
symbol_get_bfdsym (symbolP)->flags |= flag;
c = *input_line_pointer;
if (c == ',')
{
input_line_pointer++;
SKIP_WHITESPACE ();
if (is_end_of_line[(unsigned char) *input_line_pointer])
c = '\n';
}
}
while (c == ',');
demand_empty_rest_of_line ();
}
static void
s_option (int x ATTRIBUTE_UNUSED)
{
char *opt;
char c;
c = get_symbol_name (&opt);
if (*opt == 'O')
{
/* FIXME: What does this mean? */
}
else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
{
int i;
i = atoi (opt + 3);
if (i != 0 && i != 2)
as_bad (_(".option pic%d not supported"), i);
else if (mips_pic == VXWORKS_PIC)
as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
else if (i == 0)
mips_pic = NO_PIC;
else if (i == 2)
{
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
}
if (mips_pic == SVR4_PIC)
{
if (g_switch_seen && g_switch_value != 0)
as_warn (_("-G may not be used with SVR4 PIC code"));
g_switch_value = 0;
bfd_set_gp_size (stdoutput, 0);
}
}
else
as_warn (_("unrecognized option \"%s\""), opt);
(void) restore_line_pointer (c);
demand_empty_rest_of_line ();
}
/* This structure is used to hold a stack of .set values. */
struct mips_option_stack
{
struct mips_option_stack *next;
struct mips_set_options options;
};
static struct mips_option_stack *mips_opts_stack;
/* Return status for .set/.module option handling. */
enum code_option_type
{
/* Unrecognized option. */
OPTION_TYPE_BAD = -1,
/* Ordinary option. */
OPTION_TYPE_NORMAL,
/* ISA changing option. */
OPTION_TYPE_ISA
};
/* Handle common .set/.module options. Return status indicating option
type. */
static enum code_option_type
parse_code_option (char * name)
{
bfd_boolean isa_set = FALSE;
const struct mips_ase *ase;
if (strncmp (name, "at=", 3) == 0)
{
char *s = name + 3;
if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
as_bad (_("unrecognized register name `%s'"), s);
}
else if (strcmp (name, "at") == 0)
mips_opts.at = ATREG;
else if (strcmp (name, "noat") == 0)
mips_opts.at = ZERO;
else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
mips_opts.nomove = 0;
else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
mips_opts.nomove = 1;
else if (strcmp (name, "bopt") == 0)
mips_opts.nobopt = 0;
else if (strcmp (name, "nobopt") == 0)
mips_opts.nobopt = 1;
else if (strcmp (name, "gp=32") == 0)
mips_opts.gp = 32;
else if (strcmp (name, "gp=64") == 0)
mips_opts.gp = 64;
else if (strcmp (name, "fp=32") == 0)
mips_opts.fp = 32;
else if (strcmp (name, "fp=xx") == 0)
mips_opts.fp = 0;
else if (strcmp (name, "fp=64") == 0)
mips_opts.fp = 64;
else if (strcmp (name, "softfloat") == 0)
mips_opts.soft_float = 1;
else if (strcmp (name, "hardfloat") == 0)
mips_opts.soft_float = 0;
else if (strcmp (name, "singlefloat") == 0)
mips_opts.single_float = 1;
else if (strcmp (name, "doublefloat") == 0)
mips_opts.single_float = 0;
else if (strcmp (name, "nooddspreg") == 0)
mips_opts.oddspreg = 0;
else if (strcmp (name, "oddspreg") == 0)
mips_opts.oddspreg = 1;
else if (strcmp (name, "mips16") == 0
|| strcmp (name, "MIPS-16") == 0)
mips_opts.mips16 = 1;
else if (strcmp (name, "nomips16") == 0
|| strcmp (name, "noMIPS-16") == 0)
mips_opts.mips16 = 0;
else if (strcmp (name, "micromips") == 0)
mips_opts.micromips = 1;
else if (strcmp (name, "nomicromips") == 0)
mips_opts.micromips = 0;
else if (name[0] == 'n'
&& name[1] == 'o'
&& (ase = mips_lookup_ase (name + 2)))
mips_set_ase (ase, &mips_opts, FALSE);
else if ((ase = mips_lookup_ase (name)))
mips_set_ase (ase, &mips_opts, TRUE);
else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
{
/* Permit the user to change the ISA and architecture on the fly.
Needless to say, misuse can cause serious problems. */
if (strncmp (name, "arch=", 5) == 0)
{
const struct mips_cpu_info *p;
p = mips_parse_cpu ("internal use", name + 5);
if (!p)
as_bad (_("unknown architecture %s"), name + 5);
else
{
mips_opts.arch = p->cpu;
mips_opts.isa = p->isa;
isa_set = TRUE;
}
}
else if (strncmp (name, "mips", 4) == 0)
{
const struct mips_cpu_info *p;
p = mips_parse_cpu ("internal use", name);
if (!p)
as_bad (_("unknown ISA level %s"), name + 4);
else
{
mips_opts.arch = p->cpu;
mips_opts.isa = p->isa;
isa_set = TRUE;
}
}
else
as_bad (_("unknown ISA or architecture %s"), name);
}
else if (strcmp (name, "autoextend") == 0)
mips_opts.noautoextend = 0;
else if (strcmp (name, "noautoextend") == 0)
mips_opts.noautoextend = 1;
else if (strcmp (name, "insn32") == 0)
mips_opts.insn32 = TRUE;
else if (strcmp (name, "noinsn32") == 0)
mips_opts.insn32 = FALSE;
else if (strcmp (name, "sym32") == 0)
mips_opts.sym32 = TRUE;
else if (strcmp (name, "nosym32") == 0)
mips_opts.sym32 = FALSE;
else
return OPTION_TYPE_BAD;
return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
}
/* Handle the .set pseudo-op. */
static void
s_mipsset (int x ATTRIBUTE_UNUSED)
{
enum code_option_type type = OPTION_TYPE_NORMAL;
char *name = input_line_pointer, ch;
file_mips_check_options ();
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (strchr (name, ','))
{
/* Generic ".set" directive; use the generic handler. */
*input_line_pointer = ch;
input_line_pointer = name;
s_set (0);
return;
}
if (strcmp (name, "reorder") == 0)
{
if (mips_opts.noreorder)
end_noreorder ();
}
else if (strcmp (name, "noreorder") == 0)
{
if (!mips_opts.noreorder)
start_noreorder ();
}
else if (strcmp (name, "macro") == 0)
mips_opts.warn_about_macros = 0;
else if (strcmp (name, "nomacro") == 0)
{
if (mips_opts.noreorder == 0)
as_bad (_("`noreorder' must be set before `nomacro'"));
mips_opts.warn_about_macros = 1;
}
else if (strcmp (name, "gp=default") == 0)
mips_opts.gp = file_mips_opts.gp;
else if (strcmp (name, "fp=default") == 0)
mips_opts.fp = file_mips_opts.fp;
else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
{
mips_opts.isa = file_mips_opts.isa;
mips_opts.arch = file_mips_opts.arch;
mips_opts.gp = file_mips_opts.gp;
mips_opts.fp = file_mips_opts.fp;
}
else if (strcmp (name, "push") == 0)
{
struct mips_option_stack *s;
s = XNEW (struct mips_option_stack);
s->next = mips_opts_stack;
s->options = mips_opts;
mips_opts_stack = s;
}
else if (strcmp (name, "pop") == 0)
{
struct mips_option_stack *s;
s = mips_opts_stack;
if (s == NULL)
as_bad (_(".set pop with no .set push"));
else
{
/* If we're changing the reorder mode we need to handle
delay slots correctly. */
if (s->options.noreorder && ! mips_opts.noreorder)
start_noreorder ();
else if (! s->options.noreorder && mips_opts.noreorder)
end_noreorder ();
mips_opts = s->options;
mips_opts_stack = s->next;
free (s);
}
}
else
{
type = parse_code_option (name);
if (type == OPTION_TYPE_BAD)
as_warn (_("tried to set unrecognized symbol: %s\n"), name);
}
/* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
registers based on what is supported by the arch/cpu. */
if (type == OPTION_TYPE_ISA)
{
switch (mips_opts.isa)
{
case 0:
break;
case ISA_MIPS1:
/* MIPS I cannot support FPXX. */
mips_opts.fp = 32;
/* fall-through. */
case ISA_MIPS2:
case ISA_MIPS32:
case ISA_MIPS32R2:
case ISA_MIPS32R3:
case ISA_MIPS32R5:
mips_opts.gp = 32;
if (mips_opts.fp != 0)
mips_opts.fp = 32;
break;
case ISA_MIPS32R6:
mips_opts.gp = 32;
mips_opts.fp = 64;
break;
case ISA_MIPS3:
case ISA_MIPS4:
case ISA_MIPS5:
case ISA_MIPS64:
case ISA_MIPS64R2:
case ISA_MIPS64R3:
case ISA_MIPS64R5:
case ISA_MIPS64R6:
mips_opts.gp = 64;
if (mips_opts.fp != 0)
{
if (mips_opts.arch == CPU_R5900)
mips_opts.fp = 32;
else
mips_opts.fp = 64;
}
break;
default:
as_bad (_("unknown ISA level %s"), name + 4);
break;
}
}
mips_check_options (&mips_opts, FALSE);
mips_check_isa_supports_ases ();
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .module pseudo-op. */
static void
s_module (int ignore ATTRIBUTE_UNUSED)
{
char *name = input_line_pointer, ch;
while (!is_end_of_line[(unsigned char) *input_line_pointer])
++input_line_pointer;
ch = *input_line_pointer;
*input_line_pointer = '\0';
if (!file_mips_opts_checked)
{
if (parse_code_option (name) == OPTION_TYPE_BAD)
as_bad (_(".module used with unrecognized symbol: %s\n"), name);
/* Update module level settings from mips_opts. */
file_mips_opts = mips_opts;
}
else
as_bad (_(".module is not permitted after generating code"));
*input_line_pointer = ch;
demand_empty_rest_of_line ();
}
/* Handle the .abicalls pseudo-op. I believe this is equivalent to
.option pic2. It means to generate SVR4 PIC calls. */
static void
s_abicalls (int ignore ATTRIBUTE_UNUSED)
{
mips_pic = SVR4_PIC;
mips_abicalls = TRUE;
if (g_switch_seen && g_switch_value != 0)
as_warn (_("-G may not be used with SVR4 PIC code"));
g_switch_value = 0;
bfd_set_gp_size (stdoutput, 0);
demand_empty_rest_of_line ();
}
/* Handle the .cpload pseudo-op. This is used when generating SVR4
PIC code. It sets the $gp register for the function based on the
function address, which is in the register named in the argument.
This uses a relocation against _gp_disp, which is handled specially
by the linker. The result is:
lui $gp,%hi(_gp_disp)
addiu $gp,$gp,%lo(_gp_disp)
addu $gp,$gp,.cpload argument
The .cpload argument is normally $25 == $t9.
