aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i386.c
blob: d0efd6b0f373c29b7da5badc7b1bc3ff1b503668 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
/* i386.c -- Assemble code for the Intel 80386
   Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
   Free Software Foundation, Inc.

   This file is part of GAS, the GNU Assembler.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

/* Intel 80386 machine specific gas.
   Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
   Bugs & suggestions are completely welcome.  This is free software.
   Please help us make it better.  */

#include <ctype.h>

#include "as.h"
#include "subsegs.h"
#include "opcode/i386.h"

#ifndef REGISTER_WARNINGS
#define REGISTER_WARNINGS 1
#endif

#ifndef INFER_ADDR_PREFIX
#define INFER_ADDR_PREFIX 1
#endif

#ifndef SCALE1_WHEN_NO_INDEX
/* Specifying a scale factor besides 1 when there is no index is
   futile.  eg. `mov (%ebx,2),%al' does exactly the same as
   `mov (%ebx),%al'.  To slavishly follow what the programmer
   specified, set SCALE1_WHEN_NO_INDEX to 0.  */
#define SCALE1_WHEN_NO_INDEX 1
#endif

#define true 1
#define false 0

static unsigned int mode_from_disp_size PARAMS ((unsigned int));
static int fits_in_signed_byte PARAMS ((offsetT));
static int fits_in_unsigned_byte PARAMS ((offsetT));
static int fits_in_unsigned_word PARAMS ((offsetT));
static int fits_in_signed_word PARAMS ((offsetT));
static int smallest_imm_type PARAMS ((offsetT));
static offsetT offset_in_range PARAMS ((offsetT, int));
static int add_prefix PARAMS ((unsigned int));
static void set_16bit_code_flag PARAMS ((int));
static void set_16bit_gcc_code_flag PARAMS ((int));
static void set_intel_syntax PARAMS ((int));
static void set_cpu_arch PARAMS ((int));

#ifdef BFD_ASSEMBLER
static bfd_reloc_code_real_type reloc
  PARAMS ((int, int, bfd_reloc_code_real_type));
#endif

/* 'md_assemble ()' gathers together information and puts it into a
   i386_insn.  */

union i386_op
  {
    expressionS *disps;
    expressionS *imms;
    const reg_entry *regs;
  };

struct _i386_insn
  {
    /* TM holds the template for the insn were currently assembling.  */
    template tm;

    /* SUFFIX holds the instruction mnemonic suffix if given.
       (e.g. 'l' for 'movl')  */
    char suffix;

    /* OPERANDS gives the number of given operands.  */
    unsigned int operands;

    /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
       of given register, displacement, memory operands and immediate
       operands.  */
    unsigned int reg_operands, disp_operands, mem_operands, imm_operands;

    /* TYPES [i] is the type (see above #defines) which tells us how to
       use OP[i] for the corresponding operand.  */
    unsigned int types[MAX_OPERANDS];

    /* Displacement expression, immediate expression, or register for each
       operand.  */
    union i386_op op[MAX_OPERANDS];

    /* Relocation type for operand */
#ifdef BFD_ASSEMBLER
    enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
#else
    int disp_reloc[MAX_OPERANDS];
#endif

    /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
       the base index byte below.  */
    const reg_entry *base_reg;
    const reg_entry *index_reg;
    unsigned int log2_scale_factor;

    /* SEG gives the seg_entries of this insn.  They are zero unless
       explicit segment overrides are given.  */
    const seg_entry *seg[2];

    /* PREFIX holds all the given prefix opcodes (usually null).
       PREFIXES is the number of prefix opcodes.  */
    unsigned int prefixes;
    unsigned char prefix[MAX_PREFIXES];

    /* RM and SIB are the modrm byte and the sib byte where the
       addressing modes of this insn are encoded.  */

    modrm_byte rm;
    sib_byte sib;
  };

typedef struct _i386_insn i386_insn;

/* List of chars besides those in app.c:symbol_chars that can start an
   operand.  Used to prevent the scrubber eating vital white-space.  */
#ifdef LEX_AT
const char extra_symbol_chars[] = "*%-(@";
#else
const char extra_symbol_chars[] = "*%-(";
#endif

/* This array holds the chars that always start a comment.  If the
   pre-processor is disabled, these aren't very useful.  */
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
/* Putting '/' here makes it impossible to use the divide operator.
   However, we need it for compatibility with SVR4 systems.  */
const char comment_chars[] = "#/";
#define PREFIX_SEPARATOR '\\'
#else
const char comment_chars[] = "#";
#define PREFIX_SEPARATOR '/'
#endif

/* This array holds the chars that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output.
   Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output.
   Also note that comments started like this one will always work if
   '/' isn't otherwise defined.  */
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
const char line_comment_chars[] = "";
#else
const char line_comment_chars[] = "/";
#endif

const char line_separator_chars[] = ";";

/* Chars that can be used to separate mant from exp in floating point
   nums.  */
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant
   As in 0f12.456
   or    0d1.2345e12.  */
const char FLT_CHARS[] = "fFdDxX";

/* Tables for lexical analysis.  */
static char mnemonic_chars[256];
static char register_chars[256];
static char operand_chars[256];
static char identifier_chars[256];
static char digit_chars[256];

/* Lexical macros.  */
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_space_char(x) ((x) == ' ')
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])

/* All non-digit non-letter charcters that may occur in an operand.  */
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";

/* md_assemble() always leaves the strings it's passed unaltered.  To
   effect this we maintain a stack of saved characters that we've smashed
   with '\0's (indicating end of strings for various sub-fields of the
   assembler instruction).  */
static char save_stack[32];
static char *save_stack_p;
#define END_STRING_AND_SAVE(s) \
	do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
#define RESTORE_END_STRING(s) \
	do { *(s) = *--save_stack_p; } while (0)

/* The instruction we're assembling.  */
static i386_insn i;

/* Possible templates for current insn.  */
static const templates *current_templates;

/* Per instruction expressionS buffers: 2 displacements & 2 immediate max.  */
static expressionS disp_expressions[2], im_expressions[2];

/* Current operand we are working on.  */
static int this_operand;

/* 1 if we're writing 16-bit code,
   0 if 32-bit.  */
static int flag_16bit_code;

/* 1 for intel syntax,
   0 if att syntax.  */
static int intel_syntax = 0;

/* 1 if register prefix % not required.  */
static int allow_naked_reg = 0;

/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
   leave, push, and pop instructions so that gcc has the same stack
   frame as in 32 bit mode.  */
static char stackop_size = '\0';

/* Non-zero to quieten some warnings.  */
static int quiet_warnings = 0;

/* CPU name.  */
static const char *cpu_arch_name = NULL;

/* CPU feature flags.  */
static unsigned int cpu_arch_flags = 0;

/* Interface to relax_segment.
   There are 2 relax states for 386 jump insns: one for conditional &
   one for unconditional jumps.  This is because these two types of
   jumps add different sizes to frags when we're figuring out what
   sort of jump to choose to reach a given label.  */

/* Types.  */
#define COND_JUMP 1
#define UNCOND_JUMP 2
/* Sizes.  */
#define CODE16	1
#define SMALL	0
#define SMALL16 (SMALL|CODE16)
#define BIG	2
#define BIG16	(BIG|CODE16)

#ifndef INLINE
#ifdef __GNUC__
#define INLINE __inline__
#else
#define INLINE
#endif
#endif

#define ENCODE_RELAX_STATE(type,size) \
  ((relax_substateT)((type<<2) | (size)))
#define SIZE_FROM_RELAX_STATE(s) \
    ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )

/* This table is used by relax_frag to promote short jumps to long
   ones where necessary.  SMALL (short) jumps may be promoted to BIG
   (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
   don't allow a short jump in a 32 bit code segment to be promoted to
   a 16 bit offset jump because it's slower (requires data size
   prefix), and doesn't work, unless the destination is in the bottom
   64k of the code segment (The top 16 bits of eip are zeroed).  */

const relax_typeS md_relax_table[] =
{
  /* The fields are:
     1) most positive reach of this state,
     2) most negative reach of this state,
     3) how many bytes this mode will add to the size of the current frag
     4) which index into the table to try if we can't fit into this one.  */
  {1, 1, 0, 0},
  {1, 1, 0, 0},
  {1, 1, 0, 0},
  {1, 1, 0, 0},

  {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
  {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
  /* dword conditionals adds 4 bytes to frag:
     1 extra opcode byte, 3 extra displacement bytes.  */
  {0, 0, 4, 0},
  /* word conditionals add 2 bytes to frag:
     1 extra opcode byte, 1 extra displacement byte.  */
  {0, 0, 2, 0},

  {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
  {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
  /* dword jmp adds 3 bytes to frag:
     0 extra opcode bytes, 3 extra displacement bytes.  */
  {0, 0, 3, 0},
  /* word jmp adds 1 byte to frag:
     0 extra opcode bytes, 1 extra displacement byte.  */
  {0, 0, 1, 0}

};

static const arch_entry cpu_arch[] = {
  {"i8086",	Cpu086 },
  {"i186",	Cpu086|Cpu186 },
  {"i286",	Cpu086|Cpu186|Cpu286 },
  {"i386",	Cpu086|Cpu186|Cpu286|Cpu386 },
  {"i486",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
  {"i586",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
  {"i686",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
  {"pentium",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
  {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
  {"k6",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
  {"athlon",	Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
  {NULL, 0 }
};

void
i386_align_code (fragP, count)
     fragS *fragP;
     int count;
{
  /* Various efficient no-op patterns for aligning code labels.
     Note: Don't try to assemble the instructions in the comments.
     0L and 0w are not legal.  */
  static const char f32_1[] =
    {0x90};					/* nop			*/
  static const char f32_2[] =
    {0x89,0xf6};				/* movl %esi,%esi	*/
  static const char f32_3[] =
    {0x8d,0x76,0x00};				/* leal 0(%esi),%esi	*/
  static const char f32_4[] =
    {0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
  static const char f32_5[] =
    {0x90,					/* nop			*/
     0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
  static const char f32_6[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00};		/* leal 0L(%esi),%esi	*/
  static const char f32_7[] =
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
  static const char f32_8[] =
    {0x90,					/* nop			*/
     0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
  static const char f32_9[] =
    {0x89,0xf6,					/* movl %esi,%esi	*/
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
  static const char f32_10[] =
    {0x8d,0x76,0x00,				/* leal 0(%esi),%esi	*/
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
  static const char f32_11[] =
    {0x8d,0x74,0x26,0x00,			/* leal 0(%esi,1),%esi	*/
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
  static const char f32_12[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
     0x8d,0xbf,0x00,0x00,0x00,0x00};		/* leal 0L(%edi),%edi	*/
  static const char f32_13[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
  static const char f32_14[] =
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,	/* leal 0L(%esi,1),%esi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
  static const char f32_15[] =
    {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90,	/* jmp .+15; lotsa nops	*/
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
  static const char f16_3[] =
    {0x8d,0x74,0x00};				/* lea 0(%esi),%esi	*/
  static const char f16_4[] =
    {0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
  static const char f16_5[] =
    {0x90,					/* nop			*/
     0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
  static const char f16_6[] =
    {0x89,0xf6,					/* mov %si,%si		*/
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
  static const char f16_7[] =
    {0x8d,0x74,0x00,				/* lea 0(%si),%si	*/
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
  static const char f16_8[] =
    {0x8d,0xb4,0x00,0x00,			/* lea 0w(%si),%si	*/
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
  static const char *const f32_patt[] = {
    f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
    f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
  };
  static const char *const f16_patt[] = {
    f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
    f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
  };

  if (count > 0 && count <= 15)
    {
      if (flag_16bit_code)
	{
	  memcpy (fragP->fr_literal + fragP->fr_fix,
		  f16_patt[count - 1], count);
	  if (count > 8)
	    /* Adjust jump offset.  */
	    fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
	}
      else
	memcpy (fragP->fr_literal + fragP->fr_fix,
		f32_patt[count - 1], count);
      fragP->fr_var = count;
    }
}

static char *output_invalid PARAMS ((int c));
static int i386_operand PARAMS ((char *operand_string));
static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
static const reg_entry *parse_register PARAMS ((char *reg_string,
						char **end_op));

#ifndef I386COFF
static void s_bss PARAMS ((int));
#endif

symbolS *GOT_symbol;		/* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */

static INLINE unsigned int
mode_from_disp_size (t)
     unsigned int t;
{
  return (t & Disp8) ? 1 : (t & (Disp16 | Disp32)) ? 2 : 0;
}

static INLINE int
fits_in_signed_byte (num)
     offsetT num;
{
  return (num >= -128) && (num <= 127);
}

static INLINE int
fits_in_unsigned_byte (num)
     offsetT num;
{
  return (num & 0xff) == num;
}

static INLINE int
fits_in_unsigned_word (num)
     offsetT num;
{
  return (num & 0xffff) == num;
}

static INLINE int
fits_in_signed_word (num)
     offsetT num;
{
  return (-32768 <= num) && (num <= 32767);
}

static int
smallest_imm_type (num)
     offsetT num;
{
  if (cpu_arch_flags != 0
      && cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486))
    {
      /* This code is disabled on the 486 because all the Imm1 forms
	 in the opcode table are slower on the i486.  They're the
	 versions with the implicitly specified single-position
	 displacement, which has another syntax if you really want to
	 use that form.  */
      if (num == 1)
	return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
    }
  return (fits_in_signed_byte (num)
	  ? (Imm8S | Imm8 | Imm16 | Imm32)
	  : fits_in_unsigned_byte (num)
	  ? (Imm8 | Imm16 | Imm32)
	  : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
	  ? (Imm16 | Imm32)
	  : (Imm32));
}

static offsetT
offset_in_range (val, size)
     offsetT val;
     int size;
{
  addressT mask;

  switch (size)
    {
    case 1: mask = ((addressT) 1 <<  8) - 1; break;
    case 2: mask = ((addressT) 1 << 16) - 1; break;
    case 4: mask = ((addressT) 2 << 31) - 1; break;
    default: abort ();
    }

  /* If BFD64, sign extend val.  */
  if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
    val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);

  if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
    {
      char buf1[40], buf2[40];

      sprint_value (buf1, val);
      sprint_value (buf2, val & mask);
      as_warn (_("%s shortened to %s"), buf1, buf2);
    }
  return val & mask;
}

/* Returns 0 if attempting to add a prefix where one from the same
   class already exists, 1 if non rep/repne added, 2 if rep/repne
   added.  */
static int
add_prefix (prefix)
     unsigned int prefix;
{
  int ret = 1;
  int q;

  switch (prefix)
    {
    default:
      abort ();

    case CS_PREFIX_OPCODE:
    case DS_PREFIX_OPCODE:
    case ES_PREFIX_OPCODE:
    case FS_PREFIX_OPCODE:
    case GS_PREFIX_OPCODE:
    case SS_PREFIX_OPCODE:
      q = SEG_PREFIX;
      break;

    case REPNE_PREFIX_OPCODE:
    case REPE_PREFIX_OPCODE:
      ret = 2;
      /* fall thru */
    case LOCK_PREFIX_OPCODE:
      q = LOCKREP_PREFIX;
      break;

    case FWAIT_OPCODE:
      q = WAIT_PREFIX;
      break;

    case ADDR_PREFIX_OPCODE:
      q = ADDR_PREFIX;
      break;

    case DATA_PREFIX_OPCODE:
      q = DATA_PREFIX;
      break;
    }

  if (i.prefix[q])
    {
      as_bad (_("same type of prefix used twice"));
      return 0;
    }

  i.prefixes += 1;
  i.prefix[q] = prefix;
  return ret;
}

static void
set_16bit_code_flag (new_16bit_code_flag)
     int new_16bit_code_flag;
{
  flag_16bit_code = new_16bit_code_flag;
  stackop_size = '\0';
}

static void
set_16bit_gcc_code_flag (new_16bit_code_flag)
     int new_16bit_code_flag;
{
  flag_16bit_code = new_16bit_code_flag;
  stackop_size = new_16bit_code_flag ? 'l' : '\0';
}

static void
set_intel_syntax (syntax_flag)
     int syntax_flag;
{
  /* Find out if register prefixing is specified.  */
  int ask_naked_reg = 0;

