aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i960.c
blob: 3f321ec06cb1fbe4c81fce5db532812bafa4d7d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
/* i960.c - All the i80960-specific stuff
   Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
   
   This file is part of GAS.
   
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.
   
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* $Id$ */

/* See comment on md_parse_option for 80960-specific invocation options. */

/******************************************************************************
 * i80690 NOTE!!!:
 *	Header, symbol, and relocation info will be used on the host machine
 *	only -- only executable code is actually downloaded to the i80960.
 *	Therefore, leave all such information in host byte order.
 *
 *	(That's a slight lie -- we DO download some header information, but
 *	the downloader converts the file format and corrects the byte-ordering
 *	of the relevant fields while doing so.)
 *
 ***************************************************************************** */

/* There are 4 different lengths of (potentially) symbol-based displacements
 * in the 80960 instruction set, each of which could require address fix-ups
 * and (in the case of external symbols) emission of relocation directives:
 *
 * 32-bit (MEMB)
 *	This is a standard length for the base assembler and requires no
 *	special action.
 *
 * 13-bit (COBR)
 *	This is a non-standard length, but the base assembler has a hook for
 *	bit field address fixups:  the fixS structure can point to a descriptor
 *	of the field, in which case our md_number_to_field() routine gets called
 *	to process it.
 *
 *	I made the hook a little cleaner by having fix_new() (in the base
 *	assembler) return a pointer to the fixS in question.  And I made it a
 *	little simpler by storing the field size (in this case 13) instead of
 *	of a pointer to another structure:  80960 displacements are ALWAYS
 *	stored in the low-order bits of a 4-byte word.
 *
 *	Since the target of a COBR cannot be external, no relocation directives
 *	for this size displacement have to be generated.  But the base assembler
 *	had to be modified to issue error messages if the symbol did turn out
 *	to be external.
 *
 * 24-bit (CTRL)
 *	Fixups are handled as for the 13-bit case (except that 24 is stored
 *	in the fixS).
 *
 *	The relocation directive generated is the same as that for the 32-bit
 *	displacement, except that it's PC-relative (the 32-bit displacement
 *	never is).   The i80960 version of the linker needs a mod to
 *	distinguish and handle the 24-bit case.
 *
 * 12-bit (MEMA)
 *	MEMA formats are always promoted to MEMB (32-bit) if the displacement
 *	is based on a symbol, because it could be relocated at link time.
 *	The only time we use the 12-bit format is if an absolute value of
 *	less than 4096 is specified, in which case we need neither a fixup nor
 *	a relocation directive.
 */

#include <stdio.h>
#include <ctype.h>

#include "as.h"

#include "obstack.h"

#include "opcode/i960.h"

extern char *input_line_pointer;
extern struct hash_control *po_hash;
extern char *next_object_file_charP;

#ifdef OBJ_COFF
int md_reloc_size = sizeof(struct reloc);
#else /* OBJ_COFF */
int md_reloc_size = sizeof(struct relocation_info);
#endif /* OBJ_COFF */

/***************************
 *  Local i80960 routines  *
 ************************** */

static void	brcnt_emit();	/* Emit branch-prediction instrumentation code */
static char *	brlab_next();	/* Return next branch local label */
void	brtab_emit();	/* Emit br-predict instrumentation table */
static void	cobr_fmt();	/* Generate COBR instruction */
static void	ctrl_fmt();	/* Generate CTRL instruction */
static char *	emit();		/* Emit (internally) binary */
static int get_args();	/* Break arguments out of comma-separated list */
static void	get_cdisp();	/* Handle COBR or CTRL displacement */
static char *	get_ispec();	/* Find index specification string */
static int get_regnum();	/* Translate text to register number */
static int i_scan();	/* Lexical scan of instruction source */
static void	mem_fmt();	/* Generate MEMA or MEMB instruction */
static void	mema_to_memb();	/* Convert MEMA instruction to MEMB format */
static segT	parse_expr();	/* Parse an expression */
static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
static void	parse_memop();	/* Parse a memory operand */
static void	parse_po();	/* Parse machine-dependent pseudo-op */
static void	parse_regop();	/* Parse a register operand */
static void	reg_fmt();	/* Generate a REG format instruction */
void	reloc_callj();	/* Relocate a 'callj' instruction */
static void	relax_cobr();	/* "De-optimize" cobr into compare/branch */
static void	s_leafproc();	/* Process '.leafproc' pseudo-op */
static void	s_sysproc();	/* Process '.sysproc' pseudo-op */
static int shift_ok();	/* Will a 'shlo' substiture for a 'ldconst'? */
static void	syntax();	/* Give syntax error */
static int targ_has_sfr();	/* Target chip supports spec-func register? */
static int targ_has_iclass();/* Target chip supports instruction set? */
/* static void	unlink_sym(); */	/* Remove a symbol from the symbol list */

/* See md_parse_option() for meanings of these options */
static char norelax = 0;		/* True if -norelax switch seen */
static char instrument_branches = 0;	/* True if -b switch seen */

/* Characters that always start a comment.
 * If the pre-processor is disabled, these aren't very useful.
 */
char comment_chars[] = "#";

/* Characters that only start a comment at the beginning of
 * a line.  If the line seems to have the form '# 123 filename'
 * .line and .file directives will appear in the pre-processed output.
 *
 * Note that input_file.c hand checks for '#' at the beginning of the
 * first line of the input file.  This is because the compiler outputs
 * #NO_APP at the beginning of its output.
 */

/* Also note that comments started like this one will always work. */

char line_comment_chars[] = "";

/* Chars that can be used to separate mant from exp in floating point nums */
char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant,
 * as in 0f12.456 or 0d1.2345e12
 */
char FLT_CHARS[] = "fFdDtT";


/* Table used by base assembler to relax addresses based on varying length
 * instructions.  The fields are:
 *   1) most positive reach of this state,
 *   2) most negative reach of this state,
 *   3) how many bytes this mode will add to the size of the current frag
 *   4) which index into the table to try if we can't fit into this one.
 *
 * For i80960, the only application is the (de-)optimization of cobr
 * instructions into separate compare and branch instructions when a 13-bit
 * displacement won't hack it.
 */
const relax_typeS
    md_relax_table[] = {
	    {0,         0,        0,0}, /* State 0 => no more relaxation possible */
	    {4088,      -4096,    0,2}, /* State 1: conditional branch (cobr) */
	    {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
    };


/* These are the machine dependent pseudo-ops.
 *
 * This table describes all the machine specific pseudo-ops the assembler
 * has to support.  The fields are:
 *	pseudo-op name without dot
 *	function to call to execute this pseudo-op
 *	integer arg to pass to the function
 */
#define S_LEAFPROC	1
#define S_SYSPROC	2

const pseudo_typeS
    md_pseudo_table[] = {
	    
	    { "bss",	s_lcomm,	1 },
	    { "extended",	float_cons,	't' },
	    { "leafproc",	parse_po,	S_LEAFPROC },
	    { "sysproc",	parse_po,	S_SYSPROC },
	    
	    { "word",	cons,		4 },
	    { "quad",	big_cons,	16 },
	    
	    { 0,		0,		0 }
    };

/* Macros to extract info from an 'expressionS' structure 'e' */
#define adds(e)	e.X_add_symbol
#define subs(e)	e.X_subtract_symbol
#define offs(e)	e.X_add_number
#define segs(e)	e.X_seg
    
    
    /* Branch-prediction bits for CTRL/COBR format opcodes */
#define BP_MASK		0x00000002  /* Mask for branch-prediction bit */
#define BP_TAKEN	0x00000000  /* Value to OR in to predict branch */
#define BP_NOT_TAKEN	0x00000002  /* Value to OR in to predict no branch */
    
    
    /* Some instruction opcodes that we need explicitly */
#define BE	0x12000000
#define BG	0x11000000
#define BGE	0x13000000
#define BL	0x14000000
#define BLE	0x16000000
#define BNE	0x15000000
#define BNO	0x10000000
#define BO	0x17000000
#define CHKBIT	0x5a002700
#define CMPI	0x5a002080
#define CMPO	0x5a002000
    
#define B	0x08000000
#define BAL	0x0b000000
#define CALL	0x09000000
#define CALLS	0x66003800
#define RET	0x0a000000
    
    
    /* These masks are used to build up a set of MEMB mode bits. */
#define	A_BIT		0x0400
#define	I_BIT		0x0800
#define MEMB_BIT	0x1000
#define	D_BIT		0x2000
    
    
    /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
#define MEMA_ABASE	0x2000
    
    /* Info from which a MEMA or MEMB format instruction can be generated */
    typedef struct {
	    long opcode;	/* (First) 32 bits of instruction */
	    int disp;	/* 0-(none), 12- or, 32-bit displacement needed */
	    char *e;	/* The expression in the source instruction from
			 *	which the displacement should be determined
			 */
    } memS;


/* The two pieces of info we need to generate a register operand */
struct regop {
	int mode;	/* 0 =>local/global/spec reg; 1=> literal or fp reg */
	int special;	/* 0 =>not a sfr;  1=> is a sfr (not valid w/mode=0) */
	int n;		/* Register number or literal value */
};


/* Number and assembler mnemonic for all registers that can appear in operands */
static struct {
	char *reg_name;
	int reg_num;
} regnames[] = {
	{ "pfp",  0 }, { "sp",   1 }, { "rip",  2 }, { "r3",   3 },
	{ "r4",   4 }, { "r5",   5 }, { "r6",   6 }, { "r7",   7 },
	{ "r8",   8 }, { "r9",   9 }, { "r10", 10 }, { "r11", 11 },
	{ "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
	{ "g0",  16 }, { "g1",  17 }, { "g2",  18 }, { "g3",  19 },
	{ "g4",  20 }, { "g5",  21 }, { "g6",  22 }, { "g7",  23 },
	{ "g8",  24 }, { "g9",  25 }, { "g10", 26 }, { "g11", 27 },
	{ "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp",  31 },
	
	/* Numbers for special-function registers are for assembler internal
	 * use only: they are scaled back to range [0-31] for binary output.
	 */
#	define SF0	32
	
	{ "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
	{ "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
	{ "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
	{ "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
	{ "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
	{ "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
	{ "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
	{ "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
	