The -mno-shared option changes this to:
lui $gp,%hi(__gnu_local_gp)
addiu $gp,$gp,%lo(__gnu_local_gp)
and the argument is ignored. This saves an instruction, but the
resulting code is not position independent; it uses an absolute
address for __gnu_local_gp. Thus code assembled with -mno-shared
can go into an ordinary executable, but not into a shared library. */
static void
s_cpload (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
int reg;
int in_shared;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
.cpload is ignored. */
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
ignore_rest_of_line ();
return;
}
/* .cpload should be in a .set noreorder section. */
if (mips_opts.noreorder == 0)
as_warn (_(".cpload not in noreorder section"));
reg = tc_get_register (0);
/* If we need to produce a 64-bit address, we are better off using
the default instruction sequence. */
in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
"__gnu_local_gp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
macro_build_lui (&ex, mips_gp_register);
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, BFD_RELOC_LO16);
if (in_shared)
macro_build (NULL, "addu", "d,v,t", mips_gp_register,
mips_gp_register, reg);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
.cpsetup $reg1, offset|$reg2, label
If offset is given, this results in:
sd $gp, offset($sp)
lui $gp, %hi(%neg(%gp_rel(label)))
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
daddu $gp, $gp, $reg1
If $reg2 is given, this results in:
or $reg2, $gp, $0
lui $gp, %hi(%neg(%gp_rel(label)))
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
daddu $gp, $gp, $reg1
$reg1 is normally $25 == $t9.
The -mno-shared option replaces the last three instructions with
lui $gp,%hi(_gp)
addiu $gp,$gp,%lo(_gp) */
static void
s_cpsetup (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex_off;
expressionS ex_sym;
int reg1;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, .cpsetup is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
ignore_rest_of_line ();
return;
}
reg1 = tc_get_register (0);
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("missing argument separator ',' for .cpsetup"));
return;
}
else
++input_line_pointer;
SKIP_WHITESPACE ();
if (*input_line_pointer == '$')
{
mips_cpreturn_register = tc_get_register (0);
mips_cpreturn_offset = -1;
}
else
{
mips_cpreturn_offset = get_absolute_expression ();
mips_cpreturn_register = -1;
}
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("missing argument separator ',' for .cpsetup"));
return;
}
else
++input_line_pointer;
SKIP_WHITESPACE ();
expression (&ex_sym);
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
if (mips_cpreturn_register == -1)
{
ex_off.X_op = O_constant;
ex_off.X_add_symbol = NULL;
ex_off.X_op_symbol = NULL;
ex_off.X_add_number = mips_cpreturn_offset;
macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
BFD_RELOC_LO16, SP);
}
else
move_register (mips_cpreturn_register, mips_gp_register);
if (mips_in_shared || HAVE_64BIT_SYMBOLS)
{
macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
-1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
BFD_RELOC_HI16_S);
macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, -1, BFD_RELOC_GPREL16,
BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
mips_gp_register, reg1);
}
else
{
expressionS ex;
ex.X_op = O_symbol;
ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
ex.X_op_symbol = NULL;
ex.X_add_number = 0;
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
macro_build_lui (&ex, mips_gp_register);
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
mips_gp_register, BFD_RELOC_LO16);
}
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
static void
s_cplocal (int ignore ATTRIBUTE_UNUSED)
{
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is not NewABI code,
.cplocal is ignored. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
ignore_rest_of_line ();
return;
}
mips_gp_register = tc_get_register (0);
demand_empty_rest_of_line ();
}
/* Handle the .cprestore pseudo-op. This stores $gp into a given
offset from $sp. The offset is remembered, and after making a PIC
call $gp is restored from that location. */
static void
s_cprestore (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
.cprestore is ignored. */
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
ignore_rest_of_line ();
return;
}
mips_cprestore_offset = get_absolute_expression ();
mips_cprestore_valid = 1;
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cprestore_offset;
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
SP, HAVE_64BIT_ADDRESSES);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
was given in the preceding .cpsetup, it results in:
ld $gp, offset($sp)
If a register $reg2 was given there, it results in:
or $gp, $reg2, $0 */
static void
s_cpreturn (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
file_mips_check_options ();
/* If we are not generating SVR4 PIC code, .cpreturn is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
if (mips_opts.mips16)
{
as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
ignore_rest_of_line ();
return;
}
mips_mark_labels ();
mips_assembling_insn = TRUE;
macro_start ();
if (mips_cpreturn_register == -1)
{
ex.X_op = O_constant;
ex.X_add_symbol = NULL;
ex.X_op_symbol = NULL;
ex.X_add_number = mips_cpreturn_offset;
macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
}
else
move_register (mips_gp_register, mips_cpreturn_register);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
debug information or MIPS16 TLS. */
static void
s_tls_rel_directive (const size_t bytes, const char *dirstr,
bfd_reloc_code_real_type rtype)
{
expressionS ex;
char *p;
expression (&ex);
if (ex.X_op != O_symbol)
{
as_bad (_("unsupported use of %s"), dirstr);
ignore_rest_of_line ();
}
p = frag_more (bytes);
md_number_to_chars (p, 0, bytes);
fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
demand_empty_rest_of_line ();
mips_clear_insn_labels ();
}
/* Handle .dtprelword. */
static void
s_dtprelword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
}
/* Handle .dtpreldword. */
static void
s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
}
/* Handle .tprelword. */
static void
s_tprelword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
}
/* Handle .tpreldword. */
static void
s_tpreldword (int ignore ATTRIBUTE_UNUSED)
{
s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
}
/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
code. It sets the offset to use in gp_rel relocations. */
static void
s_gpvalue (int ignore ATTRIBUTE_UNUSED)
{
/* If we are not generating SVR4 PIC code, .gpvalue is ignored.
We also need NewABI support. */
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
{
s_ignore (0);
return;
}
mips_gprel_offset = get_absolute_expression ();
demand_empty_rest_of_line ();
}
/* Handle the .gpword pseudo-op. This is used when generating PIC
code. It generates a 32 bit GP relative reloc. */
static void
s_gpword (int ignore ATTRIBUTE_UNUSED)
{
segment_info_type *si;
struct insn_label_list *l;
expressionS ex;
char *p;
/* When not generating PIC code, this is treated as .word. */
if (mips_pic != SVR4_PIC)
{
s_cons (2);
return;
}
si = seg_info (now_seg);
l = si->label_list;
mips_emit_delays ();
if (auto_align)
mips_align (2, 0, l);
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .gpword"));
ignore_rest_of_line ();
}
p = frag_more (4);
md_number_to_chars (p, 0, 4);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_GPREL32);
demand_empty_rest_of_line ();
}
static void
s_gpdword (int ignore ATTRIBUTE_UNUSED)
{
segment_info_type *si;
struct insn_label_list *l;
expressionS ex;
char *p;
/* When not generating PIC code, this is treated as .dword. */
if (mips_pic != SVR4_PIC)
{
s_cons (3);
return;
}
si = seg_info (now_seg);
l = si->label_list;
mips_emit_delays ();
if (auto_align)
mips_align (3, 0, l);
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .gpdword"));
ignore_rest_of_line ();
}
p = frag_more (8);
md_number_to_chars (p, 0, 8);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_GPREL32)->fx_tcbit = 1;
/* GPREL32 composed with 64 gives a 64-bit GP offset. */
fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
FALSE, BFD_RELOC_64)->fx_tcbit = 1;
demand_empty_rest_of_line ();
}
/* Handle the .ehword pseudo-op. This is used when generating unwinding
tables. It generates a R_MIPS_EH reloc. */
static void
s_ehword (int ignore ATTRIBUTE_UNUSED)
{
expressionS ex;
char *p;
mips_emit_delays ();
expression (&ex);
mips_clear_insn_labels ();
if (ex.X_op != O_symbol || ex.X_add_number != 0)
{
as_bad (_("unsupported use of .ehword"));
ignore_rest_of_line ();
}
p = frag_more (4);
md_number_to_chars (p, 0, 4);
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
BFD_RELOC_32_PCREL);
demand_empty_rest_of_line ();
}
/* Handle the .cpadd pseudo-op. This is used when dealing with switch
tables in SVR4 PIC code. */
static void
s_cpadd (int ignore ATTRIBUTE_UNUSED)
{
int reg;
file_mips_check_options ();
/* This is ignored when not generating SVR4 PIC code. */
if (mips_pic != SVR4_PIC)
{
s_ignore (0);
return;
}
mips_mark_labels ();
mips_assembling_insn = TRUE;
/* Add $gp to the register named as an argument. */
macro_start ();
reg = tc_get_register (0);
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
macro_end ();
mips_assembling_insn = FALSE;
demand_empty_rest_of_line ();
}
/* Handle the .insn pseudo-op. This marks instruction labels in
mips16/micromips mode. This permits the linker to handle them specially,
such as generating jalx instructions when needed. We also make
them odd for the duration of the assembly, in order to generate the
right sort of code. We will make them even in the adjust_symtab
routine, while leaving them marked. This is convenient for the
debugger and the disassembler. The linker knows to make them odd
again. */
static void
s_insn (int ignore ATTRIBUTE_UNUSED)
{
file_mips_check_options ();
file_ase_mips16 |= mips_opts.mips16;
file_ase_micromips |= mips_opts.micromips;
mips_mark_labels ();
demand_empty_rest_of_line ();
}
/* Handle the .nan pseudo-op. */
static void
s_nan (int ignore ATTRIBUTE_UNUSED)
{
static const char str_legacy[] = "legacy";
static const char str_2008[] = "2008";
size_t i;
for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
if (i == sizeof (str_2008) - 1
&& memcmp (input_line_pointer, str_2008, i) == 0)
mips_nan2008 = 1;
else if (i == sizeof (str_legacy) - 1
&& memcmp (input_line_pointer, str_legacy, i) == 0)
{
if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
mips_nan2008 = 0;
else
as_bad (_("`%s' does not support legacy NaN"),
mips_cpu_info_from_isa (file_mips_opts.isa)->name);
}
else
as_bad (_("bad .nan directive"));
input_line_pointer += i;
demand_empty_rest_of_line ();
}
/* Handle a .stab[snd] directive. Ideally these directives would be
implemented in a transparent way, so that removing them would not
have any effect on the generated instructions. However, s_stab
internally changes the section, so in practice we need to decide
now whether the preceding label marks compressed code. We do not
support changing the compression mode of a label after a .stab*
directive, such as in:
foo:
.stabs ...