  SKIP_WHITESPACE ();
  if (! is_end_of_line[(unsigned char) *input_line_pointer])
    {
      char *string = input_line_pointer;
      int e = get_symbol_end ();

      if (strcmp (string, "prefix") == 0)
	ask_naked_reg = 1;
      else if (strcmp (string, "noprefix") == 0)
	ask_naked_reg = -1;
      else
	as_bad (_("bad argument to syntax directive."));
      *input_line_pointer = e;
    }
  demand_empty_rest_of_line ();

  intel_syntax = syntax_flag;

  if (ask_naked_reg == 0)
    {
#ifdef BFD_ASSEMBLER
      allow_naked_reg = (intel_syntax
			 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
#else
      /* Conservative default.  */
      allow_naked_reg = 0;
#endif
    }
  else
    allow_naked_reg = (ask_naked_reg < 0);
}

static void
set_cpu_arch (dummy)
     int dummy ATTRIBUTE_UNUSED;
{
  SKIP_WHITESPACE ();

  if (! is_end_of_line[(unsigned char) *input_line_pointer])
    {
      char *string = input_line_pointer;
      int e = get_symbol_end ();
      int i;

      for (i = 0; cpu_arch[i].name; i++)
	{
	  if (strcmp (string, cpu_arch[i].name) == 0)
	    {
	      cpu_arch_name = cpu_arch[i].name;
	      cpu_arch_flags = cpu_arch[i].flags;
	      break;
	    }
	}
      if (!cpu_arch[i].name)
	as_bad (_("no such architecture: `%s'"), string);

      *input_line_pointer = e;
    }
  else
    as_bad (_("missing cpu architecture"));

  demand_empty_rest_of_line ();
}

const pseudo_typeS md_pseudo_table[] =
{
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
  {"align", s_align_bytes, 0},
#else
  {"align", s_align_ptwo, 0},
#endif
  {"arch", set_cpu_arch, 0},
#ifndef I386COFF
  {"bss", s_bss, 0},
#endif
  {"ffloat", float_cons, 'f'},
  {"dfloat", float_cons, 'd'},
  {"tfloat", float_cons, 'x'},
  {"value", cons, 2},
  {"noopt", s_ignore, 0},
  {"optim", s_ignore, 0},
  {"code16gcc", set_16bit_gcc_code_flag, 1},
  {"code16", set_16bit_code_flag, 1},
  {"code32", set_16bit_code_flag, 0},
  {"intel_syntax", set_intel_syntax, 1},
  {"att_syntax", set_intel_syntax, 0},
  {0, 0, 0}
};

/* For interface with expression ().  */
extern char *input_line_pointer;

/* Hash table for instruction mnemonic lookup.  */
static struct hash_control *op_hash;

/* Hash table for register lookup.  */
static struct hash_control *reg_hash;

void
md_begin ()
{
  const char *hash_err;

  /* Initialize op_hash hash table.  */
  op_hash = hash_new ();

  {
    register const template *optab;
    register templates *core_optab;

    /* Setup for loop.  */
    optab = i386_optab;
    core_optab = (templates *) xmalloc (sizeof (templates));
    core_optab->start = optab;

    while (1)
      {
	++optab;
	if (optab->name == NULL
	    || strcmp (optab->name, (optab - 1)->name) != 0)
	  {
	    /* different name --> ship out current template list;
	       add to hash table; & begin anew.  */
	    core_optab->end = optab;
	    hash_err = hash_insert (op_hash,
				    (optab - 1)->name,
				    (PTR) core_optab);
	    if (hash_err)
	      {
	      hash_error:
		as_fatal (_("Internal Error:  Can't hash %s: %s"),
			  (optab - 1)->name,
			  hash_err);
	      }
	    if (optab->name == NULL)
	      break;
	    core_optab = (templates *) xmalloc (sizeof (templates));
	    core_optab->start = optab;
	  }
      }
  }

  /* Initialize reg_hash hash table.  */
  reg_hash = hash_new ();
  {
    register const reg_entry *regtab;

    for (regtab = i386_regtab;
	 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
	 regtab++)
      {
	hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
	if (hash_err)
	  goto hash_error;
      }
  }

  /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
  {
    register int c;
    register char *p;

    for (c = 0; c < 256; c++)
      {
	if (isdigit (c))
	  {
	    digit_chars[c] = c;
	    mnemonic_chars[c] = c;
	    register_chars[c] = c;
	    operand_chars[c] = c;
	  }
	else if (islower (c))
	  {
	    mnemonic_chars[c] = c;
	    register_chars[c] = c;
	    operand_chars[c] = c;
	  }
	else if (isupper (c))
	  {
	    mnemonic_chars[c] = tolower (c);
	    register_chars[c] = mnemonic_chars[c];
	    operand_chars[c] = c;
	  }

	if (isalpha (c) || isdigit (c))
	  identifier_chars[c] = c;
	else if (c >= 128)
	  {
	    identifier_chars[c] = c;
	    operand_chars[c] = c;
	  }
      }

#ifdef LEX_AT
    identifier_chars['@'] = '@';
#endif
    digit_chars['-'] = '-';
    identifier_chars['_'] = '_';
    identifier_chars['.'] = '.';

    for (p = operand_special_chars; *p != '\0'; p++)
      operand_chars[(unsigned char) *p] = *p;
  }

#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
    {
      record_alignment (text_section, 2);
      record_alignment (data_section, 2);
      record_alignment (bss_section, 2);
    }
#endif
}

void
i386_print_statistics (file)
     FILE *file;
{
  hash_print_statistics (file, "i386 opcode", op_hash);
  hash_print_statistics (file, "i386 register", reg_hash);
}

#ifdef DEBUG386

/* Debugging routines for md_assemble.  */
static void pi PARAMS ((char *, i386_insn *));
static void pte PARAMS ((template *));
static void pt PARAMS ((unsigned int));
static void pe PARAMS ((expressionS *));
static void ps PARAMS ((symbolS *));

static void
pi (line, x)
     char *line;
     i386_insn *x;
{
  register template *p;
  int i;

  fprintf (stdout, "%s: template ", line);
  pte (&x->tm);
  fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x",
	   x->rm.mode, x->rm.reg, x->rm.regmem);
  fprintf (stdout, " base %x  index %x  scale %x\n",
	   x->bi.base, x->bi.index, x->bi.scale);
  for (i = 0; i < x->operands; i++)
    {
      fprintf (stdout, "    #%d:  ", i + 1);
      pt (x->types[i]);
      fprintf (stdout, "\n");
      if (x->types[i]
	  & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
	fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
      if (x->types[i] & Imm)
	pe (x->op[i].imms);
      if (x->types[i] & Disp)
	pe (x->op[i].disps);
    }
}

static void
pte (t)
     template *t;
{
  int i;
  fprintf (stdout, " %d operands ", t->operands);
  fprintf (stdout, "opcode %x ", t->base_opcode);
  if (t->extension_opcode != None)
    fprintf (stdout, "ext %x ", t->extension_opcode);
  if (t->opcode_modifier & D)
    fprintf (stdout, "D");
  if (t->opcode_modifier & W)
    fprintf (stdout, "W");
  fprintf (stdout, "\n");
  for (i = 0; i < t->operands; i++)
    {
      fprintf (stdout, "    #%d type ", i + 1);
      pt (t->operand_types[i]);
      fprintf (stdout, "\n");
    }
}

static void
pe (e)
     expressionS *e;
{
  fprintf (stdout, "    operation     %d\n", e->X_op);
  fprintf (stdout, "    add_number    %ld (%lx)\n",
	   (long) e->X_add_number, (long) e->X_add_number);
  if (e->X_add_symbol)
    {
      fprintf (stdout, "    add_symbol    ");
      ps (e->X_add_symbol);
      fprintf (stdout, "\n");
    }
  if (e->X_op_symbol)
    {
      fprintf (stdout, "    op_symbol    ");
      ps (e->X_op_symbol);
      fprintf (stdout, "\n");
    }
}

static void
ps (s)
     symbolS *s;
{
  fprintf (stdout, "%s type %s%s",
	   S_GET_NAME (s),
	   S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
	   segment_name (S_GET_SEGMENT (s)));
}

struct type_name
  {
    unsigned int mask;
    char *tname;
  }

type_names[] =
{
  { Reg8, "r8" },
  { Reg16, "r16" },
  { Reg32, "r32" },
  { Imm8, "i8" },
  { Imm8S, "i8s" },
  { Imm16, "i16" },
  { Imm32, "i32" },
  { Imm1, "i1" },
  { BaseIndex, "BaseIndex" },
  { Disp8, "d8" },
  { Disp16, "d16" },
  { Disp32, "d32" },
  { InOutPortReg, "InOutPortReg" },
  { ShiftCount, "ShiftCount" },
  { Control, "control reg" },
  { Test, "test reg" },
  { Debug, "debug reg" },
  { FloatReg, "FReg" },
  { FloatAcc, "FAcc" },
  { SReg2, "SReg2" },
  { SReg3, "SReg3" },
  { Acc, "Acc" },
  { JumpAbsolute, "Jump Absolute" },
  { RegMMX, "rMMX" },
  { RegXMM, "rXMM" },
  { EsSeg, "es" },
  { 0, "" }
};

static void
pt (t)
     unsigned int t;
{
  register struct type_name *ty;

  if (t == Unknown)
    {
      fprintf (stdout, _("Unknown"));
    }
  else
    {
      for (ty = type_names; ty->mask; ty++)
	if (t & ty->mask)
	  fprintf (stdout, "%s, ", ty->tname);
    }
  fflush (stdout);
}

#endif /* DEBUG386 */

int
tc_i386_force_relocation (fixp)
     struct fix *fixp;
{
#ifdef BFD_ASSEMBLER
  if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
      || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
    return 1;
  return 0;
#else
  /* For COFF.  */
  return fixp->fx_r_type == 7;
#endif
}

#ifdef BFD_ASSEMBLER
static bfd_reloc_code_real_type reloc
  PARAMS ((int, int, bfd_reloc_code_real_type));

static bfd_reloc_code_real_type
reloc (size, pcrel, other)
     int size;
     int pcrel;
     bfd_reloc_code_real_type other;
{
  if (other != NO_RELOC)
    return other;

  if (pcrel)
    {
      switch (size)
	{
	case 1: return BFD_RELOC_8_PCREL;
	case 2: return BFD_RELOC_16_PCREL;
	case 4: return BFD_RELOC_32_PCREL;
	}
      as_bad (_("can not do %d byte pc-relative relocation"), size);
    }
  else
    {
      switch (size)
	{
	case 1: return BFD_RELOC_8;
	case 2: return BFD_RELOC_16;
	case 4: return BFD_RELOC_32;
	}
      as_bad (_("can not do %d byte relocation"), size);
    }

  return BFD_RELOC_NONE;
}

/* Here we decide which fixups can be adjusted to make them relative to
   the beginning of the section instead of the symbol.  Basically we need
   to make sure that the dynamic relocations are done correctly, so in
   some cases we force the original symbol to be used.  */

int
tc_i386_fix_adjustable (fixP)
     fixS *fixP;
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  /* Prevent all adjustments to global symbols, or else dynamic
     linking will not work correctly.  */
  if (S_IS_EXTERNAL (fixP->fx_addsy)
      || S_IS_WEAK (fixP->fx_addsy))
    return 0;
#endif
  /* adjust_reloc_syms doesn't know about the GOT.  */
  if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
      || fixP->fx_r_type == BFD_RELOC_386_PLT32
      || fixP->fx_r_type == BFD_RELOC_386_GOT32
      || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
    return 0;
  return 1;
}
#else
#define reloc(SIZE,PCREL,OTHER)	0
#define BFD_RELOC_16		0
#define BFD_RELOC_32		0
#define BFD_RELOC_16_PCREL	0
#define BFD_RELOC_32_PCREL	0
#define BFD_RELOC_386_PLT32	0
#define BFD_RELOC_386_GOT32	0
#define BFD_RELOC_386_GOTOFF	0
#endif

static int intel_float_operand PARAMS ((char *mnemonic));

static int
intel_float_operand (mnemonic)
     char *mnemonic;
{
  if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
    return 2;

  if (mnemonic[0] == 'f')
    return 1;

  return 0;
}

/* This is the guts of the machine-dependent assembler.  LINE points to a
   machine dependent instruction.  This function is supposed to emit
   the frags/bytes it assembles to.  */

void
md_assemble (line)
     char *line;
{
  /* Points to template once we've found it.  */
  const template *t;

  /* Count the size of the instruction generated.  */
  int insn_size = 0;

  int j;

  char mnemonic[MAX_MNEM_SIZE];

  /* Initialize globals.  */
  memset (&i, '\0', sizeof (i));
  for (j = 0; j < MAX_OPERANDS; j++)
    i.disp_reloc[j] = NO_RELOC;
  memset (disp_expressions, '\0', sizeof (disp_expressions));
  memset (im_expressions, '\0', sizeof (im_expressions));
  save_stack_p = save_stack;

  /* First parse an instruction mnemonic & call i386_operand for the operands.
     We assume that the scrubber has arranged it so that line[0] is the valid
     start of a (possibly prefixed) mnemonic.  */
  {
    char *l = line;
    char *token_start = l;
    char *mnem_p;

    /* Non-zero if we found a prefix only acceptable with string insns.  */
    const char *expecting_string_instruction = NULL;

    while (1)
      {
	mnem_p = mnemonic;
	while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
	  {
	    mnem_p++;
	    if (mnem_p >= mnemonic + sizeof (mnemonic))
	      {
		as_bad (_("no such instruction: `%s'"), token_start);
		return;
	      }
	    l++;
	  }
	if (!is_space_char (*l)
	    && *l != END_OF_INSN
	    && *l != PREFIX_SEPARATOR)
	  {
	    as_bad (_("invalid character %s in mnemonic"),
		    output_invalid (*l));
	    return;
	  }
	if (token_start == l)
	  {
	    if (*l == PREFIX_SEPARATOR)
	      as_bad (_("expecting prefix; got nothing"));
	    else
	      as_bad (_("expecting mnemonic; got nothing"));
	    return;
	  }