	/* Numbers for floating point registers are for assembler internal use
	 * only: they are scaled back to [0-3] for binary output.
	 */
#	define FP0	64
	
	{ "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
	
	{ NULL,  0 },		/* END OF LIST */
};

#define	IS_RG_REG(n)	((0 <= (n)) && ((n) < SF0))
#define	IS_SF_REG(n)	((SF0 <= (n)) && ((n) < FP0))
#define	IS_FP_REG(n)	((n) >= FP0)

/* Number and assembler mnemonic for all registers that can appear as 'abase'
 * (indirect addressing) registers.
 */
static struct {
	char *areg_name;
	int areg_num;
} aregs[] = {
	{ "(pfp)",  0 }, { "(sp)",   1 }, { "(rip)",  2 }, { "(r3)",   3 },
	{ "(r4)",   4 }, { "(r5)",   5 }, { "(r6)",   6 }, { "(r7)",   7 },
	{ "(r8)",   8 }, { "(r9)",   9 }, { "(r10)", 10 }, { "(r11)", 11 },
	{ "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
	{ "(g0)",  16 }, { "(g1)",  17 }, { "(g2)",  18 }, { "(g3)",  19 },
	{ "(g4)",  20 }, { "(g5)",  21 }, { "(g6)",  22 }, { "(g7)",  23 },
	{ "(g8)",  24 }, { "(g9)",  25 }, { "(g10)", 26 }, { "(g11)", 27 },
	{ "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)",  31 },
	
#	define IPREL	32
	/* for assembler internal use only: this number never appears in binary
	 * output.
	 */
	{ "(ip)", IPREL },
	
	{ NULL,  0 },		/* END OF LIST */
};


/* Hash tables */
static struct hash_control *op_hash = NULL;	/* Opcode mnemonics */
static struct hash_control *reg_hash = NULL;	/* Register name hash table */
static struct hash_control *areg_hash = NULL;	/* Abase register hash table */


/* Architecture for which we are assembling */
#define ARCH_ANY	0	/* Default: no architecture checking done */
#define ARCH_KA		1
#define ARCH_KB		2
#define ARCH_MC		3
#define ARCH_CA		4
int architecture = ARCH_ANY;	/* Architecture requested on invocation line */
int iclasses_seen = 0;		/* OR of instruction classes (I_* constants)
				 *	for which we've actually assembled
				 *	instructions.
				 */


/* BRANCH-PREDICTION INSTRUMENTATION
 *
 *	The following supports generation of branch-prediction instrumentation
 *	(turned on by -b switch).  The instrumentation collects counts
 *	of branches taken/not-taken for later input to a utility that will
 *	set the branch prediction bits of the instructions in accordance with
 *	the behavior observed.  (Note that the KX series does not have
 *	brach-prediction.)
 *
 *	The instrumentation consists of:
 *
 *	(1) before and after each conditional branch, a call to an external
 *	    routine that increments and steps over an inline counter.  The
 *	    counter itself, initialized to 0, immediately follows the call
 *	    instruction.  For each branch, the counter following the branch
 *	    is the number of times the branch was not taken, and the difference
 *	    between the counters is the number of times it was taken.  An
 *	    example of an instrumented conditional branch:
 *
 *				call	BR_CNT_FUNC
 *				.word	0
 *		LBRANCH23:	be	label
 *				call	BR_CNT_FUNC
 *				.word	0
 *
 *	(2) a table of pointers to the instrumented branches, so that an
 *	    external postprocessing routine can locate all of the counters.
 *	    the table begins with a 2-word header: a pointer to the next in
 *	    a linked list of such tables (initialized to 0);  and a count
 *	    of the number of entries in the table (exclusive of the header.
 *
 *	    Note that input source code is expected to already contain calls
 *	    an external routine that will link the branch local table into a
 *	    list of such tables.
 */

static int br_cnt = 0;		/* Number of branches instrumented so far.
				 * Also used to generate unique local labels
				 * for each instrumented branch
				 */

#define BR_LABEL_BASE	"LBRANCH"
/* Basename of local labels on instrumented
 * branches, to avoid conflict with compiler-
 * generated local labels.
 */

#define BR_CNT_FUNC	"__inc_branch"
/* Name of the external routine that will
 * increment (and step over) an inline counter.
 */

#define BR_TAB_NAME	"__BRANCH_TABLE__"
/* Name of the table of pointers to branches.
 * A local (i.e., non-external) symbol.
 */

/*****************************************************************************
 * md_begin:  One-time initialization.
 *
 *	Set up hash tables.
 *
 **************************************************************************** */
void
    md_begin()
{
	int i;				/* Loop counter */
	const struct i960_opcode *oP; /* Pointer into opcode table */
	char *retval;			/* Value returned by hash functions */
	
	if (((op_hash = hash_new()) == 0)
	    || ((reg_hash = hash_new()) == 0)
	    || ((areg_hash = hash_new()) == 0)) {
		as_fatal("virtual memory exceeded");
	}
	
	retval = "";	/* For some reason, the base assembler uses an empty
			 * string for "no error message", instead of a NULL
			 * pointer.
			 */
	
	for (oP=i960_opcodes; oP->name && !*retval; oP++) {
		retval = hash_insert(op_hash, oP->name, oP);
	}
	
	for (i=0; regnames[i].reg_name && !*retval; i++) {
		retval = hash_insert(reg_hash, regnames[i].reg_name,
				     &regnames[i].reg_num);
	}
	
	for (i=0; aregs[i].areg_name && !*retval; i++){
		retval = hash_insert(areg_hash, aregs[i].areg_name,
				     &aregs[i].areg_num);
	}
	
	if (*retval) {
		as_fatal("Hashing returned \"%s\".", retval);
	}
} /* md_begin() */

/*****************************************************************************
 * md_end:  One-time final cleanup
 *
 *	None necessary
 *
 **************************************************************************** */
void
    md_end()
{
}

/*****************************************************************************
 * md_assemble:  Assemble an instruction
 *
 * Assumptions about the passed-in text:
 *	- all comments, labels removed
 *	- text is an instruction
 *	- all white space compressed to single blanks
 *	- all character constants have been replaced with decimal
 *
 **************************************************************************** */
void
    md_assemble(textP)
char *textP;	/* Source text of instruction */
{
	char *args[4];	/* Parsed instruction text, containing NO whitespace:
			 *	arg[0]->opcode mnemonic
			 *	arg[1-3]->operands, with char constants
			 *			replaced by decimal numbers
			 */
	int n_ops;	/* Number of instruction operands */
	
	struct i960_opcode *oP;
	/* Pointer to instruction description */
	int branch_predict;
	/* TRUE iff opcode mnemonic included branch-prediction
	 *	suffix (".f" or ".t")
	 */
	long bp_bits;	/* Setting of branch-prediction bit(s) to be OR'd
			 *	into instruction opcode of CTRL/COBR format
			 *	instructions.
			 */
	int n;		/* Offset of last character in opcode mnemonic */
	
	static const char bp_error_msg[] = "branch prediction invalid on this opcode";
	
	
	/* Parse instruction into opcode and operands */
	bzero(args, sizeof(args));
	n_ops = i_scan(textP, args);
	if (n_ops == -1){
		return;		/* Error message already issued */
	}
	
	/* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
	if (!strcmp(args[0],"ldconst")){
		n_ops = parse_ldconst(args);
		if (n_ops == -1){
			return;
		}
	}
	
	/* Check for branch-prediction suffix on opcode mnemonic, strip it off */
	n = strlen(args[0]) - 1;
	branch_predict = 0;
	bp_bits = 0;
	if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
		/* We could check here to see if the target architecture
		 * supports branch prediction, but why bother?  The bit
		 * will just be ignored by processors that don't use it.
		 */
		branch_predict = 1;
		bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
		args[0][n-1] = '\0';	/* Strip suffix from opcode mnemonic */
	}
	
	/* Look up opcode mnemonic in table and check number of operands.
	 * Check that opcode is legal for the target architecture.
	 * If all looks good, assemble instruction.
	 */
	oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
	if (!oP || !targ_has_iclass(oP->iclass)) {
		as_bad("invalid opcode, \"%s\".", args[0]);
		
	} else if (n_ops != oP->num_ops) {
		as_bad("improper number of operands.  expecting %d, got %d", oP->num_ops, n_ops);
		
	} else {
		switch (oP->format){
		case FBRA:
		case CTRL:
			ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
			if (oP->format == FBRA){
				/* Now generate a 'bno' to same arg */
				ctrl_fmt(args[1], BNO | bp_bits, 1);
			}
			break;
		case COBR:
		case COJ:
			cobr_fmt(args, oP->opcode | bp_bits, oP);
			break;
		case REG:
			if (branch_predict){
				as_warn(bp_error_msg);
			}
			reg_fmt(args, oP);
			break;
		case MEM1:
		case MEM2:
		case MEM4:
		case MEM8:
		case MEM12:
		case MEM16:
			if (branch_predict){
				as_warn(bp_error_msg);
			}
			mem_fmt(args, oP);
			break;
		case CALLJ:
			if (branch_predict){
				as_warn(bp_error_msg);
			}
			/* Output opcode & set up "fixup" (relocation);
			 * flag relocation as 'callj' type.
			 */
			know(oP->num_ops == 1);
			get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
			break;
		default:
			BAD_CASE(oP->format);
			break;
		}
	}
} /* md_assemble() */

/*****************************************************************************
 * md_number_to_chars:  convert a number to target byte order
 *
 **************************************************************************** */
void
    md_number_to_chars(buf, value, n)
char *buf;		/* Put output here */
long value;		/* The integer to be converted */
int n;		/* Number of bytes to output (significant bytes
		 *	in 'value')
		 */
{
	while (n--){
		*buf++ = value;
		value >>= 8;
	}
	
	/* XXX line number probably botched for this warning message. */
	if (value != 0 && value != -1){
		as_bad("Displacement too long for instruction field length.");
	}
	
	return;
} /* md_number_to_chars() */

/*****************************************************************************
 * md_chars_to_number:  convert from target byte order to host byte order.
 *
 **************************************************************************** */
int
    md_chars_to_number(val, n)
unsigned char *val;	/* Value in target byte order */
int n;		/* Number of bytes in the input */
{
	int retval;
	
	for (retval=0; n--;){
		retval <<= 8;
		retval |= val[n];
	}
	return retval;
}


#define MAX_LITTLENUMS	6
#define LNUM_SIZE	sizeof(LITTLENUM_TYPE)