.set mips16
so the current mode wins. */
static void
s_mips_stab (int type)
{
file_mips_check_options ();
mips_mark_labels ();
s_stab (type);
}
/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
static void
s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
{
char *name;
int c;
symbolS *symbolP;
expressionS exp;
c = get_symbol_name (&name);
symbolP = symbol_find_or_make (name);
S_SET_WEAK (symbolP);
*input_line_pointer = c;
SKIP_WHITESPACE_AFTER_NAME ();
if (! is_end_of_line[(unsigned char) *input_line_pointer])
{
if (S_IS_DEFINED (symbolP))
{
as_bad (_("ignoring attempt to redefine symbol %s"),
S_GET_NAME (symbolP));
ignore_rest_of_line ();
return;
}
if (*input_line_pointer == ',')
{
++input_line_pointer;
SKIP_WHITESPACE ();
}
expression (&exp);
if (exp.X_op != O_symbol)
{
as_bad (_("bad .weakext directive"));
ignore_rest_of_line ();
return;
}
symbol_set_value_expression (symbolP, &exp);
}
demand_empty_rest_of_line ();
}
/* Parse a register string into a number. Called from the ECOFF code
to parse .frame. The argument is non-zero if this is the frame
register, so that we can record it in mips_frame_reg. */
int
tc_get_register (int frame)
{
unsigned int reg;
SKIP_WHITESPACE ();
if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
reg = 0;
if (frame)
{
mips_frame_reg = reg != 0 ? reg : SP;
mips_frame_reg_valid = 1;
mips_cprestore_valid = 0;
}
return reg;
}
valueT
md_section_align (asection *seg, valueT addr)
{
int align = bfd_get_section_alignment (stdoutput, seg);
/* We don't need to align ELF sections to the full alignment.
However, Irix 5 may prefer that we align them at least to a 16
byte boundary. We don't bother to align the sections if we
are targeted for an embedded system. */
if (strncmp (TARGET_OS, "elf", 3) == 0)
return addr;
if (align > 4)
align = 4;
return ((addr + (1 << align) - 1) & -(1 << align));
}
/* Utility routine, called from above as well. If called while the
input file is still being read, it's only an approximation. (For
example, a symbol may later become defined which appeared to be
undefined earlier.) */
static int
nopic_need_relax (symbolS *sym, int before_relaxing)
{
if (sym == 0)
return 0;
if (g_switch_value > 0)
{
const char *symname;
int change;
/* Find out whether this symbol can be referenced off the $gp
register. It can be if it is smaller than the -G size or if
it is in the .sdata or .sbss section. Certain symbols can
not be referenced off the $gp, although it appears as though
they can. */
symname = S_GET_NAME (sym);
if (symname != (const char *) NULL
&& (strcmp (symname, "eprol") == 0
|| strcmp (symname, "etext") == 0
|| strcmp (symname, "_gp") == 0
|| strcmp (symname, "edata") == 0
|| strcmp (symname, "_fbss") == 0
|| strcmp (symname, "_fdata") == 0
|| strcmp (symname, "_ftext") == 0
|| strcmp (symname, "end") == 0
|| strcmp (symname, "_gp_disp") == 0))
change = 1;
else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
&& (0
#ifndef NO_ECOFF_DEBUGGING
|| (symbol_get_obj (sym)->ecoff_extern_size != 0
&& (symbol_get_obj (sym)->ecoff_extern_size
<= g_switch_value))
#endif
/* We must defer this decision until after the whole
file has been read, since there might be a .extern
after the first use of this symbol. */
|| (before_relaxing
#ifndef NO_ECOFF_DEBUGGING
&& symbol_get_obj (sym)->ecoff_extern_size == 0
#endif
&& S_GET_VALUE (sym) == 0)
|| (S_GET_VALUE (sym) != 0
&& S_GET_VALUE (sym) <= g_switch_value)))
change = 0;
else
{
const char *segname;
segname = segment_name (S_GET_SEGMENT (sym));
gas_assert (strcmp (segname, ".lit8") != 0
&& strcmp (segname, ".lit4") != 0);
change = (strcmp (segname, ".sdata") != 0
&& strcmp (segname, ".sbss") != 0
&& strncmp (segname, ".sdata.", 7) != 0
&& strncmp (segname, ".sbss.", 6) != 0
&& strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
&& strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
}
return change;
}
else
/* We are not optimizing for the $gp register. */
return 1;
}
/* Return true if the given symbol should be considered local for SVR4 PIC. */
static bfd_boolean
pic_need_relax (symbolS *sym)
{
asection *symsec;
/* Handle the case of a symbol equated to another symbol. */
while (symbol_equated_reloc_p (sym))
{
symbolS *n;
/* It's possible to get a loop here in a badly written program. */
n = symbol_get_value_expression (sym)->X_add_symbol;
if (n == sym)
break;
sym = n;
}
if (symbol_section_p (sym))
return TRUE;
symsec = S_GET_SEGMENT (sym);
/* This must duplicate the test in adjust_reloc_syms. */
return (!bfd_is_und_section (symsec)
&& !bfd_is_abs_section (symsec)
&& !bfd_is_com_section (symsec)
/* A global or weak symbol is treated as external. */
&& (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
}
/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
convert a section-relative value VAL to the equivalent PC-relative
value. */
static offsetT
mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
offsetT val, long stretch)
{
fragS *sym_frag;
addressT addr;
gas_assert (pcrel_op->root.root.type == OP_PCREL);
sym_frag = symbol_get_frag (fragp->fr_symbol);
/* If the relax_marker of the symbol fragment differs from the
relax_marker of this fragment, we have not yet adjusted the
symbol fragment fr_address. We want to add in STRETCH in
order to get a better estimate of the address. This
particularly matters because of the shift bits. */
if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
{
fragS *f;
/* Adjust stretch for any alignment frag. Note that if have
been expanding the earlier code, the symbol may be
defined in what appears to be an earlier frag. FIXME:
This doesn't handle the fr_subtype field, which specifies
a maximum number of bytes to skip when doing an
alignment. */
for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
{
if (f->fr_type == rs_align || f->fr_type == rs_align_code)
{
if (stretch < 0)
stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
else
stretch &= ~((1 << (int) f->fr_offset) - 1);
if (stretch == 0)
break;
}
}
if (f != NULL)
val += stretch;
}
addr = fragp->fr_address + fragp->fr_fix;
/* The base address rules are complicated. The base address of
a branch is the following instruction. The base address of a
PC relative load or add is the instruction itself, but if it
is in a delay slot (in which case it can not be extended) use
the address of the instruction whose delay slot it is in. */
if (pcrel_op->include_isa_bit)
{
addr += 2;
/* If we are currently assuming that this frag should be
extended, then the current address is two bytes higher. */
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
addr += 2;
/* Ignore the low bit in the target, since it will be set
for a text label. */
val &= -2;
}
else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
addr -= 4;
else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
addr -= 2;
val -= addr & -(1 << pcrel_op->align_log2);
return val;
}
/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
extended opcode. SEC is the section the frag is in. */
static int
mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
{
const struct mips_int_operand *operand;
offsetT val;
segT symsec;
int type;
if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
return 0;
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
return 1;
symsec = S_GET_SEGMENT (fragp->fr_symbol);
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
operand = mips16_immed_operand (type, FALSE);
if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
|| (operand->root.type == OP_PCREL
? sec != symsec
: !bfd_is_abs_section (symsec)))
return 1;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
if (operand->root.type == OP_PCREL)
{
const struct mips_pcrel_operand *pcrel_op;
offsetT maxtiny;
if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
return 1;
pcrel_op = (const struct mips_pcrel_operand *) operand;
val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
/* If any of the shifted bits are set, we must use an extended
opcode. If the address depends on the size of this
instruction, this can lead to a loop, so we arrange to always
use an extended opcode. */
if ((val & ((1 << operand->shift) - 1)) != 0)
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
return 1;
}
/* If we are about to mark a frag as extended because the value
is precisely the next value above maxtiny, then there is a
chance of an infinite loop as in the following code:
la $4,foo
.skip 1020
.align 2
foo:
In this case when the la is extended, foo is 0x3fc bytes
away, so the la can be shrunk, but then foo is 0x400 away, so
the la must be extended. To avoid this loop, we mark the
frag as extended if it was small, and is about to become
extended with the next value above maxtiny. */
maxtiny = mips_int_operand_max (operand);
if (val == maxtiny + (1 << operand->shift)
&& ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype =
RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
return 1;
}
}
return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
}
/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
macro expansion. SEC is the section the frag is in. We only
support PC-relative instructions (LA, DLA, LW, LD) here, in
non-PIC code using 32-bit addressing. */
static int
mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
{
const struct mips_pcrel_operand *pcrel_op;
const struct mips_int_operand *operand;
offsetT val;
segT symsec;
int type;
gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
return 0;
if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
return 0;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
switch (type)
{
case 'A':
case 'B':
case 'E':
symsec = S_GET_SEGMENT (fragp->fr_symbol);
if (bfd_is_abs_section (symsec))
return 1;
if (RELAX_MIPS16_PIC (fragp->fr_subtype))
return 0;
if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
return 1;
operand = mips16_immed_operand (type, TRUE);
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
pcrel_op = (const struct mips_pcrel_operand *) operand;
val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
default:
return 0;
}
}
/* Compute the length of a branch sequence, and adjust the
RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
worst-case length is computed, with UPDATE being used to indicate
whether an unconditional (-1), branch-likely (+1) or regular (0)
branch is to be computed. */
static int
relaxed_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean toofar;
int length;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
addr = fragp->fr_address + fragp->fr_fix + 4;
val -= addr;
toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
}
else
/* If the symbol is not defined or it's in a different segment,
we emit the long sequence. */
toofar = TRUE;
if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
fragp->fr_subtype
= RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
RELAX_BRANCH_PIC (fragp->fr_subtype),
RELAX_BRANCH_UNCOND (fragp->fr_subtype),
RELAX_BRANCH_LIKELY (fragp->fr_subtype),
RELAX_BRANCH_LINK (fragp->fr_subtype),
toofar);
length = 4;
if (toofar)
{
if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
length += 8;
if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
{
/* Additional space for PIC loading of target address. */
length += 8;
if (mips_opts.isa == ISA_MIPS1)
/* Additional space for $at-stabilizing nop. */
length += 4;
}
/* If branch is conditional. */
if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
length += 8;
}
return length;
}
/* Get a FRAG's branch instruction delay slot size, either from the
short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
or SHORT_INSN_SIZE otherwise. */
static int
frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
{
char *buf = fragp->fr_literal + fragp->fr_fix;
if (al)
return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
else
return short_insn_size;
}
/* Compute the length of a branch sequence, and adjust the
RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
worst-case length is computed, with UPDATE being used to indicate
whether an unconditional (-1), or regular (0) branch is to be
computed. */
static int
relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean insn32 = TRUE;
bfd_boolean nods = TRUE;
bfd_boolean pic = TRUE;
bfd_boolean al = TRUE;
int short_insn_size;
bfd_boolean toofar;
int length;
if (fragp)
{
insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
}
short_insn_size = insn32 ? 4 : 2;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
/* Ignore the low bit in the target, since it will be set
for a text label. */
if ((val & 1) != 0)
--val;
addr = fragp->fr_address + fragp->fr_fix + 4;
val -= addr;
toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
}
else
/* If the symbol is not defined or it's in a different segment,
we emit the long sequence. */
toofar = TRUE;
if (fragp && update
&& toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
fragp->fr_subtype = (toofar
? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
: RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
length = 4;
if (toofar)
{
bfd_boolean compact_known = fragp != NULL;
bfd_boolean compact = FALSE;
bfd_boolean uncond;
if (fragp)
{
compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
}
else
uncond = update < 0;
/* If label is out of range, we turn branch <br>:
