aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i960.c
blob: 8c5be7bbb659442b31db5cc8ec8747b248e4844a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
/* tc-i960.c - All the i80960-specific stuff
   Copyright (C) 1989, 90, 91, 92, 93, 94, 95, 96, 97, 98, 1999
   Free Software Foundation, Inc.

   This file is part of GAS.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

/* See comment on md_parse_option for 80960-specific invocation options. */

/* There are 4 different lengths of (potentially) symbol-based displacements
   in the 80960 instruction set, each of which could require address fix-ups
   and (in the case of external symbols) emission of relocation directives:

   32-bit (MEMB)
        This is a standard length for the base assembler and requires no
        special action.

   13-bit (COBR)
        This is a non-standard length, but the base assembler has a
        hook for bit field address fixups: the fixS structure can
        point to a descriptor of the field, in which case our
        md_number_to_field() routine gets called to process it.

        I made the hook a little cleaner by having fix_new() (in the base
        assembler) return a pointer to the fixS in question.  And I made it a
        little simpler by storing the field size (in this case 13) instead of
        of a pointer to another structure:  80960 displacements are ALWAYS
        stored in the low-order bits of a 4-byte word.

        Since the target of a COBR cannot be external, no relocation
        directives for this size displacement have to be generated.
        But the base assembler had to be modified to issue error
        messages if the symbol did turn out to be external.

   24-bit (CTRL)
        Fixups are handled as for the 13-bit case (except that 24 is stored
        in the fixS).

        The relocation directive generated is the same as that for the 32-bit
        displacement, except that it's PC-relative (the 32-bit displacement
        never is).   The i80960 version of the linker needs a mod to
        distinguish and handle the 24-bit case.

   12-bit (MEMA)
        MEMA formats are always promoted to MEMB (32-bit) if the displacement
        is based on a symbol, because it could be relocated at link time.
        The only time we use the 12-bit format is if an absolute value of
        less than 4096 is specified, in which case we need neither a fixup nor
        a relocation directive.  */

#include <stdio.h>
#include <ctype.h>

#include "as.h"

#include "obstack.h"

#include "opcode/i960.h"

#if defined (OBJ_AOUT) || defined (OBJ_BOUT)

#define TC_S_IS_SYSPROC(s)	((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32))
#define TC_S_IS_BALNAME(s)	(S_GET_OTHER(s) == N_BALNAME)
#define TC_S_IS_CALLNAME(s)	(S_GET_OTHER(s) == N_CALLNAME)
#define TC_S_IS_BADPROC(s)	((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s))

#define TC_S_SET_SYSPROC(s, p)	(S_SET_OTHER((s), (p)+1))
#define TC_S_GET_SYSPROC(s)	(S_GET_OTHER(s)-1)

#define TC_S_FORCE_TO_BALNAME(s)	(S_SET_OTHER((s), N_BALNAME))
#define TC_S_FORCE_TO_CALLNAME(s)	(S_SET_OTHER((s), N_CALLNAME))
#define TC_S_FORCE_TO_SYSPROC(s)	{;}

#else /* ! OBJ_A/BOUT */
#ifdef OBJ_COFF

#define TC_S_IS_SYSPROC(s)	(S_GET_STORAGE_CLASS(s) == C_SCALL)
#define TC_S_IS_BALNAME(s)	(SF_GET_BALNAME(s))
#define TC_S_IS_CALLNAME(s)	(SF_GET_CALLNAME(s))
#define TC_S_IS_BADPROC(s)	(TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s))

#define TC_S_SET_SYSPROC(s, p)	((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
#define TC_S_GET_SYSPROC(s)	((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)

#define TC_S_FORCE_TO_BALNAME(s)	(SF_SET_BALNAME(s))
#define TC_S_FORCE_TO_CALLNAME(s)	(SF_SET_CALLNAME(s))
#define TC_S_FORCE_TO_SYSPROC(s)	(S_SET_STORAGE_CLASS((s), C_SCALL))

#else /* ! OBJ_COFF */
#ifdef OBJ_ELF
#define TC_S_IS_SYSPROC(s)	0

#define TC_S_IS_BALNAME(s)	0
#define TC_S_IS_CALLNAME(s)	0
#define TC_S_IS_BADPROC(s)	0

#define TC_S_SET_SYSPROC(s, p)
#define TC_S_GET_SYSPROC(s) 0

#define TC_S_FORCE_TO_BALNAME(s)
#define TC_S_FORCE_TO_CALLNAME(s)
#define TC_S_FORCE_TO_SYSPROC(s)
#else
 #error COFF, a.out, b.out, and ELF are the only supported formats.
#endif /* ! OBJ_ELF */
#endif /* ! OBJ_COFF */
#endif /* ! OBJ_A/BOUT */

extern char *input_line_pointer;

#if !defined (BFD_ASSEMBLER) && !defined (BFD)
#ifdef OBJ_COFF
const int md_reloc_size = sizeof (struct reloc);
#else /* OBJ_COFF */
const int md_reloc_size = sizeof (struct relocation_info);
#endif /* OBJ_COFF */
#endif

/* Local i80960 routines.  */

static void brcnt_emit ();	/* Emit branch-prediction instrumentation code */
static char *brlab_next ();	/* Return next branch local label */
void brtab_emit ();		/* Emit br-predict instrumentation table */
static void cobr_fmt ();	/* Generate COBR instruction */
static void ctrl_fmt ();	/* Generate CTRL instruction */
static char *emit ();		/* Emit (internally) binary */
static int get_args ();		/* Break arguments out of comma-separated list */
static void get_cdisp ();	/* Handle COBR or CTRL displacement */
static char *get_ispec ();	/* Find index specification string */
static int get_regnum ();	/* Translate text to register number */
static int i_scan ();		/* Lexical scan of instruction source */
static void mem_fmt ();		/* Generate MEMA or MEMB instruction */
static void mema_to_memb ();	/* Convert MEMA instruction to MEMB format */
static void parse_expr ();	/* Parse an expression */
static int parse_ldconst ();	/* Parse and replace a 'ldconst' pseudo-op */
static void parse_memop ();	/* Parse a memory operand */
static void parse_po ();	/* Parse machine-dependent pseudo-op */
static void parse_regop ();	/* Parse a register operand */
static void reg_fmt ();		/* Generate a REG format instruction */
void reloc_callj ();		/* Relocate a 'callj' instruction */
static void relax_cobr ();	/* "De-optimize" cobr into compare/branch */
static void s_leafproc ();	/* Process '.leafproc' pseudo-op */
static void s_sysproc ();	/* Process '.sysproc' pseudo-op */
static int shift_ok ();		/* Will a 'shlo' substiture for a 'ldconst'? */
static void syntax ();		/* Give syntax error */
static int targ_has_sfr ();	/* Target chip supports spec-func register? */
static int targ_has_iclass ();	/* Target chip supports instruction set? */

/* See md_parse_option() for meanings of these options */
static char norelax;		/* True if -norelax switch seen */
static char instrument_branches;	/* True if -b switch seen */

/* Characters that always start a comment.
   If the pre-processor is disabled, these aren't very useful.
 */
const char comment_chars[] = "#";

/* Characters that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output.

   Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output.
 */

/* Also note that comments started like this one will always work. */

const char line_comment_chars[] = "";

const char line_separator_chars[] = ";";

/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant,
   as in 0f12.456 or 0d1.2345e12
 */
const char FLT_CHARS[] = "fFdDtT";


/* Table used by base assembler to relax addresses based on varying length
   instructions.  The fields are:
     1) most positive reach of this state,
     2) most negative reach of this state,
     3) how many bytes this mode will add to the size of the current frag
     4) which index into the table to try if we can't fit into this one.

   For i80960, the only application is the (de-)optimization of cobr
   instructions into separate compare and branch instructions when a 13-bit
   displacement won't hack it.
 */
const relax_typeS md_relax_table[] =
{
  {0, 0, 0, 0},			/* State 0 => no more relaxation possible */
  {4088, -4096, 0, 2},		/* State 1: conditional branch (cobr) */
  {0x800000 - 8, -0x800000, 4, 0},	/* State 2: compare (reg) & branch (ctrl) */
};

static void s_endian PARAMS ((int));

/* These are the machine dependent pseudo-ops.

   This table describes all the machine specific pseudo-ops the assembler
   has to support.  The fields are:
        pseudo-op name without dot
        function to call to execute this pseudo-op
        integer arg to pass to the function
 */
#define S_LEAFPROC	1
#define S_SYSPROC	2

const pseudo_typeS md_pseudo_table[] =
{
  {"bss", s_lcomm, 1},
  {"endian", s_endian, 0},
  {"extended", float_cons, 't'},
  {"leafproc", parse_po, S_LEAFPROC},
  {"sysproc", parse_po, S_SYSPROC},

  {"word", cons, 4},
  {"quad", cons, 16},

  {0, 0, 0}
};

/* Macros to extract info from an 'expressionS' structure 'e' */
#define adds(e)	e.X_add_symbol
#define offs(e)	e.X_add_number


/* Branch-prediction bits for CTRL/COBR format opcodes */
#define BP_MASK		0x00000002	/* Mask for branch-prediction bit */
#define BP_TAKEN	0x00000000	/* Value to OR in to predict branch */
#define BP_NOT_TAKEN	0x00000002	/* Value to OR in to predict no branch */


/* Some instruction opcodes that we need explicitly */
#define BE	0x12000000
#define BG	0x11000000
#define BGE	0x13000000
#define BL	0x14000000
#define BLE	0x16000000
#define BNE	0x15000000
#define BNO	0x10000000
#define BO	0x17000000
#define CHKBIT	0x5a002700
#define CMPI	0x5a002080
#define CMPO	0x5a002000

#define B	0x08000000
#define BAL	0x0b000000
#define CALL	0x09000000
#define CALLS	0x66003800
#define RET	0x0a000000


/* These masks are used to build up a set of MEMB mode bits. */
#define	A_BIT		0x0400
#define	I_BIT		0x0800
#define MEMB_BIT	0x1000
#define	D_BIT		0x2000


/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
   used).  */
#define MEMA_ABASE	0x2000

/* Info from which a MEMA or MEMB format instruction can be generated */
typedef struct
  {
    /* (First) 32 bits of instruction */
    long opcode;
    /* 0-(none), 12- or, 32-bit displacement needed */
    int disp;
    /* The expression in the source instruction from which the
       displacement should be determined.  */
    char *e;
  }

memS;


/* The two pieces of info we need to generate a register operand */
struct regop
  {
    int mode;			/* 0 =>local/global/spec reg; 1=> literal or fp reg */
    int special;		/* 0 =>not a sfr;  1=> is a sfr (not valid w/mode=0) */
    int n;			/* Register number or literal value */
  };


/* Number and assembler mnemonic for all registers that can appear in
   operands.  */
static const struct
  {
    char *reg_name;
    int reg_num;
  }
regnames[] =
{
  { "pfp", 0 },
  { "sp", 1 },
  { "rip", 2 },
  { "r3", 3 },
  { "r4", 4 },
  { "r5", 5 },
  { "r6", 6 },
  { "r7", 7 },
  { "r8", 8 },
  { "r9", 9 },
  { "r10", 10 },
  { "r11", 11 },
  { "r12", 12 },
  { "r13", 13 },
  { "r14", 14 },
  { "r15", 15 },
  { "g0", 16 },
  { "g1", 17 },
  { "g2", 18 },
  { "g3", 19 },
  { "g4", 20 },
  { "g5", 21 },
  { "g6", 22 },
  { "g7", 23 },
  { "g8", 24 },
  { "g9", 25 },
  { "g10", 26 },
  { "g11", 27 },
  { "g12", 28 },
  { "g13", 29 },
  { "g14", 30 },
  { "fp", 31 },