/*****************************************************************************
 * md_atof:	convert ascii to floating point
 *
 * Turn a string at input_line_pointer into a floating point constant of type
 * 'type', and store the appropriate bytes at *litP.  The number of LITTLENUMS
 * emitted is returned at 'sizeP'.  An error message is returned, or a pointer
 * to an empty message if OK.
 *
 * Note we call the i386 floating point routine, rather than complicating
 * things with more files or symbolic links.
 *
 **************************************************************************** */
char * md_atof(type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
	LITTLENUM_TYPE words[MAX_LITTLENUMS];
	LITTLENUM_TYPE *wordP;
	int prec;
	char *t;
	char *atof_ieee();
	
	switch(type) {
	case 'f':
	case 'F':
		prec = 2;
		break;
		
	case 'd':
	case 'D':
		prec = 4;
		break;
		
	case 't':
	case 'T':
		prec = 5;
		type = 'x';	/* That's what atof_ieee() understands */
		break;
		
	default:
		*sizeP=0;
		return "Bad call to md_atof()";
	}
	
	t = atof_ieee(input_line_pointer, type, words);
	if (t){
		input_line_pointer = t;
	}
	
	*sizeP = prec * LNUM_SIZE;
	
	/* Output the LITTLENUMs in REVERSE order in accord with i80960
	 * word-order.  (Dunno why atof_ieee doesn't do it in the right
	 * order in the first place -- probably because it's a hack of
	 * atof_m68k.)
	 */
	
	for(wordP = words + prec - 1; prec--;){
		md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
		litP += sizeof(LITTLENUM_TYPE);
	}
	
	return "";	/* Someone should teach Dean about null pointers */
}


/*****************************************************************************
 * md_number_to_imm
 *
 **************************************************************************** */
void
    md_number_to_imm(buf, val, n)
char *buf;
long val;
int n;
{
	md_number_to_chars(buf, val, n);
}


/*****************************************************************************
 * md_number_to_disp
 *
 **************************************************************************** */
void
    md_number_to_disp(buf, val, n)
char *buf;
long val;
int n;
{
	md_number_to_chars(buf, val, n);
}

/*****************************************************************************
 * md_number_to_field:
 *
 *	Stick a value (an address fixup) into a bit field of
 *	previously-generated instruction.
 *
 **************************************************************************** */
void
    md_number_to_field(instrP, val, bfixP)
char *instrP;	/* Pointer to instruction to be fixed */
long val;		/* Address fixup value */
bit_fixS *bfixP;	/* Description of bit field to be fixed up */
{
	int numbits;	/* Length of bit field to be fixed */
	long instr;	/* 32-bit instruction to be fixed-up */
	long sign;	/* 0 or -1, according to sign bit of 'val' */
	
	/* Convert instruction back to host byte order
	 */
	instr = md_chars_to_number(instrP, 4);
	
	/* Surprise! -- we stored the number of bits
	 * to be modified rather than a pointer to a structure.
	 */
	numbits = (int)bfixP;
	if (numbits == 1){
		/* This is a no-op, stuck here by reloc_callj() */
		return;
	}
	
	know ((numbits==13) || (numbits==24));
	
	/* Propagate sign bit of 'val' for the given number of bits.
	 * Result should be all 0 or all 1
	 */
	sign = val >> ((int)numbits - 1);
	if (((val < 0) && (sign != -1))
	    ||   ((val > 0) && (sign != 0))){
		as_bad("Fixup of %d too large for field width of %d",
		       val, numbits);
	} else {
		/* Put bit field into instruction and write back in target
		 * byte order.
		 */
		val &= ~(-1 << (int)numbits);	/* Clear unused sign bits */
		instr |= val;
		md_number_to_chars(instrP, instr, 4);
	}
} /* md_number_to_field() */


/*****************************************************************************
 * md_parse_option
 *	Invocation line includes a switch not recognized by the base assembler.
 *	See if it's a processor-specific option.  For the 960, these are:
 *
 *	-norelax:
 *		Conditional branch instructions that require displacements
 *		greater than 13 bits (or that have external targets) should
 *		generate errors.  The default is to replace each such
 *		instruction with the corresponding compare (or chkbit) and
 *		branch instructions.  Note that the Intel "j" cobr directives
 *		are ALWAYS "de-optimized" in this way when necessary,
 *		regardless of the setting of this option.
 *
 *	-b:
 *		Add code to collect information about branches taken, for
 *		later optimization of branch prediction bits by a separate
 *		tool.  COBR and CNTL format instructions have branch
 *		prediction bits (in the CX architecture);  if "BR" represents
 *		an instruction in one of these classes, the following rep-
 *		resents the code generated by the assembler:
 *
 *			call	<increment routine>
 *			.word	0	# pre-counter
 *		Label:  BR
 *			call	<increment routine>
 *			.word	0	# post-counter
 *
 *		A table of all such "Labels" is also generated.
 *
 *
 *	-AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
 *		Select the 80960 architecture.  Instructions or features not
 *		supported by the selected architecture cause fatal errors.
 *		The default is to generate code for any instruction or feature
 *		that is supported by SOME version of the 960 (even if this
 *		means mixing architectures!).
 *
 **************************************************************************** */
int
    md_parse_option(argP, cntP, vecP)
char **argP;
int *cntP;
char ***vecP;
{
	char *p;
	struct tabentry { char *flag; int arch; };
	static struct tabentry arch_tab[] = {
		"KA", ARCH_KA,
		"KB", ARCH_KB,
		"SA", ARCH_KA,  /* Synonym for KA */
		"SB", ARCH_KB,  /* Synonym for KB */
		"KC", ARCH_MC,  /* Synonym for MC */
		"MC", ARCH_MC,
		"CA", ARCH_CA,
		NULL, 0
	    };
	struct tabentry *tp;
	
	if (!strcmp(*argP,"norelax")){
		norelax = 1;
		
	} else if (**argP == 'b'){
		instrument_branches = 1;
		
	} else if (**argP == 'A'){
		p = (*argP) + 1;
		
		for (tp = arch_tab; tp->flag != NULL; tp++){
			if (!strcmp(p,tp->flag)){
				break;
			}
		}
		
		if (tp->flag == NULL){
			as_bad("unknown architecture: %s", p);
		} else {
			architecture = tp->arch;
		}
	} else {
		/* Unknown option */
		(*argP)++;
		return 0;
	}
	**argP = '\0';	/* Done parsing this switch */
	return 1;
}

/*****************************************************************************
 * md_convert_frag:
 *	Called by base assembler after address relaxation is finished:  modify
 *	variable fragments according to how much relaxation was done.
 *
 *	If the fragment substate is still 1, a 13-bit displacement was enough
 *	to reach the symbol in question.  Set up an address fixup, but otherwise
 *	leave the cobr instruction alone.
 *
 *	If the fragment substate is 2, a 13-bit displacement was not enough.
 *	Replace the cobr with a two instructions (a compare and a branch).
 *
 **************************************************************************** */
void
    md_convert_frag(headers, fragP)
object_headers *headers;
fragS * fragP;
{
	fixS *fixP;	/* Structure describing needed address fix */
	
	switch (fragP->fr_subtype){
	case 1:
		/* LEAVE SINGLE COBR INSTRUCTION */
		fixP = fix_new(fragP,
			       fragP->fr_opcode-fragP->fr_literal,
			       4,
			       fragP->fr_symbol,
			       0,
			       fragP->fr_offset,
			       1,
			       0);
		
		fixP->fx_bit_fixP = (bit_fixS *) 13;	/* size of bit field */
		break;
	case 2:
		/* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
		relax_cobr(fragP);
		break;
	default:
		BAD_CASE(fragP->fr_subtype);
		break;
	}
}

/*****************************************************************************
 * md_estimate_size_before_relax:  How much does it look like *fragP will grow?
 *
 *	Called by base assembler just before address relaxation.
 *	Return the amount by which the fragment will grow.
 *
 *	Any symbol that is now undefined will not become defined; cobr's
 *	based on undefined symbols will have to be replaced with a compare
 *	instruction and a branch instruction, and the code fragment will grow
 *	by 4 bytes.
 *
 **************************************************************************** */
int
    md_estimate_size_before_relax(fragP, segment_type)
register fragS *fragP;
register segT segment_type;
{
	/* If symbol is undefined in this segment, go to "relaxed" state
	 * (compare and branch instructions instead of cobr) right now.
	 */
	if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
		relax_cobr(fragP);
		return 4;
	}
	return 0;
} /* md_estimate_size_before_relax() */


/*****************************************************************************
 * md_ri_to_chars:
 *	This routine exists in order to overcome machine byte-order problems
 *	when dealing with bit-field entries in the relocation_info struct.
 *
 *	But relocation info will be used on the host machine only (only
 *	executable code is actually downloaded to the i80960).  Therefore,
 *	we leave it in host byte order.
 *
 **************************************************************************** */
void md_ri_to_chars(where, ri)
char *where;
struct relocation_info *ri;
{
	*((struct relocation_info *) where) = *ri; /* structure assignment */
} /* md_ri_to_chars() */

#ifndef WORKING_DOT_WORD

int md_short_jump_size = 0;
int md_long_jump_size = 0;

void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
long from_addr;
long to_addr;
fragS *frag;
symbolS *to_symbol;
{
	as_fatal("failed sanity check.");
}

void
    md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
char *ptr;
long from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
	as_fatal("failed sanity check.");
}
#endif

/*************************************************************
 *                                                           *
 *  FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER  *
 *                                                           *
 ************************************************************ */



/*****************************************************************************
 * brcnt_emit:	Emit code to increment inline branch counter.
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 **************************************************************************** */
static void
    brcnt_emit()
{
	ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
	emit(0);		/* Emit inline counter to be incremented */
}