	/* Look up instruction (or prefix) via hash table.  */
	current_templates = hash_find (op_hash, mnemonic);

	if (*l != END_OF_INSN
	    && (! is_space_char (*l) || l[1] != END_OF_INSN)
	    && current_templates
	    && (current_templates->start->opcode_modifier & IsPrefix))
	  {
	    /* If we are in 16-bit mode, do not allow addr16 or data16.
	       Similarly, in 32-bit mode, do not allow addr32 or data32.  */
	    if ((current_templates->start->opcode_modifier & (Size16 | Size32))
		&& (((current_templates->start->opcode_modifier & Size32) != 0)
		    ^ flag_16bit_code))
	      {
		as_bad (_("redundant %s prefix"),
			current_templates->start->name);
		return;
	      }
	    /* Add prefix, checking for repeated prefixes.  */
	    switch (add_prefix (current_templates->start->base_opcode))
	      {
	      case 0:
		return;
	      case 2:
		expecting_string_instruction = current_templates->start->name;
		break;
	      }
	    /* Skip past PREFIX_SEPARATOR and reset token_start.  */
	    token_start = ++l;
	  }
	else
	  break;
      }

    if (!current_templates)
      {
	/* See if we can get a match by trimming off a suffix.  */
	switch (mnem_p[-1])
	  {
	  case WORD_MNEM_SUFFIX:
	  case BYTE_MNEM_SUFFIX:
	  case SHORT_MNEM_SUFFIX:
	  case LONG_MNEM_SUFFIX:
	    i.suffix = mnem_p[-1];
	    mnem_p[-1] = '\0';
	    current_templates = hash_find (op_hash, mnemonic);
	    break;

	  /* Intel Syntax.  */
	  case DWORD_MNEM_SUFFIX:
	    if (intel_syntax)
	      {
		i.suffix = mnem_p[-1];
		mnem_p[-1] = '\0';
		current_templates = hash_find (op_hash, mnemonic);
		break;
	      }
	  }
	if (!current_templates)
	  {
	    as_bad (_("no such instruction: `%s'"), token_start);
	    return;
	  }
      }

    /* Check if instruction is supported on specified architecture.  */
    if (cpu_arch_flags != 0)
      {
	if (current_templates->start->cpu_flags & ~cpu_arch_flags)
	  {
	    as_warn (_("`%s' is not supported on `%s'"),
		     current_templates->start->name, cpu_arch_name);
	  }
	else if ((Cpu386 & ~cpu_arch_flags) && !flag_16bit_code)
	  {
	    as_warn (_("use .code16 to ensure correct addressing mode"));
	  }
      }

    /* Check for rep/repne without a string instruction.  */
    if (expecting_string_instruction
	&& !(current_templates->start->opcode_modifier & IsString))
      {
	as_bad (_("expecting string instruction after `%s'"),
		expecting_string_instruction);
	return;
      }

    /* There may be operands to parse.  */
    if (*l != END_OF_INSN)
      {
	/* 1 if operand is pending after ','.  */
	unsigned int expecting_operand = 0;

	/* Non-zero if operand parens not balanced.  */
	unsigned int paren_not_balanced;

	do
	  {
	    /* Skip optional white space before operand.  */
	    if (is_space_char (*l))
	      ++l;
	    if (!is_operand_char (*l) && *l != END_OF_INSN)
	      {
		as_bad (_("invalid character %s before operand %d"),
			output_invalid (*l),
			i.operands + 1);
		return;
	      }
	    token_start = l;	/* after white space */
	    paren_not_balanced = 0;
	    while (paren_not_balanced || *l != ',')
	      {
		if (*l == END_OF_INSN)
		  {
		    if (paren_not_balanced)
		      {
			if (!intel_syntax)
			  as_bad (_("unbalanced parenthesis in operand %d."),
				  i.operands + 1);
			else
			  as_bad (_("unbalanced brackets in operand %d."),
				  i.operands + 1);
			return;
		      }
		    else
		      break;	/* we are done */
		  }
		else if (!is_operand_char (*l) && !is_space_char (*l))
		  {
		    as_bad (_("invalid character %s in operand %d"),
			    output_invalid (*l),
			    i.operands + 1);
		    return;
		  }
		if (!intel_syntax)
		  {
		    if (*l == '(')
		      ++paren_not_balanced;
		    if (*l == ')')
		      --paren_not_balanced;
		  }
		else
		  {
		    if (*l == '[')
		      ++paren_not_balanced;
		    if (*l == ']')
		      --paren_not_balanced;
		  }
		l++;
	      }
	    if (l != token_start)
	      {			/* Yes, we've read in another operand.  */
		unsigned int operand_ok;
		this_operand = i.operands++;
		if (i.operands > MAX_OPERANDS)
		  {
		    as_bad (_("spurious operands; (%d operands/instruction max)"),
			    MAX_OPERANDS);
		    return;
		  }
		/* Now parse operand adding info to 'i' as we go along.  */
		END_STRING_AND_SAVE (l);

		if (intel_syntax)
		  operand_ok =
		    i386_intel_operand (token_start,
					intel_float_operand (mnemonic));
		else
		  operand_ok = i386_operand (token_start);

		RESTORE_END_STRING (l);
		if (!operand_ok)
		  return;
	      }
	    else
	      {
		if (expecting_operand)
		  {
		  expecting_operand_after_comma:
		    as_bad (_("expecting operand after ','; got nothing"));
		    return;
		  }
		if (*l == ',')
		  {
		    as_bad (_("expecting operand before ','; got nothing"));
		    return;
		  }
	      }

	    /* Now *l must be either ',' or END_OF_INSN.  */
	    if (*l == ',')
	      {
		if (*++l == END_OF_INSN)
		  {
		    /* Just skip it, if it's \n complain.  */
		    goto expecting_operand_after_comma;
		  }
		expecting_operand = 1;
	      }
	  }
	while (*l != END_OF_INSN);
      }
  }

  /* Now we've parsed the mnemonic into a set of templates, and have the
     operands at hand.

     Next, we find a template that matches the given insn,
     making sure the overlap of the given operands types is consistent
     with the template operand types.  */

#define MATCH(overlap, given, template) \
  ((overlap & ~JumpAbsolute) \
   && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))

  /* If given types r0 and r1 are registers they must be of the same type
     unless the expected operand type register overlap is null.
     Note that Acc in a template matches every size of reg.  */
#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
  ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
    ((g0) & Reg) == ((g1) & Reg) || \
    ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )

  {
    register unsigned int overlap0, overlap1;
    unsigned int overlap2;
    unsigned int found_reverse_match;
    int suffix_check;

    /* All intel opcodes have reversed operands except for "bound" and
       "enter".  We also don't reverse intersegment "jmp" and "call"
       instructions with 2 immediate operands so that the immediate segment
       precedes the offset, as it does when in AT&T mode.  "enter" and the
       intersegment "jmp" and "call" instructions are the only ones that
       have two immediate operands.  */
    if (intel_syntax && i.operands > 1
	&& (strcmp (mnemonic, "bound") != 0)
	&& !((i.types[0] & Imm) && (i.types[1] & Imm)))
      {
	union i386_op temp_op;
	unsigned int temp_type;
	int xchg1 = 0;
	int xchg2 = 0;

	if (i.operands == 2)
	  {
	    xchg1 = 0;
	    xchg2 = 1;
	  }
	else if (i.operands == 3)
	  {
	    xchg1 = 0;
	    xchg2 = 2;
	  }
	temp_type = i.types[xchg2];
	i.types[xchg2] = i.types[xchg1];
	i.types[xchg1] = temp_type;
	temp_op = i.op[xchg2];
	i.op[xchg2] = i.op[xchg1];
	i.op[xchg1] = temp_op;

	if (i.mem_operands == 2)
	  {
	    const seg_entry *temp_seg;
	    temp_seg = i.seg[0];
	    i.seg[0] = i.seg[1];
	    i.seg[1] = temp_seg;
	  }
      }

    if (i.imm_operands)
      {
	/* Try to ensure constant immediates are represented in the smallest
	   opcode possible.  */
	char guess_suffix = 0;
	int op;

	if (i.suffix)
	  guess_suffix = i.suffix;
	else if (i.reg_operands)
	  {
	    /* Figure out a suffix from the last register operand specified.
	       We can't do this properly yet, ie. excluding InOutPortReg,
	       but the following works for instructions with immediates.
	       In any case, we can't set i.suffix yet.  */
	    for (op = i.operands; --op >= 0;)
	      if (i.types[op] & Reg)
		{
		  if (i.types[op] & Reg8)
		    guess_suffix = BYTE_MNEM_SUFFIX;
		  else if (i.types[op] & Reg16)
		    guess_suffix = WORD_MNEM_SUFFIX;
		  break;
		}
	  }
	else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
	  guess_suffix = WORD_MNEM_SUFFIX;

	for (op = i.operands; --op >= 0;)
	  if ((i.types[op] & Imm)
	      && i.op[op].imms->X_op == O_constant)
	    {
	      /* If a suffix is given, this operand may be shortened.  */
	      switch (guess_suffix)
		{
		case WORD_MNEM_SUFFIX:
		  i.types[op] |= Imm16;
		  break;
		case BYTE_MNEM_SUFFIX:
		  i.types[op] |= Imm16 | Imm8 | Imm8S;
		  break;
		}

	      /* If this operand is at most 16 bits, convert it to a
		 signed 16 bit number before trying to see whether it will
		 fit in an even smaller size.  This allows a 16-bit operand
		 such as $0xffe0 to be recognised as within Imm8S range.  */
	      if ((i.types[op] & Imm16)
		  && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
		{
		  i.op[op].imms->X_add_number =
		    (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
		}
	      i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
	    }
      }

    if (i.disp_operands)
      {
	/* Try to use the smallest displacement type too.  */
	int op;

	for (op = i.operands; --op >= 0;)
	  if ((i.types[op] & Disp)
	      && i.op[op].imms->X_op == O_constant)
	    {
	      offsetT disp = i.op[op].disps->X_add_number;

	      if (i.types[op] & Disp16)
		{
		  /* We know this operand is at most 16 bits, so
		     convert to a signed 16 bit number before trying
		     to see whether it will fit in an even smaller
		     size.  */

		  disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
		}
	      if (fits_in_signed_byte (disp))
		i.types[op] |= Disp8;
	    }
      }

    overlap0 = 0;
    overlap1 = 0;
    overlap2 = 0;
    found_reverse_match = 0;
    suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
		    ? No_bSuf
		    : (i.suffix == WORD_MNEM_SUFFIX
		       ? No_wSuf
		       : (i.suffix == SHORT_MNEM_SUFFIX
			  ? No_sSuf
			  : (i.suffix == LONG_MNEM_SUFFIX
			     ? No_lSuf
			     : (i.suffix == DWORD_MNEM_SUFFIX
				? No_dSuf
				: (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));

    for (t = current_templates->start;
	 t < current_templates->end;
	 t++)
      {
	/* Must have right number of operands.  */
	if (i.operands != t->operands)
	  continue;

	/* Check the suffix, except for some instructions in intel mode.  */
	if ((t->opcode_modifier & suffix_check)
	    && !(intel_syntax
		 && (t->opcode_modifier & IgnoreSize))
	    && !(intel_syntax
		 && t->base_opcode == 0xd9
		 && (t->extension_opcode == 5	     /* 0xd9,5 "fldcw"  */
		     || t->extension_opcode == 7)))  /* 0xd9,7 "f{n}stcw"  */
	  continue;

	else if (!t->operands)
	  /* 0 operands always matches.  */
	  break;

	overlap0 = i.types[0] & t->operand_types[0];
	switch (t->operands)
	  {
	  case 1:
	    if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
	      continue;
	    break;
	  case 2:
	  case 3:
	    overlap1 = i.types[1] & t->operand_types[1];
	    if (!MATCH (overlap0, i.types[0], t->operand_types[0])
		|| !MATCH (overlap1, i.types[1], t->operand_types[1])
		|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
					       t->operand_types[0],
					       overlap1, i.types[1],
					       t->operand_types[1]))
	      {
		/* Check if other direction is valid ...  */
		if ((t->opcode_modifier & (D|FloatD)) == 0)
		  continue;

		/* Try reversing direction of operands.  */
		overlap0 = i.types[0] & t->operand_types[1];
		overlap1 = i.types[1] & t->operand_types[0];
		if (!MATCH (overlap0, i.types[0], t->operand_types[1])
		    || !MATCH (overlap1, i.types[1], t->operand_types[0])
		    || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
						   t->operand_types[1],
						   overlap1, i.types[1],
						   t->operand_types[0]))
		  {
		    /* Does not match either direction.  */
		    continue;
		  }
		/* found_reverse_match holds which of D or FloatDR
		   we've found.  */
		found_reverse_match = t->opcode_modifier & (D|FloatDR);
		break;
	      }
	    /* Found a forward 2 operand match here.  */
	    if (t->operands == 3)
	      {
		/* Here we make use of the fact that there are no
		   reverse match 3 operand instructions, and all 3
		   operand instructions only need to be checked for
		   register consistency between operands 2 and 3.  */
		overlap2 = i.types[2] & t->operand_types[2];
		if (!MATCH (overlap2, i.types[2], t->operand_types[2])
		    || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
						   t->operand_types[1],
						   overlap2, i.types[2],
						   t->operand_types[2]))

		  continue;
	      }
	    /* Found either forward/reverse 2 or 3 operand match here:
	       slip through to break.  */
	  }
	/* We've found a match; break out of loop.  */
	break;
      }
    if (t == current_templates->end)
      {
	/* We found no match.  */
	as_bad (_("suffix or operands invalid for `%s'"),
		current_templates->start->name);
	return;
      }

    if (!quiet_warnings)
      {
	if (!intel_syntax
	    && ((i.types[0] & JumpAbsolute)
		!= (t->operand_types[0] & JumpAbsolute)))
	  {
	    as_warn (_("indirect %s without `*'"), t->name);
	  }

	if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
	    == (IsPrefix|IgnoreSize))
	  {
	    /* Warn them that a data or address size prefix doesn't
	       affect assembly of the next line of code.  */
	    as_warn (_("stand-alone `%s' prefix"), t->name);
	  }
      }

    /* Copy the template we found.  */
    i.tm = *t;
    if (found_reverse_match)
      {
	/* If we found a reverse match we must alter the opcode
	   direction bit.  found_reverse_match holds bits to change
	   (different for int & float insns).  */

	i.tm.base_opcode ^= found_reverse_match;

	i.tm.operand_types[0] = t->operand_types[1];
	i.tm.operand_types[1] = t->operand_types[0];
      }

    /* Undo SYSV386_COMPAT brokenness when in Intel mode.  See i386.h  */
     if (SYSV386_COMPAT
	 && intel_syntax
	 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
       i.tm.base_opcode ^= FloatR;

    if (i.tm.opcode_modifier & FWait)
      if (! add_prefix (FWAIT_OPCODE))
	return;

    /* Check string instruction segment overrides.  */
    if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
      {
	int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
	if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
	  {
	    if (i.seg[0] != NULL && i.seg[0] != &es)
	      {
		as_bad (_("`%s' operand %d must use `%%es' segment"),
			i.tm.name,
			mem_op + 1);
		return;
	      }
	    /* There's only ever one segment override allowed per instruction.
	       This instruction possibly has a legal segment override on the
	       second operand, so copy the segment to where non-string
	       instructions store it, allowing common code.  */
	    i.seg[0] = i.seg[1];
	  }
	else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
	  {
	    if (i.seg[1] != NULL && i.seg[1] != &es)
	      {
		as_bad (_("`%s' operand %d must use `%%es' segment"),
			i.tm.name,
			mem_op + 2);
		return;
	      }
	  }
      }