  /* Numbers for special-function registers are for assembler internal
     use only: they are scaled back to range [0-31] for binary output.  */
#define SF0	32

  { "sf0", 32 },
  { "sf1", 33 },
  { "sf2", 34 },
  { "sf3", 35 },
  { "sf4", 36 },
  { "sf5", 37 },
  { "sf6", 38 },
  { "sf7", 39 },
  { "sf8", 40 },
  { "sf9", 41 },
  { "sf10", 42 },
  { "sf11", 43 },
  { "sf12", 44 },
  { "sf13", 45 },
  { "sf14", 46 },
  { "sf15", 47 },
  { "sf16", 48 },
  { "sf17", 49 },
  { "sf18", 50 },
  { "sf19", 51 },
  { "sf20", 52 },
  { "sf21", 53 },
  { "sf22", 54 },
  { "sf23", 55 },
  { "sf24", 56 },
  { "sf25", 57 },
  { "sf26", 58 },
  { "sf27", 59 },
  { "sf28", 60 },
  { "sf29", 61 },
  { "sf30", 62 },
  { "sf31", 63 },

  /* Numbers for floating point registers are for assembler internal
     use only: they are scaled back to [0-3] for binary output.  */
#define FP0	64

  { "fp0", 64 },
  { "fp1", 65 },
  { "fp2", 66 },
  { "fp3", 67 },

  { NULL, 0 },				/* END OF LIST */
};

#define	IS_RG_REG(n)	((0 <= (n)) && ((n) < SF0))
#define	IS_SF_REG(n)	((SF0 <= (n)) && ((n) < FP0))
#define	IS_FP_REG(n)	((n) >= FP0)

/* Number and assembler mnemonic for all registers that can appear as
   'abase' (indirect addressing) registers.  */
static const struct
  {
    char *areg_name;
    int areg_num;
  }
aregs[] =
{
  { "(pfp)", 0 },
  { "(sp)", 1 },
  { "(rip)", 2 },
  { "(r3)", 3 },
  { "(r4)", 4 },
  { "(r5)", 5 },
  { "(r6)", 6 },
  { "(r7)", 7 },
  { "(r8)", 8 },
  { "(r9)", 9 },
  { "(r10)", 10 },
  { "(r11)", 11 },
  { "(r12)", 12 },
  { "(r13)", 13 },
  { "(r14)", 14 },
  { "(r15)", 15 },
  { "(g0)", 16 },
  { "(g1)", 17 },
  { "(g2)", 18 },
  { "(g3)", 19 },
  { "(g4)", 20 },
  { "(g5)", 21 },
  { "(g6)", 22 },
  { "(g7)", 23 },
  { "(g8)", 24 },
  { "(g9)", 25 },
  { "(g10)", 26 },
  { "(g11)", 27 },
  { "(g12)", 28 },
  { "(g13)", 29 },
  { "(g14)", 30 },
  { "(fp)", 31 },

#define IPREL	32
  /* For assembler internal use only: this number never appears in binary
     output.  */
  { "(ip)", IPREL },

  { NULL, 0 },				/* END OF LIST */
};


/* Hash tables */
static struct hash_control *op_hash;	/* Opcode mnemonics */
static struct hash_control *reg_hash;	/* Register name hash table */
static struct hash_control *areg_hash;	/* Abase register hash table */


/* Architecture for which we are assembling */
#define ARCH_ANY	0	/* Default: no architecture checking done */
#define ARCH_KA		1
#define ARCH_KB		2
#define ARCH_MC		3
#define ARCH_CA		4
#define ARCH_JX		5
#define ARCH_HX		6
int architecture = ARCH_ANY;	/* Architecture requested on invocation line */
int iclasses_seen;		/* OR of instruction classes (I_* constants)
				 *    for which we've actually assembled
				 *      instructions.
				 */


/* BRANCH-PREDICTION INSTRUMENTATION

        The following supports generation of branch-prediction instrumentation
        (turned on by -b switch).  The instrumentation collects counts
        of branches taken/not-taken for later input to a utility that will
        set the branch prediction bits of the instructions in accordance with
        the behavior observed.  (Note that the KX series does not have
        brach-prediction.)

        The instrumentation consists of:

        (1) before and after each conditional branch, a call to an external
            routine that increments and steps over an inline counter.  The
            counter itself, initialized to 0, immediately follows the call
            instruction.  For each branch, the counter following the branch
            is the number of times the branch was not taken, and the difference
            between the counters is the number of times it was taken.  An
            example of an instrumented conditional branch:

                                call    BR_CNT_FUNC
                                .word   0
                LBRANCH23:      be      label
                                call    BR_CNT_FUNC
                                .word   0

        (2) a table of pointers to the instrumented branches, so that an
            external postprocessing routine can locate all of the counters.
            the table begins with a 2-word header: a pointer to the next in
            a linked list of such tables (initialized to 0);  and a count
            of the number of entries in the table (exclusive of the header.

            Note that input source code is expected to already contain calls
            an external routine that will link the branch local table into a
            list of such tables.
 */

/* Number of branches instrumented so far.  Also used to generate
   unique local labels for each instrumented branch.  */
static int br_cnt;

#define BR_LABEL_BASE	"LBRANCH"
/* Basename of local labels on instrumented branches, to avoid
   conflict with compiler- generated local labels.  */

#define BR_CNT_FUNC	"__inc_branch"
/* Name of the external routine that will increment (and step over) an
   inline counter.  */

#define BR_TAB_NAME	"__BRANCH_TABLE__"
/* Name of the table of pointers to branches.  A local (i.e.,
   non-external) symbol.  */

/*****************************************************************************
   md_begin:  One-time initialization.

  	Set up hash tables.

  *************************************************************************** */
void
md_begin ()
{
  int i;			/* Loop counter */
  const struct i960_opcode *oP;	/* Pointer into opcode table */
  const char *retval;		/* Value returned by hash functions */

  op_hash = hash_new ();
  reg_hash = hash_new ();
  areg_hash = hash_new ();

  /* For some reason, the base assembler uses an empty string for "no
     error message", instead of a NULL pointer.  */
  retval = 0;

  for (oP = i960_opcodes; oP->name && !retval; oP++)
    retval = hash_insert (op_hash, oP->name, (PTR) oP);

  for (i = 0; regnames[i].reg_name && !retval; i++)
    retval = hash_insert (reg_hash, regnames[i].reg_name,
			  (char *) &regnames[i].reg_num);

  for (i = 0; aregs[i].areg_name && !retval; i++)
    retval = hash_insert (areg_hash, aregs[i].areg_name,
			  (char *) &aregs[i].areg_num);

  if (retval)
    as_fatal (_("Hashing returned \"%s\"."), retval);
}

/*****************************************************************************
   md_assemble:  Assemble an instruction

   Assumptions about the passed-in text:
  	- all comments, labels removed
  	- text is an instruction
  	- all white space compressed to single blanks
  	- all character constants have been replaced with decimal

  *************************************************************************** */
void
md_assemble (textP)
     char *textP;		/* Source text of instruction */
{
  /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
     mnemonic arg[1-3]->operands, with char constants replaced by
     decimal numbers.  */
  char *args[4];

  int n_ops;			/* Number of instruction operands */
  /* Pointer to instruction description */
  struct i960_opcode *oP;
  /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
     or ".t").  */
  int branch_predict;
  /* Setting of branch-prediction bit(s) to be OR'd into instruction
     opcode of CTRL/COBR format instructions.  */
  long bp_bits;

  int n;			/* Offset of last character in opcode mnemonic */

  const char *bp_error_msg = _("branch prediction invalid on this opcode");


  /* Parse instruction into opcode and operands */
  memset (args, '\0', sizeof (args));
  n_ops = i_scan (textP, args);
  if (n_ops == -1)
    {
      return;			/* Error message already issued */
    }

  /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
  if (!strcmp (args[0], "ldconst"))
    {
      n_ops = parse_ldconst (args);
      if (n_ops == -1)
	{
	  return;
	}
    }



  /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
  n = strlen (args[0]) - 1;
  branch_predict = 0;
  bp_bits = 0;
  if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
    {
      /* We could check here to see if the target architecture
	 supports branch prediction, but why bother?  The bit will
	 just be ignored by processors that don't use it.  */
      branch_predict = 1;
      bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
      args[0][n - 1] = '\0';	/* Strip suffix from opcode mnemonic */
    }

  /* Look up opcode mnemonic in table and check number of operands.
     Check that opcode is legal for the target architecture.  If all
     looks good, assemble instruction.  */
  oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
  if (!oP || !targ_has_iclass (oP->iclass))
    {
      as_bad (_("invalid opcode, \"%s\"."), args[0]);

    }
  else if (n_ops != oP->num_ops)
    {
      as_bad (_("improper number of operands.  expecting %d, got %d"),
	      oP->num_ops, n_ops);
    }
  else
    {
      switch (oP->format)
	{
	case FBRA:
	case CTRL:
	  ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
	  if (oP->format == FBRA)
	    {
	      /* Now generate a 'bno' to same arg */
	      ctrl_fmt (args[1], BNO | bp_bits, 1);
	    }
	  break;
	case COBR:
	case COJ:
	  cobr_fmt (args, oP->opcode | bp_bits, oP);
	  break;
	case REG:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  reg_fmt (args, oP);
	  break;
	case MEM1:
	  if (args[0][0] == 'c' && args[0][1] == 'a')
	    {
	      if (branch_predict)
		{
		  as_warn (bp_error_msg);
		}
	      mem_fmt (args, oP, 1);
	      break;
	    }
	case MEM2:
	case MEM4:
	case MEM8:
	case MEM12:
	case MEM16:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  mem_fmt (args, oP, 0);
	  break;
	case CALLJ:
	  if (branch_predict)
	    {
	      as_warn (bp_error_msg);
	    }
	  /* Output opcode & set up "fixup" (relocation); flag
	     relocation as 'callj' type.  */
	  know (oP->num_ops == 1);
	  get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
	  break;
	default:
	  BAD_CASE (oP->format);
	  break;
	}
    }
}				/* md_assemble() */

/*****************************************************************************
   md_number_to_chars:  convert a number to target byte order

  *************************************************************************** */
void
md_number_to_chars (buf, value, n)
     char *buf;
     valueT value;
     int n;
{
  number_to_chars_littleendian (buf, value, n);
}

/*****************************************************************************
   md_chars_to_number:  convert from target byte order to host byte order.

  *************************************************************************** */
int
md_chars_to_number (val, n)
     unsigned char *val;	/* Value in target byte order */
     int n;			/* Number of bytes in the input */
{
  int retval;

  for (retval = 0; n--;)
    {
      retval <<= 8;
      retval |= val[n];
    }
  return retval;
}


#define MAX_LITTLENUMS	6
#define LNUM_SIZE	sizeof(LITTLENUM_TYPE)

/*****************************************************************************
   md_atof:	convert ascii to floating point

   Turn a string at input_line_pointer into a floating point constant of type
   'type', and store the appropriate bytes at *litP.  The number of LITTLENUMS
   emitted is returned at 'sizeP'.  An error message is returned, or a pointer
   to an empty message if OK.