/*****************************************************************************
 * brlab_next:	generate the next branch local label
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 **************************************************************************** */
static char *
    brlab_next()
{
	static char buf[20];
	
	sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
	return buf;
}

/*****************************************************************************
 * brtab_emit:	generate the fetch-prediction branch table.
 *
 *	See the comments above the declaration of 'br_cnt' for details on
 *	branch-prediction instrumentation.
 *
 *	The code emitted here would be functionally equivalent to the following
 *	example assembler source.
 *
 *			.data
 *			.align	2
 *	   BR_TAB_NAME:
 *			.word	0		# link to next table
 *			.word	3		# length of table
 *			.word	LBRANCH0	# 1st entry in table proper
 *			.word	LBRANCH1
 *			.word	LBRANCH2
 ***************************************************************************** */
void
    brtab_emit()
{
	int i;
	char buf[20];
	char *p;		/* Where the binary was output to */
	fixS *fixP;		/*->description of deferred address fixup */
	
	if (!instrument_branches){
		return;
	}
	
	subseg_new(SEG_DATA,0);		/* 	.data */
	frag_align(2,0);		/* 	.align 2 */
	record_alignment(now_seg,2);
	colon(BR_TAB_NAME);		/* BR_TAB_NAME: */
	emit(0);			/* 	.word 0	#link to next table */
	emit(br_cnt);			/*	.word n #length of table */
	
	for (i=0; i<br_cnt; i++){
		sprintf(buf, "%s%d", BR_LABEL_BASE, i);
		p = emit(0);
		fixP = fix_new(frag_now,
			       p - frag_now->fr_literal,
			       4,
			       symbol_find(buf),
			       0,
			       0,
			       0,
			       0);
		fixP->fx_im_disp = 2;		/* 32-bit displacement fix */
	}
}

/*****************************************************************************
 * cobr_fmt:	generate a COBR-format instruction
 *
 **************************************************************************** */
static
    void
    cobr_fmt(arg, opcode, oP)
char *arg[];	/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
long opcode;	/* Opcode, with branch-prediction bits already set
		 *	if necessary.
		 */
struct i960_opcode *oP;
/*->description of instruction */
{
	long instr;		/* 32-bit instruction */
	struct regop regop;	/* Description of register operand */
	int n;			/* Number of operands */
	int var_frag;		/* 1 if varying length code fragment should
				 *	be emitted;  0 if an address fix
				 *	should be emitted.
				 */
	
	instr = opcode;
	n = oP->num_ops;
	
	if (n >= 1) {
		/* First operand (if any) of a COBR is always a register
		 * operand.  Parse it.
		 */
		parse_regop(&regop, arg[1], oP->operand[0]);
		instr |= (regop.n << 19) | (regop.mode << 13);
	}
	if (n >= 2) {
		/* Second operand (if any) of a COBR is always a register
		 * operand.  Parse it.
		 */
		parse_regop(&regop, arg[2], oP->operand[1]);
		instr |= (regop.n << 14) | regop.special;
	}
	
	
	if (n < 3){
		emit(instr);
		
	} else {
		if (instrument_branches){
			brcnt_emit();
			colon(brlab_next());
		}
		
		/* A third operand to a COBR is always a displacement.
		 * Parse it; if it's relaxable (a cobr "j" directive, or any
		 * cobr other than bbs/bbc when the "-norelax" option is not in
		 * use) set up a variable code fragment;  otherwise set up an
		 * address fix.
		 */
		var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
		get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
		
		if (instrument_branches){
			brcnt_emit();
		}
	}
} /* cobr_fmt() */


/*****************************************************************************
 * ctrl_fmt:	generate a CTRL-format instruction
 *
 **************************************************************************** */
static
    void
    ctrl_fmt(targP, opcode, num_ops)
char *targP;	/* Pointer to text of lone operand (if any) */
long opcode;	/* Template of instruction */
int num_ops;	/* Number of operands */
{
	int instrument;	/* TRUE iff we should add instrumentation to track
			 * how often the branch is taken
			 */
	
	
	if (num_ops == 0){
		emit(opcode);		/* Output opcode */
	} else {
		
		instrument = instrument_branches && (opcode!=CALL)
		    && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
		
		if (instrument){
			brcnt_emit();
			colon(brlab_next());
		}
		
		/* The operand MUST be an ip-relative displacment. Parse it
		 * and set up address fix for the instruction we just output.
		 */
		get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
		
		if (instrument){
			brcnt_emit();
		}
	}
	
}


/*****************************************************************************
 * emit:	output instruction binary
 *
 *	Output instruction binary, in target byte order, 4 bytes at a time.
 *	Return pointer to where it was placed.
 *
 **************************************************************************** */
static
    char *
    emit(instr)
long instr;		/* Word to be output, host byte order */
{
	char *toP;	/* Where to output it */
	
	toP = frag_more(4);			/* Allocate storage */
	md_number_to_chars(toP, instr, 4);  /* Convert to target byte order */
	return toP;
}


/*****************************************************************************
 * get_args:	break individual arguments out of comma-separated list
 *
 * Input assumptions:
 *	- all comments and labels have been removed
 *	- all strings of whitespace have been collapsed to a single blank.
 *	- all character constants ('x') have been replaced with decimal
 *
 * Output:
 *	args[0] is untouched. args[1] points to first operand, etc. All args:
 *	- are NULL-terminated
 *	- contain no whitespace
 *
 * Return value:
 *	Number of operands (0,1,2, or 3) or -1 on error.
 *
 **************************************************************************** */
static int get_args(p, args)
register char *p;	/* Pointer to comma-separated operands; MUCKED BY US */
char *args[];	/* Output arg: pointers to operands placed in args[1-3].
		 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
		 */
{
	register int n;		/* Number of operands */
	register char *to;
	/*	char buf[4]; */
	/*	int len; */
	
	
	/* Skip lead white space */
	while (*p == ' '){
		p++;
	}
	
	if (*p == '\0'){
		return 0;
	}
	
	n = 1;
	args[1] = p;
	
	/* Squeze blanks out by moving non-blanks toward start of string.
	 * Isolate operands, whenever comma is found.
	 */
	to = p;
	while (*p != '\0'){
		
		if (*p == ' '){
			p++;
			
		} else if (*p == ','){
			
			/* Start of operand */
			if (n == 3){
				as_bad("too many operands");
				return -1;
			}
			*to++ = '\0';	/* Terminate argument */
			args[++n] = to;	/* Start next argument */
			p++;
			
		} else {
			*to++ = *p++;
		}
	}
	*to = '\0';
	return n;
}


/*****************************************************************************
 * get_cdisp:	handle displacement for a COBR or CTRL instruction.
 *
 *	Parse displacement for a COBR or CTRL instruction.
 *
 *	If successful, output the instruction opcode and set up for it,
 *	depending on the arg 'var_frag', either:
 *	    o an address fixup to be done when all symbol values are known, or
 *	    o a varying length code fragment, with address fixup info.  This
 *		will be done for cobr instructions that may have to be relaxed
 *		in to compare/branch instructions (8 bytes) if the final address
 *		displacement is greater than 13 bits.
 *
 **************************************************************************** */
static
    void
    get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
char *dispP;	/*->displacement as specified in source instruction */
char *ifmtP;	/*->"COBR" or "CTRL" (for use in error message) */
long instr;		/* Instruction needing the displacement */
int numbits;	/* # bits of displacement (13 for COBR, 24 for CTRL) */
int var_frag;	/* 1 if varying length code fragment should be emitted;
		 *	0 if an address fix should be emitted.
		 */
int callj;		/* 1 if callj relocation should be done; else 0 */
{
	expressionS e;	/* Parsed expression */
	fixS *fixP;	/* Structure describing needed address fix */
	char *outP;	/* Where instruction binary is output to */
	
	fixP = NULL;
	
	switch (parse_expr(dispP,&e)) {
		
	case SEG_GOOF:
		as_bad("expression syntax error");
		break;
		
	case SEG_TEXT:
	case SEG_UNKNOWN:
		if (var_frag) {
			outP = frag_more(8);	/* Allocate worst-case storage */
			md_number_to_chars(outP, instr, 4);
			frag_variant(rs_machine_dependent, 4, 4, 1,
				     adds(e), offs(e), outP, 0, 0);
		} else {
			/* Set up a new fix structure, so address can be updated
			 * when all symbol values are known.
			 */
			outP = emit(instr);
			fixP = fix_new(frag_now,
				       outP - frag_now->fr_literal,
				       4,
				       adds(e),
				       0,
				       offs(e),
				       1,
				       0);
			
			fixP->fx_callj = callj;
			
			/* We want to modify a bit field when the address is
			 * known.  But we don't need all the garbage in the
			 * bit_fix structure.  So we're going to lie and store
			 * the number of bits affected instead of a pointer.
			 */
			fixP->fx_bit_fixP = (bit_fixS *) numbits;
		}
		break;
		
	case SEG_DATA:
	case SEG_BSS:
		as_bad("attempt to branch into different segment");
		break;
		
	default:
		as_bad("target of %s instruction must be a label", ifmtP);
		break;
	}
}


/*****************************************************************************
 * get_ispec:	parse a memory operand for an index specification
 *
 *	Here, an "index specification" is taken to be anything surrounded
 *	by square brackets and NOT followed by anything else.
 *
 *	If it's found, detach it from the input string, remove the surrounding
 *	square brackets, and return a pointer to it.  Otherwise, return NULL.
 *
 **************************************************************************** */
static
    char *
    get_ispec(textP)
char *textP; /*->memory operand from source instruction, no white space */
{
	char *start;	/*->start of index specification */
	char *end;	/*->end of index specification */
	
	/* Find opening square bracket, if any
	 */
	start = strchr(textP, '[');
	
	if (start != NULL){
		
		/* Eliminate '[', detach from rest of operand */
		*start++ = '\0';
		
		end = strchr(start, ']');
		
		if (end == NULL){
			as_bad("unmatched '['");
			
		} else {
			/* Eliminate ']' and make sure it was the last thing
			 * in the string.
			 */
			*end = '\0';
			if (*(end+1) != '\0'){
				as_bad("garbage after index spec ignored");
			}
		}
	}
	return start;
}