<br> label # 4 bytes
0:
into:
j label # 4 bytes
nop # 2/4 bytes if
# compact && (!PIC || insn32)
0:
*/
if ((!pic || insn32) && (!compact_known || compact))
length += short_insn_size;
/* If assembling PIC code, we further turn:
j label # 4 bytes
into:
lw/ld at, %got(label)(gp) # 4 bytes
d/addiu at, %lo(label) # 4 bytes
jr/c at # 2/4 bytes
*/
if (pic)
length += 4 + short_insn_size;
/* Add an extra nop if the jump has no compact form and we need
to fill the delay slot. */
if ((!pic || al) && nods)
length += (fragp
? frag_branch_delay_slot_size (fragp, al, short_insn_size)
: short_insn_size);
/* If branch <br> is conditional, we prepend negated branch <brneg>:
<brneg> 0f # 4 bytes
nop # 2/4 bytes if !compact
*/
if (!uncond)
length += (compact_known && compact) ? 4 : 4 + short_insn_size;
}
else if (nods)
{
/* Add an extra nop to fill the delay slot. */
gas_assert (fragp);
length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
}
return length;
}
/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
bit accordingly. */
static int
relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
{
bfd_boolean toofar;
if (fragp
&& S_IS_DEFINED (fragp->fr_symbol)
&& !S_IS_WEAK (fragp->fr_symbol)
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
{
addressT addr;
offsetT val;
int type;
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
/* Ignore the low bit in the target, since it will be set
for a text label. */
if ((val & 1) != 0)
--val;
/* Assume this is a 2-byte branch. */
addr = fragp->fr_address + fragp->fr_fix + 2;
/* We try to avoid the infinite loop by not adding 2 more bytes for
long branches. */
val -= addr;
type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
if (type == 'D')
toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
else if (type == 'E')
toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
else
abort ();
}
else
/* If the symbol is not defined or it's in a different segment,
we emit a normal 32-bit branch. */
toofar = TRUE;
if (fragp && update
&& toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
fragp->fr_subtype
= toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
: RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
if (toofar)
return 4;
return 2;
}
/* Estimate the size of a frag before relaxing. Unless this is the
mips16, we are not really relaxing here, and the final size is
encoded in the subtype information. For the mips16, we have to
decide whether we are using an extended opcode or not. */
int
md_estimate_size_before_relax (fragS *fragp, asection *segtype)
{
int change;
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
return fragp->fr_var;
}
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
/* We don't want to modify the EXTENDED bit here; it might get us
into infinite loops. We change it only in mips_relax_frag(). */
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
else
return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
}
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
int length = 4;
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
fragp->fr_var = length;
return length;
}
if (mips_pic == VXWORKS_PIC)
/* For vxworks, GOT16 relocations never have a corresponding LO16. */
change = 0;
else if (RELAX_PIC (fragp->fr_subtype))
change = pic_need_relax (fragp->fr_symbol);
else
change = nopic_need_relax (fragp->fr_symbol, 0);
if (change)
{
fragp->fr_subtype |= RELAX_USE_SECOND;
return -RELAX_FIRST (fragp->fr_subtype);
}
else
return -RELAX_SECOND (fragp->fr_subtype);
}
/* This is called to see whether a reloc against a defined symbol
should be converted into a reloc against a section. */
int
mips_fix_adjustable (fixS *fixp)
{
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
if (fixp->fx_addsy == NULL)
return 1;
/* Allow relocs used for EH tables. */
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
return 1;
/* If symbol SYM is in a mergeable section, relocations of the form
SYM + 0 can usually be made section-relative. The mergeable data
is then identified by the section offset rather than by the symbol.
However, if we're generating REL LO16 relocations, the offset is split
between the LO16 and partnering high part relocation. The linker will
need to recalculate the complete offset in order to correctly identify
the merge data.
The linker has traditionally not looked for the partnering high part
relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
placed anywhere. Rather than break backwards compatibility by changing
this, it seems better not to force the issue, and instead keep the
original symbol. This will work with either linker behavior. */
if ((lo16_reloc_p (fixp->fx_r_type)
|| reloc_needs_lo_p (fixp->fx_r_type))
&& HAVE_IN_PLACE_ADDENDS
&& (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
return 0;
/* There is no place to store an in-place offset for JALR relocations. */
if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
return 0;
/* Likewise an in-range offset of limited PC-relative relocations may
overflow the in-place relocatable field if recalculated against the
start address of the symbol's containing section.
Also, PC relative relocations for MIPS R6 need to be symbol rather than
section relative to allow linker relaxations to be performed later on. */
if (limited_pcrel_reloc_p (fixp->fx_r_type)
&& (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
return 0;
/* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
to a floating-point stub. The same is true for non-R_MIPS16_26
relocations against MIPS16 functions; in this case, the stub becomes
the function's canonical address.
Floating-point stubs are stored in unique .mips16.call.* or
.mips16.fn.* sections. If a stub T for function F is in section S,
the first relocation in section S must be against F; this is how the
linker determines the target function. All relocations that might
resolve to T must also be against F. We therefore have the following
restrictions, which are given in an intentionally-redundant way:
1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
symbols.
2. We cannot reduce a stub's relocations against non-MIPS16 symbols
if that stub might be used.
3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
symbols.
4. We cannot reduce a stub's relocations against MIPS16 symbols if
that stub might be used.
There is a further restriction:
5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
against MIPS16 or microMIPS symbols because we need to keep the
MIPS16 or microMIPS symbol for the purpose of mode mismatch
detection and JAL or BAL to JALX instruction conversion in the
linker.
For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
against a MIPS16 symbol. We deal with (5) by additionally leaving
alone any jump and branch relocations against a microMIPS symbol.
We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
relocation against some symbol R, no relocation against R may be
reduced. (Note that this deals with (2) as well as (1) because
relocations against global symbols will never be reduced on ELF
targets.) This approach is a little simpler than trying to detect
stub sections, and gives the "all or nothing" per-symbol consistency
that we have for MIPS16 symbols. */
if (fixp->fx_subsy == NULL
&& (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
|| (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
&& (jmp_reloc_p (fixp->fx_r_type)
|| b_reloc_p (fixp->fx_r_type)))
|| *symbol_get_tc (fixp->fx_addsy)))
return 0;
return 1;
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent **
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
{
static arelent *retval[4];
arelent *reloc;
bfd_reloc_code_real_type code;
memset (retval, 0, sizeof(retval));
reloc = retval[0] = XCNEW (arelent);
reloc->sym_ptr_ptr = XNEW (asymbol *);
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (fixp->fx_pcrel)
{
gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
|| fixp->fx_r_type == BFD_RELOC_32_PCREL
|| fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
|| fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
|| fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
|| fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
/* At this point, fx_addnumber is "symbol offset - pcrel address".
Relocations want only the symbol offset. */
switch (fixp->fx_r_type)
{
case BFD_RELOC_MIPS_18_PCREL_S3:
reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
break;
default:
reloc->addend = fixp->fx_addnumber + reloc->address;
break;
}
}
else if (HAVE_IN_PLACE_ADDENDS
&& fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
&& (read_compressed_insn (fixp->fx_frag->fr_literal
+ fixp->fx_where, 4) >> 26) == 0x3c)
{
/* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
addend accordingly. */
reloc->addend = fixp->fx_addnumber >> 1;
}
else
reloc->addend = fixp->fx_addnumber;
/* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
entry to be used in the relocation's section offset. */
if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
{
reloc->address = reloc->addend;
reloc->addend = 0;
}
code = fixp->fx_r_type;
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent %s relocation in this object file"
" format"),
bfd_get_reloc_code_name (code));
retval[0] = NULL;
}
return retval;
}
/* Relax a machine dependent frag. This returns the amount by which
the current size of the frag should change. */
int
mips_relax_frag (asection *sec, fragS *fragp, long stretch)
{
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
offsetT old_var = fragp->fr_var;
fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
return fragp->fr_var - old_var;
}
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
offsetT old_var = fragp->fr_var;
offsetT new_var = 4;
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
fragp->fr_var = new_var;
return new_var - old_var;
}
if (! RELAX_MIPS16_P (fragp->fr_subtype))
return 0;
if (!mips16_extended_frag (fragp, sec, stretch))
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
}
else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
return -2;
}
else
return 0;
}
else if (!mips16_macro_frag (fragp, sec, stretch))
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
}
else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
return 2;
}
else
return 0;
}
else
{
if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
return 0;
else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
{
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
}
else
{
fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
}
}
return 0;
}
/* Convert a machine dependent frag. */
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
{
if (RELAX_BRANCH_P (fragp->fr_subtype))
{
char *buf;
unsigned long insn;
fixS *fixp;
buf = fragp->fr_literal + fragp->fr_fix;
insn = read_insn (buf);
if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now
because, if there are linker relaxations, we're going to
need the relocations. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_16_PCREL_S2);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
}
else
{
int i;
as_warn_where (fragp->fr_file, fragp->fr_line,
_("relaxed out-of-range branch into a jump"));
if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
goto uncond;
if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
{
/* Reverse the branch. */
switch ((insn >> 28) & 0xf)
{
case 4:
if ((insn & 0xff000000) == 0x47000000
|| (insn & 0xff600000) == 0x45600000)
{
/* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
reversed by tweaking bit 23. */
insn ^= 0x00800000;
}
else
{
/* bc[0-3][tf]l? instructions can have the condition
reversed by tweaking a single TF bit, and their
opcodes all have 0x4???????. */
gas_assert ((insn & 0xf3e00000) == 0x41000000);
insn ^= 0x00010000;
}
break;
case 0:
/* bltz 0x04000000 bgez 0x04010000
bltzal 0x04100000 bgezal 0x04110000 */
gas_assert ((insn & 0xfc0e0000) == 0x04000000);
insn ^= 0x00010000;
break;
case 1:
/* beq 0x10000000 bne 0x14000000
blez 0x18000000 bgtz 0x1c000000 */
insn ^= 0x04000000;
break;
default:
abort ();
}
}
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
{
/* Clear the and-link bit. */
gas_assert ((insn & 0xfc1c0000) == 0x04100000);
/* bltzal 0x04100000 bgezal 0x04110000
bltzall 0x04120000 bgezall 0x04130000 */
insn &= ~0x00100000;
}
/* Branch over the branch (if the branch was likely) or the
full jump (not likely case). Compute the offset from the
current instruction to branch to. */
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
i = 16;
else
{
/* How many bytes in instructions we've already emitted? */
i = buf - fragp->fr_literal - fragp->fr_fix;
/* How many bytes in instructions from here to the end? */
i = fragp->fr_var - i;
}
/* Convert to instruction count. */
i >>= 2;
/* Branch counts from the next instruction. */
i--;
insn |= i;
/* Branch over the jump. */
buf = write_insn (buf, insn);
/* nop */
buf = write_insn (buf, 0);
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
{
/* beql $0, $0, 2f */
insn = 0x50000000;
/* Compute the PC offset from the current instruction to
the end of the variable frag. */
/* How many bytes in instructions we've already emitted? */
i = buf - fragp->fr_literal - fragp->fr_fix;
/* How many bytes in instructions from here to the end? */
i = fragp->fr_var - i;