   Note we call the i386 floating point routine, rather than complicating
   things with more files or symbolic links.

  *************************************************************************** */
char *
md_atof (type, litP, sizeP)
     int type;
     char *litP;
     int *sizeP;
{
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  int prec;
  char *t;
  char *atof_ieee ();

  switch (type)
    {
    case 'f':
    case 'F':
      prec = 2;
      break;

    case 'd':
    case 'D':
      prec = 4;
      break;

    case 't':
    case 'T':
      prec = 5;
      type = 'x';		/* That's what atof_ieee() understands */
      break;

    default:
      *sizeP = 0;
      return _("Bad call to md_atof()");
    }

  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    {
      input_line_pointer = t;
    }

  *sizeP = prec * LNUM_SIZE;

  /* Output the LITTLENUMs in REVERSE order in accord with i80960
     word-order.  (Dunno why atof_ieee doesn't do it in the right
     order in the first place -- probably because it's a hack of
     atof_m68k.)  */

  for (wordP = words + prec - 1; prec--;)
    {
      md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
      litP += sizeof (LITTLENUM_TYPE);
    }

  return 0;
}


/*****************************************************************************
   md_number_to_imm

  *************************************************************************** */
void
md_number_to_imm (buf, val, n)
     char *buf;
     long val;
     int n;
{
  md_number_to_chars (buf, val, n);
}


/*****************************************************************************
   md_number_to_disp

  *************************************************************************** */
void
md_number_to_disp (buf, val, n)
     char *buf;
     long val;
     int n;
{
  md_number_to_chars (buf, val, n);
}

/*****************************************************************************
   md_number_to_field:

  	Stick a value (an address fixup) into a bit field of
  	previously-generated instruction.

  *************************************************************************** */
void
md_number_to_field (instrP, val, bfixP)
     char *instrP;		/* Pointer to instruction to be fixed */
     long val;			/* Address fixup value */
     bit_fixS *bfixP;		/* Description of bit field to be fixed up */
{
  int numbits;			/* Length of bit field to be fixed */
  long instr;			/* 32-bit instruction to be fixed-up */
  long sign;			/* 0 or -1, according to sign bit of 'val' */

  /* Convert instruction back to host byte order.  */
  instr = md_chars_to_number (instrP, 4);

  /* Surprise! -- we stored the number of bits to be modified rather
     than a pointer to a structure.  */
  numbits = (int) bfixP;
  if (numbits == 1)
    {
      /* This is a no-op, stuck here by reloc_callj() */
      return;
    }

  know ((numbits == 13) || (numbits == 24));

  /* Propagate sign bit of 'val' for the given number of bits.  Result
     should be all 0 or all 1.  */
  sign = val >> ((int) numbits - 1);
  if (((val < 0) && (sign != -1))
      || ((val > 0) && (sign != 0)))
    {
      as_bad (_("Fixup of %ld too large for field width of %d"),
	      val, numbits);
    }
  else
    {
      /* Put bit field into instruction and write back in target
         * byte order.
       */
      val &= ~(-1 << (int) numbits);	/* Clear unused sign bits */
      instr |= val;
      md_number_to_chars (instrP, instr, 4);
    }
}				/* md_number_to_field() */


/*****************************************************************************
   md_parse_option
  	Invocation line includes a switch not recognized by the base assembler.
  	See if it's a processor-specific option.  For the 960, these are:

  	-norelax:
  		Conditional branch instructions that require displacements
  		greater than 13 bits (or that have external targets) should
  		generate errors.  The default is to replace each such
  		instruction with the corresponding compare (or chkbit) and
  		branch instructions.  Note that the Intel "j" cobr directives
  		are ALWAYS "de-optimized" in this way when necessary,
  		regardless of the setting of this option.

  	-b:
  		Add code to collect information about branches taken, for
  		later optimization of branch prediction bits by a separate
  		tool.  COBR and CNTL format instructions have branch
  		prediction bits (in the CX architecture);  if "BR" represents
  		an instruction in one of these classes, the following rep-
  		resents the code generated by the assembler:

  			call	<increment routine>
  			.word	0	# pre-counter
  		Label:  BR
  			call	<increment routine>
  			.word	0	# post-counter

  		A table of all such "Labels" is also generated.


  	-AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
  		Select the 80960 architecture.  Instructions or features not
  		supported by the selected architecture cause fatal errors.
  		The default is to generate code for any instruction or feature
  		that is supported by SOME version of the 960 (even if this
  		means mixing architectures!).

  ****************************************************************************/

CONST char *md_shortopts = "A:b";
struct option md_longopts[] =
{
#define OPTION_LINKRELAX (OPTION_MD_BASE)
  {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
  {"link-relax", no_argument, NULL, OPTION_LINKRELAX},
#define OPTION_NORELAX (OPTION_MD_BASE + 1)
  {"norelax", no_argument, NULL, OPTION_NORELAX},
  {"no-relax", no_argument, NULL, OPTION_NORELAX},
  {NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);

struct tabentry
  {
    char *flag;
    int arch;
  };
static const struct tabentry arch_tab[] =
{
  {"KA", ARCH_KA},
  {"KB", ARCH_KB},
  {"SA", ARCH_KA},		/* Synonym for KA */
  {"SB", ARCH_KB},		/* Synonym for KB */
  {"KC", ARCH_MC},		/* Synonym for MC */
  {"MC", ARCH_MC},
  {"CA", ARCH_CA},
  {"JX", ARCH_JX},
  {"HX", ARCH_HX},
  {NULL, 0}
};

int
md_parse_option (c, arg)
     int c;
     char *arg;
{
  switch (c)
    {
    case OPTION_LINKRELAX:
      linkrelax = 1;
      flag_keep_locals = 1;
      break;

    case OPTION_NORELAX:
      norelax = 1;
      break;

    case 'b':
      instrument_branches = 1;
      break;

    case 'A':
      {
	const struct tabentry *tp;
	char *p = arg;

	for (tp = arch_tab; tp->flag != NULL; tp++)
	  if (!strcmp (p, tp->flag))
	    break;

	if (tp->flag == NULL)
	  {
	    as_bad (_("invalid architecture %s"), p);
	    return 0;
	  }
	else
	  architecture = tp->arch;
      }
      break;

    default:
      return 0;
    }

  return 1;
}

void
md_show_usage (stream)
     FILE *stream;
{
  int i;
  fprintf (stream, _("I960 options:\n"));
  for (i = 0; arch_tab[i].flag; i++)
    fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
  fprintf (stream, _("\n\
			specify variant of 960 architecture\n\
-b			add code to collect statistics about branches taken\n\
-link-relax		preserve individual alignment directives so linker\n\
			can do relaxing (b.out format only)\n\
-no-relax		don't alter compare-and-branch instructions for\n\
			long displacements\n"));
}


/*****************************************************************************
   md_convert_frag:
  	Called by base assembler after address relaxation is finished:  modify
  	variable fragments according to how much relaxation was done.

  	If the fragment substate is still 1, a 13-bit displacement was enough
  	to reach the symbol in question.  Set up an address fixup, but otherwise
  	leave the cobr instruction alone.

  	If the fragment substate is 2, a 13-bit displacement was not enough.
  	Replace the cobr with a two instructions (a compare and a branch).

  *************************************************************************** */
#ifndef BFD_ASSEMBLER
void
md_convert_frag (headers, seg, fragP)
     object_headers *headers;
     segT seg;
     fragS *fragP;
#else
void
md_convert_frag (abfd, sec, fragP)
     bfd *abfd;
     segT sec;
     fragS *fragP;
#endif
{
  fixS *fixP;			/* Structure describing needed address fix */

  switch (fragP->fr_subtype)
    {
    case 1:
      /* LEAVE SINGLE COBR INSTRUCTION */
      fixP = fix_new (fragP,
		      fragP->fr_opcode - fragP->fr_literal,
		      4,
		      fragP->fr_symbol,
		      fragP->fr_offset,
		      1,
		      NO_RELOC);

      fixP->fx_bit_fixP = (bit_fixS *) 13;	/* size of bit field */
      break;
    case 2:
      /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
      relax_cobr (fragP);
      break;
    default:
      BAD_CASE (fragP->fr_subtype);
      break;
    }
}

/*****************************************************************************
   md_estimate_size_before_relax:  How much does it look like *fragP will grow?

  	Called by base assembler just before address relaxation.
  	Return the amount by which the fragment will grow.

  	Any symbol that is now undefined will not become defined; cobr's
  	based on undefined symbols will have to be replaced with a compare
  	instruction and a branch instruction, and the code fragment will grow
  	by 4 bytes.

  *************************************************************************** */
int
md_estimate_size_before_relax (fragP, segment_type)
     register fragS *fragP;
     register segT segment_type;
{
  /* If symbol is undefined in this segment, go to "relaxed" state
     (compare and branch instructions instead of cobr) right now.  */
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
    {
      relax_cobr (fragP);
      return 4;
    }
  return 0;
}				/* md_estimate_size_before_relax() */

#if defined(OBJ_AOUT) | defined(OBJ_BOUT)

/*****************************************************************************
   md_ri_to_chars:
  	This routine exists in order to overcome machine byte-order problems
  	when dealing with bit-field entries in the relocation_info struct.

  	But relocation info will be used on the host machine only (only
  	executable code is actually downloaded to the i80960).  Therefore,
  	we leave it in host byte order.

  	The above comment is no longer true.  This routine now really
  	does do the reordering (Ian Taylor 28 Aug 92).

  *************************************************************************** */

static void
md_ri_to_chars (where, ri)
     char *where;
     struct relocation_info *ri;
{
  md_number_to_chars (where, ri->r_address,
		      sizeof (ri->r_address));
  where[4] = ri->r_index & 0x0ff;
  where[5] = (ri->r_index >> 8) & 0x0ff;
  where[6] = (ri->r_index >> 16) & 0x0ff;
  where[7] = ((ri->r_pcrel << 0)
	      | (ri->r_length << 1)
	      | (ri->r_extern << 3)
	      | (ri->r_bsr << 4)
	      | (ri->r_disp << 5)
	      | (ri->r_callj << 6));
}

#endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */


/* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER  */

/*****************************************************************************
   brcnt_emit:	Emit code to increment inline branch counter.

  	See the comments above the declaration of 'br_cnt' for details on
  	branch-prediction instrumentation.
  *************************************************************************** */
static void
brcnt_emit ()
{
  ctrl_fmt (BR_CNT_FUNC, CALL, 1);	/* Emit call to "increment" routine */
  emit (0);			/* Emit inline counter to be incremented */
}

/*****************************************************************************
   brlab_next:	generate the next branch local label

  	See the comments above the declaration of 'br_cnt' for details on
  	branch-prediction instrumentation.
  *************************************************************************** */
static char *
brlab_next ()
{
  static char buf[20];

  sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
  return buf;
}

/*****************************************************************************
   brtab_emit:	generate the fetch-prediction branch table.

  	See the comments above the declaration of 'br_cnt' for details on
  	branch-prediction instrumentation.

  	The code emitted here would be functionally equivalent to the following
  	example assembler source.