/*****************************************************************************
 * get_regnum:
 *
 *	Look up a (suspected) register name in the register table and return the
 *	associated register number (or -1 if not found).
 *
 **************************************************************************** */
static
    int
    get_regnum(regname)
char *regname;	/* Suspected register name */
{
	int *rP;
	
	rP = (int *) hash_find(reg_hash, regname);
	return (rP == NULL) ? -1 : *rP;
}


/*****************************************************************************
 * i_scan:	perform lexical scan of ascii assembler instruction.
 *
 * Input assumptions:
 *	- input string is an i80960 instruction (not a pseudo-op)
 *	- all comments and labels have been removed
 *	- all strings of whitespace have been collapsed to a single blank.
 *
 * Output:
 *	args[0] points to opcode, other entries point to operands. All strings:
 *	- are NULL-terminated
 *	- contain no whitespace
 *	- have character constants ('x') replaced with a decimal number
 *
 * Return value:
 *	Number of operands (0,1,2, or 3) or -1 on error.
 *
 **************************************************************************** */
static int i_scan(iP, args)
register char *iP;	/* Pointer to ascii instruction;  MUCKED BY US. */
char *args[];	/* Output arg: pointers to opcode and operands placed
		 *	here.  MUST ACCOMMODATE 4 ENTRIES.
		 */
{
	
	/* Isolate opcode */
	if (*(iP) == ' ') {
		iP++;
	} /* Skip lead space, if any */
	args[0] = iP;
	for (; *iP != ' '; iP++) {
		if (*iP == '\0') {
			/* There are no operands */
			if (args[0] == iP) {
				/* We never moved: there was no opcode either! */
				as_bad("missing opcode");
				return -1;
			}
			return 0;
		}
	}
	*iP++ = '\0';	/* Terminate opcode */
	return(get_args(iP, args));
} /* i_scan() */


/*****************************************************************************
 * mem_fmt:	generate a MEMA- or MEMB-format instruction
 *
 **************************************************************************** */
static void mem_fmt(args, oP)
char *args[];	/* args[0]->opcode mnemonic, args[1-3]->operands */
struct i960_opcode *oP; /* Pointer to description of instruction */
{
	int i;			/* Loop counter */
	struct regop regop;	/* Description of register operand */
	char opdesc;		/* Operand descriptor byte */
	memS instr;		/* Description of binary to be output */
	char *outP;		/* Where the binary was output to */
	expressionS expr;	/* Parsed expression */
	fixS *fixP;		/*->description of deferred address fixup */
	
	bzero(&instr, sizeof(memS));
	instr.opcode = oP->opcode;
	
	/* Process operands. */
	for (i = 1; i <= oP->num_ops; i++){
		opdesc = oP->operand[i-1];
		
		if (MEMOP(opdesc)){
			parse_memop(&instr, args[i], oP->format);
		} else {
			parse_regop(&regop, args[i], opdesc);
			instr.opcode |= regop.n << 19;
		}
	}
	
	/* Output opcode */
	outP = emit(instr.opcode);
	
	if (instr.disp == 0){
		return;
	}
	
	/* Parse and process the displacement */
	switch (parse_expr(instr.e,&expr)){
		
	case SEG_GOOF:
		as_bad("expression syntax error");
		break;
		
	case SEG_ABSOLUTE:
		if (instr.disp == 32){
			(void) emit(offs(expr));	/* Output displacement */
		} else {
			/* 12-bit displacement */
			if (offs(expr) & ~0xfff){
				/* Won't fit in 12 bits: convert already-output
				 * instruction to MEMB format, output
				 * displacement.
				 */
				mema_to_memb(outP);
				(void) emit(offs(expr));
			} else {
				/* WILL fit in 12 bits:  OR into opcode and
				 * overwrite the binary we already put out
				 */
				instr.opcode |= offs(expr);
				md_number_to_chars(outP, instr.opcode, 4);
			}
		}
		break;
		
	case SEG_DIFFERENCE:
	case SEG_TEXT:
	case SEG_DATA:
	case SEG_BSS:
	case SEG_UNKNOWN:
		if (instr.disp == 12){
			/* Displacement is dependent on a symbol, whose value
			 * may change at link time.  We HAVE to reserve 32 bits.
			 * Convert already-output opcode to MEMB format.
			 */
			mema_to_memb(outP);
		}
		
		/* Output 0 displacement and set up address fixup for when
		 * this symbol's value becomes known.
		 */
		outP = emit((long) 0);
		fixP = fix_new(frag_now,
			       outP - frag_now->fr_literal,
			       4,
			       adds(expr),
			       subs(expr),
			       offs(expr),
			       0,
			       0);
		fixP->fx_im_disp = 2;		/* 32-bit displacement fix */
		break;
		
	default:
		BAD_CASE(segs(expr));
		break;
	}
} /* memfmt() */


/*****************************************************************************
 * mema_to_memb:	convert a MEMA-format opcode to a MEMB-format opcode.
 *
 * There are 2 possible MEMA formats:
 *	- displacement only
 *	- displacement + abase
 *
 * They are distinguished by the setting of the MEMA_ABASE bit.
 *
 **************************************************************************** */
static void mema_to_memb(opcodeP)
char *opcodeP;	/* Where to find the opcode, in target byte order */
{
	long opcode;	/* Opcode in host byte order */
	long mode;	/* Mode bits for MEMB instruction */
	
	opcode = md_chars_to_number(opcodeP, 4);
	know(!(opcode & MEMB_BIT));
	
	mode = MEMB_BIT | D_BIT;
	if (opcode & MEMA_ABASE){
		mode |= A_BIT;
	}
	
	opcode &= 0xffffc000;	/* Clear MEMA offset and mode bits */
	opcode |= mode;		/* Set MEMB mode bits */
	
	md_number_to_chars(opcodeP, opcode, 4);
} /* mema_to_memb() */


/*****************************************************************************
 * parse_expr:		parse an expression
 *
 *	Use base assembler's expression parser to parse an expression.
 *	It, unfortunately, runs off a global which we have to save/restore
 *	in order to make it work for us.
 *
 *	An empty expression string is treated as an absolute 0.
 *
 *	Return "segment" to which the expression evaluates.
 *	Return SEG_GOOF regardless of expression evaluation if entire input
 *	string is not consumed in the evaluation -- tolerate no dangling junk!
 *
 **************************************************************************** */
static
    segT
    parse_expr(textP, expP)
char *textP;	/* Text of expression to be parsed */
expressionS *expP;	/* Where to put the results of parsing */
{
	char *save_in;	/* Save global here */
	segT seg;	/* Segment to which expression evaluates */
	symbolS *symP;
	
	know(textP);
	
	if (*textP == '\0') {
		/* Treat empty string as absolute 0 */
		expP->X_add_symbol = expP->X_subtract_symbol = NULL;
		expP->X_add_number = 0;
		seg = expP->X_seg = SEG_ABSOLUTE;
		
	} else {
		save_in = input_line_pointer;	/* Save global */
		input_line_pointer = textP;	/* Make parser work for us */
		
		seg = expression(expP);
		if (input_line_pointer - textP != strlen(textP)) {
			/* Did not consume all of the input */
			seg = SEG_GOOF;
		}
		symP = expP->X_add_symbol;
		if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
			/* Register name in an expression */
			seg = SEG_GOOF;
		}
		
		input_line_pointer = save_in;	/* Restore global */
	}
	return seg;
}


/*****************************************************************************
 * parse_ldcont:
 *	Parse and replace a 'ldconst' pseudo-instruction with an appropriate
 *	i80960 instruction.
 *
 *	Assumes the input consists of:
 *		arg[0]	opcode mnemonic ('ldconst')
 *		arg[1]  first operand (constant)
 *		arg[2]	name of register to be loaded
 *
 *	Replaces opcode and/or operands as appropriate.
 *
 *	Returns the new number of arguments, or -1 on failure.
 *
 **************************************************************************** */
static
    int
    parse_ldconst(arg)
char *arg[];	/* See above */
{
	int n;			/* Constant to be loaded */
	int shift;		/* Shift count for "shlo" instruction */
	static char buf[5];	/* Literal for first operand */
	static char buf2[5];	/* Literal for second operand */
	expressionS e;		/* Parsed expression */
	
	
	arg[3] = NULL;	/* So we can tell at the end if it got used or not */
	
	switch(parse_expr(arg[1],&e)){
		
	case SEG_TEXT:
	case SEG_DATA:
	case SEG_BSS:
	case SEG_UNKNOWN:
	case SEG_DIFFERENCE:
		/* We're dependent on one or more symbols -- use "lda" */
		arg[0] = "lda";
		break;
		
	case SEG_ABSOLUTE:
		/* Try the following mappings:
		 *	ldconst 0,<reg>  ->mov  0,<reg>
		 * 	ldconst 31,<reg> ->mov  31,<reg>
		 * 	ldconst 32,<reg> ->addo 1,31,<reg>
		 * 	ldconst 62,<reg> ->addo 31,31,<reg>
  		 *	ldconst 64,<reg> ->shlo 8,3,<reg>
		 * 	ldconst -1,<reg> ->subo 1,0,<reg>
		 * 	ldconst -31,<reg>->subo 31,0,<reg>
		 *
		 * anthing else becomes:
		 * 	lda xxx,<reg>
		 */
		n = offs(e);
		if ((0 <= n) && (n <= 31)){
			arg[0] = "mov";
			
		} else if ((-31 <= n) && (n <= -1)){
			arg[0] = "subo";
			arg[3] = arg[2];
			sprintf(buf, "%d", -n);
			arg[1] = buf;
			arg[2] = "0";
			
		} else if ((32 <= n) && (n <= 62)){
			arg[0] = "addo";
			arg[3] = arg[2];
			arg[1] = "31";
			sprintf(buf, "%d", n-31);
			arg[2] = buf;
			
		} else if ((shift = shift_ok(n)) != 0){
			arg[0] = "shlo";
			arg[3] = arg[2];
			sprintf(buf, "%d", shift);
			arg[1] = buf;
			sprintf(buf2, "%d", n >> shift);
			arg[2] = buf2;
			
		} else {
			arg[0] = "lda";
		}
		break;
		
	default:
		as_bad("invalid constant");
		return -1;
		break;
	}
	return (arg[3] == 0) ? 2: 3;
}