/* Convert to instruction count. */
i >>= 2;
/* Don't decrement i, because we want to branch over the
delay slot. */
insn |= i;
buf = write_insn (buf, insn);
buf = write_insn (buf, 0);
}
uncond:
if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
{
/* j or jal. */
insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
? 0x0c000000 : 0x08000000);
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS_JMP);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
}
else
{
unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
/* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
insn |= at << OP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS_GOT16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
if (mips_opts.isa == ISA_MIPS1)
/* nop */
buf = write_insn (buf, 0);
/* d/addiu $at, $at, <sym> R_MIPS_LO16 */
insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
insn |= at << OP_SH_RS | at << OP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_insn (buf, insn);
/* j(al)r $at. */
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
insn = 0x0000f809;
else
insn = 0x00000008;
insn |= at << OP_SH_RS;
buf = write_insn (buf, insn);
}
}
fragp->fr_fix += fragp->fr_var;
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
/* Relax microMIPS branches. */
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
{
char *buf = fragp->fr_literal + fragp->fr_fix;
bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
bfd_boolean short_ds;
unsigned long insn;
fixS *fixp;
fragp->fr_fix += fragp->fr_var;
/* Handle 16-bit branches that fit or are forced to fit. */
if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now,
because if there is linker relaxation, we're going to
need the relocations. */
switch (type)
{
case 'D':
fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
break;
case 'E':
fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
break;
default:
abort ();
}
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
/* These relocations can have an addend that won't fit in
2 octets. */
fixp->fx_no_overflow = 1;
return;
}
/* Handle 32-bit branches that fit or are forced to fit. */
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
{
/* We generate a fixup instead of applying it right now,
because if there is linker relaxation, we're going to
need the relocations. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
if (type == 0)
{
insn = read_compressed_insn (buf, 4);
buf += 4;
if (nods)
{
/* Check the short-delay-slot bit. */
if (!al || (insn & 0x02000000) != 0)
buf = write_compressed_insn (buf, 0x0c00, 2);
else
buf = write_compressed_insn (buf, 0x00000000, 4);
}
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
}
/* Relax 16-bit branches to 32-bit branches. */
if (type != 0)
{
insn = read_compressed_insn (buf, 2);
if ((insn & 0xfc00) == 0xcc00) /* b16 */
insn = 0x94000000; /* beq */
else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
{
unsigned long regno;
regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
regno = micromips_to_32_reg_d_map [regno];
insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
insn |= regno << MICROMIPSOP_SH_RS;
}
else
abort ();
/* Nothing else to do, just write it out. */
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
{
buf = write_compressed_insn (buf, insn, 4);
if (nods)
buf = write_compressed_insn (buf, 0x0c00, 2);
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
}
else
insn = read_compressed_insn (buf, 4);
/* Relax 32-bit branches to a sequence of instructions. */
as_warn_where (fragp->fr_file, fragp->fr_line,
_("relaxed out-of-range branch into a jump"));
/* Set the short-delay-slot bit. */
short_ds = !al || (insn & 0x02000000) != 0;
if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
{
symbolS *l;
/* Reverse the branch. */
if ((insn & 0xfc000000) == 0x94000000 /* beq */
|| (insn & 0xfc000000) == 0xb4000000) /* bne */
insn ^= 0x20000000;
else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
|| (insn & 0xffe00000) == 0x40400000 /* bgez */
|| (insn & 0xffe00000) == 0x40800000 /* blez */
|| (insn & 0xffe00000) == 0x40c00000 /* bgtz */
|| (insn & 0xffe00000) == 0x40a00000 /* bnezc */
|| (insn & 0xffe00000) == 0x40e00000 /* beqzc */
|| (insn & 0xffe00000) == 0x40200000 /* bltzal */
|| (insn & 0xffe00000) == 0x40600000 /* bgezal */
|| (insn & 0xffe00000) == 0x42200000 /* bltzals */
|| (insn & 0xffe00000) == 0x42600000) /* bgezals */
insn ^= 0x00400000;
else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
|| (insn & 0xffe30000) == 0x43a00000 /* bc1t */
|| (insn & 0xffe30000) == 0x42800000 /* bc2f */
|| (insn & 0xffe30000) == 0x42a00000) /* bc2t */
insn ^= 0x00200000;
else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
BNZ.df */
|| (insn & 0xff600000) == 0x81600000) /* BZ.V
BNZ.V */
insn ^= 0x00800000;
else
abort ();
if (al)
{
/* Clear the and-link and short-delay-slot bits. */
gas_assert ((insn & 0xfda00000) == 0x40200000);
/* bltzal 0x40200000 bgezal 0x40600000 */
/* bltzals 0x42200000 bgezals 0x42600000 */
insn &= ~0x02200000;
}
/* Make a label at the end for use with the branch. */
l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
micromips_label_inc ();
S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
/* Refer to it. */
fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
BFD_RELOC_MICROMIPS_16_PCREL_S1);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
/* Branch over the jump. */
buf = write_compressed_insn (buf, insn, 4);
if (!compact)
{
/* nop */
if (insn32)
buf = write_compressed_insn (buf, 0x00000000, 4);
else
buf = write_compressed_insn (buf, 0x0c00, 2);
}
}
if (!pic)
{
unsigned long jal = (short_ds || nods
? 0x74000000 : 0xf4000000); /* jal/s */
/* j/jal/jals <sym> R_MICROMIPS_26_S1 */
insn = al ? jal : 0xd4000000;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_JMP);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
if (compact || nods)
{
/* nop */
if (insn32)
buf = write_compressed_insn (buf, 0x00000000, 4);
else
buf = write_compressed_insn (buf, 0x0c00, 2);
}
}
else
{
unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
/* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
insn |= at << MICROMIPSOP_SH_RT;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_GOT16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
/* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MICROMIPS_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
buf = write_compressed_insn (buf, insn, 4);
if (insn32)
{
/* jr/jalr $at */
insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
insn |= at << MICROMIPSOP_SH_RS;
buf = write_compressed_insn (buf, insn, 4);
if (compact || nods)
/* nop */
buf = write_compressed_insn (buf, 0x00000000, 4);
}
else
{
/* jr/jrc/jalr/jalrs $at */
unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
insn = al ? jalr : jr;
insn |= at << MICROMIPSOP_SH_MJ;
buf = write_compressed_insn (buf, insn, 2);
if (al && nods)
{
/* nop */
if (short_ds)
buf = write_compressed_insn (buf, 0x0c00, 2);
else
buf = write_compressed_insn (buf, 0x00000000, 4);
}
}
}
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
return;
}
if (RELAX_MIPS16_P (fragp->fr_subtype))
{
int type;
const struct mips_int_operand *operand;
offsetT val;
char *buf;
unsigned int user_length;
bfd_boolean need_reloc;
unsigned long insn;
bfd_boolean mac;
bfd_boolean ext;
segT symsec;
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
operand = mips16_immed_operand (type, FALSE);
mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
symsec = S_GET_SEGMENT (fragp->fr_symbol);
need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
|| (operand->root.type == OP_PCREL && !mac
? asec != symsec
: !bfd_is_abs_section (symsec)));
if (operand->root.type == OP_PCREL && !mac)
{
const struct mips_pcrel_operand *pcrel_op;
pcrel_op = (const struct mips_pcrel_operand *) operand;
if (pcrel_op->include_isa_bit && !need_reloc)
{
if (!mips_ignore_branch_isa
&& !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
as_bad_where (fragp->fr_file, fragp->fr_line,
_("branch to a symbol in another ISA mode"));
else if ((fragp->fr_offset & 0x1) != 0)
as_bad_where (fragp->fr_file, fragp->fr_line,
_("branch to misaligned address (0x%lx)"),
(long) val);
}
val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
/* Make sure the section winds up with the alignment we have
assumed. */
if (operand->shift > 0)
record_alignment (asec, operand->shift);
}
if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
|| RELAX_MIPS16_DSLOT (fragp->fr_subtype))
{
if (mac)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("macro instruction expanded into multiple "
"instructions in a branch delay slot"));
else if (ext)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("extended instruction in a branch delay slot"));
}
else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
as_warn_where (fragp->fr_file, fragp->fr_line,
_("macro instruction expanded into multiple "
"instructions"));
buf = fragp->fr_literal + fragp->fr_fix;
insn = read_compressed_insn (buf, 2);
if (ext)
insn |= MIPS16_EXTEND;
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
user_length = 4;
else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
user_length = 2;
else
user_length = 0;
if (mac)
{
unsigned long reg;
unsigned long new;
unsigned long op;
bfd_boolean e2;
gas_assert (type == 'A' || type == 'B' || type == 'E');
gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
if (need_reloc)
{
fixS *fixp;
gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS16_HI16_S);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
fragp->fr_symbol, fragp->fr_offset,
FALSE, BFD_RELOC_MIPS16_LO16);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
val = 0;
}
switch (insn & 0xf800)
{
case 0x0800: /* ADDIU */
reg = (insn >> 8) & 0x7;
op = 0xf0004800 | (reg << 8);
break;
case 0xb000: /* LW */
reg = (insn >> 8) & 0x7;
op = 0xf0009800 | (reg << 8) | (reg << 5);
break;
case 0xf800: /* I64 */
reg = (insn >> 5) & 0x7;
switch (insn & 0x0700)
{
case 0x0400: /* LD */
op = 0xf0003800 | (reg << 8) | (reg << 5);
break;
case 0x0600: /* DADDIU */
op = 0xf000fd00 | (reg << 5);
break;
default:
abort ();
}
break;
default:
abort ();
}
new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
buf = write_compressed_insn (buf, new, 4);
if (!e2)
{
new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
buf = write_compressed_insn (buf, new, 4);
}
op |= mips16_immed_extend (val, 16);
buf = write_compressed_insn (buf, op, 4);
fragp->fr_fix += e2 ? 8 : 12;
}
else
{
unsigned int length = ext ? 4 : 2;
if (need_reloc)
{
bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
fixS *fixp;
switch (type)
{
case 'p':
case 'q':
reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
break;
default:
break;
}
if (mac || reloc == BFD_RELOC_NONE)
as_bad_where (fragp->fr_file, fragp->fr_line,
_("unsupported relocation"));
else if (ext)
{
fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
fragp->fr_symbol, fragp->fr_offset,
TRUE, reloc);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
}
else
as_bad_where (fragp->fr_file, fragp->fr_line,
_("invalid unextended operand value"));
}
else
mips16_immed (fragp->fr_file, fragp->fr_line, type,
BFD_RELOC_UNUSED, val, user_length, &insn);
gas_assert (mips16_opcode_length (insn) == length);
write_compressed_insn (buf, insn, length);
fragp->fr_fix += length;
}
}
else
{
relax_substateT subtype = fragp->fr_subtype;
bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
int first, second;
fixS *fixp;
first = RELAX_FIRST (subtype);
second = RELAX_SECOND (subtype);
fixp = (fixS *) fragp->fr_opcode;
/* If the delay slot chosen does not match the size of the instruction,
then emit a warning. */
if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
|| (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
{
relax_substateT s;
const char *msg;
s = subtype & (RELAX_DELAY_SLOT_16BIT
| RELAX_DELAY_SLOT_SIZE_FIRST
| RELAX_DELAY_SLOT_SIZE_SECOND);
msg = macro_warning (s);
if (msg != NULL)
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
subtype &= ~s;
}
/* Possibly emit a warning if we've chosen the longer option. */
if (use_second == second_longer)
{
relax_substateT s;
const char *msg;
s = (subtype
& (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
msg = macro_warning (s);
if (msg != NULL)
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
subtype &= ~s;
}
/* Go through all the fixups for the first sequence. Disable them
(by marking them as done) if we're going to use the second
sequence instead. */
while (fixp
&& fixp->fx_frag == fragp
&& fixp->fx_where < fragp->fr_fix - second)
{
if (subtype & RELAX_USE_SECOND)
fixp->fx_done = 1;
fixp = fixp->fx_next;
}
/* Go through the fixups for the second sequence. Disable them if
we're going to use the first sequence, otherwise adjust their
addresses to account for the relaxation. */
while (fixp && fixp->fx_frag == fragp)
{
if (subtype & RELAX_USE_SECOND)
fixp->fx_where -= first;
else
fixp->fx_done = 1;
fixp = fixp->fx_next;
}
/* Now modify the frag contents. */
if (subtype & RELAX_USE_SECOND)
{
char *start;
start = fragp->fr_literal + fragp->fr_fix - first - second;
memmove (start, start + first, second);
fragp->fr_fix -= first;
}
else
fragp->fr_fix -= second;
}
}
/* This function is called after the relocs have been generated.