  			.data
  			.align	2
  	   BR_TAB_NAME:
  			.word	0		# link to next table
  			.word	3		# length of table
  			.word	LBRANCH0	# 1st entry in table proper
  			.word	LBRANCH1
  			.word	LBRANCH2
  **************************************************************************** */
void
brtab_emit ()
{
  int i;
  char buf[20];
  char *p;			/* Where the binary was output to */
  /* Pointer to description of deferred address fixup.  */
  fixS *fixP;

  if (!instrument_branches)
    {
      return;
    }

  subseg_set (data_section, 0);	/*      .data */
  frag_align (2, 0, 0);		/*      .align 2 */
  record_alignment (now_seg, 2);
  colon (BR_TAB_NAME);		/* BR_TAB_NAME: */
  emit (0);			/*      .word 0 #link to next table */
  emit (br_cnt);		/*      .word n #length of table */

  for (i = 0; i < br_cnt; i++)
    {
      sprintf (buf, "%s%d", BR_LABEL_BASE, i);
      p = emit (0);
      fixP = fix_new (frag_now,
		      p - frag_now->fr_literal,
		      4,
		      symbol_find (buf),
		      0,
		      0,
		      NO_RELOC);
    }
}

/*****************************************************************************
   cobr_fmt:	generate a COBR-format instruction

  *************************************************************************** */
static
void
cobr_fmt (arg, opcode, oP)
     /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
     char *arg[];
     /* Opcode, with branch-prediction bits already set if necessary.  */
     long opcode;
     /* Pointer to description of instruction.  */
     struct i960_opcode *oP;
{
  long instr;			/* 32-bit instruction */
  struct regop regop;		/* Description of register operand */
  int n;			/* Number of operands */
  int var_frag;			/* 1 if varying length code fragment should
				 *    be emitted;  0 if an address fix
				 *      should be emitted.
				 */

  instr = opcode;
  n = oP->num_ops;

  if (n >= 1)
    {
      /* First operand (if any) of a COBR is always a register
	 operand.  Parse it.  */
      parse_regop (&regop, arg[1], oP->operand[0]);
      instr |= (regop.n << 19) | (regop.mode << 13);
    }
  if (n >= 2)
    {
      /* Second operand (if any) of a COBR is always a register
	 operand.  Parse it.  */
    parse_regop (&regop, arg[2], oP->operand[1]);
      instr |= (regop.n << 14) | regop.special;
    }


  if (n < 3)
    {
      emit (instr);

    }
  else
    {
      if (instrument_branches)
	{
	  brcnt_emit ();
	  colon (brlab_next ());
	}

      /* A third operand to a COBR is always a displacement.  Parse
         it; if it's relaxable (a cobr "j" directive, or any cobr
         other than bbs/bbc when the "-norelax" option is not in use)
         set up a variable code fragment; otherwise set up an address
         fix.  */
      var_frag = !norelax || (oP->format == COJ);	/* TRUE or FALSE */
      get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);

      if (instrument_branches)
	{
	  brcnt_emit ();
	}
    }
}				/* cobr_fmt() */


/*****************************************************************************
   ctrl_fmt:	generate a CTRL-format instruction

  *************************************************************************** */
static
void
ctrl_fmt (targP, opcode, num_ops)
     char *targP;		/* Pointer to text of lone operand (if any) */
     long opcode;		/* Template of instruction */
     int num_ops;		/* Number of operands */
{
  int instrument;		/* TRUE iff we should add instrumentation to track
				   * how often the branch is taken
				 */


  if (num_ops == 0)
    {
      emit (opcode);		/* Output opcode */
    }
  else
    {

      instrument = instrument_branches && (opcode != CALL)
	&& (opcode != B) && (opcode != RET) && (opcode != BAL);

      if (instrument)
	{
	  brcnt_emit ();
	  colon (brlab_next ());
	}

      /* The operand MUST be an ip-relative displacment. Parse it
         * and set up address fix for the instruction we just output.
       */
      get_cdisp (targP, "CTRL", opcode, 24, 0, 0);

      if (instrument)
	{
	  brcnt_emit ();
	}
    }

}


/*****************************************************************************
   emit:	output instruction binary

  	Output instruction binary, in target byte order, 4 bytes at a time.
  	Return pointer to where it was placed.

  *************************************************************************** */
static
char *
emit (instr)
     long instr;		/* Word to be output, host byte order */
{
  char *toP;			/* Where to output it */

  toP = frag_more (4);		/* Allocate storage */
  md_number_to_chars (toP, instr, 4);	/* Convert to target byte order */
  return toP;
}


/*****************************************************************************
   get_args:	break individual arguments out of comma-separated list

   Input assumptions:
  	- all comments and labels have been removed
  	- all strings of whitespace have been collapsed to a single blank.
  	- all character constants ('x') have been replaced with decimal

   Output:
  	args[0] is untouched. args[1] points to first operand, etc. All args:
  	- are NULL-terminated
  	- contain no whitespace

   Return value:
  	Number of operands (0,1,2, or 3) or -1 on error.

  *************************************************************************** */
static int
get_args (p, args)
     /* Pointer to comma-separated operands; MUCKED BY US */
     register char *p;
     /* Output arg: pointers to operands placed in args[1-3].  MUST
        ACCOMMODATE 4 ENTRIES (args[0-3]).  */
     char *args[];
{
  register int n;		/* Number of operands */
  register char *to;

  /* Skip lead white space */
  while (*p == ' ')
    {
      p++;
    }

  if (*p == '\0')
    {
      return 0;
    }

  n = 1;
  args[1] = p;

  /* Squeze blanks out by moving non-blanks toward start of string.
     * Isolate operands, whenever comma is found.
   */
  to = p;
  while (*p != '\0')
    {

      if (*p == ' '
	  && (! isalnum ((unsigned char) p[1])
	      || ! isalnum ((unsigned char) p[-1])))
	{
	  p++;

	}
      else if (*p == ',')
	{

	  /* Start of operand */
	  if (n == 3)
	    {
	      as_bad (_("too many operands"));
	      return -1;
	    }
	  *to++ = '\0';		/* Terminate argument */
	  args[++n] = to;	/* Start next argument */
	  p++;

	}
      else
	{
	  *to++ = *p++;
	}
    }
  *to = '\0';
  return n;
}


/*****************************************************************************
   get_cdisp:	handle displacement for a COBR or CTRL instruction.

  	Parse displacement for a COBR or CTRL instruction.

  	If successful, output the instruction opcode and set up for it,
  	depending on the arg 'var_frag', either:
  	    o an address fixup to be done when all symbol values are known, or
  	    o a varying length code fragment, with address fixup info.  This
  		will be done for cobr instructions that may have to be relaxed
  		in to compare/branch instructions (8 bytes) if the final
  		address displacement is greater than 13 bits.

  ****************************************************************************/
static
void
get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
     /* displacement as specified in source instruction */
     char *dispP;
     /* "COBR" or "CTRL" (for use in error message) */
     char *ifmtP;
     /* Instruction needing the displacement */
     long instr;
     /* # bits of displacement (13 for COBR, 24 for CTRL) */
     int numbits;
     /* 1 if varying length code fragment should be emitted;
      *       0 if an address fix should be emitted.
      */
     int var_frag;
     /* 1 if callj relocation should be done; else 0 */
     int callj;
{
  expressionS e;		/* Parsed expression */
  fixS *fixP;			/* Structure describing needed address fix */
  char *outP;			/* Where instruction binary is output to */

  fixP = NULL;

  parse_expr (dispP, &e);
  switch (e.X_op)
    {
    case O_illegal:
      as_bad (_("expression syntax error"));

    case O_symbol:
      if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
	  || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
	{
	  if (var_frag)
	    {
	      outP = frag_more (8);	/* Allocate worst-case storage */
	      md_number_to_chars (outP, instr, 4);
	      frag_variant (rs_machine_dependent, 4, 4, 1,
			    adds (e), offs (e), outP);
	    }
	  else
	    {
	      /* Set up a new fix structure, so address can be updated
	       * when all symbol values are known.
	       */
	      outP = emit (instr);
	      fixP = fix_new (frag_now,
			      outP - frag_now->fr_literal,
			      4,
			      adds (e),
			      offs (e),
			      1,
			      NO_RELOC);

	      fixP->fx_tcbit = callj;

	      /* We want to modify a bit field when the address is
	       * known.  But we don't need all the garbage in the
	       * bit_fix structure.  So we're going to lie and store
	       * the number of bits affected instead of a pointer.
	       */
	      fixP->fx_bit_fixP = (bit_fixS *) numbits;
	    }
	}
      else
	as_bad (_("attempt to branch into different segment"));
      break;

    default:
      as_bad (_("target of %s instruction must be a label"), ifmtP);
      break;
    }
}


/*****************************************************************************
   get_ispec:	parse a memory operand for an index specification

  	Here, an "index specification" is taken to be anything surrounded
  	by square brackets and NOT followed by anything else.

  	If it's found, detach it from the input string, remove the surrounding
  	square brackets, and return a pointer to it.  Otherwise, return NULL.

  *************************************************************************** */
static
char *
get_ispec (textP)
     /* Pointer to memory operand from source instruction, no white space.  */
     char *textP;
{
  /* Points to start of index specification.  */
  char *start;
  /* Points to end of index specification.  */
  char *end;

  /* Find opening square bracket, if any.  */
  start = strchr (textP, '[');

  if (start != NULL)
    {

      /* Eliminate '[', detach from rest of operand */
      *start++ = '\0';

      end = strchr (start, ']');

      if (end == NULL)
	{
	  as_bad (_("unmatched '['"));

	}
      else
	{
	  /* Eliminate ']' and make sure it was the last thing
	     * in the string.
	   */
	  *end = '\0';
	  if (*(end + 1) != '\0')
	    {
	      as_bad (_("garbage after index spec ignored"));
	    }
	}
    }
  return start;
}

/*****************************************************************************
   get_regnum:

  	Look up a (suspected) register name in the register table and return the
  	associated register number (or -1 if not found).

  *************************************************************************** */
static
int
get_regnum (regname)
     char *regname;		/* Suspected register name */
{
  int *rP;

  rP = (int *) hash_find (reg_hash, regname);
  return (rP == NULL) ? -1 : *rP;
}


/*****************************************************************************
   i_scan:	perform lexical scan of ascii assembler instruction.

   Input assumptions:
  	- input string is an i80960 instruction (not a pseudo-op)
  	- all comments and labels have been removed
  	- all strings of whitespace have been collapsed to a single blank.

   Output:
  	args[0] points to opcode, other entries point to operands. All strings:
  	- are NULL-terminated
  	- contain no whitespace
  	- have character constants ('x') replaced with a decimal number

   Return value:
  	Number of operands (0,1,2, or 3) or -1 on error.