/*****************************************************************************
 * parse_memop:	parse a memory operand
 *
 *	This routine is based on the observation that the 4 mode bits of the
 *	MEMB format, taken individually, have fairly consistent meaning:
 *
 *		 M3 (bit 13): 1 if displacement is present (D_BIT)
 *		 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
 *		 M1 (bit 11): 1 if index is present (I_BIT)
 *		 M0 (bit 10): 1 if abase is present (A_BIT)
 *
 *	So we parse the memory operand and set bits in the mode as we find
 *	things.  Then at the end, if we go to MEMB format, we need only set
 *	the MEMB bit (M2) and our mode is built for us.
 *
 *	Unfortunately, I said "fairly consistent".  The exceptions:
 *
 *		 DBIA
 *		 0100	Would seem illegal, but means "abase-only".
 *
 *		 0101	Would seem to mean "abase-only" -- it means IP-relative.
 *			Must be converted to 0100.
 *
 *		 0110	Would seem to mean "index-only", but is reserved.
 *			We turn on the D bit and provide a 0 displacement.
 *
 *	The other thing to observe is that we parse from the right, peeling
 *	things * off as we go:  first any index spec, then any abase, then
 *	the displacement.
 *
 **************************************************************************** */
static
    void
    parse_memop(memP, argP, optype)
memS *memP;	/* Where to put the results */
char *argP;	/* Text of the operand to be parsed */
int optype;	/* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
{
	char *indexP;	/* Pointer to index specification with "[]" removed */
	char *p;	/* Temp char pointer */
	char iprel_flag;/* True if this is an IP-relative operand */
	int regnum;	/* Register number */
	int scale;	/* Scale factor: 1,2,4,8, or 16.  Later converted
			 *	to internal format (0,1,2,3,4 respectively).
			 */
	int mode; 	/* MEMB mode bits */
	int *intP;	/* Pointer to register number */
	
	/* The following table contains the default scale factors for each
	 * type of memory instruction.  It is accessed using (optype-MEM1)
	 * as an index -- thus it assumes the 'optype' constants are assigned
	 * consecutive values, in the order they appear in this table
	 */
	static int def_scale[] = {
		1,	/* MEM1 */
		2,	/* MEM2 */
		4, 	/* MEM4 */
		8,	/* MEM8 */
		-1,	/* MEM12 -- no valid default */
		16 	/* MEM16 */
	    };
	
	
	iprel_flag = mode = 0;
	
	/* Any index present? */
	indexP = get_ispec(argP);
	if (indexP) {
		p = strchr(indexP, '*');
		if (p == NULL) {
			/* No explicit scale -- use default for this
			 *instruction type.
			 */
			scale = def_scale[ optype - MEM1 ];
		} else {
			*p++ = '\0';	/* Eliminate '*' */
			
			/* Now indexP->a '\0'-terminated register name,
			 * and p->a scale factor.
			 */
			
			if (!strcmp(p,"16")){
				scale = 16;
			} else if (strchr("1248",*p) && (p[1] == '\0')){
				scale = *p - '0';
			} else {
				scale = -1;
			}
		}
		
		regnum = get_regnum(indexP);		/* Get index reg. # */
		if (!IS_RG_REG(regnum)){
			as_bad("invalid index register");
			return;
		}
		
		/* Convert scale to its binary encoding */
		switch (scale){
		case  1: scale = 0 << 7; break;
		case  2: scale = 1 << 7; break;
		case  4: scale = 2 << 7; break;
		case  8: scale = 3 << 7; break;
		case 16: scale = 4 << 7; break;
		default: as_bad("invalid scale factor"); return;
		};
		
		memP->opcode |= scale | regnum;	 /* Set index bits in opcode */
		mode |= I_BIT;			/* Found a valid index spec */
	}
	
	/* Any abase (Register Indirect) specification present? */
	if ((p = strrchr(argP,'(')) != NULL) {
		/* "(" is there -- does it start a legal abase spec?
		 * (If not it could be part of a displacement expression.)
		 */
		intP = (int *) hash_find(areg_hash, p);
		if (intP != NULL){
			/* Got an abase here */
			regnum = *intP;
			*p = '\0';	/* discard register spec */
			if (regnum == IPREL){
				/* We have to specialcase ip-rel mode */
				iprel_flag = 1;
			} else {
				memP->opcode |= regnum << 14;
				mode |= A_BIT;
			}
		}
	}
	
	/* Any expression present? */
	memP->e = argP;
	if (*argP != '\0'){
		mode |= D_BIT;
	}
	
	/* Special-case ip-relative addressing */
	if (iprel_flag){
		if (mode & I_BIT){
			syntax();
		} else {
			memP->opcode |= 5 << 10;	/* IP-relative mode */
			memP->disp = 32;
		}
		return;
	}
	
	/* Handle all other modes */
	switch (mode){
	case D_BIT | A_BIT:
		/* Go with MEMA instruction format for now (grow to MEMB later
		 *	if 12 bits is not enough for the displacement).
		 * MEMA format has a single mode bit: set it to indicate
		 *	that abase is present.
		 */
		memP->opcode |= MEMA_ABASE;
		memP->disp = 12;
		break;
		
	case D_BIT:
		/* Go with MEMA instruction format for now (grow to MEMB later
		 *	if 12 bits is not enough for the displacement).
		 */
		memP->disp = 12;
		break;
		
	case A_BIT:
		/* For some reason, the bit string for this mode is not
		 * consistent:  it should be 0 (exclusive of the MEMB bit),
		 * so we set it "by hand" here.
		 */
		memP->opcode |= MEMB_BIT;
		break;
		
	case A_BIT | I_BIT:
		/* set MEMB bit in mode, and OR in mode bits */
		memP->opcode |= mode | MEMB_BIT;
		break;
		
	case I_BIT:
		/* Treat missing displacement as displacement of 0 */
		mode |= D_BIT;
		/***********************
		 * Fall into next case *
		 ********************** */
	case D_BIT | A_BIT | I_BIT:
	case D_BIT | I_BIT:
		/* set MEMB bit in mode, and OR in mode bits */
		memP->opcode |= mode | MEMB_BIT;
		memP->disp = 32;
		break;
		
	default:
		syntax();
		break;
	}
}

/*****************************************************************************
 * parse_po:	parse machine-dependent pseudo-op
 *
 *	This is a top-level routine for machine-dependent pseudo-ops.  It slurps
 *	up the rest of the input line, breaks out the individual arguments,
 *	and dispatches them to the correct handler.
 **************************************************************************** */
static
    void
    parse_po(po_num)
int po_num;	 /* Pseudo-op number:  currently S_LEAFPROC or S_SYSPROC */
{
	char *args[4];	/* Pointers operands, with no embedded whitespace.
			 *	arg[0] unused.
			 *	arg[1-3]->operands
			 */
	int n_ops;	/* Number of operands */
	char *p;	/* Pointer to beginning of unparsed argument string */
	char eol;	/* Character that indicated end of line */
	
	extern char is_end_of_line[];
	
	/* Advance input pointer to end of line. */
	p = input_line_pointer;
	while (!is_end_of_line[ *input_line_pointer ]){
		input_line_pointer++;
	}
	eol = *input_line_pointer;	/* Save end-of-line char */
	*input_line_pointer = '\0';  	/* Terminate argument list */
	
	/* Parse out operands */
	n_ops = get_args(p, args);
	if (n_ops == -1){
		return;
	}
	
	/* Dispatch to correct handler */
	switch(po_num){
	case S_SYSPROC:		s_sysproc(n_ops, args);	break;
	case S_LEAFPROC:	s_leafproc(n_ops, args);	break;
	default:		BAD_CASE(po_num);		break;
	}
	
	/* Restore eol, so line numbers get updated correctly.  Base assembler
	 * assumes we leave input pointer pointing at char following the eol.
	 */
	*input_line_pointer++ = eol;
}

/*****************************************************************************
 * parse_regop: parse a register operand.
 *
 *	In case of illegal operand, issue a message and return some valid
 *	information so instruction processing can continue.
 **************************************************************************** */
static
    void
    parse_regop(regopP, optext, opdesc)
struct regop *regopP; /* Where to put description of register operand */
char *optext;	/* Text of operand */
char opdesc;	/* Descriptor byte:  what's legal for this operand */
{
	int n;		/* Register number */
	expressionS e;	/* Parsed expression */
	
	/* See if operand is a register */
	n = get_regnum(optext);
	if (n >= 0){
		if (IS_RG_REG(n)){
			/* global or local register */
			if (!REG_ALIGN(opdesc,n)){
				as_bad("unaligned register");
			}
			regopP->n = n;
			regopP->mode = 0;
			regopP->special = 0;
			return;
		} else if (IS_FP_REG(n) && FP_OK(opdesc)){
			/* Floating point register, and it's allowed */
			regopP->n = n - FP0;
			regopP->mode = 1;
			regopP->special = 0;
			return;
		} else if (IS_SF_REG(n) && SFR_OK(opdesc)){
			/* Special-function register, and it's allowed */
			regopP->n = n - SF0;
			regopP->mode = 0;
			regopP->special = 1;
			if (!targ_has_sfr(regopP->n)){
				as_bad("no such sfr in this architecture");
			}
			return;
		}
	} else if (LIT_OK(opdesc)){
		/*
		 * How about a literal?
		 */
		regopP->mode = 1;
		regopP->special = 0;
		if (FP_OK(opdesc)){ 	/* floating point literal acceptable */
                        /* Skip over 0f, 0d, or 0e prefix */
                        if ( (optext[0] == '0')
			    && (optext[1] >= 'd')
			    && (optext[1] <= 'f') ){
                                optext += 2;
                        }
			
                        if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
                                regopP->n = 0x10;
                                return;
                        }
                        if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
                                regopP->n = 0x16;
                                return;
                        }
			
		} else {		/* fixed point literal acceptable */
			if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
			    ||   (offs(e) < 0) || (offs(e) > 31)){
				as_bad("illegal literal");
				offs(e) = 0;
			}
			regopP->n = offs(e);
			return;
		}
	}
	
	/* Nothing worked */
	syntax();
	regopP->mode = 0;	/* Register r0 is always a good one */
	regopP->n = 0;
	regopP->special = 0;
} /* parse_regop() */