    /* If matched instruction specifies an explicit instruction mnemonic
       suffix, use it.  */
    if (i.tm.opcode_modifier & (Size16 | Size32))
      {
	if (i.tm.opcode_modifier & Size16)
	  i.suffix = WORD_MNEM_SUFFIX;
	else
	  i.suffix = LONG_MNEM_SUFFIX;
      }
    else if (i.reg_operands)
      {
	/* If there's no instruction mnemonic suffix we try to invent one
	   based on register operands.  */
	if (!i.suffix)
	  {
	    /* We take i.suffix from the last register operand specified,
	       Destination register type is more significant than source
	       register type.  */
	    int op;
	    for (op = i.operands; --op >= 0;)
	      if ((i.types[op] & Reg)
		  && !(i.tm.operand_types[op] & InOutPortReg))
		{
		  i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
			      (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
			      LONG_MNEM_SUFFIX);
		  break;
		}
	  }
	else if (i.suffix == BYTE_MNEM_SUFFIX)
	  {
	    int op;
	    for (op = i.operands; --op >= 0;)
	      {
		/* If this is an eight bit register, it's OK.  If it's
		   the 16 or 32 bit version of an eight bit register,
		   we will just use the low portion, and that's OK too.  */
		if (i.types[op] & Reg8)
		  continue;

		/* movzx and movsx should not generate this warning.  */
		if (intel_syntax
		    && (i.tm.base_opcode == 0xfb7
			|| i.tm.base_opcode == 0xfb6
			|| i.tm.base_opcode == 0xfbe
			|| i.tm.base_opcode == 0xfbf))
		  continue;

		if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
#if 0
		    /* Check that the template allows eight bit regs
		       This kills insns such as `orb $1,%edx', which
		       maybe should be allowed.  */
		    && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
#endif
		    )
		  {
#if REGISTER_WARNINGS
		    if (!quiet_warnings
			&& (i.tm.operand_types[op] & InOutPortReg) == 0)
		      as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
			       (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
			       i.op[op].regs->reg_name,
			       i.suffix);
#endif
		    continue;
		  }
		/* Any other register is bad.  */
		if (i.types[op] & (Reg | RegMMX | RegXMM
				   | SReg2 | SReg3
				   | Control | Debug | Test
				   | FloatReg | FloatAcc))
		  {
		    as_bad (_("`%%%s' not allowed with `%s%c'"),
			    i.op[op].regs->reg_name,
			    i.tm.name,
			    i.suffix);
		    return;
		  }
	      }
	  }
	else if (i.suffix == LONG_MNEM_SUFFIX)
	  {
	    int op;

	    for (op = i.operands; --op >= 0;)
	      /* Reject eight bit registers, except where the template
		 requires them. (eg. movzb)  */
	      if ((i.types[op] & Reg8) != 0
		  && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
		{
		  as_bad (_("`%%%s' not allowed with `%s%c'"),
			  i.op[op].regs->reg_name,
			  i.tm.name,
			  i.suffix);
		  return;
		}
#if REGISTER_WARNINGS
	      /* Warn if the e prefix on a general reg is missing.  */
	      else if (!quiet_warnings
		       && (i.types[op] & Reg16) != 0
		       && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
		{
		  as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
			   (i.op[op].regs + 8)->reg_name,
			   i.op[op].regs->reg_name,
			   i.suffix);
		}
#endif
	  }
	else if (i.suffix == WORD_MNEM_SUFFIX)
	  {
	    int op;
	    for (op = i.operands; --op >= 0;)
	      /* Reject eight bit registers, except where the template
		 requires them. (eg. movzb)  */
	      if ((i.types[op] & Reg8) != 0
		  && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
		{
		  as_bad (_("`%%%s' not allowed with `%s%c'"),
			  i.op[op].regs->reg_name,
			  i.tm.name,
			  i.suffix);
		  return;
		}
#if REGISTER_WARNINGS
	      /* Warn if the e prefix on a general reg is present.  */
	      else if (!quiet_warnings
		       && (i.types[op] & Reg32) != 0
		       && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
		{
		  as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
			   (i.op[op].regs - 8)->reg_name,
			   i.op[op].regs->reg_name,
			   i.suffix);
		}
#endif
	  }
	else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
	  /* Do nothing if the instruction is going to ignore the prefix.  */
	  ;
	else
	  abort ();
      }
    else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
      {
	i.suffix = stackop_size;
      }

    /* Make still unresolved immediate matches conform to size of immediate
       given in i.suffix.  Note: overlap2 cannot be an immediate!  */
    if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
	&& overlap0 != Imm8 && overlap0 != Imm8S
	&& overlap0 != Imm16 && overlap0 != Imm32)
      {
	if (i.suffix)
	  {
	    overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
			 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
	  }
	else if (overlap0 == (Imm16 | Imm32))
	  {
	    overlap0 =
	      (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
	  }
	else
	  {
	    as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
	    return;
	  }
      }
    if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
	&& overlap1 != Imm8 && overlap1 != Imm8S
	&& overlap1 != Imm16 && overlap1 != Imm32)
      {
	if (i.suffix)
	  {
	    overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
			 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
	  }
	else if (overlap1 == (Imm16 | Imm32))
	  {
	    overlap1 =
	      (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
	  }
	else
	  {
	    as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
	    return;
	  }
      }
    assert ((overlap2 & Imm) == 0);

    i.types[0] = overlap0;
    if (overlap0 & ImplicitRegister)
      i.reg_operands--;
    if (overlap0 & Imm1)
      i.imm_operands = 0;	/* kludge for shift insns.  */

    i.types[1] = overlap1;
    if (overlap1 & ImplicitRegister)
      i.reg_operands--;

    i.types[2] = overlap2;
    if (overlap2 & ImplicitRegister)
      i.reg_operands--;

    /* Finalize opcode.  First, we change the opcode based on the operand
       size given by i.suffix:  We need not change things for byte insns.  */

    if (!i.suffix && (i.tm.opcode_modifier & W))
      {
	as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
	return;
      }

    /* For movzx and movsx, need to check the register type.  */
    if (intel_syntax
	&& (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
      if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
	{
	  unsigned int prefix = DATA_PREFIX_OPCODE;

	  if ((i.op[1].regs->reg_type & Reg16) != 0)
	    if (!add_prefix (prefix))
	      return;
	}

    if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
      {
	/* It's not a byte, select word/dword operation.  */
	if (i.tm.opcode_modifier & W)
	  {
	    if (i.tm.opcode_modifier & ShortForm)
	      i.tm.base_opcode |= 8;
	    else
	      i.tm.base_opcode |= 1;
	  }
	/* Now select between word & dword operations via the operand
	   size prefix, except for instructions that will ignore this
	   prefix anyway.  */
	if (((intel_syntax && (i.suffix == DWORD_MNEM_SUFFIX))
	     || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
	    && !(i.tm.opcode_modifier & IgnoreSize))
	  {
	    unsigned int prefix = DATA_PREFIX_OPCODE;
	    if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
	      prefix = ADDR_PREFIX_OPCODE;

	    if (! add_prefix (prefix))
	      return;
	  }
	/* Size floating point instruction.  */
	if (i.suffix == LONG_MNEM_SUFFIX
	    || (intel_syntax && i.suffix == DWORD_MNEM_SUFFIX))
	  {
	    if (i.tm.opcode_modifier & FloatMF)
	      i.tm.base_opcode ^= 4;
	  }
      }

    if (i.tm.opcode_modifier & ImmExt)
      {
	/* These AMD 3DNow! and Intel Katmai New Instructions have an
	   opcode suffix which is coded in the same place as an 8-bit
	   immediate field would be.  Here we fake an 8-bit immediate
	   operand from the opcode suffix stored in tm.extension_opcode.  */

	expressionS *exp;

	assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);

	exp = &im_expressions[i.imm_operands++];
	i.op[i.operands].imms = exp;
	i.types[i.operands++] = Imm8;
	exp->X_op = O_constant;
	exp->X_add_number = i.tm.extension_opcode;
	i.tm.extension_opcode = None;
      }

    /* For insns with operands there are more diddles to do to the opcode.  */
    if (i.operands)
      {
	/* Default segment register this instruction will use
	   for memory accesses.  0 means unknown.
	   This is only for optimizing out unnecessary segment overrides.  */
	const seg_entry *default_seg = 0;

	/* The imul $imm, %reg instruction is converted into
	   imul $imm, %reg, %reg, and the clr %reg instruction
	   is converted into xor %reg, %reg.  */
	if (i.tm.opcode_modifier & regKludge)
	  {
	    unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
	    /* Pretend we saw the extra register operand.  */
	    assert (i.op[first_reg_op + 1].regs == 0);
	    i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
	    i.types[first_reg_op + 1] = i.types[first_reg_op];
	    i.reg_operands = 2;
	  }

	if (i.tm.opcode_modifier & ShortForm)
	  {
	    /* The register or float register operand is in operand 0 or 1.  */
	    unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
	    /* Register goes in low 3 bits of opcode.  */
	    i.tm.base_opcode |= i.op[op].regs->reg_num;
	    if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
	      {
		/* Warn about some common errors, but press on regardless.
		   The first case can be generated by gcc (<= 2.8.1).  */
		if (i.operands == 2)
		  {
		    /* Reversed arguments on faddp, fsubp, etc.  */
		    as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
			     i.op[1].regs->reg_name,
			     i.op[0].regs->reg_name);
		  }
		else
		  {
		    /* Extraneous `l' suffix on fp insn.  */
		    as_warn (_("translating to `%s %%%s'"), i.tm.name,
			     i.op[0].regs->reg_name);
		  }
	      }
	  }
	else if (i.tm.opcode_modifier & Modrm)
	  {
	    /* The opcode is completed (modulo i.tm.extension_opcode which
	       must be put into the modrm byte).
	       Now, we make the modrm & index base bytes based on all the
	       info we've collected.  */

	    /* i.reg_operands MUST be the number of real register operands;
	       implicit registers do not count.  */
	    if (i.reg_operands == 2)
	      {
		unsigned int source, dest;
		source = ((i.types[0]
			   & (Reg | RegMMX | RegXMM
			      | SReg2 | SReg3
			      | Control | Debug | Test))
			  ? 0 : 1);
		dest = source + 1;

		i.rm.mode = 3;
		/* One of the register operands will be encoded in the
		   i.tm.reg field, the other in the combined i.tm.mode
		   and i.tm.regmem fields.  If no form of this
		   instruction supports a memory destination operand,
		   then we assume the source operand may sometimes be
		   a memory operand and so we need to store the
		   destination in the i.rm.reg field.  */
		if ((i.tm.operand_types[dest] & AnyMem) == 0)
		  {
		    i.rm.reg = i.op[dest].regs->reg_num;
		    i.rm.regmem = i.op[source].regs->reg_num;
		  }
		else
		  {
		    i.rm.reg = i.op[source].regs->reg_num;
		    i.rm.regmem = i.op[dest].regs->reg_num;
		  }
	      }
	    else
	      {			/* If it's not 2 reg operands...  */
		if (i.mem_operands)
		  {
		    unsigned int fake_zero_displacement = 0;
		    unsigned int op = ((i.types[0] & AnyMem)
				       ? 0
				       : (i.types[1] & AnyMem) ? 1 : 2);

		    default_seg = &ds;

		    if (! i.base_reg)
		      {
			i.rm.mode = 0;
			if (! i.disp_operands)
			  fake_zero_displacement = 1;
			if (! i.index_reg)
			  {
			    /* Operand is just <disp>  */
			    if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
			      {
				i.rm.regmem = NO_BASE_REGISTER_16;
				i.types[op] &= ~Disp;
				i.types[op] |= Disp16;
			      }
			    else
			      {
				i.rm.regmem = NO_BASE_REGISTER;
				i.types[op] &= ~Disp;
				i.types[op] |= Disp32;
			      }
			  }
			else /* ! i.base_reg && i.index_reg  */
			  {
			    i.sib.index = i.index_reg->reg_num;
			    i.sib.base = NO_BASE_REGISTER;
			    i.sib.scale = i.log2_scale_factor;
			    i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
			    i.types[op] &= ~Disp;
			    i.types[op] |= Disp32;	/* Must be 32 bit.  */
			  }
		      }
		    else if (i.base_reg->reg_type & Reg16)
		      {
			switch (i.base_reg->reg_num)
			  {
			  case 3: /* (%bx)  */
			    if (! i.index_reg)
			      i.rm.regmem = 7;
			    else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
			      i.rm.regmem = i.index_reg->reg_num - 6;
			    break;
			  case 5: /* (%bp)  */
			    default_seg = &ss;
			    if (! i.index_reg)
			      {
				i.rm.regmem = 6;
				if ((i.types[op] & Disp) == 0)
				  {
				    /* fake (%bp) into 0(%bp)  */
				    i.types[op] |= Disp8;
				    fake_zero_displacement = 1;
				  }
			      }
			    else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
			      i.rm.regmem = i.index_reg->reg_num - 6 + 2;
			    break;
			  default: /* (%si) -> 4 or (%di) -> 5  */
			    i.rm.regmem = i.base_reg->reg_num - 6 + 4;
			  }
			i.rm.mode = mode_from_disp_size (i.types[op]);
		      }
		    else /* i.base_reg and 32 bit mode  */
		      {
			i.rm.regmem = i.base_reg->reg_num;
			i.sib.base = i.base_reg->reg_num;
			if (i.base_reg->reg_num == EBP_REG_NUM)
			  {
			    default_seg = &ss;
			    if (i.disp_operands == 0)
			      {
				fake_zero_displacement = 1;
				i.types[op] |= Disp8;
			      }
			  }
			else if (i.base_reg->reg_num == ESP_REG_NUM)
			  {
			    default_seg = &ss;
			  }
			i.sib.scale = i.log2_scale_factor;
			if (! i.index_reg)
			  {
			    /* <disp>(%esp) becomes two byte modrm
			       with no index register.  We've already
			       stored the code for esp in i.rm.regmem
			       ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.  Any
			       base register besides %esp will not use
			       the extra modrm byte.  */
			    i.sib.index = NO_INDEX_REGISTER;
#if ! SCALE1_WHEN_NO_INDEX
			    /* Another case where we force the second
			       modrm byte.  */
			    if (i.log2_scale_factor)
			      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
#endif
			  }
			else
			  {
			    i.sib.index = i.index_reg->reg_num;
			    i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
			  }
			i.rm.mode = mode_from_disp_size (i.types[op]);
		      }

		    if (fake_zero_displacement)
		      {
			/* Fakes a zero displacement assuming that i.types[op]
			   holds the correct displacement size.  */
			expressionS *exp;

			assert (i.op[op].disps == 0);
			exp = &disp_expressions[i.disp_operands++];
			i.op[op].disps = exp;
			exp->X_op = O_constant;
			exp->X_add_number = 0;
			exp->X_add_symbol = (symbolS *) 0;
			exp->X_op_symbol = (symbolS *) 0;
		      }
		  }

		/* Fill in i.rm.reg or i.rm.regmem field with register
		   operand (if any) based on i.tm.extension_opcode.
		   Again, we must be careful to make sure that
		   segment/control/debug/test/MMX registers are coded
		   into the i.rm.reg field.  */
		if (i.reg_operands)
		  {
		    unsigned int op =
		      ((i.types[0]
			& (Reg | RegMMX | RegXMM
			   | SReg2 | SReg3
			   | Control | Debug | Test))
		       ? 0
		       : ((i.types[1]
			   & (Reg | RegMMX | RegXMM
			      | SReg2 | SReg3
			      | Control | Debug | Test))
			  ? 1
			  : 2));
		    /* If there is an extension opcode to put here, the
		       register number must be put into the regmem field.  */
		    if (i.tm.extension_opcode != None)
		      i.rm.regmem = i.op[op].regs->reg_num;
		    else
		      i.rm.reg = i.op[op].regs->reg_num;