  *************************************************************************** */
static int
i_scan (iP, args)
     /* Pointer to ascii instruction;  MUCKED BY US. */
     register char *iP;
     /* Output arg: pointers to opcode and operands placed here.  MUST
	ACCOMMODATE 4 ENTRIES.  */
     char *args[];
{

  /* Isolate opcode */
  if (*(iP) == ' ')
    {
      iP++;
    }				/* Skip lead space, if any */
  args[0] = iP;
  for (; *iP != ' '; iP++)
    {
      if (*iP == '\0')
	{
	  /* There are no operands */
	  if (args[0] == iP)
	    {
	      /* We never moved: there was no opcode either! */
	      as_bad (_("missing opcode"));
	      return -1;
	    }
	  return 0;
	}
    }
  *iP++ = '\0';			/* Terminate opcode */
  return (get_args (iP, args));
}				/* i_scan() */


/*****************************************************************************
   mem_fmt:	generate a MEMA- or MEMB-format instruction

  *************************************************************************** */
static void
mem_fmt (args, oP, callx)
     char *args[];		/* args[0]->opcode mnemonic, args[1-3]->operands */
     struct i960_opcode *oP;	/* Pointer to description of instruction */
     int callx;			/* Is this a callx opcode */
{
  int i;			/* Loop counter */
  struct regop regop;		/* Description of register operand */
  char opdesc;			/* Operand descriptor byte */
  memS instr;			/* Description of binary to be output */
  char *outP;			/* Where the binary was output to */
  expressionS expr;		/* Parsed expression */
  /* ->description of deferred address fixup */
  fixS *fixP;

#ifdef OBJ_COFF
  /* COFF support isn't in place yet for callx relaxing.  */
  callx = 0;
#endif

  memset (&instr, '\0', sizeof (memS));
  instr.opcode = oP->opcode;

  /* Process operands. */
  for (i = 1; i <= oP->num_ops; i++)
    {
      opdesc = oP->operand[i - 1];

      if (MEMOP (opdesc))
	{
	  parse_memop (&instr, args[i], oP->format);
	}
      else
	{
	  parse_regop (&regop, args[i], opdesc);
	  instr.opcode |= regop.n << 19;
	}
    }

  /* Parse the displacement; this must be done before emitting the
     opcode, in case it is an expression using `.'.  */
  parse_expr (instr.e, &expr);

  /* Output opcode */
  outP = emit (instr.opcode);

  if (instr.disp == 0)
    {
      return;
    }

  /* Process the displacement */
  switch (expr.X_op)
    {
    case O_illegal:
      as_bad (_("expression syntax error"));
      break;

    case O_constant:
      if (instr.disp == 32)
	{
	  (void) emit (offs (expr));	/* Output displacement */
	}
      else
	{
	  /* 12-bit displacement */
	  if (offs (expr) & ~0xfff)
	    {
	      /* Won't fit in 12 bits: convert already-output
	       * instruction to MEMB format, output
	       * displacement.
	       */
	      mema_to_memb (outP);
	      (void) emit (offs (expr));
	    }
	  else
	    {
	      /* WILL fit in 12 bits:  OR into opcode and
	       * overwrite the binary we already put out
	       */
	      instr.opcode |= offs (expr);
	      md_number_to_chars (outP, instr.opcode, 4);
	    }
	}
      break;

    default:
      if (instr.disp == 12)
	{
	  /* Displacement is dependent on a symbol, whose value
	   * may change at link time.  We HAVE to reserve 32 bits.
	   * Convert already-output opcode to MEMB format.
	   */
	  mema_to_memb (outP);
	}

      /* Output 0 displacement and set up address fixup for when
       * this symbol's value becomes known.
       */
      outP = emit ((long) 0);
      fixP = fix_new_exp (frag_now,
			  outP - frag_now->fr_literal,
			  4,
			  &expr,
			  0,
			  NO_RELOC);
      /* Steve's linker relaxing hack.  Mark this 32-bit relocation as
         being in the instruction stream, specifically as part of a callx
         instruction.  */
      fixP->fx_bsr = callx;
      break;
    }
}				/* memfmt() */


/*****************************************************************************
   mema_to_memb:	convert a MEMA-format opcode to a MEMB-format opcode.

   There are 2 possible MEMA formats:
  	- displacement only
  	- displacement + abase

   They are distinguished by the setting of the MEMA_ABASE bit.

  *************************************************************************** */
static void
mema_to_memb (opcodeP)
     char *opcodeP;		/* Where to find the opcode, in target byte order */
{
  long opcode;			/* Opcode in host byte order */
  long mode;			/* Mode bits for MEMB instruction */

  opcode = md_chars_to_number (opcodeP, 4);
  know (!(opcode & MEMB_BIT));

  mode = MEMB_BIT | D_BIT;
  if (opcode & MEMA_ABASE)
    {
      mode |= A_BIT;
    }

  opcode &= 0xffffc000;		/* Clear MEMA offset and mode bits */
  opcode |= mode;		/* Set MEMB mode bits */

  md_number_to_chars (opcodeP, opcode, 4);
}				/* mema_to_memb() */


/*****************************************************************************
   parse_expr:		parse an expression

  	Use base assembler's expression parser to parse an expression.
  	It, unfortunately, runs off a global which we have to save/restore
  	in order to make it work for us.

  	An empty expression string is treated as an absolute 0.

  	Sets O_illegal regardless of expression evaluation if entire input
  	string is not consumed in the evaluation -- tolerate no dangling junk!

  *************************************************************************** */
static void
parse_expr (textP, expP)
     char *textP;		/* Text of expression to be parsed */
     expressionS *expP;		/* Where to put the results of parsing */
{
  char *save_in;		/* Save global here */
  symbolS *symP;

  know (textP);

  if (*textP == '\0')
    {
      /* Treat empty string as absolute 0 */
      expP->X_add_symbol = expP->X_op_symbol = NULL;
      expP->X_add_number = 0;
      expP->X_op = O_constant;
    }
  else
    {
      save_in = input_line_pointer;	/* Save global */
      input_line_pointer = textP;	/* Make parser work for us */

      (void) expression (expP);
      if ((size_t) (input_line_pointer - textP) != strlen (textP))
	{
	  /* Did not consume all of the input */
	  expP->X_op = O_illegal;
	}
      symP = expP->X_add_symbol;
      if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
	{
	  /* Register name in an expression */
	  /* FIXME: this isn't much of a check any more.  */
	  expP->X_op = O_illegal;
	}

      input_line_pointer = save_in;	/* Restore global */
    }
}


/*****************************************************************************
   parse_ldcont:
  	Parse and replace a 'ldconst' pseudo-instruction with an appropriate
  	i80960 instruction.

  	Assumes the input consists of:
  		arg[0]	opcode mnemonic ('ldconst')
  		arg[1]  first operand (constant)
  		arg[2]	name of register to be loaded

  	Replaces opcode and/or operands as appropriate.

  	Returns the new number of arguments, or -1 on failure.

  *************************************************************************** */
static
int
parse_ldconst (arg)
     char *arg[];		/* See above */
{
  int n;			/* Constant to be loaded */
  int shift;			/* Shift count for "shlo" instruction */
  static char buf[5];		/* Literal for first operand */
  static char buf2[5];		/* Literal for second operand */
  expressionS e;		/* Parsed expression */


  arg[3] = NULL;		/* So we can tell at the end if it got used or not */

  parse_expr (arg[1], &e);
  switch (e.X_op)
    {
    default:
      /* We're dependent on one or more symbols -- use "lda" */
      arg[0] = "lda";
      break;

    case O_constant:
      /* Try the following mappings:
       *      ldconst 0,<reg>  ->mov  0,<reg>
       *        ldconst 31,<reg> ->mov  31,<reg>
       *        ldconst 32,<reg> ->addo 1,31,<reg>
       *        ldconst 62,<reg> ->addo 31,31,<reg>
       *        ldconst 64,<reg> ->shlo 8,3,<reg>
       *        ldconst -1,<reg> ->subo 1,0,<reg>
       *        ldconst -31,<reg>->subo 31,0,<reg>
       *
       * anthing else becomes:
       *        lda xxx,<reg>
       */
      n = offs (e);
      if ((0 <= n) && (n <= 31))
	{
	  arg[0] = "mov";

	}
      else if ((-31 <= n) && (n <= -1))
	{
	  arg[0] = "subo";
	  arg[3] = arg[2];
	  sprintf (buf, "%d", -n);
	  arg[1] = buf;
	  arg[2] = "0";

	}
      else if ((32 <= n) && (n <= 62))
	{
	  arg[0] = "addo";
	  arg[3] = arg[2];
	  arg[1] = "31";
	  sprintf (buf, "%d", n - 31);
	  arg[2] = buf;

	}
      else if ((shift = shift_ok (n)) != 0)
	{
	  arg[0] = "shlo";
	  arg[3] = arg[2];
	  sprintf (buf, "%d", shift);
	  arg[1] = buf;
	  sprintf (buf2, "%d", n >> shift);
	  arg[2] = buf2;

	}
      else
	{
	  arg[0] = "lda";
	}
      break;

    case O_illegal:
      as_bad (_("invalid constant"));
      return -1;
      break;
    }
  return (arg[3] == 0) ? 2 : 3;
}

/*****************************************************************************
   parse_memop:	parse a memory operand

  	This routine is based on the observation that the 4 mode bits of the
  	MEMB format, taken individually, have fairly consistent meaning:

  		 M3 (bit 13): 1 if displacement is present (D_BIT)
  		 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
  		 M1 (bit 11): 1 if index is present (I_BIT)
  		 M0 (bit 10): 1 if abase is present (A_BIT)

  	So we parse the memory operand and set bits in the mode as we find
  	things.  Then at the end, if we go to MEMB format, we need only set
  	the MEMB bit (M2) and our mode is built for us.

  	Unfortunately, I said "fairly consistent".  The exceptions:

  		 DBIA
  		 0100	Would seem illegal, but means "abase-only".

  		 0101	Would seem to mean "abase-only" -- it means IP-relative.
  			Must be converted to 0100.

  		 0110	Would seem to mean "index-only", but is reserved.
  			We turn on the D bit and provide a 0 displacement.

  	The other thing to observe is that we parse from the right, peeling
  	things * off as we go:  first any index spec, then any abase, then
  	the displacement.

  *************************************************************************** */
static
void
parse_memop (memP, argP, optype)
     memS *memP;		/* Where to put the results */
     char *argP;		/* Text of the operand to be parsed */
     int optype;		/* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
{
  char *indexP;			/* Pointer to index specification with "[]" removed */
  char *p;			/* Temp char pointer */
  char iprel_flag;		/* True if this is an IP-relative operand */
  int regnum;			/* Register number */
  /* Scale factor: 1,2,4,8, or 16.  Later converted to internal format
     (0,1,2,3,4 respectively).  */
  int scale;
  int mode;			/* MEMB mode bits */
  int *intP;			/* Pointer to register number */

  /* The following table contains the default scale factors for each
     type of memory instruction.  It is accessed using (optype-MEM1)
     as an index -- thus it assumes the 'optype' constants are
     assigned consecutive values, in the order they appear in this
     table.  */
  static const int def_scale[] =
  {
    1,				/* MEM1 */
    2,				/* MEM2 */
    4,				/* MEM4 */
    8,				/* MEM8 */
    -1,				/* MEM12 -- no valid default */
    16				/* MEM16 */
  };


  iprel_flag = mode = 0;

  /* Any index present? */
  indexP = get_ispec (argP);
  if (indexP)
    {
      p = strchr (indexP, '*');
      if (p == NULL)
	{
	  /* No explicit scale -- use default for this instruction
	     type and assembler mode.  */
	  if (flag_mri)
	    scale = 1;
	  else
	    /* GNU960 compatibility */
	    scale = def_scale[optype - MEM1];
	}
      else
	{
	  *p++ = '\0';		/* Eliminate '*' */