We've been storing mips16 text labels as odd. Here we convert them
back to even for the convenience of the debugger. */
void
mips_frob_file_after_relocs (void)
{
asymbol **syms;
unsigned int count, i;
syms = bfd_get_outsymbols (stdoutput);
count = bfd_get_symcount (stdoutput);
for (i = 0; i < count; i++, syms++)
if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
&& ((*syms)->value & 1) != 0)
{
(*syms)->value &= ~1;
/* If the symbol has an odd size, it was probably computed
incorrectly, so adjust that as well. */
if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
++elf_symbol (*syms)->internal_elf_sym.st_size;
}
}
/* This function is called whenever a label is defined, including fake
labels instantiated off the dot special symbol. It is used when
handling branch delays; if a branch has a label, we assume we cannot
move it. This also bumps the value of the symbol by 1 in compressed
code. */
static void
mips_record_label (symbolS *sym)
{
segment_info_type *si = seg_info (now_seg);
struct insn_label_list *l;
if (free_insn_labels == NULL)
l = XNEW (struct insn_label_list);
else
{
l = free_insn_labels;
free_insn_labels = l->next;
}
l->label = sym;
l->next = si->label_list;
si->label_list = l;
}
/* This function is called as tc_frob_label() whenever a label is defined
and adds a DWARF-2 record we only want for true labels. */
void
mips_define_label (symbolS *sym)
{
mips_record_label (sym);
dwarf2_emit_label (sym);
}
/* This function is called by tc_new_dot_label whenever a new dot symbol
is defined. */
void
mips_add_dot_label (symbolS *sym)
{
mips_record_label (sym);
if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
mips_compressed_mark_label (sym);
}
/* Converting ASE flags from internal to .MIPS.abiflags values. */
static unsigned int
mips_convert_ase_flags (int ase)
{
unsigned int ext_ases = 0;
if (ase & ASE_DSP)
ext_ases |= AFL_ASE_DSP;
if (ase & ASE_DSPR2)
ext_ases |= AFL_ASE_DSPR2;
if (ase & ASE_DSPR3)
ext_ases |= AFL_ASE_DSPR3;
if (ase & ASE_EVA)
ext_ases |= AFL_ASE_EVA;
if (ase & ASE_MCU)
ext_ases |= AFL_ASE_MCU;
if (ase & ASE_MDMX)
ext_ases |= AFL_ASE_MDMX;
if (ase & ASE_MIPS3D)
ext_ases |= AFL_ASE_MIPS3D;
if (ase & ASE_MT)
ext_ases |= AFL_ASE_MT;
if (ase & ASE_SMARTMIPS)
ext_ases |= AFL_ASE_SMARTMIPS;
if (ase & ASE_VIRT)
ext_ases |= AFL_ASE_VIRT;
if (ase & ASE_MSA)
ext_ases |= AFL_ASE_MSA;
if (ase & ASE_XPA)
ext_ases |= AFL_ASE_XPA;
if (ase & ASE_MIPS16E2)
ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
return ext_ases;
}
/* Some special processing for a MIPS ELF file. */
void
mips_elf_final_processing (void)
{
int fpabi;
Elf_Internal_ABIFlags_v0 flags;
flags.version = 0;
flags.isa_rev = 0;
switch (file_mips_opts.isa)
{
case INSN_ISA1:
flags.isa_level = 1;
break;
case INSN_ISA2:
flags.isa_level = 2;
break;
case INSN_ISA3:
flags.isa_level = 3;
break;
case INSN_ISA4:
flags.isa_level = 4;
break;
case INSN_ISA5:
flags.isa_level = 5;
break;
case INSN_ISA32:
flags.isa_level = 32;
flags.isa_rev = 1;
break;
case INSN_ISA32R2:
flags.isa_level = 32;
flags.isa_rev = 2;
break;
case INSN_ISA32R3:
flags.isa_level = 32;
flags.isa_rev = 3;
break;
case INSN_ISA32R5:
flags.isa_level = 32;
flags.isa_rev = 5;
break;
case INSN_ISA32R6:
flags.isa_level = 32;
flags.isa_rev = 6;
break;
case INSN_ISA64:
flags.isa_level = 64;
flags.isa_rev = 1;
break;
case INSN_ISA64R2:
flags.isa_level = 64;
flags.isa_rev = 2;
break;
case INSN_ISA64R3:
flags.isa_level = 64;
flags.isa_rev = 3;
break;
case INSN_ISA64R5:
flags.isa_level = 64;
flags.isa_rev = 5;
break;
case INSN_ISA64R6:
flags.isa_level = 64;
flags.isa_rev = 6;
break;
}
flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
: (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
: (file_mips_opts.fp == 64) ? AFL_REG_64
: AFL_REG_32;
flags.cpr2_size = AFL_REG_NONE;
flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
flags.isa_ext = bfd_mips_isa_ext (stdoutput);
flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
if (file_ase_mips16)
flags.ases |= AFL_ASE_MIPS16;
if (file_ase_micromips)
flags.ases |= AFL_ASE_MICROMIPS;
flags.flags1 = 0;
if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
|| file_mips_opts.fp == 64)
&& file_mips_opts.oddspreg)
flags.flags1 |= AFL_FLAGS1_ODDSPREG;
flags.flags2 = 0;
bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
((Elf_External_ABIFlags_v0 *)
mips_flags_frag));
/* Write out the register information. */
if (mips_abi != N64_ABI)
{
Elf32_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
((Elf32_External_RegInfo *)
mips_regmask_frag));
}
else
{
Elf64_Internal_RegInfo s;
s.ri_gprmask = mips_gprmask;
s.ri_pad = 0;
s.ri_cprmask[0] = mips_cprmask[0];
s.ri_cprmask[1] = mips_cprmask[1];
s.ri_cprmask[2] = mips_cprmask[2];
s.ri_cprmask[3] = mips_cprmask[3];
/* The gp_value field is set by the MIPS ELF backend. */
bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
((Elf64_External_RegInfo *)
mips_regmask_frag));
}
/* Set the MIPS ELF flag bits. FIXME: There should probably be some
sort of BFD interface for this. */
if (mips_any_noreorder)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
if (mips_pic != NO_PIC)
{
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
}
if (mips_abicalls)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
/* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
defined at present; this might need to change in future. */
if (file_ase_mips16)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
if (file_ase_micromips)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
if (file_mips_opts.ase & ASE_MDMX)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
/* Set the MIPS ELF ABI flags. */
if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
else if (mips_abi == O64_ABI)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
else if (mips_abi == EABI_ABI)
{
if (file_mips_opts.gp == 64)
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
else
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
}
else if (mips_abi == N32_ABI)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
/* Nothing to do for N64_ABI. */
if (mips_32bitmode)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
if (mips_nan2008 == 1)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
/* 32 bit code with 64 bit FP registers. */
fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
}
typedef struct proc {
symbolS *func_sym;
symbolS *func_end_sym;
unsigned long reg_mask;
unsigned long reg_offset;
unsigned long fpreg_mask;
unsigned long fpreg_offset;
unsigned long frame_offset;
unsigned long frame_reg;
unsigned long pc_reg;
} procS;
static procS cur_proc;
static procS *cur_proc_ptr;
static int numprocs;
/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
as "2", and a normal nop as "0". */
#define NOP_OPCODE_MIPS 0
#define NOP_OPCODE_MIPS16 1
#define NOP_OPCODE_MICROMIPS 2
char
mips_nop_opcode (void)
{
if (seg_info (now_seg)->tc_segment_info_data.micromips)
return NOP_OPCODE_MICROMIPS;
else if (seg_info (now_seg)->tc_segment_info_data.mips16)
return NOP_OPCODE_MIPS16;
else
return NOP_OPCODE_MIPS;
}
/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
32-bit microMIPS NOPs here (if applicable). */
void
mips_handle_align (fragS *fragp)
{
char nop_opcode;
char *p;
int bytes, size, excess;
valueT opcode;
if (fragp->fr_type != rs_align_code)
return;
p = fragp->fr_literal + fragp->fr_fix;
nop_opcode = *p;
switch (nop_opcode)
{
case NOP_OPCODE_MICROMIPS:
opcode = micromips_nop32_insn.insn_opcode;
size = 4;
break;
case NOP_OPCODE_MIPS16:
opcode = mips16_nop_insn.insn_opcode;
size = 2;
break;
case NOP_OPCODE_MIPS:
default:
opcode = nop_insn.insn_opcode;
size = 4;
break;
}
bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
excess = bytes % size;
/* Handle the leading part if we're not inserting a whole number of
instructions, and make it the end of the fixed part of the frag.