		    /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
		       we must set it to 3 to indicate this is a register
		       operand in the regmem field.  */
		    if (!i.mem_operands)
		      i.rm.mode = 3;
		  }

		/* Fill in i.rm.reg field with extension opcode (if any).  */
		if (i.tm.extension_opcode != None)
		  i.rm.reg = i.tm.extension_opcode;
	      }
	  }
	else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
	  {
	    if (i.tm.base_opcode == POP_SEG_SHORT
		&& i.op[0].regs->reg_num == 1)
	      {
		as_bad (_("you can't `pop %%cs'"));
		return;
	      }
	    i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
	  }
	else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
	  {
	    default_seg = &ds;
	  }
	else if ((i.tm.opcode_modifier & IsString) != 0)
	  {
	    /* For the string instructions that allow a segment override
	       on one of their operands, the default segment is ds.  */
	    default_seg = &ds;
	  }

	/* If a segment was explicitly specified,
	   and the specified segment is not the default,
	   use an opcode prefix to select it.
	   If we never figured out what the default segment is,
	   then default_seg will be zero at this point,
	   and the specified segment prefix will always be used.  */
	if ((i.seg[0]) && (i.seg[0] != default_seg))
	  {
	    if (! add_prefix (i.seg[0]->seg_prefix))
	      return;
	  }
      }
    else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
      {
	/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
	as_warn (_("translating to `%sp'"), i.tm.name);
      }
  }

  /* Handle conversion of 'int $3' --> special int3 insn.  */
  if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
    {
      i.tm.base_opcode = INT3_OPCODE;
      i.imm_operands = 0;
    }

  if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
      && i.op[0].disps->X_op == O_constant)
    {
      /* Convert "jmp constant" (and "call constant") to a jump (call) to
	 the absolute address given by the constant.  Since ix86 jumps and
	 calls are pc relative, we need to generate a reloc.  */
      i.op[0].disps->X_add_symbol = &abs_symbol;
      i.op[0].disps->X_op = O_symbol;
    }

  /* We are ready to output the insn.  */
  {
    register char *p;

    /* Output jumps.  */
    if (i.tm.opcode_modifier & Jump)
      {
	int size;
	int code16;
	int prefix;

	code16 = 0;
	if (flag_16bit_code)
	  code16 = CODE16;

	prefix = 0;
	if (i.prefix[DATA_PREFIX])
	  {
	    prefix = 1;
	    i.prefixes -= 1;
	    code16 ^= CODE16;
	  }

	size = 4;
	if (code16)
	  size = 2;

	if (i.prefixes != 0 && !intel_syntax)
	  as_warn (_("skipping prefixes on this instruction"));

	/* It's always a symbol;  End frag & setup for relax.
	   Make sure there is enough room in this frag for the largest
	   instruction we may generate in md_convert_frag.  This is 2
	   bytes for the opcode and room for the prefix and largest
	   displacement.  */
	frag_grow (prefix + 2 + size);
	insn_size += prefix + 1;
	/* Prefix and 1 opcode byte go in fr_fix.  */
	p = frag_more (prefix + 1);
	if (prefix)
	  *p++ = DATA_PREFIX_OPCODE;
	*p = i.tm.base_opcode;
	/* 1 possible extra opcode + displacement go in var part.
	   Pass reloc in fr_var.  */
	frag_var (rs_machine_dependent,
		  1 + size,
		  i.disp_reloc[0],
		  ((unsigned char) *p == JUMP_PC_RELATIVE
		   ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
		   : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
		  i.op[0].disps->X_add_symbol,
		  i.op[0].disps->X_add_number,
		  p);
      }
    else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
      {
	int size;

	if (i.tm.opcode_modifier & JumpByte)
	  {
	    /* This is a loop or jecxz type instruction.  */
	    size = 1;
	    if (i.prefix[ADDR_PREFIX])
	      {
		insn_size += 1;
		FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
		i.prefixes -= 1;
	      }
	  }
	else
	  {
	    int code16;

	    code16 = 0;
	    if (flag_16bit_code)
	      code16 = CODE16;

	    if (i.prefix[DATA_PREFIX])
	      {
		insn_size += 1;
		FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
		i.prefixes -= 1;
		code16 ^= CODE16;
	      }

	    size = 4;
	    if (code16)
	      size = 2;
	  }

	if (i.prefixes != 0 && !intel_syntax)
	  as_warn (_("skipping prefixes on this instruction"));

	if (fits_in_unsigned_byte (i.tm.base_opcode))
	  {
	    insn_size += 1 + size;
	    p = frag_more (1 + size);
	  }
	else
	  {
	    /* Opcode can be at most two bytes.  */
	    insn_size += 2 + size;
	    p = frag_more (2 + size);
	    *p++ = (i.tm.base_opcode >> 8) & 0xff;
	  }
	*p++ = i.tm.base_opcode & 0xff;

	fix_new_exp (frag_now, p - frag_now->fr_literal, size,
		     i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
      }
    else if (i.tm.opcode_modifier & JumpInterSegment)
      {
	int size;
	int prefix;
	int code16;

	code16 = 0;
	if (flag_16bit_code)
	  code16 = CODE16;

	prefix = 0;
	if (i.prefix[DATA_PREFIX])
	  {
	    prefix = 1;
	    i.prefixes -= 1;
	    code16 ^= CODE16;
	  }

	size = 4;
	if (code16)
	  size = 2;

	if (i.prefixes != 0 && !intel_syntax)
	  as_warn (_("skipping prefixes on this instruction"));

	/* 1 opcode; 2 segment; offset  */
	insn_size += prefix + 1 + 2 + size;
	p = frag_more (prefix + 1 + 2 + size);
	if (prefix)
	  *p++ = DATA_PREFIX_OPCODE;
	*p++ = i.tm.base_opcode;
	if (i.op[1].imms->X_op == O_constant)
	  {
	    offsetT n = i.op[1].imms->X_add_number;

	    if (size == 2
		&& !fits_in_unsigned_word (n)
		&& !fits_in_signed_word (n))
	      {
		as_bad (_("16-bit jump out of range"));
		return;
	      }
	    md_number_to_chars (p, n, size);
	  }
	else
	  fix_new_exp (frag_now, p - frag_now->fr_literal, size,
		       i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
	if (i.op[0].imms->X_op != O_constant)
	  as_bad (_("can't handle non absolute segment in `%s'"),
		  i.tm.name);
	md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
      }
    else
      {
	/* Output normal instructions here.  */
	unsigned char *q;

	/* The prefix bytes.  */
	for (q = i.prefix;
	     q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
	     q++)
	  {
	    if (*q)
	      {
		insn_size += 1;
		p = frag_more (1);
		md_number_to_chars (p, (valueT) *q, 1);
	      }
	  }

	/* Now the opcode; be careful about word order here!  */
	if (fits_in_unsigned_byte (i.tm.base_opcode))
	  {
	    insn_size += 1;
	    FRAG_APPEND_1_CHAR (i.tm.base_opcode);
	  }
	else if (fits_in_unsigned_word (i.tm.base_opcode))
	  {
	    insn_size += 2;
	    p = frag_more (2);
	    /* Put out high byte first: can't use md_number_to_chars!  */
	    *p++ = (i.tm.base_opcode >> 8) & 0xff;
	    *p = i.tm.base_opcode & 0xff;
	  }
	else
	  {			/* Opcode is either 3 or 4 bytes.  */
	    if (i.tm.base_opcode & 0xff000000)
	      {
		insn_size += 4;
		p = frag_more (4);
		*p++ = (i.tm.base_opcode >> 24) & 0xff;
	      }
	    else
	      {
		insn_size += 3;
		p = frag_more (3);
	      }
	    *p++ = (i.tm.base_opcode >> 16) & 0xff;
	    *p++ = (i.tm.base_opcode >> 8) & 0xff;
	    *p = (i.tm.base_opcode) & 0xff;
	  }

	/* Now the modrm byte and sib byte (if present).  */
	if (i.tm.opcode_modifier & Modrm)
	  {
	    insn_size += 1;
	    p = frag_more (1);
	    md_number_to_chars (p,
				(valueT) (i.rm.regmem << 0
					  | i.rm.reg << 3
					  | i.rm.mode << 6),
				1);
	    /* If i.rm.regmem == ESP (4)
	       && i.rm.mode != (Register mode)
	       && not 16 bit
	       ==> need second modrm byte.  */
	    if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
		&& i.rm.mode != 3
		&& !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
	      {
		insn_size += 1;
		p = frag_more (1);
		md_number_to_chars (p,
				    (valueT) (i.sib.base << 0
					      | i.sib.index << 3
					      | i.sib.scale << 6),
				    1);
	      }
	  }

	if (i.disp_operands)
	  {
	    register unsigned int n;

	    for (n = 0; n < i.operands; n++)
	      {
		if (i.types[n] & Disp)
		  {
		    if (i.op[n].disps->X_op == O_constant)
		      {
			int size;
			offsetT val;

			size = 4;
			if (i.types[n] & (Disp8 | Disp16))
			  {
			    size = 2;
			    if (i.types[n] & Disp8)
			      size = 1;
			  }
			val = offset_in_range (i.op[n].disps->X_add_number,
					       size);
			insn_size += size;
			p = frag_more (size);
			md_number_to_chars (p, val, size);
		      }
		    else
		      {
			int size = 4;

			if (i.types[n] & Disp16)
			  size = 2;

			insn_size += size;
			p = frag_more (size);
			fix_new_exp (frag_now, p - frag_now->fr_literal, size,
				     i.op[n].disps, 0,
				     reloc (size, 0, i.disp_reloc[n]));
		      }
		  }
	      }
	  }

	/* Output immediate.  */
	if (i.imm_operands)
	  {
	    register unsigned int n;

	    for (n = 0; n < i.operands; n++)
	      {
		if (i.types[n] & Imm)
		  {
		    if (i.op[n].imms->X_op == O_constant)
		      {
			int size;
			offsetT val;

			size = 4;
			if (i.types[n] & (Imm8 | Imm8S | Imm16))
			  {
			    size = 2;
			    if (i.types[n] & (Imm8 | Imm8S))
			      size = 1;
			  }
			val = offset_in_range (i.op[n].imms->X_add_number,
					       size);
			insn_size += size;
			p = frag_more (size);
			md_number_to_chars (p, val, size);
		      }
		    else
		      {
			/* Not absolute_section.
			   Need a 32-bit fixup (don't support 8bit
			   non-absolute imms).  Try to support other
			   sizes ...  */
#ifdef BFD_ASSEMBLER
			enum bfd_reloc_code_real reloc_type;
#else
			int reloc_type;
#endif
			int size = 4;

			if (i.types[n] & Imm16)
			  size = 2;
			else if (i.types[n] & (Imm8 | Imm8S))
			  size = 1;

			insn_size += size;
			p = frag_more (size);
			reloc_type = reloc (size, 0, i.disp_reloc[0]);
#ifdef BFD_ASSEMBLER
			if (reloc_type == BFD_RELOC_32
			    && GOT_symbol
			    && GOT_symbol == i.op[n].imms->X_add_symbol
			    && (i.op[n].imms->X_op == O_symbol
				|| (i.op[n].imms->X_op == O_add
				    && ((symbol_get_value_expression
					 (i.op[n].imms->X_op_symbol)->X_op)
					== O_subtract))))
			  {
			    reloc_type = BFD_RELOC_386_GOTPC;
			    i.op[n].imms->X_add_number += 3;
			  }
#endif
			fix_new_exp (frag_now, p - frag_now->fr_literal, size,
				     i.op[n].imms, 0, reloc_type);
		      }
		  }
	      }
	  }
      }

#ifdef DEBUG386
    if (flag_debug)
      {
	pi (line, &i);
      }
#endif /* DEBUG386  */
  }
}

static int i386_immediate PARAMS ((char *));

static int
i386_immediate (imm_start)
     char *imm_start;
{
  char *save_input_line_pointer;
  segT exp_seg = 0;
  expressionS *exp;

  if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
    {
      as_bad (_("only 1 or 2 immediate operands are allowed"));
      return 0;
    }

  exp = &im_expressions[i.imm_operands++];
  i.op[this_operand].imms = exp;

  if (is_space_char (*imm_start))
    ++imm_start;

  save_input_line_pointer = input_line_pointer;
  input_line_pointer = imm_start;

#ifndef LEX_AT
  {
    /* We can have operands of the form
         <symbol>@GOTOFF+<nnn>
       Take the easy way out here and copy everything
       into a temporary buffer...  */
    register char *cp;

    cp = strchr (input_line_pointer, '@');
    if (cp != NULL)
      {
	char *tmpbuf;
	int len = 0;
	int first;

	/* GOT relocations are not supported in 16 bit mode.  */
	if (flag_16bit_code)
	  as_bad (_("GOT relocations not supported in 16 bit mode"));

	if (GOT_symbol == NULL)
	  GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);

	if (strncmp (cp + 1, "PLT", 3) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
	    len = 3;
	  }
	else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
	    len = 6;
	  }
	else if (strncmp (cp + 1, "GOT", 3) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
	    len = 3;
	  }
	else
	  as_bad (_("bad reloc specifier in expression"));

	/* Replace the relocation token with ' ', so that errors like
	   foo@GOTOFF1 will be detected.  */
	first = cp - input_line_pointer;
	tmpbuf = (char *) alloca (strlen (input_line_pointer));
	memcpy (tmpbuf, input_line_pointer, first);
	tmpbuf[first] = ' ';
	strcpy (tmpbuf + first + 1, cp + 1 + len);
	input_line_pointer = tmpbuf;
      }
  }
#endif

  exp_seg = expression (exp);