	  /* Now indexP->a '\0'-terminated register name,
	     * and p->a scale factor.
	   */

	  if (!strcmp (p, "16"))
	    {
	      scale = 16;
	    }
	  else if (strchr ("1248", *p) && (p[1] == '\0'))
	    {
	      scale = *p - '0';
	    }
	  else
	    {
	      scale = -1;
	    }
	}

      regnum = get_regnum (indexP);	/* Get index reg. # */
      if (!IS_RG_REG (regnum))
	{
	  as_bad (_("invalid index register"));
	  return;
	}

      /* Convert scale to its binary encoding */
      switch (scale)
	{
	case 1:
	  scale = 0 << 7;
	  break;
	case 2:
	  scale = 1 << 7;
	  break;
	case 4:
	  scale = 2 << 7;
	  break;
	case 8:
	  scale = 3 << 7;
	  break;
	case 16:
	  scale = 4 << 7;
	  break;
	default:
	  as_bad (_("invalid scale factor"));
	  return;
	};

      memP->opcode |= scale | regnum;	/* Set index bits in opcode */
      mode |= I_BIT;		/* Found a valid index spec */
    }

  /* Any abase (Register Indirect) specification present? */
  if ((p = strrchr (argP, '(')) != NULL)
    {
      /* "(" is there -- does it start a legal abase spec?  If not, it
         could be part of a displacement expression.  */
      intP = (int *) hash_find (areg_hash, p);
      if (intP != NULL)
	{
	  /* Got an abase here */
	  regnum = *intP;
	  *p = '\0';		/* discard register spec */
	  if (regnum == IPREL)
	    {
	      /* We have to specialcase ip-rel mode */
	      iprel_flag = 1;
	    }
	  else
	    {
	      memP->opcode |= regnum << 14;
	      mode |= A_BIT;
	    }
	}
    }

  /* Any expression present? */
  memP->e = argP;
  if (*argP != '\0')
    {
      mode |= D_BIT;
    }

  /* Special-case ip-relative addressing */
  if (iprel_flag)
    {
      if (mode & I_BIT)
	{
	  syntax ();
	}
      else
	{
	  memP->opcode |= 5 << 10;	/* IP-relative mode */
	  memP->disp = 32;
	}
      return;
    }

  /* Handle all other modes */
  switch (mode)
    {
    case D_BIT | A_BIT:
      /* Go with MEMA instruction format for now (grow to MEMB later
         if 12 bits is not enough for the displacement).  MEMA format
         has a single mode bit: set it to indicate that abase is
         present.  */
      memP->opcode |= MEMA_ABASE;
      memP->disp = 12;
      break;

    case D_BIT:
      /* Go with MEMA instruction format for now (grow to MEMB later
         if 12 bits is not enough for the displacement).  */
      memP->disp = 12;
      break;

    case A_BIT:
      /* For some reason, the bit string for this mode is not
         consistent: it should be 0 (exclusive of the MEMB bit), so we
         set it "by hand" here.  */
      memP->opcode |= MEMB_BIT;
      break;

    case A_BIT | I_BIT:
      /* set MEMB bit in mode, and OR in mode bits */
      memP->opcode |= mode | MEMB_BIT;
      break;

    case I_BIT:
      /* Treat missing displacement as displacement of 0.  */
      mode |= D_BIT;
      /* Fall into next case.  */
    case D_BIT | A_BIT | I_BIT:
    case D_BIT | I_BIT:
      /* set MEMB bit in mode, and OR in mode bits */
      memP->opcode |= mode | MEMB_BIT;
      memP->disp = 32;
      break;

    default:
      syntax ();
      break;
    }
}

/*****************************************************************************
   parse_po:	parse machine-dependent pseudo-op

  	This is a top-level routine for machine-dependent pseudo-ops.  It slurps
  	up the rest of the input line, breaks out the individual arguments,
  	and dispatches them to the correct handler.
  *************************************************************************** */
static
void
parse_po (po_num)
     int po_num;		/* Pseudo-op number:  currently S_LEAFPROC or S_SYSPROC */
{
  /* Pointers operands, with no embedded whitespace.
     arg[0] unused, arg[1-3]->operands */
  char *args[4];
  int n_ops;			/* Number of operands */
  char *p;			/* Pointer to beginning of unparsed argument string */
  char eol;			/* Character that indicated end of line */

  extern char is_end_of_line[];

  /* Advance input pointer to end of line. */
  p = input_line_pointer;
  while (!is_end_of_line[(unsigned char) *input_line_pointer])
    {
      input_line_pointer++;
    }
  eol = *input_line_pointer;	/* Save end-of-line char */
  *input_line_pointer = '\0';	/* Terminate argument list */

  /* Parse out operands */
  n_ops = get_args (p, args);
  if (n_ops == -1)
    {
      return;
    }

  /* Dispatch to correct handler */
  switch (po_num)
    {
    case S_SYSPROC:
      s_sysproc (n_ops, args);
      break;
    case S_LEAFPROC:
      s_leafproc (n_ops, args);
      break;
    default:
      BAD_CASE (po_num);
      break;
    }

  /* Restore eol, so line numbers get updated correctly.  Base
     assembler assumes we leave input pointer pointing at char
     following the eol.  */
  *input_line_pointer++ = eol;
}

/*****************************************************************************
   parse_regop: parse a register operand.

  	In case of illegal operand, issue a message and return some valid
  	information so instruction processing can continue.
  *************************************************************************** */
static
void
parse_regop (regopP, optext, opdesc)
     struct regop *regopP;	/* Where to put description of register operand */
     char *optext;		/* Text of operand */
     char opdesc;		/* Descriptor byte:  what's legal for this operand */
{
  int n;			/* Register number */
  expressionS e;		/* Parsed expression */

  /* See if operand is a register */
  n = get_regnum (optext);
  if (n >= 0)
    {
      if (IS_RG_REG (n))
	{
	  /* global or local register */
	  if (!REG_ALIGN (opdesc, n))
	    {
	      as_bad (_("unaligned register"));
	    }
	  regopP->n = n;
	  regopP->mode = 0;
	  regopP->special = 0;
	  return;
	}
      else if (IS_FP_REG (n) && FP_OK (opdesc))
	{
	  /* Floating point register, and it's allowed */
	  regopP->n = n - FP0;
	  regopP->mode = 1;
	  regopP->special = 0;
	  return;
	}
      else if (IS_SF_REG (n) && SFR_OK (opdesc))
	{
	  /* Special-function register, and it's allowed */
	  regopP->n = n - SF0;
	  regopP->mode = 0;
	  regopP->special = 1;
	  if (!targ_has_sfr (regopP->n))
	    {
	      as_bad (_("no such sfr in this architecture"));
	    }
	  return;
	}
    }
  else if (LIT_OK (opdesc))
    {
      /* How about a literal?  */
      regopP->mode = 1;
      regopP->special = 0;
      if (FP_OK (opdesc))
	{			/* floating point literal acceptable */
	  /* Skip over 0f, 0d, or 0e prefix */
	  if ((optext[0] == '0')
	      && (optext[1] >= 'd')
	      && (optext[1] <= 'f'))
	    {
	      optext += 2;
	    }

	  if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
	    {
	      regopP->n = 0x10;
	      return;
	    }
	  if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
	    {
	      regopP->n = 0x16;
	      return;
	    }

	}
      else
	{			/* fixed point literal acceptable */
	  parse_expr (optext, &e);
	  if (e.X_op != O_constant
	      || (offs (e) < 0) || (offs (e) > 31))
	    {
	      as_bad (_("illegal literal"));
	      offs (e) = 0;
	    }
	  regopP->n = offs (e);
	  return;
	}
    }

  /* Nothing worked */
  syntax ();
  regopP->mode = 0;		/* Register r0 is always a good one */
  regopP->n = 0;
  regopP->special = 0;
}				/* parse_regop() */

/*****************************************************************************
   reg_fmt:	generate a REG-format instruction

  *************************************************************************** */
static void
reg_fmt (args, oP)
     char *args[];		/* args[0]->opcode mnemonic, args[1-3]->operands */
     struct i960_opcode *oP;	/* Pointer to description of instruction */
{
  long instr;			/* Binary to be output */
  struct regop regop;		/* Description of register operand */
  int n_ops;			/* Number of operands */


  instr = oP->opcode;
  n_ops = oP->num_ops;

  if (n_ops >= 1)
    {
      parse_regop (&regop, args[1], oP->operand[0]);

      if ((n_ops == 1) && !(instr & M3))
	{
	  /* 1-operand instruction in which the dst field should
	     * be used (instead of src1).
	   */
	  regop.n <<= 19;
	  if (regop.special)
	    {
	      regop.mode = regop.special;
	    }
	  regop.mode <<= 13;
	  regop.special = 0;
	}
      else
	{
	  /* regop.n goes in bit 0, needs no shifting */
	  regop.mode <<= 11;
	  regop.special <<= 5;
	}
      instr |= regop.n | regop.mode | regop.special;
    }

  if (n_ops >= 2)
    {
      parse_regop (&regop, args[2], oP->operand[1]);

      if ((n_ops == 2) && !(instr & M3))
	{
	  /* 2-operand instruction in which the dst field should
	     * be used instead of src2).
	   */
	  regop.n <<= 19;
	  if (regop.special)
	    {
	      regop.mode = regop.special;
	    }
	  regop.mode <<= 13;
	  regop.special = 0;
	}
      else
	{
	  regop.n <<= 14;
	  regop.mode <<= 12;
	  regop.special <<= 6;
	}
      instr |= regop.n | regop.mode | regop.special;
    }
  if (n_ops == 3)
    {
      parse_regop (&regop, args[3], oP->operand[2]);
      if (regop.special)
	{
	  regop.mode = regop.special;
	}
      instr |= (regop.n <<= 19) | (regop.mode <<= 13);
    }
  emit (instr);
}


/*****************************************************************************
   relax_cobr:
  	Replace cobr instruction in a code fragment with equivalent branch and
  	compare instructions, so it can reach beyond a 13-bit displacement.
  	Set up an address fix/relocation for the new branch instruction.