/*****************************************************************************
 * reg_fmt:	generate a REG-format instruction
 *
 **************************************************************************** */
static void reg_fmt(args, oP)
char *args[];	/* args[0]->opcode mnemonic, args[1-3]->operands */
struct i960_opcode *oP; /* Pointer to description of instruction */
{
	long instr;		/* Binary to be output */
	struct regop regop;	/* Description of register operand */
	int n_ops;		/* Number of operands */
	
	
	instr = oP->opcode;
	n_ops = oP->num_ops;
	
	if (n_ops >= 1){
		parse_regop(&regop, args[1], oP->operand[0]);
		
		if ((n_ops == 1) && !(instr & M3)){
			/* 1-operand instruction in which the dst field should
			 * be used (instead of src1).
			 */
			regop.n       <<= 19;
			if (regop.special){
				regop.mode = regop.special;
			}
			regop.mode    <<= 13;
			regop.special = 0;
		} else {
			/* regop.n goes in bit 0, needs no shifting */
			regop.mode    <<= 11;
			regop.special <<= 5;
		}
		instr |= regop.n | regop.mode | regop.special;
	}
	
	if (n_ops >= 2) {
		parse_regop(&regop, args[2], oP->operand[1]);
		
		if ((n_ops == 2) && !(instr & M3)){
			/* 2-operand instruction in which the dst field should
			 * be used instead of src2).
			 */
			regop.n       <<= 19;
			if (regop.special){
				regop.mode = regop.special;
			}
			regop.mode    <<= 13;
			regop.special = 0;
		} else {
			regop.n       <<= 14;
			regop.mode    <<= 12;
			regop.special <<= 6;
		}
		instr |= regop.n | regop.mode | regop.special;
	}
	if (n_ops == 3){
		parse_regop(&regop, args[3], oP->operand[2]);
		if (regop.special){
			regop.mode = regop.special;
		}
		instr |= (regop.n <<= 19) | (regop.mode <<= 13);
	}
	emit(instr);
}


/*****************************************************************************
 * relax_cobr:
 *	Replace cobr instruction in a code fragment with equivalent branch and
 *	compare instructions, so it can reach beyond a 13-bit displacement.
 *	Set up an address fix/relocation for the new branch instruction.
 *
 **************************************************************************** */

/* This "conditional jump" table maps cobr instructions into equivalent
 * compare and branch opcodes.
 */
static
    struct {
	    long compare;
	    long branch;
    } coj[] = {		/* COBR OPCODE: */
	    CHKBIT,	BNO,	/*	0x30 - bbc */
	    CMPO,	BG,	/*	0x31 - cmpobg */
	    CMPO,	BE,	/*	0x32 - cmpobe */
	    CMPO,	BGE,	/*	0x33 - cmpobge */
	    CMPO,	BL,	/*	0x34 - cmpobl */
	    CMPO,	BNE,	/*	0x35 - cmpobne */
	    CMPO,	BLE,	/*	0x36 - cmpoble */
	    CHKBIT,	BO,	/*	0x37 - bbs */
	    CMPI,	BNO,	/*	0x38 - cmpibno */
	    CMPI,	BG,	/*	0x39 - cmpibg */
	    CMPI,	BE,	/*	0x3a - cmpibe */
	    CMPI,	BGE,	/*	0x3b - cmpibge */
	    CMPI,	BL,	/*	0x3c - cmpibl */
	    CMPI,	BNE,	/*	0x3d - cmpibne */
	    CMPI,	BLE,	/*	0x3e - cmpible */
	    CMPI,	BO,	/*	0x3f - cmpibo */
    };

static
    void
    relax_cobr(fragP)
register fragS *fragP;	/* fragP->fr_opcode is assumed to point to
			 * the cobr instruction, which comes at the
			 * end of the code fragment.
			 */
{
	int opcode, src1, src2, m1, s2;
	/* Bit fields from cobr instruction */
	long bp_bits;	/* Branch prediction bits from cobr instruction */
	long instr;	/* A single i960 instruction */
	char *iP;	/*->instruction to be replaced */
	fixS *fixP;	/* Relocation that can be done at assembly time */
	
	/* PICK UP & PARSE COBR INSTRUCTION */
	iP = fragP->fr_opcode;
	instr  = md_chars_to_number(iP, 4);
	opcode = ((instr >> 24) & 0xff) - 0x30;	/* "-0x30" for table index */
	src1   = (instr >> 19) & 0x1f;
	m1     = (instr >> 13) & 1;
	s2     = instr & 1;
	src2   = (instr >> 14) & 0x1f;
	bp_bits= instr & BP_MASK;
	
	/* GENERATE AND OUTPUT COMPARE INSTRUCTION */
	instr = coj[opcode].compare
	    | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
	md_number_to_chars(iP, instr, 4);
	
	/* OUTPUT BRANCH INSTRUCTION */
	md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
	
	/* SET UP ADDRESS FIXUP/RELOCATION */
	fixP = fix_new(fragP,
		       iP+4 - fragP->fr_literal,
		       4,
		       fragP->fr_symbol,
		       0,
		       fragP->fr_offset,
		       1,
		       0);
	
	fixP->fx_bit_fixP = (bit_fixS *) 24;	/* Store size of bit field */
	
	fragP->fr_fix += 4;
	frag_wane(fragP);
}


/*****************************************************************************
 * reloc_callj:	Relocate a 'callj' instruction
 *
 *	This is a "non-(GNU)-standard" machine-dependent hook.  The base
 *	assembler calls it when it decides it can relocate an address at
 *	assembly time instead of emitting a relocation directive.
 *
 *	Check to see if the relocation involves a 'callj' instruction to a:
 *	    sysproc:	Replace the default 'call' instruction with a 'calls'
 *	    leafproc:	Replace the default 'call' instruction with a 'bal'.
 *	    other proc:	Do nothing.
 *
 *	See b.out.h for details on the 'n_other' field in a symbol structure.
 *
 * IMPORTANT!:
 *	Assumes the caller has already figured out, in the case of a leafproc,
 *	to use the 'bal' entry point, and has substituted that symbol into the
 *	passed fixup structure.
 *
 **************************************************************************** */
void reloc_callj(fixP)
fixS *fixP;		/* Relocation that can be done at assembly time */
{
	char *where;	/*->the binary for the instruction being relocated */
	
	if (!fixP->fx_callj) {
		return;
	} /* This wasn't a callj instruction in the first place */
	
	where = fixP->fx_frag->fr_literal + fixP->fx_where;
	
	if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
		/* Symbol is a .sysproc: replace 'call' with 'calls'.
		 * System procedure number is (other-1).
		 */
		md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
		
		/* Nothing else needs to be done for this instruction.
		 * Make sure 'md_number_to_field()' will perform a no-op.
		 */
		fixP->fx_bit_fixP = (bit_fixS *) 1;
		
	} else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
		/* Should not happen: see block comment above */
		as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
		
	} else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
		/* Replace 'call' with 'bal';  both instructions have
		 * the same format, so calling code should complete
		 * relocation as if nothing happened here.
		 */
		md_number_to_chars(where, BAL, 4);
	} else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
		as_bad("Looks like a proc, but can't tell what kind.\n");
	} /* switch on proc type */
	
	/* else Symbol is neither a sysproc nor a leafproc */
	
	return;
} /* reloc_callj() */


/*****************************************************************************
 * s_leafproc:	process .leafproc pseudo-op
 *
 *	.leafproc takes two arguments, the second one is optional:
 *		arg[1]: name of 'call' entry point to leaf procedure
 *		arg[2]: name of 'bal' entry point to leaf procedure
 *
 *	If the two arguments are identical, or if the second one is missing,
 *	the first argument is taken to be the 'bal' entry point.
 *
 *	If there are 2 distinct arguments, we must make sure that the 'bal'
 *	entry point immediately follows the 'call' entry point in the linked
 *	list of symbols.
 *
 **************************************************************************** */
static void s_leafproc(n_ops, args)
int n_ops;		/* Number of operands */
char *args[];	/* args[1]->1st operand, args[2]->2nd operand */
{
	symbolS *callP;	/* Pointer to leafproc 'call' entry point symbol */
	symbolS *balP;	/* Pointer to leafproc 'bal' entry point symbol */
	
	if ((n_ops != 1) && (n_ops != 2)) {
		as_bad("should have 1 or 2 operands");
		return;
	} /* Check number of arguments */
	
	/* Find or create symbol for 'call' entry point. */
	callP = symbol_find_or_make(args[1]);
	
	if (TC_S_IS_CALLNAME(callP)) {
		as_warn("Redefining leafproc %s", S_GET_NAME(callP));
	} /* is leafproc */
	
	/* If that was the only argument, use it as the 'bal' entry point.
	 * Otherwise, mark it as the 'call' entry point and find or create
	 * another symbol for the 'bal' entry point.
	 */
	if ((n_ops == 1) || !strcmp(args[1],args[2])) {
		TC_S_FORCE_TO_BALNAME(callP);
		
	} else {
		TC_S_FORCE_TO_CALLNAME(callP);
		
		balP = symbol_find_or_make(args[2]);
		if (TC_S_IS_CALLNAME(balP)) {
			as_warn("Redefining leafproc %s", S_GET_NAME(balP));
		}
		TC_S_FORCE_TO_BALNAME(balP);
		
		tc_set_bal_of_call(callP, balP);
	} /* if only one arg, or the args are the same */
	
	return;
} /* s_leafproc() */


/*
 * s_sysproc:	process .sysproc pseudo-op
 *
 *	.sysproc takes two arguments:
 *		arg[1]: name of entry point to system procedure
 *		arg[2]: 'entry_num' (index) of system procedure in the range
 *			[0,31] inclusive.
 *
 *	For [ab].out, we store the 'entrynum' in the 'n_other' field of
 *	the symbol.  Since that entry is normally 0, we bias 'entrynum'
 *	by adding 1 to it.  It must be unbiased before it is used.
 */
static void s_sysproc(n_ops, args)
int n_ops; /* Number of operands */
char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
{
	expressionS exp;
	symbolS *symP;
	
	if (n_ops != 2) {
		as_bad("should have two operands");
		return;
	} /* bad arg count */
	
	/* Parse "entry_num" argument and check it for validity. */
	if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
	    || (offs(exp) < 0)
	    || (offs(exp) > 31)) {
		as_bad("'entry_num' must be absolute number in [0,31]");
		return;
	}
	