Try to fit in a short microMIPS NOP if applicable and possible,
and use zeroes otherwise. */
gas_assert (excess < 4);
fragp->fr_fix += excess;
switch (excess)
{
case 3:
*p++ = '\0';
/* Fall through. */
case 2:
if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
{
p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
break;
}
*p++ = '\0';
/* Fall through. */
case 1:
*p++ = '\0';
/* Fall through. */
case 0:
break;
}
md_number_to_chars (p, opcode, size);
fragp->fr_var = size;
}
static long
get_number (void)
{
int negative = 0;
long val = 0;
if (*input_line_pointer == '-')
{
++input_line_pointer;
negative = 1;
}
if (!ISDIGIT (*input_line_pointer))
as_bad (_("expected simple number"));
if (input_line_pointer[0] == '0')
{
if (input_line_pointer[1] == 'x')
{
input_line_pointer += 2;
while (ISXDIGIT (*input_line_pointer))
{
val <<= 4;
val |= hex_value (*input_line_pointer++);
}
return negative ? -val : val;
}
else
{
++input_line_pointer;
while (ISDIGIT (*input_line_pointer))
{
val <<= 3;
val |= *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
}
if (!ISDIGIT (*input_line_pointer))
{
printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
*input_line_pointer, *input_line_pointer);
as_warn (_("invalid number"));
return -1;
}
while (ISDIGIT (*input_line_pointer))
{
val *= 10;
val += *input_line_pointer++ - '0';
}
return negative ? -val : val;
}
/* The .file directive; just like the usual .file directive, but there
is an initial number which is the ECOFF file index. In the non-ECOFF
case .file implies DWARF-2. */
static void
s_mips_file (int x ATTRIBUTE_UNUSED)
{
static int first_file_directive = 0;
if (ECOFF_DEBUGGING)
{
get_number ();
s_app_file (0);
}
else
{
char *filename;
filename = dwarf2_directive_file (0);
/* Versions of GCC up to 3.1 start files with a ".file"
directive even for stabs output. Make sure that this
".file" is handled. Note that you need a version of GCC
after 3.1 in order to support DWARF-2 on MIPS. */
if (filename != NULL && ! first_file_directive)
{
(void) new_logical_line (filename, -1);
s_app_file_string (filename, 0);
}
first_file_directive = 1;
}
}
/* The .loc directive, implying DWARF-2. */
static void
s_mips_loc (int x ATTRIBUTE_UNUSED)
{
if (!ECOFF_DEBUGGING)
dwarf2_directive_loc (0);
}
/* The .end directive. */
static void
s_mips_end (int x ATTRIBUTE_UNUSED)
{
symbolS *p;
/* Following functions need their own .frame and .cprestore directives. */
mips_frame_reg_valid = 0;
mips_cprestore_valid = 0;
if (!is_end_of_line[(unsigned char) *input_line_pointer])
{
p = get_symbol ();
demand_empty_rest_of_line ();
}
else
p = NULL;
if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
as_warn (_(".end not in text section"));
if (!cur_proc_ptr)
{
as_warn (_(".end directive without a preceding .ent directive"));
demand_empty_rest_of_line ();
return;
}
if (p != NULL)
{
gas_assert (S_GET_NAME (p));
if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
as_warn (_(".end symbol does not match .ent symbol"));
if (debug_type == DEBUG_STABS)
stabs_generate_asm_endfunc (S_GET_NAME (p),
S_GET_NAME (p));
}
else
as_warn (_(".end directive missing or unknown symbol"));
/* Create an expression to calculate the size of the function. */
if (p && cur_proc_ptr)
{
OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
expressionS *exp = XNEW (expressionS);
obj->size = exp;
exp->X_op = O_subtract;
exp->X_add_symbol = symbol_temp_new_now ();
exp->X_op_symbol = p;
exp->X_add_number = 0;
cur_proc_ptr->func_end_sym = exp->X_add_symbol;
}
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
/* Generate a .pdr section. */
if (!ECOFF_DEBUGGING && mips_flag_pdr)
{
segT saved_seg = now_seg;
subsegT saved_subseg = now_subseg;
expressionS exp;
char *fragp;
gas_assert (pdr_seg);
subseg_set (pdr_seg, 0);
/* Write the symbol. */
exp.X_op = O_symbol;
exp.X_add_symbol = p;
exp.X_add_number = 0;
emit_expr (&exp, 4);
fragp = frag_more (7 * 4);
md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
subseg_set (saved_seg, saved_subseg);
}
cur_proc_ptr = NULL;
}
/* The .aent and .ent directives. */
static void
s_mips_ent (int aent)
{
symbolS *symbolP;
symbolP = get_symbol ();
if (*input_line_pointer == ',')
++input_line_pointer;
SKIP_WHITESPACE ();
if (ISDIGIT (*input_line_pointer)
|| *input_line_pointer == '-')
get_number ();
if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
as_warn (_(".ent or .aent not in text section"));
if (!aent && cur_proc_ptr)
as_warn (_("missing .end"));
if (!aent)
{
/* This function needs its own .frame and .cprestore directives. */
mips_frame_reg_valid = 0;
mips_cprestore_valid = 0;
cur_proc_ptr = &cur_proc;
memset (cur_proc_ptr, '\0', sizeof (procS));
cur_proc_ptr->func_sym = symbolP;
++numprocs;
if (debug_type == DEBUG_STABS)
stabs_generate_asm_func (S_GET_NAME (symbolP),
S_GET_NAME (symbolP));
}
symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
demand_empty_rest_of_line ();
}
/* The .frame directive. If the mdebug section is present (IRIX 5 native)
then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
s_mips_frame is used so that we can set the PDR information correctly.
We can't use the ecoff routines because they make reference to the ecoff
symbol table (in the mdebug section). */
static void
s_mips_frame (int ignore ATTRIBUTE_UNUSED)
{
if (ECOFF_DEBUGGING)
s_ignore (ignore);
else
{
long val;
if (cur_proc_ptr == (procS *) NULL)
{
as_warn (_(".frame outside of .ent"));
demand_empty_rest_of_line ();
return;
}
cur_proc_ptr->frame_reg = tc_get_register (1);
SKIP_WHITESPACE ();
if (*input_line_pointer++ != ','
|| get_absolute_expression_and_terminator (&val) != ',')
{
as_warn (_("bad .frame directive"));
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
cur_proc_ptr->frame_offset = val;
cur_proc_ptr->pc_reg = tc_get_register (0);
demand_empty_rest_of_line ();
}
}
/* The .fmask and .mask directives. If the mdebug section is present
(IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
embedded targets, s_mips_mask is used so that we can set the PDR
information correctly. We can't use the ecoff routines because they
make reference to the ecoff symbol table (in the mdebug section). */
static void
s_mips_mask (int reg_type)
{
if (ECOFF_DEBUGGING)
s_ignore (reg_type);
else
{
long mask, off;
if (cur_proc_ptr == (procS *) NULL)
{
as_warn (_(".mask/.fmask outside of .ent"));
demand_empty_rest_of_line ();
return;
}
if (get_absolute_expression_and_terminator (&mask) != ',')
{
as_warn (_("bad .mask/.fmask directive"));
--input_line_pointer;
demand_empty_rest_of_line ();
return;
}
off = get_absolute_expression ();
if (reg_type == 'F')
{
cur_proc_ptr->fpreg_mask = mask;
cur_proc_ptr->fpreg_offset = off;
}
else
{
cur_proc_ptr->reg_mask = mask;
cur_proc_ptr->reg_offset = off;
}
demand_empty_rest_of_line ();
}
}
/* A table describing all the processors gas knows about. Names are
matched in the order listed.
To ease comparison, please keep this table in the same order as
gcc's mips_cpu_info_table[]. */
static const struct mips_cpu_info mips_cpu_info_table[] =
{
/* Entries for generic ISAs */
{ "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
{ "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
{ "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
{ "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
{ "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
{ "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
{ "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
{ "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
{ "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
{ "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
{ "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
{ "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
{ "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
{ "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
/* MIPS I */
{ "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
{ "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
{ "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
/* MIPS II */
{ "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
/* MIPS III */
{ "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
{ "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
{ "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
{ "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
{ "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
{ "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
{ "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
{ "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
{ "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
{ "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
{ "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
{ "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
{ "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
/* ST Microelectronics Loongson 2E and 2F cores */
{ "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
{ "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
/* MIPS IV */
{ "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
{ "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
{ "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
{ "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
{ "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
{ "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
{ "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
{ "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
{ "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
{ "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
/* MIPS 32 */
{ "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
{ "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
/* MIPS 32 Release 2 */
{ "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
ISA_MIPS32R2, CPU_MIPS32R2 },
{ "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 24KE is a 24K with DSP ASE, other ASEs are optional. */
{ "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
{ "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 34Kn is a 34kc without DSP. */
{ "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
{ "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
/* Deprecated forms of the above. */
{ "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
/* 1004K cores are multiprocessor versions of the 34K. */
{ "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
/* interaptiv is the new name for 1004kf */
{ "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
{ "interaptiv-mr2", 0,
ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
/* M5100 family */
{ "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
{ "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
/* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
{ "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
/* MIPS 64 */
{ "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
{ "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
{ "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
{ "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
/* Broadcom SB-1 CPU core */
{ "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
/* Broadcom SB-1A CPU core */
{ "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
{ "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
/* MIPS 64 Release 2 */
/* Cavium Networks Octeon CPU core */
{ "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
{ "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
{ "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
{ "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
/* RMI Xlr */
{ "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
/* Broadcom XLP.
XLP is mostly like XLR, with the prominent exception that it is
MIPS64R2 rather than MIPS64. */
{ "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
/* MIPS 64 Release 6 */
{ "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
{ "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
/* End marker */
{ NULL, 0, 0, 0, 0 }
};
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
with a final "000" replaced by "k". Ignore case.
Note: this function is shared between GCC and GAS. */
static bfd_boolean
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
{
while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
given++, canonical++;
return ((*given == 0 && *canonical == 0)
|| (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
}
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
CPU name. We've traditionally allowed a lot of variation here.
Note: this function is shared between GCC and GAS. */
static bfd_boolean
mips_matching_cpu_name_p (const char *canonical, const char *given)
{
/* First see if the name matches exactly, or with a final "000"
turned into "k". */
if (mips_strict_matching_cpu_name_p (canonical, given))
return TRUE;
/* If not, try comparing based on numerical designation alone.