  *************************************************************************** */

/* This "conditional jump" table maps cobr instructions into
   equivalent compare and branch opcodes.  */
static const
struct
{
  long compare;
  long branch;
}

coj[] =
{				/* COBR OPCODE: */
  { CHKBIT, BNO },		/*      0x30 - bbc */
  { CMPO, BG },			/*      0x31 - cmpobg */
  { CMPO, BE },			/*      0x32 - cmpobe */
  { CMPO, BGE },		/*      0x33 - cmpobge */
  { CMPO, BL },			/*      0x34 - cmpobl */
  { CMPO, BNE },		/*      0x35 - cmpobne */
  { CMPO, BLE },		/*      0x36 - cmpoble */
  { CHKBIT, BO },		/*      0x37 - bbs */
  { CMPI, BNO },		/*      0x38 - cmpibno */
  { CMPI, BG },			/*      0x39 - cmpibg */
  { CMPI, BE },			/*      0x3a - cmpibe */
  { CMPI, BGE },		/*      0x3b - cmpibge */
  { CMPI, BL },			/*      0x3c - cmpibl */
  { CMPI, BNE },		/*      0x3d - cmpibne */
  { CMPI, BLE },		/*      0x3e - cmpible */
  { CMPI, BO },			/*      0x3f - cmpibo */
};

static
void
relax_cobr (fragP)
     register fragS *fragP;	/* fragP->fr_opcode is assumed to point to
				 * the cobr instruction, which comes at the
				 * end of the code fragment.
				 */
{
  int opcode, src1, src2, m1, s2;
  /* Bit fields from cobr instruction */
  long bp_bits;			/* Branch prediction bits from cobr instruction */
  long instr;			/* A single i960 instruction */
  /* ->instruction to be replaced */
  char *iP;
  fixS *fixP;			/* Relocation that can be done at assembly time */

  /* PICK UP & PARSE COBR INSTRUCTION */
  iP = fragP->fr_opcode;
  instr = md_chars_to_number (iP, 4);
  opcode = ((instr >> 24) & 0xff) - 0x30;	/* "-0x30" for table index */
  src1 = (instr >> 19) & 0x1f;
  m1 = (instr >> 13) & 1;
  s2 = instr & 1;
  src2 = (instr >> 14) & 0x1f;
  bp_bits = instr & BP_MASK;

  /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
  instr = coj[opcode].compare
    | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
  md_number_to_chars (iP, instr, 4);

  /* OUTPUT BRANCH INSTRUCTION */
  md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);

  /* SET UP ADDRESS FIXUP/RELOCATION */
  fixP = fix_new (fragP,
		  iP + 4 - fragP->fr_literal,
		  4,
		  fragP->fr_symbol,
		  fragP->fr_offset,
		  1,
		  NO_RELOC);

  fixP->fx_bit_fixP = (bit_fixS *) 24;	/* Store size of bit field */

  fragP->fr_fix += 4;
  frag_wane (fragP);
}


/*****************************************************************************
   reloc_callj:	Relocate a 'callj' instruction

  	This is a "non-(GNU)-standard" machine-dependent hook.  The base
  	assembler calls it when it decides it can relocate an address at
  	assembly time instead of emitting a relocation directive.

  	Check to see if the relocation involves a 'callj' instruction to a:
  	    sysproc:	Replace the default 'call' instruction with a 'calls'
  	    leafproc:	Replace the default 'call' instruction with a 'bal'.
  	    other proc:	Do nothing.

  	See b.out.h for details on the 'n_other' field in a symbol structure.

   IMPORTANT!:
  	Assumes the caller has already figured out, in the case of a leafproc,
  	to use the 'bal' entry point, and has substituted that symbol into the
  	passed fixup structure.

  *************************************************************************** */
void
reloc_callj (fixP)
     /* Relocation that can be done at assembly time */
     fixS *fixP;
{
  /* Points to the binary for the instruction being relocated.  */
  char *where;

  if (!fixP->fx_tcbit)
    {
      /* This wasn't a callj instruction in the first place */
      return;
    }

  where = fixP->fx_frag->fr_literal + fixP->fx_where;

  if (TC_S_IS_SYSPROC (fixP->fx_addsy))
    {
      /* Symbol is a .sysproc: replace 'call' with 'calls'.  System
         procedure number is (other-1).  */
      md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);

      /* Nothing else needs to be done for this instruction.  Make
         sure 'md_number_to_field()' will perform a no-op.  */
      fixP->fx_bit_fixP = (bit_fixS *) 1;

    }
  else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
    {
      /* Should not happen: see block comment above */
      as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
    }
  else if (TC_S_IS_BALNAME (fixP->fx_addsy))
    {
      /* Replace 'call' with 'bal'; both instructions have the same
         format, so calling code should complete relocation as if
         nothing happened here.  */
      md_number_to_chars (where, BAL, 4);
    }
  else if (TC_S_IS_BADPROC (fixP->fx_addsy))
    {
      as_bad (_("Looks like a proc, but can't tell what kind.\n"));
    }				/* switch on proc type */

  /* else Symbol is neither a sysproc nor a leafproc */
}


/*****************************************************************************
   s_leafproc:	process .leafproc pseudo-op

  	.leafproc takes two arguments, the second one is optional:
  		arg[1]: name of 'call' entry point to leaf procedure
  		arg[2]: name of 'bal' entry point to leaf procedure

  	If the two arguments are identical, or if the second one is missing,
  	the first argument is taken to be the 'bal' entry point.

  	If there are 2 distinct arguments, we must make sure that the 'bal'
  	entry point immediately follows the 'call' entry point in the linked
  	list of symbols.

  *************************************************************************** */
static void
s_leafproc (n_ops, args)
     int n_ops;			/* Number of operands */
     char *args[];		/* args[1]->1st operand, args[2]->2nd operand */
{
  symbolS *callP;		/* Pointer to leafproc 'call' entry point symbol */
  symbolS *balP;		/* Pointer to leafproc 'bal' entry point symbol */

  if ((n_ops != 1) && (n_ops != 2))
    {
      as_bad (_("should have 1 or 2 operands"));
      return;
    }				/* Check number of arguments */

  /* Find or create symbol for 'call' entry point. */
  callP = symbol_find_or_make (args[1]);

  if (TC_S_IS_CALLNAME (callP))
    {
      as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
    }				/* is leafproc */

  /* If that was the only argument, use it as the 'bal' entry point.
     * Otherwise, mark it as the 'call' entry point and find or create
     * another symbol for the 'bal' entry point.
   */
  if ((n_ops == 1) || !strcmp (args[1], args[2]))
    {
      TC_S_FORCE_TO_BALNAME (callP);

    }
  else
    {
      TC_S_FORCE_TO_CALLNAME (callP);

      balP = symbol_find_or_make (args[2]);
      if (TC_S_IS_CALLNAME (balP))
	{
	  as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
	}
      TC_S_FORCE_TO_BALNAME (balP);

#ifndef OBJ_ELF
      tc_set_bal_of_call (callP, balP);
#endif
    }				/* if only one arg, or the args are the same */
}


/*
   s_sysproc: process .sysproc pseudo-op

        .sysproc takes two arguments:
                arg[1]: name of entry point to system procedure
                arg[2]: 'entry_num' (index) of system procedure in the range
                        [0,31] inclusive.

        For [ab].out, we store the 'entrynum' in the 'n_other' field of
        the symbol.  Since that entry is normally 0, we bias 'entrynum'
        by adding 1 to it.  It must be unbiased before it is used.  */
static void
s_sysproc (n_ops, args)
     int n_ops;			/* Number of operands */
     char *args[];		/* args[1]->1st operand, args[2]->2nd operand */
{
  expressionS exp;
  symbolS *symP;

  if (n_ops != 2)
    {
      as_bad (_("should have two operands"));
      return;
    }				/* bad arg count */

  /* Parse "entry_num" argument and check it for validity. */
  parse_expr (args[2], &exp);
  if (exp.X_op != O_constant
      || (offs (exp) < 0)
      || (offs (exp) > 31))
    {
      as_bad (_("'entry_num' must be absolute number in [0,31]"));
      return;
    }

  /* Find/make symbol and stick entry number (biased by +1) into it */
  symP = symbol_find_or_make (args[1]);

  if (TC_S_IS_SYSPROC (symP))
    {
      as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
    }				/* redefining */

  TC_S_SET_SYSPROC (symP, offs (exp));	/* encode entry number */
  TC_S_FORCE_TO_SYSPROC (symP);
}


/*****************************************************************************
   shift_ok:
  	Determine if a "shlo" instruction can be used to implement a "ldconst".
  	This means that some number X < 32 can be shifted left to produce the
  	constant of interest.

  	Return the shift count, or 0 if we can't do it.
  	Caller calculates X by shifting original constant right 'shift' places.

  *************************************************************************** */
static
int
shift_ok (n)
     int n;			/* The constant of interest */
{
  int shift;			/* The shift count */

  if (n <= 0)
    {
      /* Can't do it for negative numbers */
      return 0;
    }

  /* Shift 'n' right until a 1 is about to be lost */
  for (shift = 0; (n & 1) == 0; shift++)
    {
      n >>= 1;
    }

  if (n >= 32)
    {
      return 0;
    }
  return shift;
}


/* syntax: issue syntax error */

static void
syntax ()
{
  as_bad (_("syntax error"));
}				/* syntax() */


/* targ_has_sfr:

   Return TRUE iff the target architecture supports the specified
   special-function register (sfr).  */

static
int
targ_has_sfr (n)
     int n;			/* Number (0-31) of sfr */
{
  switch (architecture)
    {
    case ARCH_KA:
    case ARCH_KB:
    case ARCH_MC:
    case ARCH_JX:
      return 0;
    case ARCH_HX:
      return ((0 <= n) && (n <= 4));
    case ARCH_CA:
    default:
      return ((0 <= n) && (n <= 2));
    }
}


/* targ_has_iclass:

   Return TRUE iff the target architecture supports the indicated
   class of instructions.  */
static
int
targ_has_iclass (ic)
     /* Instruction class;  one of:
        I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2
      */
     int ic;
{
  iclasses_seen |= ic;
  switch (architecture)
    {
    case ARCH_KA:
      return ic & (I_BASE | I_KX);
    case ARCH_KB:
      return ic & (I_BASE | I_KX | I_FP | I_DEC);
    case ARCH_MC:
      return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
    case ARCH_CA:
      return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
    case ARCH_JX:
      return ic & (I_BASE | I_CX2 | I_JX);
    case ARCH_HX:
      return ic & (I_BASE | I_CX2 | I_JX | I_HX);
    default:
      if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
	  && (iclasses_seen & (I_CX | I_CX2)))
	{
	  as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
	  iclasses_seen &= ~ic;
	}
      return 1;
    }
}

/* Handle the MRI .endian pseudo-op.  */

static void
s_endian (ignore)
     int ignore;
{
  char *name;
  char c;

  name = input_line_pointer;
  c = get_symbol_end ();
  if (strcasecmp (name, "little") == 0)
    ;
  else if (strcasecmp (name, "big") == 0)
    as_bad (_("big endian mode is not supported"));
  else
    as_warn (_("ignoring unrecognized .endian type `%s'"), name);

  *input_line_pointer = c;

  demand_empty_rest_of_line ();
}

/* We have no need to default values of symbols. */

/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
     char *name;
{
  return 0;
}

/* Exactly what point is a PC-relative offset relative TO?
   On the i960, they're relative to the address of the instruction,
   which we have set up as the address of the fixup too. */
long
md_pcrel_from (fixP)
     fixS *fixP;
{
  return fixP->fx_where + fixP->fx_frag->fr_address;
}

#ifdef BFD_ASSEMBLER
int
md_apply_fix (fixP, valp)
     fixS *fixP;
     valueT *valp;
#else
void
md_apply_fix (fixP, val)
     fixS *fixP;
     long val;
#endif
{
#ifdef BFD_ASSEMBLER
  long val = *valp;
#endif
  char *place = fixP->fx_where + fixP->fx_frag->fr_literal;

  if (!fixP->fx_bit_fixP)
    {
#ifndef BFD_ASSEMBLER
      /* For callx, we always want to write out zero, and emit a
	 symbolic relocation.  */
      if (fixP->fx_bsr)
	val = 0;

      fixP->fx_addnumber = val;
#endif

      md_number_to_imm (place, val, fixP->fx_size, fixP);
    }
  else
    md_number_to_field (place, val, fixP->fx_bit_fixP);