	/* Find/make symbol and stick entry number (biased by +1) into it */
	symP = symbol_find_or_make(args[1]);
	
	if (TC_S_IS_SYSPROC(symP)) {
		as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
	} /* redefining */
	
	TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
	TC_S_FORCE_TO_SYSPROC(symP);
	
	return;
} /* s_sysproc() */


/*****************************************************************************
 * shift_ok:
 *	Determine if a "shlo" instruction can be used to implement a "ldconst".
 *	This means that some number X < 32 can be shifted left to produce the
 *	constant of interest.
 *
 *	Return the shift count, or 0 if we can't do it.
 *	Caller calculates X by shifting original constant right 'shift' places.
 *
 **************************************************************************** */
static
    int
    shift_ok(n)
int n;		/* The constant of interest */
{
	int shift;	/* The shift count */
	
	if (n <= 0){
		/* Can't do it for negative numbers */
		return 0;
	}
	
	/* Shift 'n' right until a 1 is about to be lost */
	for (shift = 0; (n & 1) == 0; shift++){
		n >>= 1;
	}
	
	if (n >= 32){
		return 0;
	}
	return shift;
}


/*****************************************************************************
 * syntax:	issue syntax error
 *
 **************************************************************************** */
static void syntax() {
	as_bad("syntax error");
} /* syntax() */


/*****************************************************************************
 * targ_has_sfr:
 *	Return TRUE iff the target architecture supports the specified
 *	special-function register (sfr).
 *
 **************************************************************************** */
static
    int
    targ_has_sfr(n)
int n;	/* Number (0-31) of sfr */
{
	switch (architecture){
	case ARCH_KA:
	case ARCH_KB:
	case ARCH_MC:
		return 0;
	case ARCH_CA:
	default:
		return ((0<=n) && (n<=2));
	}
}


/*****************************************************************************
 * targ_has_iclass:
 *	Return TRUE iff the target architecture supports the indicated
 *	class of instructions.
 *
 **************************************************************************** */
static
    int
    targ_has_iclass(ic)
int ic;	/* Instruction class;  one of:
	 *	I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
	 */
{
	iclasses_seen |= ic;
	switch (architecture){
	case ARCH_KA:	return ic & (I_BASE | I_KX);
	case ARCH_KB:	return ic & (I_BASE | I_KX | I_FP | I_DEC);
	case ARCH_MC:	return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
	case ARCH_CA:	return ic & (I_BASE | I_CX | I_CASIM);
	default:
		if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
		    &&   (iclasses_seen & I_CX)){
			as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
			iclasses_seen &= ~ic;
		}
		return 1;
	}
}


/* Parse an operand that is machine-specific.
   We just return without modifying the expression if we have nothing
   to do. */

/* ARGSUSED */
void
    md_operand (expressionP)
expressionS *expressionP;
{
}

/* We have no need to default values of symbols. */

/* ARGSUSED */
symbolS *md_undefined_symbol(name)
char *name;
{
	return 0;
} /* md_undefined_symbol() */

/* Exactly what point is a PC-relative offset relative TO?
   On the i960, they're relative to the address of the instruction,
   which we have set up as the address of the fixup too. */
long
    md_pcrel_from (fixP)
fixS *fixP;
{
	return fixP->fx_where + fixP->fx_frag->fr_address;
}

void
    md_apply_fix(fixP, val)
fixS *fixP;
long val;
{
	char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
	
	if (!fixP->fx_bit_fixP) {
		
		switch (fixP->fx_im_disp) {
		case 0:
			fixP->fx_addnumber = val;
			md_number_to_imm(place, val, fixP->fx_size, fixP);
			break;
		case 1:
			md_number_to_disp(place,
					  fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
					  fixP->fx_size);
			break;
		case 2: /* fix requested for .long .word etc */
			md_number_to_chars(place, val, fixP->fx_size);
			break;
		default:
			as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
		} /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
	} else {
		md_number_to_field(place, val, fixP->fx_bit_fixP);
	}
	
	return;
} /* md_apply_fix() */

#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
void tc_bout_fix_to_chars(where, fixP, segment_address_in_file)
char *where;
fixS *fixP;
relax_addressT segment_address_in_file;
{
	static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
	struct relocation_info ri;
	symbolS *symbolP;
	
	/* JF this is for paranoia */
	bzero((char *)&ri, sizeof(ri));
	
	know((symbolP = fixP->fx_addsy) != 0);
	
	/* These two 'cuz of NS32K */
	ri.r_callj = fixP->fx_callj;
	
	ri.r_length = nbytes_r_length[fixP->fx_size];
	ri.r_pcrel = fixP->fx_pcrel;
	ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
	
	if (!S_IS_DEFINED(symbolP)) {
		ri.r_extern = 1;
		ri.r_index = symbolP->sy_number;
	} else {
		ri.r_extern = 0;
		ri.r_index = S_GET_TYPE(symbolP);
	}
	
	/* Output the relocation information in machine-dependent form. */
	md_ri_to_chars(where, &ri);
	
	return;
} /* tc_bout_fix_to_chars() */

#endif /* OBJ_AOUT or OBJ_BOUT */

/* Align an address by rounding it up to the specified boundary.
 */
long md_section_align(seg, addr)
segT seg;
long addr;		/* Address to be rounded up */
{
	return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
} /* md_section_align() */

#ifdef OBJ_COFF
void tc_headers_hook(headers)
object_headers *headers;
{
	/* FIXME: remove this line */ /*	unsigned short arch_flag = 0; */
	
	if (iclasses_seen == I_BASE){
		headers->filehdr.f_flags |= F_I960CORE;
	} else if (iclasses_seen & I_CX){
		headers->filehdr.f_flags |= F_I960CA;
	} else if (iclasses_seen & I_MIL){
		headers->filehdr.f_flags |= F_I960MC;
	} else if (iclasses_seen & (I_DEC|I_FP)){
		headers->filehdr.f_flags |= F_I960KB;
	} else {
		headers->filehdr.f_flags |= F_I960KA;
	} /* set arch flag */
	
	if (flagseen['R']) {
		headers->filehdr.f_magic = I960RWMAGIC;
		headers->aouthdr.magic = OMAGIC;
	} else {
		headers->filehdr.f_magic = I960ROMAGIC;
		headers->aouthdr.magic = NMAGIC;
	} /* set magic numbers */
	
	return;
} /* tc_headers_hook() */
#endif /* OBJ_COFF */

/*
 * Things going on here:
 *
 * For bout, We need to assure a couple of simplifying
 * assumptions about leafprocs for the linker: the leafproc
 * entry symbols will be defined in the same assembly in
 * which they're declared with the '.leafproc' directive;
 * and if a leafproc has both 'call' and 'bal' entry points
 * they are both global or both local.
 *
 * For coff, the call symbol has a second aux entry that
 * contains the bal entry point.  The bal symbol becomes a
 * label.
 *
 * For coff representation, the call symbol has a second aux entry that
 * contains the bal entry point.  The bal symbol becomes a label.
 *
 */

void tc_crawl_symbol_chain(headers)
object_headers *headers;
{
	symbolS *symbolP;
	
	for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
#ifdef OBJ_COFF
		if (TC_S_IS_SYSPROC(symbolP)) {
			/* second aux entry already contains the sysproc number */
			S_SET_NUMBER_AUXILIARY(symbolP, 2);
			S_SET_STORAGE_CLASS(symbolP, C_SCALL);
			S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
			continue;
		} /* rewrite sysproc */
#endif /* OBJ_COFF */
		
		if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
			continue;
		}  /* Not a leafproc symbol */
		
		if (!S_IS_DEFINED(symbolP)) {
			as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
		} /* undefined leaf */
		
		if (TC_S_IS_CALLNAME(symbolP)) {
			symbolS *balP = tc_get_bal_of_call(symbolP);
			if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
				S_SET_EXTERNAL(symbolP);
				S_SET_EXTERNAL(balP);
				as_warn("Warning: making leafproc entries %s and %s both global\n",
					S_GET_NAME(symbolP), S_GET_NAME(balP));
			} /* externality mismatch */
		} /* if callname */
	} /* walk the symbol chain */
	
	return;
} /* tc_crawl_symbol_chain() */

/*
 * For aout or bout, the bal immediately follows the call.
 *
 * For coff, we cheat and store a pointer to the bal symbol
 * in the second aux entry of the call.
 */

void tc_set_bal_of_call(callP, balP)
symbolS *callP;
symbolS *balP;
{
	know(TC_S_IS_CALLNAME(callP));
	know(TC_S_IS_BALNAME(balP));
	
#ifdef OBJ_COFF
	
	callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
	S_SET_NUMBER_AUXILIARY(callP,2);
	
#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
	
	/* If the 'bal' entry doesn't immediately follow the 'call'
	 * symbol, unlink it from the symbol list and re-insert it.
	 */
	if (symbol_next(callP) != balP) {
		symbol_remove(balP, &symbol_rootP, &symbol_lastP);
		symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
	} /* if not in order */
	
#else
	(as yet unwritten.);
#endif /* switch on OBJ_FORMAT */
	
	return;
} /* tc_set_bal_of_call() */

char *_tc_get_bal_of_call(callP)
symbolS *callP;
{
	symbolS *retval;
	
	know(TC_S_IS_CALLNAME(callP));
	
#ifdef OBJ_COFF
	retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
	retval = symbol_next(callP);
#else
	(as yet unwritten.);
#endif /* switch on OBJ_FORMAT */
	
	know(TC_S_IS_BALNAME(retval));
	return((char *) retval);
} /* _tc_get_bal_of_call() */

void tc_coff_symbol_emit_hook(symbolP)
symbolS *symbolP;
{
	if (TC_S_IS_CALLNAME(symbolP)) {
#ifdef OBJ_COFF
		symbolS *balP = tc_get_bal_of_call(symbolP);
		
		/* second aux entry contains the bal entry point */
		/*		S_SET_NUMBER_AUXILIARY(symbolP, 2); */
		symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
		S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
		S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
		/* fix up the bal symbol */
		S_SET_STORAGE_CLASS(balP, C_LABEL);
#endif /* OBJ_COFF */
	} /* only on calls */
	
	return;
} /* tc_coff_symbol_emit_hook() */

/*
 * Local Variables:
 * comment-column: 0
 * fill-column: 131
 * End:
 */

/* end of i960.c */