See if GIVEN is an unadorned number, or 'r' followed by a number. */
if (TOLOWER (*given) == 'r')
given++;
if (!ISDIGIT (*given))
return FALSE;
/* Skip over some well-known prefixes in the canonical name,
hoping to find a number there too. */
if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r')
canonical += 1;
return mips_strict_matching_cpu_name_p (canonical, given);
}
/* Parse an option that takes the name of a processor as its argument.
OPTION is the name of the option and CPU_STRING is the argument.
Return the corresponding processor enumeration if the CPU_STRING is
recognized, otherwise report an error and return null.
A similar function exists in GCC. */
static const struct mips_cpu_info *
mips_parse_cpu (const char *option, const char *cpu_string)
{
const struct mips_cpu_info *p;
/* 'from-abi' selects the most compatible architecture for the given
ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
EABIs, we have to decide whether we're using the 32-bit or 64-bit
version. Look first at the -mgp options, if given, otherwise base
the choice on MIPS_DEFAULT_64BIT.
Treat NO_ABI like the EABIs. One reason to do this is that the
plain 'mips' and 'mips64' configs have 'from-abi' as their default
architecture. This code picks MIPS I for 'mips' and MIPS III for
'mips64', just as we did in the days before 'from-abi'. */
if (strcasecmp (cpu_string, "from-abi") == 0)
{
if (ABI_NEEDS_32BIT_REGS (mips_abi))
return mips_cpu_info_from_isa (ISA_MIPS1);
if (ABI_NEEDS_64BIT_REGS (mips_abi))
return mips_cpu_info_from_isa (ISA_MIPS3);
if (file_mips_opts.gp >= 0)
return mips_cpu_info_from_isa (file_mips_opts.gp == 32
? ISA_MIPS1 : ISA_MIPS3);
return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
? ISA_MIPS3
: ISA_MIPS1);
}
/* 'default' has traditionally been a no-op. Probably not very useful. */
if (strcasecmp (cpu_string, "default") == 0)
return 0;
for (p = mips_cpu_info_table; p->name != 0; p++)
if (mips_matching_cpu_name_p (p->name, cpu_string))
return p;
as_bad (_("bad value (%s) for %s"), cpu_string, option);
return 0;
}
/* Return the canonical processor information for ISA (a member of the
ISA_MIPS* enumeration). */
static const struct mips_cpu_info *
mips_cpu_info_from_isa (int isa)
{
int i;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
&& isa == mips_cpu_info_table[i].isa)
return (&mips_cpu_info_table[i]);
return NULL;
}
static const struct mips_cpu_info *
mips_cpu_info_from_arch (int arch)
{
int i;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
if (arch == mips_cpu_info_table[i].cpu)
return (&mips_cpu_info_table[i]);
return NULL;
}
static void
show (FILE *stream, const char *string, int *col_p, int *first_p)
{
if (*first_p)
{
fprintf (stream, "%24s", "");
*col_p = 24;
}
else
{
fprintf (stream, ", ");
*col_p += 2;
}
if (*col_p + strlen (string) > 72)
{
fprintf (stream, "\n%24s", "");
*col_p = 24;
}
fprintf (stream, "%s", string);
*col_p += strlen (string);
*first_p = 0;
}
void
md_show_usage (FILE *stream)
{
int column, first;
size_t i;
fprintf (stream, _("\
MIPS options:\n\
-EB generate big endian output\n\
-EL generate little endian output\n\
-g, -g2 do not remove unneeded NOPs or swap branches\n\
-G NUM allow referencing objects up to NUM bytes\n\
implicitly with the gp register [default 8]\n"));
fprintf (stream, _("\
-mips1 generate MIPS ISA I instructions\n\
-mips2 generate MIPS ISA II instructions\n\
-mips3 generate MIPS ISA III instructions\n\
-mips4 generate MIPS ISA IV instructions\n\
-mips5 generate MIPS ISA V instructions\n\
-mips32 generate MIPS32 ISA instructions\n\
-mips32r2 generate MIPS32 release 2 ISA instructions\n\
-mips32r3 generate MIPS32 release 3 ISA instructions\n\
-mips32r5 generate MIPS32 release 5 ISA instructions\n\
-mips32r6 generate MIPS32 release 6 ISA instructions\n\
-mips64 generate MIPS64 ISA instructions\n\
-mips64r2 generate MIPS64 release 2 ISA instructions\n\
-mips64r3 generate MIPS64 release 3 ISA instructions\n\
-mips64r5 generate MIPS64 release 5 ISA instructions\n\
-mips64r6 generate MIPS64 release 6 ISA instructions\n\
-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
first = 1;
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
show (stream, mips_cpu_info_table[i].name, &column, &first);
show (stream, "from-abi", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
-no-mCPU don't generate code specific to CPU.\n\
For -mCPU and -no-mCPU, CPU must be one of:\n"));
first = 1;
show (stream, "3900", &column, &first);
show (stream, "4010", &column, &first);
show (stream, "4100", &column, &first);
show (stream, "4650", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-mips16 generate mips16 instructions\n\
-no-mips16 do not generate mips16 instructions\n"));
fprintf (stream, _("\
-mmicromips generate microMIPS instructions\n\
-mno-micromips do not generate microMIPS instructions\n"));
fprintf (stream, _("\
-msmartmips generate smartmips instructions\n\
-mno-smartmips do not generate smartmips instructions\n"));
fprintf (stream, _("\
-mdsp generate DSP instructions\n\
-mno-dsp do not generate DSP instructions\n"));
fprintf (stream, _("\
-mdspr2 generate DSP R2 instructions\n\
-mno-dspr2 do not generate DSP R2 instructions\n"));
fprintf (stream, _("\
-mdspr3 generate DSP R3 instructions\n\
-mno-dspr3 do not generate DSP R3 instructions\n"));
fprintf (stream, _("\
-mmt generate MT instructions\n\
-mno-mt do not generate MT instructions\n"));
fprintf (stream, _("\
-mmcu generate MCU instructions\n\
-mno-mcu do not generate MCU instructions\n"));
fprintf (stream, _("\
-mmsa generate MSA instructions\n\
-mno-msa do not generate MSA instructions\n"));
fprintf (stream, _("\
-mxpa generate eXtended Physical Address (XPA) instructions\n\
-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
fprintf (stream, _("\
-mvirt generate Virtualization instructions\n\
-mno-virt do not generate Virtualization instructions\n"));
fprintf (stream, _("\
-minsn32 only generate 32-bit microMIPS instructions\n\
-mno-insn32 generate all microMIPS instructions\n"));
fprintf (stream, _("\
-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
-mfix-vr4120 work around certain VR4120 errata\n\
-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
-mfix-24k insert a nop after ERET and DERET instructions\n\
-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
-msym32 assume all symbols have 32-bit values\n\
-O0 remove unneeded NOPs, do not swap branches\n\
-O remove unneeded NOPs and swap branches\n\
--trap, --no-break trap exception on div by 0 and mult overflow\n\
--break, --no-trap break exception on div by 0 and mult overflow\n"));
fprintf (stream, _("\
-mhard-float allow floating-point instructions\n\
-msoft-float do not allow floating-point instructions\n\
-msingle-float only allow 32-bit floating-point operations\n\
-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
--[no-]construct-floats [dis]allow floating point values to be constructed\n\
--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
first = 1;
show (stream, "legacy", &column, &first);
show (stream, "2008", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-KPIC, -call_shared generate SVR4 position independent code\n\
-call_nonpic generate non-PIC code that can operate with DSOs\n\
-mvxworks-pic generate VxWorks position independent code\n\
-non_shared do not generate code that can operate with DSOs\n\
-xgot assume a 32 bit GOT\n\
-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
-mshared, -mno-shared disable/enable .cpload optimization for\n\
position dependent (non shared) code\n\
-mabi=ABI create ABI conformant object file for:\n"));
first = 1;
show (stream, "32", &column, &first);
show (stream, "o64", &column, &first);
show (stream, "n32", &column, &first);
show (stream, "64", &column, &first);
show (stream, "eabi", &column, &first);
fputc ('\n', stream);
fprintf (stream, _("\
-32 create o32 ABI object file (default)\n\
-n32 create n32 ABI object file\n\
-64 create 64 ABI object file\n"));
}
#ifdef TE_IRIX
enum dwarf2_format
mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
{
if (HAVE_64BIT_SYMBOLS)
return dwarf2_format_64bit_irix;
else
return dwarf2_format_32bit;
}
#endif
int
mips_dwarf2_addr_size (void)
{
if (HAVE_64BIT_OBJECTS)
return 8;
else
return 4;
}
/* Standard calling conventions leave the CFA at SP on entry. */
void
mips_cfi_frame_initial_instructions (void)
{
cfi_add_CFA_def_cfa_register (SP);
}
int
tc_mips_regname_to_dw2regnum (char *regname)
{
unsigned int regnum = -1;
unsigned int reg;
if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
regnum = reg;
return regnum;
}
/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
Given a symbolic attribute NAME, return the proper integer value.
Returns -1 if the attribute is not known. */
int
mips_convert_symbolic_attribute (const char *name)
{
static const struct
{
const char * name;
const int tag;
}
attribute_table[] =
{
#define T(tag) {#tag, tag}
T (Tag_GNU_MIPS_ABI_FP),
T (Tag_GNU_MIPS_ABI_MSA),
#undef T
};
unsigned int i;
if (name == NULL)
return -1;
for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
if (streq (name, attribute_table[i].name))
return attribute_table[i].tag;
return -1;
}
void
md_mips_end (void)
{
int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
mips_emit_delays ();
if (cur_proc_ptr)
as_warn (_("missing .end at end of assembly"));
/* Just in case no code was emitted, do the consistency check. */
file_mips_check_options ();
/* Set a floating-point ABI if the user did not. */
if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
{
/* Perform consistency checks on the floating-point ABI. */
fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP);
if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
check_fpabi (fpabi);
}
else
{
/* Soft-float gets precedence over single-float, the two options should
not be used together so this should not matter. */
if (file_mips_opts.soft_float == 1)
fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
/* Single-float gets precedence over all double_float cases. */
else if (file_mips_opts.single_float == 1)
fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
else
{
switch (file_mips_opts.fp)
{
case 32:
if (file_mips_opts.gp == 32)
fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
break;
case 0:
fpabi = Val_GNU_MIPS_ABI_FP_XX;
break;
case 64:
if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
fpabi = Val_GNU_MIPS_ABI_FP_64A;
else if (file_mips_opts.gp == 32)
fpabi = Val_GNU_MIPS_ABI_FP_64;
else
fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
break;
}
}
bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
Tag_GNU_MIPS_ABI_FP, fpabi);
}
}
/* Returns the relocation type required for a particular CFI encoding. */
bfd_reloc_code_real_type
mips_cfi_reloc_for_encoding (int encoding)
{
if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
return BFD_RELOC_32_PCREL;
else return BFD_RELOC_NONE;
}
|