  SKIP_WHITESPACE ();
  if (*input_line_pointer)
    as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);

  input_line_pointer = save_input_line_pointer;

  if (exp->X_op == O_absent || exp->X_op == O_big)
    {
      /* Missing or bad expr becomes absolute 0.  */
      as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
	      imm_start);
      exp->X_op = O_constant;
      exp->X_add_number = 0;
      exp->X_add_symbol = (symbolS *) 0;
      exp->X_op_symbol = (symbolS *) 0;
    }

  if (exp->X_op == O_constant)
    {
      /* Size it properly later.  */
      i.types[this_operand] |= Imm32;
    }
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  else if (1
#ifdef BFD_ASSEMBLER
	   && OUTPUT_FLAVOR == bfd_target_aout_flavour
#endif
	   && exp_seg != text_section
	   && exp_seg != data_section
	   && exp_seg != bss_section
	   && exp_seg != undefined_section
#ifdef BFD_ASSEMBLER
	   && !bfd_is_com_section (exp_seg)
#endif
	   )
    {
#ifdef BFD_ASSEMBLER
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
#else
      as_bad (_("unimplemented segment type %d in operand"), exp_seg);
#endif
      return 0;
    }
#endif
  else
    {
      /* This is an address.  The size of the address will be
	 determined later, depending on destination register,
	 suffix, or the default for the section.  We exclude
	 Imm8S here so that `push $foo' and other instructions
	 with an Imm8S form will use Imm16 or Imm32.  */
      i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
    }

  return 1;
}

static int i386_scale PARAMS ((char *));

static int
i386_scale (scale)
     char *scale;
{
  if (!isdigit (*scale))
    goto bad_scale;

  switch (*scale)
    {
    case '0':
    case '1':
      i.log2_scale_factor = 0;
      break;
    case '2':
      i.log2_scale_factor = 1;
      break;
    case '4':
      i.log2_scale_factor = 2;
      break;
    case '8':
      i.log2_scale_factor = 3;
      break;
    default:
    bad_scale:
      as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
	      scale);
      return 0;
    }
  if (i.log2_scale_factor != 0 && ! i.index_reg)
    {
      as_warn (_("scale factor of %d without an index register"),
	       1 << i.log2_scale_factor);
#if SCALE1_WHEN_NO_INDEX
      i.log2_scale_factor = 0;
#endif
    }
  return 1;
}

static int i386_displacement PARAMS ((char *, char *));

static int
i386_displacement (disp_start, disp_end)
     char *disp_start;
     char *disp_end;
{
  register expressionS *exp;
  segT exp_seg = 0;
  char *save_input_line_pointer;
  int bigdisp = Disp32;

  if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
    bigdisp = Disp16;
  i.types[this_operand] |= bigdisp;

  exp = &disp_expressions[i.disp_operands];
  i.op[this_operand].disps = exp;
  i.disp_operands++;
  save_input_line_pointer = input_line_pointer;
  input_line_pointer = disp_start;
  END_STRING_AND_SAVE (disp_end);

#ifndef GCC_ASM_O_HACK
#define GCC_ASM_O_HACK 0
#endif
#if GCC_ASM_O_HACK
  END_STRING_AND_SAVE (disp_end + 1);
  if ((i.types[this_operand] & BaseIndex) != 0
      && displacement_string_end[-1] == '+')
    {
      /* This hack is to avoid a warning when using the "o"
	 constraint within gcc asm statements.
	 For instance:

	 #define _set_tssldt_desc(n,addr,limit,type) \
	 __asm__ __volatile__ ( \
	 "movw %w2,%0\n\t" \
	 "movw %w1,2+%0\n\t" \
	 "rorl $16,%1\n\t" \
	 "movb %b1,4+%0\n\t" \
	 "movb %4,5+%0\n\t" \
	 "movb $0,6+%0\n\t" \
	 "movb %h1,7+%0\n\t" \
	 "rorl $16,%1" \
	 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))

	 This works great except that the output assembler ends
	 up looking a bit weird if it turns out that there is
	 no offset.  You end up producing code that looks like:

	 #APP
	 movw $235,(%eax)
	 movw %dx,2+(%eax)
	 rorl $16,%edx
	 movb %dl,4+(%eax)
	 movb $137,5+(%eax)
	 movb $0,6+(%eax)
	 movb %dh,7+(%eax)
	 rorl $16,%edx
	 #NO_APP

	 So here we provide the missing zero.  */

      *displacement_string_end = '0';
    }
#endif
#ifndef LEX_AT
  {
    /* We can have operands of the form
         <symbol>@GOTOFF+<nnn>
       Take the easy way out here and copy everything
       into a temporary buffer...  */
    register char *cp;

    cp = strchr (input_line_pointer, '@');
    if (cp != NULL)
      {
	char *tmpbuf;
	int len = 0;
	int first;

	/* GOT relocations are not supported in 16 bit mode.  */
	if (flag_16bit_code)
	  as_bad (_("GOT relocations not supported in 16 bit mode"));

	if (GOT_symbol == NULL)
	  GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);

	if (strncmp (cp + 1, "PLT", 3) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
	    len = 3;
	  }
	else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
	    len = 6;
	  }
	else if (strncmp (cp + 1, "GOT", 3) == 0)
	  {
	    i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
	    len = 3;
	  }
	else
	  as_bad (_("bad reloc specifier in expression"));

	/* Replace the relocation token with ' ', so that errors like
	   foo@GOTOFF1 will be detected.  */
	first = cp - input_line_pointer;
	tmpbuf = (char *) alloca (strlen (input_line_pointer));
	memcpy (tmpbuf, input_line_pointer, first);
	tmpbuf[first] = ' ';
	strcpy (tmpbuf + first + 1, cp + 1 + len);
	input_line_pointer = tmpbuf;
      }
  }
#endif

  exp_seg = expression (exp);

#ifdef BFD_ASSEMBLER
  /* We do this to make sure that the section symbol is in
     the symbol table.  We will ultimately change the relocation
     to be relative to the beginning of the section.  */
  if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
    {
      if (S_IS_LOCAL(exp->X_add_symbol)
	  && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
	section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
      assert (exp->X_op == O_symbol);
      exp->X_op = O_subtract;
      exp->X_op_symbol = GOT_symbol;
      i.disp_reloc[this_operand] = BFD_RELOC_32;
    }
#endif

  SKIP_WHITESPACE ();
  if (*input_line_pointer)
    as_bad (_("ignoring junk `%s' after expression"),
	    input_line_pointer);
#if GCC_ASM_O_HACK
  RESTORE_END_STRING (disp_end + 1);
#endif
  RESTORE_END_STRING (disp_end);
  input_line_pointer = save_input_line_pointer;

  if (exp->X_op == O_absent || exp->X_op == O_big)
    {
      /* Missing or bad expr becomes absolute 0.  */
      as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
	      disp_start);
      exp->X_op = O_constant;
      exp->X_add_number = 0;
      exp->X_add_symbol = (symbolS *) 0;
      exp->X_op_symbol = (symbolS *) 0;
    }

#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  if (exp->X_op != O_constant
#ifdef BFD_ASSEMBLER
      && OUTPUT_FLAVOR == bfd_target_aout_flavour
#endif
      && exp_seg != text_section
      && exp_seg != data_section
      && exp_seg != bss_section
      && exp_seg != undefined_section)
    {
#ifdef BFD_ASSEMBLER
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
#else
      as_bad (_("unimplemented segment type %d in operand"), exp_seg);
#endif
      return 0;
    }
#endif
  return 1;
}

static int i386_index_check PARAMS((const char *));

/* Make sure the memory operand we've been dealt is valid.
   Return 1 on success, 0 on a failure.  */

static int
i386_index_check (operand_string)
     const char *operand_string;
{
#if INFER_ADDR_PREFIX
  int fudged = 0;

 tryprefix:
#endif
  if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
      /* 16 bit mode checks.  */
      ? ((i.base_reg
	  && ((i.base_reg->reg_type & (Reg16|BaseIndex))
	      != (Reg16|BaseIndex)))
	 || (i.index_reg
	     && (((i.index_reg->reg_type & (Reg16|BaseIndex))
		  != (Reg16|BaseIndex))
		 || ! (i.base_reg
		       && i.base_reg->reg_num < 6
		       && i.index_reg->reg_num >= 6
		       && i.log2_scale_factor == 0))))
      /* 32 bit mode checks.  */
      : ((i.base_reg
	  && (i.base_reg->reg_type & Reg32) == 0)
	 || (i.index_reg
	     && ((i.index_reg->reg_type & (Reg32|BaseIndex))
		 != (Reg32|BaseIndex)))))
    {
#if INFER_ADDR_PREFIX
      if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
	{
	  i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
	  i.prefixes += 1;
	  /* Change the size of any displacement too.  At most one of
	     Disp16 or Disp32 is set.
	     FIXME.  There doesn't seem to be any real need for separate
	     Disp16 and Disp32 flags.  The same goes for Imm16 and Imm32.
	     Removing them would probably clean up the code quite a lot.  */
	  if (i.types[this_operand] & (Disp16|Disp32))
	     i.types[this_operand] ^= (Disp16|Disp32);
	  fudged = 1;
	  goto tryprefix;
	}
      if (fudged)
	as_bad (_("`%s' is not a valid base/index expression"),
		operand_string);
      else
#endif
	as_bad (_("`%s' is not a valid %s bit base/index expression"),
		operand_string,
		flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
      return 0;
    }
  return 1;
}

/* Parse OPERAND_STRING into the i386_insn structure I.  Returns non-zero
   on error.  */

static int
i386_operand (operand_string)
     char *operand_string;
{
  const reg_entry *r;
  char *end_op;
  char *op_string = operand_string;

  if (is_space_char (*op_string))
    ++op_string;

  /* We check for an absolute prefix (differentiating,
     for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
  if (*op_string == ABSOLUTE_PREFIX)
    {
      ++op_string;
      if (is_space_char (*op_string))
	++op_string;
      i.types[this_operand] |= JumpAbsolute;
    }

  /* Check if operand is a register.  */
  if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
      && (r = parse_register (op_string, &end_op)) != NULL)
    {
      /* Check for a segment override by searching for ':' after a
	 segment register.  */
      op_string = end_op;
      if (is_space_char (*op_string))
	++op_string;
      if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
	{
	  switch (r->reg_num)
	    {
	    case 0:
	      i.seg[i.mem_operands] = &es;
	      break;
	    case 1:
	      i.seg[i.mem_operands] = &cs;
	      break;
	    case 2:
	      i.seg[i.mem_operands] = &ss;
	      break;
	    case 3:
	      i.seg[i.mem_operands] = &ds;
	      break;
	    case 4:
	      i.seg[i.mem_operands] = &fs;
	      break;
	    case 5:
	      i.seg[i.mem_operands] = &gs;
	      break;
	    }

	  /* Skip the ':' and whitespace.  */
	  ++op_string;
	  if (is_space_char (*op_string))
	    ++op_string;

	  if (!is_digit_char (*op_string)
	      && !is_identifier_char (*op_string)
	      && *op_string != '('
	      && *op_string != ABSOLUTE_PREFIX)
	    {
	      as_bad (_("bad memory operand `%s'"), op_string);
	      return 0;
	    }
	  /* Handle case of %es:*foo.  */
	  if (*op_string == ABSOLUTE_PREFIX)
	    {
	      ++op_string;
	      if (is_space_char (*op_string))
		++op_string;
	      i.types[this_operand] |= JumpAbsolute;
	    }
	  goto do_memory_reference;
	}
      if (*op_string)
	{
	  as_bad (_("junk `%s' after register"), op_string);
	  return 0;
	}
      i.types[this_operand] |= r->reg_type & ~BaseIndex;
      i.op[this_operand].regs = r;
      i.reg_operands++;
    }
  else if (*op_string == REGISTER_PREFIX)
    {
      as_bad (_("bad register name `%s'"), op_string);
      return 0;
    }
  else if (*op_string == IMMEDIATE_PREFIX)
    {
      ++op_string;
      if (i.types[this_operand] & JumpAbsolute)
	{
	  as_bad (_("immediate operand illegal with absolute jump"));
	  return 0;
	}
      if (!i386_immediate (op_string))
	return 0;
    }
  else if (is_digit_char (*op_string)
	   || is_identifier_char (*op_string)
	   || *op_string == '(' )
    {
      /* This is a memory reference of some sort.  */
      char *base_string;

      /* Start and end of displacement string expression (if found).  */
      char *displacement_string_start;
      char *displacement_string_end;

    do_memory_reference:
      if ((i.mem_operands == 1
	   && (current_templates->start->opcode_modifier & IsString) == 0)
	  || i.mem_operands == 2)
	{
	  as_bad (_("too many memory references for `%s'"),
		  current_templates->start->name);
	  return 0;
	}

      /* Check for base index form.  We detect the base index form by
	 looking for an ')' at the end of the operand, searching
	 for the '(' matching it, and finding a REGISTER_PREFIX or ','
	 after the '('.  */
      base_string = op_string + strlen (op_string);

      --base_string;
      if (is_space_char (*base_string))
	--base_string;

      /* If we only have a displacement, set-up for it to be parsed later.  */
      displacement_string_start = op_string;
      displacement_string_end = base_string + 1;

      if (*base_string == ')')
	{
	  char *temp_string;
	  unsigned int parens_balanced = 1;
	  /* We've already checked that the number of left & right ()'s are
	     equal, so this loop will not be infinite.  */
	  do
	    {
	      base_string--;
	      if (*base_string == ')')
		parens_balanced++;
	      if (*base_string == '(')
		parens_balanced--;
	    }
	  while (parens_balanced);

	  temp_string = base_string;

	  /* Skip past '(' and whitespace.  */
	  ++base_string;
	  if (is_space_char (*base_string))
	    ++base_string;

	  if (*base_string == ','
	      || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
		  && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
	    {
	      displacement_string_end = temp_string;

	      i.types[this_operand] |= BaseIndex;

	      if (i.base_reg)
		{
		  base_string = end_op;
		  if (is_space_char (*base_string))
		    ++base_string;
		}

	      /* There may be an index reg or scale factor here.  */
	      if (*base_string == ',')
		{
		  ++base_string;
		  if (is_space_char (*base_string))
		    ++base_string;

		  if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
		      && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
		    {
		      base_string = end_op;
		      if (is_space_char (*base_string))
			++base_string;
		      if (*base_string == ',')
			{
			  ++base_string;
			  if (is_space_char (*base_string))
			    ++base_string;
			}
		      else if (*base_string != ')' )
			{
			  as_bad (_("expecting `,' or `)' after index register in `%s'"),
				  operand_string);
			  return 0;
			}
		    }
		  else if (*base_string == REGISTER_PREFIX)
		    {
		      as_bad (_("bad register name `%s'"), base_string);
		      return 0;
		    }

		  /* Check for scale factor.  */
		  if (isdigit ((unsigned char) *base_string))
		    {
		      if (!i386_scale (base_string))
			return 0;

		      ++base_string;
		      if (is_space_char (*base_string))
			++base_string;
		      if (*base_string != ')')
			{
			  as_bad (_("expecting `)' after scale factor in `%s'"),
				  operand_string);
			  return 0;
			}
		    }
		  else if (!i.index_reg)
		    {
		      as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
			      *base_string);
		      return 0;
		    }
		}
	      else if (*base_string != ')')
		{
		  as_bad (_("expecting `,' or `)' after base register in `%s'"),
			  operand_string);
		  return 0;
		}
	    }
	  else if (*base_string == REGISTER_PREFIX)
	    {
	      as_bad (_("bad register name `%s'"), base_string);
	      return 0;
	    }
	}

      /* If there's an expression beginning the operand, parse it,
	 assuming displacement_string_start and
	 displacement_string_end are meaningful.  */
      if (displacement_string_start != displacement_string_end)
	{
	  if (!i386_displacement (displacement_string_start,
				  displacement_string_end))
	    return 0;
	}

      /* Special case for (%dx) while doing input/output op.  */
      if (i.base_reg
	  && i.base_reg->reg_type == (Reg16 | InOutPortReg)
	  && i.index_reg == 0
	  && i.log2_scale_factor == 0
	  && i.seg[i.mem_operands] == 0
	  && (i.types[this_operand] & Disp) == 0)
	{
	  i.types[this_operand] = InOutPortReg;
	  return 1;
	}

      if (i386_index_check (operand_string) == 0)
	return 0;
      i.mem_operands++;
    }
  else
    {
      /* It's not a memory operand; argh!  */
      as_bad (_("invalid char %s beginning operand %d `%s'"),
	      output_invalid (*op_string),
	      this_operand + 1,
	      op_string);
      return 0;
    }
  return 1;			/* Normal return.  */
}

/* md_estimate_size_before_relax()

   Called just before relax() for rs_machine_dependent frags.  The x86
   assembler uses these frags to handle variable size jump
   instructions.