#ifdef BFD_ASSEMBLER
  return 0;
#endif
}

#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
void
tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
     char *where;
     fixS *fixP;
     relax_addressT segment_address_in_file;
{
  static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
  struct relocation_info ri;
  symbolS *symbolP;

  memset ((char *) &ri, '\0', sizeof (ri));
  symbolP = fixP->fx_addsy;
  know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
  ri.r_bsr = fixP->fx_bsr;	/*SAC LD RELAX HACK */
  /* These two 'cuz of NS32K */
  ri.r_callj = fixP->fx_tcbit;
  if (fixP->fx_bit_fixP)
    ri.r_length = 2;
  else
    ri.r_length = nbytes_r_length[fixP->fx_size];
  ri.r_pcrel = fixP->fx_pcrel;
  ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;

  if (fixP->fx_r_type != NO_RELOC)
    {
      switch (fixP->fx_r_type)
	{
	case rs_align:
	  ri.r_index = -2;
	  ri.r_pcrel = 1;
	  ri.r_length = fixP->fx_size - 1;
	  break;
	case rs_org:
	  ri.r_index = -2;
	  ri.r_pcrel = 0;
	  break;
	case rs_fill:
	  ri.r_index = -1;
	  break;
	default:
	  abort ();
	}
      ri.r_extern = 0;
    }
  else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
    {
      ri.r_extern = 1;
      ri.r_index = symbolP->sy_number;
    }
  else
    {
      ri.r_extern = 0;
      ri.r_index = S_GET_TYPE (symbolP);
    }

  /* Output the relocation information in machine-dependent form. */
  md_ri_to_chars (where, &ri);
}

#endif /* OBJ_AOUT or OBJ_BOUT */

#if defined (OBJ_COFF) && defined (BFD)
short
tc_coff_fix2rtype (fixP)
     fixS *fixP;
{
  if (fixP->fx_bsr)
    abort ();

  if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
    return R_RELLONG;

  if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
    return R_IPRMED;

  abort ();
  return 0;
}

int
tc_coff_sizemachdep (frag)
     fragS *frag;
{
  if (frag->fr_next)
    return frag->fr_next->fr_address - frag->fr_address;
  else
    return 0;
}
#endif

/* Align an address by rounding it up to the specified boundary.  */
valueT
md_section_align (seg, addr)
     segT seg;
     valueT addr;		/* Address to be rounded up */
{
  int align;
#ifdef BFD_ASSEMBLER
  align = bfd_get_section_alignment (stdoutput, seg);
#else
  align = section_alignment[(int) seg];
#endif
  return (addr + (1 << align) - 1) & (-1 << align);
}

extern int coff_flags;

#ifdef OBJ_COFF
void
tc_headers_hook (headers)
     object_headers *headers;
{
  switch (architecture)
    {
    case ARCH_KA:
      coff_flags |= F_I960KA;
      break;

    case ARCH_KB:
      coff_flags |= F_I960KB;
      break;

    case ARCH_MC:
      coff_flags |= F_I960MC;
      break;

    case ARCH_CA:
      coff_flags |= F_I960CA;
      break;

    case ARCH_JX:
      coff_flags |= F_I960JX;
      break;

    case ARCH_HX:
      coff_flags |= F_I960HX;
      break;

    default:
      if (iclasses_seen == I_BASE)
	coff_flags |= F_I960CORE;
      else if (iclasses_seen & I_CX)
	coff_flags |= F_I960CA;
      else if (iclasses_seen & I_HX)
	coff_flags |= F_I960HX;
      else if (iclasses_seen & I_JX)
	coff_flags |= F_I960JX;
      else if (iclasses_seen & I_CX2)
	coff_flags |= F_I960CA;
      else if (iclasses_seen & I_MIL)
	coff_flags |= F_I960MC;
      else if (iclasses_seen & (I_DEC | I_FP))
	coff_flags |= F_I960KB;
      else
	coff_flags |= F_I960KA;
      break;
    }

  if (flag_readonly_data_in_text)
    {
      headers->filehdr.f_magic = I960RWMAGIC;
      headers->aouthdr.magic = OMAGIC;
    }
  else
    {
      headers->filehdr.f_magic = I960ROMAGIC;
      headers->aouthdr.magic = NMAGIC;
    }				/* set magic numbers */
}

#endif /* OBJ_COFF */

#ifndef BFD_ASSEMBLER

/* Things going on here:

   For bout, We need to assure a couple of simplifying
   assumptions about leafprocs for the linker: the leafproc
   entry symbols will be defined in the same assembly in
   which they're declared with the '.leafproc' directive;
   and if a leafproc has both 'call' and 'bal' entry points
   they are both global or both local.

   For coff, the call symbol has a second aux entry that
   contains the bal entry point.  The bal symbol becomes a
   label.

   For coff representation, the call symbol has a second aux entry that
   contains the bal entry point.  The bal symbol becomes a label.  */

void
tc_crawl_symbol_chain (headers)
     object_headers *headers;
{
  symbolS *symbolP;

  for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
    {
#ifdef OBJ_COFF
      if (TC_S_IS_SYSPROC (symbolP))
	{
	  /* second aux entry already contains the sysproc number */
	  S_SET_NUMBER_AUXILIARY (symbolP, 2);
	  S_SET_STORAGE_CLASS (symbolP, C_SCALL);
	  S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
	  continue;
	}			/* rewrite sysproc */
#endif /* OBJ_COFF */

      if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
	{
	  continue;
	}			/* Not a leafproc symbol */

      if (!S_IS_DEFINED (symbolP))
	{
	  as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP));
	}			/* undefined leaf */

      if (TC_S_IS_CALLNAME (symbolP))
	{
	  symbolS *balP = tc_get_bal_of_call (symbolP);
	  if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
	    {
	      S_SET_EXTERNAL (symbolP);
	      S_SET_EXTERNAL (balP);
	      as_warn (_("Warning: making leafproc entries %s and %s both global\n"),
		       S_GET_NAME (symbolP), S_GET_NAME (balP));
	    }			/* externality mismatch */
	}			/* if callname */
    }				/* walk the symbol chain */
}

#endif /* ! BFD_ASSEMBLER */

/* For aout or bout, the bal immediately follows the call.

   For coff, we cheat and store a pointer to the bal symbol in the
   second aux entry of the call.  */

#undef OBJ_ABOUT
#ifdef OBJ_AOUT
#define OBJ_ABOUT
#endif
#ifdef OBJ_BOUT
#define OBJ_ABOUT
#endif

void
tc_set_bal_of_call (callP, balP)
     symbolS *callP;
     symbolS *balP;
{
  know (TC_S_IS_CALLNAME (callP));
  know (TC_S_IS_BALNAME (balP));

#ifdef OBJ_COFF

  callP->sy_tc = balP;
  S_SET_NUMBER_AUXILIARY (callP, 2);

#else /* ! OBJ_COFF */
#ifdef OBJ_ABOUT

  /* If the 'bal' entry doesn't immediately follow the 'call'
     * symbol, unlink it from the symbol list and re-insert it.
   */
  if (symbol_next (callP) != balP)
    {
      symbol_remove (balP, &symbol_rootP, &symbol_lastP);
      symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
    }				/* if not in order */

#else /* ! OBJ_ABOUT */
  as_fatal ("Only supported for a.out, b.out, or COFF");
#endif /* ! OBJ_ABOUT */
#endif /* ! OBJ_COFF */
}

symbolS *
tc_get_bal_of_call (callP)
     symbolS *callP;
{
  symbolS *retval;

  know (TC_S_IS_CALLNAME (callP));

#ifdef OBJ_COFF
  retval = callP->sy_tc;
#else
#ifdef OBJ_ABOUT
  retval = symbol_next (callP);
#else
  as_fatal ("Only supported for a.out, b.out, or COFF");
#endif /* ! OBJ_ABOUT */
#endif /* ! OBJ_COFF */

  know (TC_S_IS_BALNAME (retval));
  return retval;
}				/* _tc_get_bal_of_call() */

void
tc_coff_symbol_emit_hook (symbolP)
     symbolS *symbolP;
{
  if (TC_S_IS_CALLNAME (symbolP))
    {
#ifdef OBJ_COFF
      symbolS *balP = tc_get_bal_of_call (symbolP);

#if 0
      /* second aux entry contains the bal entry point */
      S_SET_NUMBER_AUXILIARY (symbolP, 2);
#endif
      symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
      if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
	S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
      else
	S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
      S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
      /* fix up the bal symbol */
      S_SET_STORAGE_CLASS (balP, C_LABEL);
#endif /* OBJ_COFF */
    }				/* only on calls */
}

void
i960_handle_align (fragp)
     fragS *fragp;
{
  if (!linkrelax)
    return;

#ifndef OBJ_BOUT

  as_bad (_("option --link-relax is only supported in b.out format"));
  linkrelax = 0;
  return;

#else

  /* The text section "ends" with another alignment reloc, to which we
     aren't adding padding.  */
  if (fragp->fr_next == text_last_frag
      || fragp->fr_next == data_last_frag)
    return;

  /* alignment directive */
  fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
	   (int) fragp->fr_type);
#endif /* OBJ_BOUT */
}

int
i960_validate_fix (fixP, this_segment_type, add_symbolPP)
     fixS *fixP;
     segT this_segment_type;
     symbolS **add_symbolPP;
{
#define add_symbolP (*add_symbolPP)
  if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP))
    {
      /* Relocation should be done via the associated 'bal'
         entry point symbol. */

      if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP)))
	{
	  as_bad (_("No 'bal' entry point for leafproc %s"),
		  S_GET_NAME (add_symbolP));
	  return 1;
	}
      fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP);
    }
#if 0
  /* Still have to work out other conditions for these tests.  */
  {
    if (fixP->fx_tcbit)
      {
	as_bad (_("callj to difference of two symbols"));
	return 1;
      }
    reloc_callj (fixP);
    if ((int) fixP->fx_bit_fixP == 13)
      {
	/* This is a COBR instruction.  They have only a 13-bit
	   displacement and are only to be used for local branches:
	   flag as error, don't generate relocation.  */
	as_bad (_("can't use COBR format with external label"));
	fixP->fx_addsy = NULL;	/* No relocations please. */
	return 1;
      }
  }
#endif
#undef add_symbolP
  return 0;
}

#ifdef BFD_ASSEMBLER

/* From cgen.c:  */

static short
tc_bfd_fix2rtype (fixP)
     fixS *fixP;
{
#if 0
  if (fixP->fx_bsr)
    abort ();
#endif

  if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
    return BFD_RELOC_32;

  if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
    return BFD_RELOC_24_PCREL;

  abort ();
  return 0;
}

/* Translate internal representation of relocation info to BFD target
   format.

   FIXME: To what extent can we get all relevant targets to use this?  */

arelent *
tc_gen_reloc (section, fixP)
     asection *section;
     fixS *fixP;
{
  arelent * reloc;

  reloc = (arelent *) xmalloc (sizeof (arelent));

  /* HACK: Is this right? */
  fixP->fx_r_type = tc_bfd_fix2rtype (fixP);

  reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
  if (reloc->howto == (reloc_howto_type *) NULL)
    {
      as_bad_where (fixP->fx_file, fixP->fx_line,
		    "internal error: can't export reloc type %d (`%s')",
		    fixP->fx_r_type,
		    bfd_get_reloc_code_name (fixP->fx_r_type));
      return NULL;
    }

  assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);

  reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
  reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
  reloc->addend = fixP->fx_addnumber;

  return reloc;
}

/* end from cgen.c */

#endif /* BFD_ASSEMBLER */

/* end of tc-i960.c */