   Any symbol that is now undefined will not become defined.
   Return the correct fr_subtype in the frag.
   Return the initial "guess for variable size of frag" to caller.
   The guess is actually the growth beyond the fixed part.  Whatever
   we do to grow the fixed or variable part contributes to our
   returned value.  */

int
md_estimate_size_before_relax (fragP, segment)
     register fragS *fragP;
     register segT segment;
{
  /* We've already got fragP->fr_subtype right;  all we have to do is
     check for un-relaxable symbols.  On an ELF system, we can't relax
     an externally visible symbol, because it may be overridden by a
     shared library.  */
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      || S_IS_EXTERNAL (fragP->fr_symbol)
      || S_IS_WEAK (fragP->fr_symbol)
#endif
      )
    {
      /* Symbol is undefined in this segment, or we need to keep a
	 reloc so that weak symbols can be overridden.  */
      int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
#ifdef BFD_ASSEMBLER
      enum bfd_reloc_code_real reloc_type;
#else
      int reloc_type;
#endif
      unsigned char *opcode;
      int old_fr_fix;

      if (fragP->fr_var != NO_RELOC)
	reloc_type = fragP->fr_var;
      else if (size == 2)
	reloc_type = BFD_RELOC_16_PCREL;
      else
	reloc_type = BFD_RELOC_32_PCREL;

      old_fr_fix = fragP->fr_fix;
      opcode = (unsigned char *) fragP->fr_opcode;

      switch (opcode[0])
	{
	case JUMP_PC_RELATIVE:
	  /* Make jmp (0xeb) a dword displacement jump.  */
	  opcode[0] = 0xe9;
	  fragP->fr_fix += size;
	  fix_new (fragP, old_fr_fix, size,
		   fragP->fr_symbol,
		   fragP->fr_offset, 1,
		   reloc_type);
	  break;

	default:
	  /* This changes the byte-displacement jump 0x7N
	     to the dword-displacement jump 0x0f,0x8N.  */
	  opcode[1] = opcode[0] + 0x10;
	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
	  /* We've added an opcode byte.  */
	  fragP->fr_fix += 1 + size;
	  fix_new (fragP, old_fr_fix + 1, size,
		   fragP->fr_symbol,
		   fragP->fr_offset, 1,
		   reloc_type);
	  break;
	}
      frag_wane (fragP);
      return fragP->fr_fix - old_fr_fix;
    }
  /* Guess a short jump.  */
  return 1;
}

/* Called after relax() is finished.

   In:	Address of frag.
	fr_type == rs_machine_dependent.
	fr_subtype is what the address relaxed to.

   Out:	Any fixSs and constants are set up.
	Caller will turn frag into a ".space 0".  */

#ifndef BFD_ASSEMBLER
void
md_convert_frag (headers, sec, fragP)
     object_headers *headers ATTRIBUTE_UNUSED;
     segT sec ATTRIBUTE_UNUSED;
     register fragS *fragP;
#else
void
md_convert_frag (abfd, sec, fragP)
     bfd *abfd ATTRIBUTE_UNUSED;
     segT sec ATTRIBUTE_UNUSED;
     register fragS *fragP;
#endif
{
  register unsigned char *opcode;
  unsigned char *where_to_put_displacement = NULL;
  offsetT target_address;
  offsetT opcode_address;
  unsigned int extension = 0;
  offsetT displacement_from_opcode_start;

  opcode = (unsigned char *) fragP->fr_opcode;

  /* Address we want to reach in file space.  */
  target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
#ifdef BFD_ASSEMBLER
  /* Not needed otherwise?  */
  target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
#endif

  /* Address opcode resides at in file space.  */
  opcode_address = fragP->fr_address + fragP->fr_fix;

  /* Displacement from opcode start to fill into instruction.  */
  displacement_from_opcode_start = target_address - opcode_address;

  switch (fragP->fr_subtype)
    {
    case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
    case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
    case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
    case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
      /* Don't have to change opcode.  */
      extension = 1;		/* 1 opcode + 1 displacement  */
      where_to_put_displacement = &opcode[1];
      break;

    case ENCODE_RELAX_STATE (COND_JUMP, BIG):
      extension = 5;		/* 2 opcode + 4 displacement  */
      opcode[1] = opcode[0] + 0x10;
      opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
      where_to_put_displacement = &opcode[2];
      break;

    case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
      extension = 4;		/* 1 opcode + 4 displacement  */
      opcode[0] = 0xe9;
      where_to_put_displacement = &opcode[1];
      break;

    case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
      extension = 3;		/* 2 opcode + 2 displacement  */
      opcode[1] = opcode[0] + 0x10;
      opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
      where_to_put_displacement = &opcode[2];
      break;

    case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
      extension = 2;		/* 1 opcode + 2 displacement  */
      opcode[0] = 0xe9;
      where_to_put_displacement = &opcode[1];
      break;

    default:
      BAD_CASE (fragP->fr_subtype);
      break;
    }
  /* Now put displacement after opcode.  */
  md_number_to_chars ((char *) where_to_put_displacement,
		      (valueT) (displacement_from_opcode_start - extension),
		      SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
  fragP->fr_fix += extension;
}

/* Size of byte displacement jmp.  */
int md_short_jump_size = 2;

/* Size of dword displacement jmp.  */
int md_long_jump_size = 5;

/* Size of relocation record.  */
const int md_reloc_size = 8;

void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr, to_addr;
     fragS *frag ATTRIBUTE_UNUSED;
     symbolS *to_symbol ATTRIBUTE_UNUSED;
{
  offsetT offset;

  offset = to_addr - (from_addr + 2);
  /* Opcode for byte-disp jump.  */
  md_number_to_chars (ptr, (valueT) 0xeb, 1);
  md_number_to_chars (ptr + 1, (valueT) offset, 1);
}

void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
     char *ptr;
     addressT from_addr, to_addr;
     fragS *frag ATTRIBUTE_UNUSED;
     symbolS *to_symbol ATTRIBUTE_UNUSED;
{
  offsetT offset;

  offset = to_addr - (from_addr + 5);
  md_number_to_chars (ptr, (valueT) 0xe9, 1);
  md_number_to_chars (ptr + 1, (valueT) offset, 4);
}

/* Apply a fixup (fixS) to segment data, once it has been determined
   by our caller that we have all the info we need to fix it up.

   On the 386, immediates, displacements, and data pointers are all in
   the same (little-endian) format, so we don't need to care about which
   we are handling.  */

int
md_apply_fix3 (fixP, valp, seg)
     /* The fix we're to put in.  */
     fixS *fixP;

     /* Pointer to the value of the bits.  */
     valueT *valp;

     /* Segment fix is from.  */
     segT seg ATTRIBUTE_UNUSED;
{
  register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
  valueT value = *valp;

#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
  if (fixP->fx_pcrel)
    {
      switch (fixP->fx_r_type)
	{
	default:
	  break;

	case BFD_RELOC_32:
	  fixP->fx_r_type = BFD_RELOC_32_PCREL;
	  break;
	case BFD_RELOC_16:
	  fixP->fx_r_type = BFD_RELOC_16_PCREL;
	  break;
	case BFD_RELOC_8:
	  fixP->fx_r_type = BFD_RELOC_8_PCREL;
	  break;
	}
    }

  /* This is a hack.  There should be a better way to handle this.
     This covers for the fact that bfd_install_relocation will
     subtract the current location (for partial_inplace, PC relative
     relocations); see more below.  */
  if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
       || fixP->fx_r_type == BFD_RELOC_16_PCREL
       || fixP->fx_r_type == BFD_RELOC_8_PCREL)
      && fixP->fx_addsy)
    {
#ifndef OBJ_AOUT
      if (OUTPUT_FLAVOR == bfd_target_elf_flavour
#ifdef TE_PE
	  || OUTPUT_FLAVOR == bfd_target_coff_flavour
#endif
	  )
	value += fixP->fx_where + fixP->fx_frag->fr_address;
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
	{
	  segT fseg = S_GET_SEGMENT (fixP->fx_addsy);

	  if ((fseg == seg
	       || (symbol_section_p (fixP->fx_addsy)
		   && fseg != absolute_section))
	      && ! S_IS_EXTERNAL (fixP->fx_addsy)
	      && ! S_IS_WEAK (fixP->fx_addsy)
	      && S_IS_DEFINED (fixP->fx_addsy)
	      && ! S_IS_COMMON (fixP->fx_addsy))
	    {
	      /* Yes, we add the values in twice.  This is because
		 bfd_perform_relocation subtracts them out again.  I think
		 bfd_perform_relocation is broken, but I don't dare change
		 it.  FIXME.  */
	      value += fixP->fx_where + fixP->fx_frag->fr_address;
	    }
	}
#endif
#if defined (OBJ_COFF) && defined (TE_PE)
      /* For some reason, the PE format does not store a section
	 address offset for a PC relative symbol.  */
      if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
	value += md_pcrel_from (fixP);
#endif
    }

  /* Fix a few things - the dynamic linker expects certain values here,
     and we must not dissappoint it.  */
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (OUTPUT_FLAVOR == bfd_target_elf_flavour
      && fixP->fx_addsy)
    switch (fixP->fx_r_type)
      {
      case BFD_RELOC_386_PLT32:
	/* Make the jump instruction point to the address of the operand.  At
	   runtime we merely add the offset to the actual PLT entry.  */
	value = -4;
	break;
      case BFD_RELOC_386_GOTPC:

/*   This is tough to explain.  We end up with this one if we have
 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal
 * here is to obtain the absolute address of the GOT, and it is strongly
 * preferable from a performance point of view to avoid using a runtime
 * relocation for this.  The actual sequence of instructions often look
 * something like:
 *
 *	call	.L66
 * .L66:
 *	popl	%ebx
 *	addl	$_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
 *
 *   The call and pop essentially return the absolute address of
 * the label .L66 and store it in %ebx.  The linker itself will
 * ultimately change the first operand of the addl so that %ebx points to
 * the GOT, but to keep things simple, the .o file must have this operand
 * set so that it generates not the absolute address of .L66, but the
 * absolute address of itself.  This allows the linker itself simply
 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
 * added in, and the addend of the relocation is stored in the operand
 * field for the instruction itself.
 *
 *   Our job here is to fix the operand so that it would add the correct
 * offset so that %ebx would point to itself.  The thing that is tricky is
 * that .-.L66 will point to the beginning of the instruction, so we need
 * to further modify the operand so that it will point to itself.
 * There are other cases where you have something like:
 *
 *	.long	$_GLOBAL_OFFSET_TABLE_+[.-.L66]
 *
 * and here no correction would be required.  Internally in the assembler
 * we treat operands of this form as not being pcrel since the '.' is
 * explicitly mentioned, and I wonder whether it would simplify matters
 * to do it this way.  Who knows.  In earlier versions of the PIC patches,
 * the pcrel_adjust field was used to store the correction, but since the
 * expression is not pcrel, I felt it would be confusing to do it this
 * way.  */

	value -= 1;
	break;
      case BFD_RELOC_386_GOT32:
	value = 0; /* Fully resolved at runtime.  No addend.  */
	break;
      case BFD_RELOC_386_GOTOFF:
	break;

      case BFD_RELOC_VTABLE_INHERIT:
      case BFD_RELOC_VTABLE_ENTRY:
	fixP->fx_done = 0;
	return 1;

      default:
	break;
      }
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
  *valp = value;
#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach)  */
  md_number_to_chars (p, value, fixP->fx_size);

  return 1;
}

#define MAX_LITTLENUMS 6

/* Turn the string pointed to by litP into a floating point constant
   of type TYPE, and emit the appropriate bytes.  The number of
   LITTLENUMS emitted is stored in *SIZEP.  An error message is
   returned, or NULL on OK.  */

char *
md_atof (type, litP, sizeP)
     int type;
     char *litP;
     int *sizeP;
{
  int prec;
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  char *t;

  switch (type)
    {
    case 'f':
    case 'F':
      prec = 2;
      break;

    case 'd':
    case 'D':
      prec = 4;
      break;

    case 'x':
    case 'X':
      prec = 5;
      break;

    default:
      *sizeP = 0;
      return _("Bad call to md_atof ()");
    }
  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    input_line_pointer = t;

  *sizeP = prec * sizeof (LITTLENUM_TYPE);
  /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
     the bigendian 386.  */
  for (wordP = words + prec - 1; prec--;)
    {
      md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
      litP += sizeof (LITTLENUM_TYPE);
    }
  return 0;
}

char output_invalid_buf[8];

static char *
output_invalid (c)
     int c;
{
  if (isprint (c))
    sprintf (output_invalid_buf, "'%c'", c);
  else
    sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
  return output_invalid_buf;
}

/* REG_STRING starts *before* REGISTER_PREFIX.  */

static const reg_entry *
parse_register (reg_string, end_op)
     char *reg_string;
     char **end_op;
{
  char *s = reg_string;
  char *p;
  char reg_name_given[MAX_REG_NAME_SIZE + 1];
  const reg_entry *r;

  /* Skip possible REGISTER_PREFIX and possible whitespace.  */
  if (*s == REGISTER_PREFIX)
    ++s;

  if (is_space_char (*s))
    ++s;

  p = reg_name_given;
  while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
    {
      if (p >= reg_name_given + MAX_REG_NAME_SIZE)
	return (const reg_entry *) NULL;
      s++;
    }

  /* For naked regs, make sure that we are not dealing with an identifier.
     This prevents confusing an identifier like `eax_var' with register
     `eax'.  */
  if (allow_naked_reg && identifier_chars[(unsigned char) *s])
    return (const reg_entry *) NULL;

  *end_op = s;

  r = (const reg_entry *) hash_find (reg_hash, reg_name_given);

  /* Handle floating point regs, allowing spaces in the (i) part.  */
  if (r == i386_regtab /* %st is first entry of table  */)
    {
      if (is_space_char (*s))
	++s;
      if (*s == '(')
	{
	  ++s;
	  if (is_space_char (*s))
	    ++s;
	  if (*s >= '0' && *s <= '7')
	    {
	      r = &i386_float_regtab[*s - '0'];
	      ++s;
	      if (is_space_char (*s))
		++s;
	      if (*s == ')')
		{
		  *end_op = s + 1;
		  return r;
		}
	    }
	  /* We have "%st(" then garbage.  */
	  return (const reg_entry *) NULL;
	}
    }

  return r;
}

#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
const char *md_shortopts = "kVQ:sq";
#else
const char *md_shortopts = "q";
#endif
struct option md_longopts[] = {
  {NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);

int
md_parse_option (c, arg)
     int c;
     char *arg ATTRIBUTE_UNUSED;
{
  switch (c)
    {
    case 'q':
      quiet_warnings = 1;
      break;

#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
	 should be emitted or not.  FIXME: Not implemented.  */
    case 'Q':
      break;

      /* -V: SVR4 argument to print version ID.  */
    case 'V':
      print_version_id ();
      break;

      /* -k: Ignore for FreeBSD compatibility.  */
    case 'k':
      break;

    case 's':
      /* -s: On i386 Solaris, this tells the native assembler to use
         .stab instead of .stab.excl.  We always use .stab anyhow.  */
      break;
#endif

    default:
      return 0;
    }
  return 1;
}

void
md_show_usage (stream)
     FILE *stream;
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  fprintf (stream, _("\
  -Q                      ignored\n\
  -V                      print assembler version number\n\
  -k                      ignored\n\
  -q                      quieten some warnings\n\
  -s                      ignored\n"));
#else
  fprintf (stream, _("\
  -q                      quieten some warnings\n"));
#endif
}

#ifdef BFD_ASSEMBLER
#if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
     || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
     || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))

/* Pick the target format to use.  */

const char *
i386_target_format ()
{
  switch (OUTPUT_FLAVOR)
    {
#ifdef OBJ_MAYBE_AOUT
    case bfd_target_aout_flavour:
      return AOUT_TARGET_FORMAT;
#endif
#ifdef OBJ_MAYBE_COFF
    case bfd_target_coff_flavour:
      return "coff-i386";
#endif
#ifdef OBJ_MAYBE_ELF
    case bfd_target_elf_flavour:
      return "elf32-i386";
#endif
    default:
      abort ();
      return NULL;
    }
}

#endif /* OBJ_MAYBE_ more than one  */
#endif /* BFD_ASSEMBLER  */

symbolS *
md_undefined_symbol (name)
     char *name;
{
  if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
      && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
      && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
      && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
    {
      if (!GOT_symbol)
	{
	  if (symbol_find (name))
	    as_bad (_("GOT already in symbol table"));
	  GOT_symbol = symbol_new (name, undefined_section,
				   (valueT) 0, &zero_address_frag);
	};
      return GOT_symbol;
    }
  return 0;
}

/* Round up a section size to the appropriate boundary.  */

valueT
md_section_align (segment, size)
     segT segment ATTRIBUTE_UNUSED;
     valueT size;
{
#ifdef BFD_ASSEMBLER
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
    {
      /* For a.out, force the section size to be aligned.  If we don't do
	 this, BFD will align it for us, but it will not write out the
	 final bytes of the section.  This may be a bug in BFD, but it is
	 easier to fix it here since that is how the other a.out targets
	 work.  */
      int align;

      align = bfd_get_section_alignment (stdoutput, segment);
      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
    }
#endif
#endif

  return size;
}

/* On the i386, PC-relative offsets are relative to the start of the
   next instruction.  That is, the address of the offset, plus its
   size, since the offset is always the last part of the insn.  */

long
md_pcrel_from (fixP)
     fixS *fixP;
{
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}

#ifndef I386COFF

static void
s_bss (ignore)
     int ignore ATTRIBUTE_UNUSED;
{
  register int temp;

  temp = get_absolute_expression ();
  subseg_set (bss_section, (subsegT) temp);
  demand_empty_rest_of_line ();
}

#endif

#ifdef BFD_ASSEMBLER

void
i386_validate_fix (fixp)
     fixS *fixp;
{
  if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
    {
      fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
      fixp->fx_subsy = 0;
    }
}

arelent *
tc_gen_reloc (section, fixp)
     asection *section ATTRIBUTE_UNUSED;
     fixS *fixp;
{
  arelent *rel;
  bfd_reloc_code_real_type code;

  switch (fixp->fx_r_type)
    {
    case BFD_RELOC_386_PLT32:
    case BFD_RELOC_386_GOT32:
    case BFD_RELOC_386_GOTOFF:
    case BFD_RELOC_386_GOTPC:
    case BFD_RELOC_RVA:
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_INHERIT:
      code = fixp->fx_r_type;
      break;
    default:
      if (fixp->fx_pcrel)
	{
	  switch (fixp->fx_size)
	    {
	    default:
	      as_bad (_("can not do %d byte pc-relative relocation"),
		      fixp->fx_size);
	      code = BFD_RELOC_32_PCREL;
	      break;
	    case 1: code = BFD_RELOC_8_PCREL;  break;
	    case 2: code = BFD_RELOC_16_PCREL; break;
	    case 4: code = BFD_RELOC_32_PCREL; break;
	    }
	}
      else
	{
	  switch (fixp->fx_size)
	    {
	    default:
	      as_bad (_("can not do %d byte relocation"), fixp->fx_size);
	      code = BFD_RELOC_32;
	      break;
	    case 1: code = BFD_RELOC_8;  break;
	    case 2: code = BFD_RELOC_16; break;
	    case 4: code = BFD_RELOC_32; break;
	    }
	}
      break;
    }

  if (code == BFD_RELOC_32
      && GOT_symbol
      && fixp->fx_addsy == GOT_symbol)
    code = BFD_RELOC_386_GOTPC;

  rel = (arelent *) xmalloc (sizeof (arelent));
  rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
  *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);

  rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
  /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
     vtable entry to be used in the relocation's section offset.  */
  if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
    rel->address = fixp->fx_offset;

  if (fixp->fx_pcrel)
    rel->addend = fixp->fx_addnumber;
  else
    rel->addend = 0;

  rel->howto = bfd_reloc_type_lookup (stdoutput, code);
  if (rel->howto == NULL)
    {
      as_bad_where (fixp->fx_file, fixp->fx_line,
		    _("cannot represent relocation type %s"),
		    bfd_get_reloc_code_name (code));
      /* Set howto to a garbage value so that we can keep going.  */
      rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
      assert (rel->howto != NULL);
    }

  return rel;
}

#else /* ! BFD_ASSEMBLER  */

#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
void
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
     char *where;
     fixS *fixP;
     relax_addressT segment_address_in_file;
{
  /* In:  length of relocation (or of address) in chars: 1, 2 or 4.
     Out: GNU LD relocation length code: 0, 1, or 2.  */

  static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
  long r_symbolnum;

  know (fixP->fx_addsy != NULL);

  md_number_to_chars (where,
		      (valueT) (fixP->fx_frag->fr_address
				+ fixP->fx_where - segment_address_in_file),
		      4);

  r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
		 ? S_GET_TYPE (fixP->fx_addsy)
		 : fixP->fx_addsy->sy_number);

  where[6] = (r_symbolnum >> 16) & 0x0ff;
  where[5] = (r_symbolnum >> 8) & 0x0ff;
  where[4] = r_symbolnum & 0x0ff;
  where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
	      | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
	      | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
}

#endif /* OBJ_AOUT or OBJ_BOUT.  */

#if defined (I386COFF)

short
tc_coff_fix2rtype (fixP)
     fixS *fixP;
{
  if (fixP->fx_r_type == R_IMAGEBASE)
    return R_IMAGEBASE;

  return (fixP->fx_pcrel ?
	  (fixP->fx_size == 1 ? R_PCRBYTE :
	   fixP->fx_size == 2 ? R_PCRWORD :
	   R_PCRLONG) :
	  (fixP->fx_size == 1 ? R_RELBYTE :
	   fixP->fx_size == 2 ? R_RELWORD :
	   R_DIR32));
}

int
tc_coff_sizemachdep (frag)
     fragS *frag;
{
  if (frag->fr_next)
    return (frag->fr_next->fr_address - frag->fr_address);
  else
    return 0;
}

#endif /* I386COFF  */

#endif /* ! BFD_ASSEMBLER  */

/* Parse operands using Intel syntax. This implements a recursive descent
   parser based on the BNF grammar published in Appendix B of the MASM 6.1
   Programmer's Guide.

   FIXME: We do not recognize the full operand grammar defined in the MASM
	  documentation.  In particular, all the structure/union and
	  high-level macro operands are missing.

   Uppercase words are terminals, lower case words are non-terminals.
   Objects surrounded by double brackets '[[' ']]' are optional. Vertical
   bars '|' denote choices. Most grammar productions are implemented in
   functions called 'intel_<production>'.

   Initial production is 'expr'.


    addOp		+ | -

    alpha		[a-zA-Z]

    byteRegister	AL | AH | BL | BH | CL | CH | DL | DH

    constant		digits [[ radixOverride ]]

    dataType		BYTE | WORD | DWORD | QWORD | XWORD

    digits		decdigit
    			| digits decdigit
       			| digits hexdigit

    decdigit		[0-9]

    e05			e05 addOp e06
    			| e06

    e06			e06 mulOp e09
    			| e09

    e09			OFFSET e10
			| e09 PTR e10
			| e09 : e10
			| e10

    e10			e10 [ expr ]
    			| e11

    e11			( expr )
     			| [ expr ]
			| constant
			| dataType
			| id
			| $
			| register

 => expr		SHORT e05
    			| e05

    gpRegister		AX | EAX | BX | EBX | CX | ECX | DX | EDX
    			| BP | EBP | SP | ESP | DI | EDI | SI | ESI

    hexdigit		a | b | c | d | e | f
    			| A | B | C | D | E | F

    id			alpha
    			| id alpha
			| id decdigit

    mulOp		* | / | MOD

    quote		" | '

    register		specialRegister
    			| gpRegister
			| byteRegister

    segmentRegister	CS | DS | ES | FS | GS | SS

    specialRegister	CR0 | CR2 | CR3
    			| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
			| TR3 | TR4 | TR5 | TR6 | TR7


    We simplify the grammar in obvious places (e.g., register parsing is
    done by calling parse_register) and eliminate immediate left recursion
    to implement a recursive-descent parser.

    expr	SHORT e05
    		| e05

    e05		e06 e05'

    e05'	addOp e06 e05'
    		| Empty

    e06		e09 e06'

    e06'	mulOp e09 e06'
    		| Empty

    e09		OFFSET e10 e09'
   		| e10 e09'

    e09'	PTR e10 e09'
   		| : e10 e09'
		| Empty

    e10		e11 e10'

    e10'	[ expr ] e10'
    		| Empty

    e11		( expr )
   		| [ expr ]
		| BYTE
		| WORD
		| DWORD
		| QWORD
		| XWORD
		| .
		| $
		| register
		| id
		| constant  */

/* Parsing structure for the intel syntax parser. Used to implement the
   semantic actions for the operand grammar.  */
struct intel_parser_s
  {
    char *op_string;		/* The string being parsed.  */
    int got_a_float;		/* Whether the operand is a float.  */
    int op_modifier;		/* Operand modifier. */
    int is_mem;			/* 1 if operand is memory reference.  */
    const reg_entry *reg;	/* Last register reference found.  */
    char *disp;			/* Displacement string being built.  */
  };

static struct intel_parser_s intel_parser;

/* Token structure for parsing intel syntax.  */
struct intel_token
  {
    int code;			/* Token code.  */
    const reg_entry *reg;	/* Register entry for register tokens.  */
    char *str;			/* String representation.  */
  };

static struct intel_token cur_token, prev_token;

/* Token codes for the intel parser.  */
#define T_NIL		-1
#define T_CONST		1
#define T_REG		2
#define T_BYTE		3
#define T_WORD		4
#define	T_DWORD		5
#define T_QWORD		6
#define T_XWORD		7
#define T_SHORT		8
#define T_OFFSET	9
#define T_PTR		10
#define T_ID		11

/* Prototypes for intel parser functions.  */
static int intel_match_token	PARAMS ((int code));
static void intel_get_token	PARAMS (());
static void intel_putback_token	PARAMS (());
static int intel_expr		PARAMS (());
static int intel_e05		PARAMS (());
static int intel_e05_1		PARAMS (());
static int intel_e06		PARAMS (());
static int intel_e06_1		PARAMS (());
static int intel_e09		PARAMS (());
static int intel_e09_1		PARAMS (());
static int intel_e10		PARAMS (());
static int intel_e10_1		PARAMS (());
static int intel_e11		PARAMS (());


static int
i386_intel_operand (operand_string, got_a_float)
     char *operand_string;
     int got_a_float;
{
  int ret;
  char *p;

  /* Initialize token holders.  */
  cur_token.code = prev_token.code = T_NIL;
  cur_token.reg = prev_token.reg = NULL;
  cur_token.str = prev_token.str = NULL;

  /* Initialize parser structure.  */
  p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
  if (p == NULL)
    abort ();
  strcpy (intel_parser.op_string, operand_string);
  intel_parser.got_a_float = got_a_float;
  intel_parser.op_modifier = -1;
  intel_parser.is_mem = 0;
  intel_parser.reg = NULL;
  intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
  if (intel_parser.disp == NULL)
    abort ();
  intel_parser.disp[0] = '\0';

  /* Read the first token and start the parser.  */
  intel_get_token ();
  ret = intel_expr ();

  if (ret)
    {
      /* If we found a memory reference, hand it over to i386_displacement
	 to fill in the rest of the operand fields.  */
      if (intel_parser.is_mem)
	{
	  if ((i.mem_operands == 1
	       && (current_templates->start->opcode_modifier & IsString) == 0)
	      || i.mem_operands == 2)
	    {
	      as_bad (_("too many memory references for '%s'"),
		      current_templates->start->name);
	      ret = 0;
	    }
	  else
	    {
	      char *s = intel_parser.disp;
	      i.mem_operands++;

	      /* Add the displacement expression.  */
	      if (*s != '\0')
		ret = i386_displacement (s, s + strlen (s))
		      && i386_index_check (s);
	    }
	}

      /* Constant and OFFSET expressions are handled by i386_immediate.  */
      else if (intel_parser.op_modifier == OFFSET_FLAT
	       || intel_parser.reg == NULL)
	ret = i386_immediate (intel_parser.disp);
    }

  free (p);
  free (intel_parser.disp);

  return ret;
}


/* expr	SHORT e05
   	| e05  */
static int
intel_expr ()
{
  /* expr  SHORT e05  */
  if (cur_token.code == T_SHORT)
    {
      intel_parser.op_modifier = SHORT;
      intel_match_token (T_SHORT);

      return (intel_e05 ());
    }

  /* expr  e05  */
  else
    return intel_e05 ();
}


/* e05	e06 e05'

   e05'	addOp e06 e05' 
	| Empty  */
static int
intel_e05 ()
{
  return (intel_e06 () && intel_e05_1 ());
}

static int
intel_e05_1 ()
{
  /* e05'  addOp e06 e05'  */
  if (cur_token.code == '+' || cur_token.code == '-')
    {
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (cur_token.code);

      return (intel_e06 () && intel_e05_1 ());
    }

  /* e05'  Empty  */
  else
    return 1;
} 


/* e06	e09 e06'

   e06'	mulOp e09 e06'
   	| Empty  */
static int
intel_e06 ()
{
  return (intel_e09 () && intel_e06_1 ());
}

static int
intel_e06_1 ()
{
  /* e06'  mulOp e09 e06'  */
  if (cur_token.code == '*' || cur_token.code == '/')
    {
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (cur_token.code);

      return (intel_e09 () && intel_e06_1 ());
    }
  
  /* e06'  Empty  */
  else 
    return 1;
}


/* e09	OFFSET e10 e09'
   	| e10 e09'

   e09'	PTR e10 e09'
   	| : e10 e09'
	| Empty */
static int
intel_e09 ()
{
  /* e09  OFFSET e10 e09'  */
  if (cur_token.code == T_OFFSET)
    {
      intel_parser.is_mem = 0;
      intel_parser.op_modifier = OFFSET_FLAT;
      intel_match_token (T_OFFSET);

      return (intel_e10 () && intel_e09_1 ());
    }

  /* e09  e10 e09'  */
  else
    return (intel_e10 () && intel_e09_1 ());
}

static int
intel_e09_1 ()
{
  /* e09'  PTR e10 e09' */
  if (cur_token.code == T_PTR)
    {
      if (prev_token.code == T_BYTE)
	i.suffix = BYTE_MNEM_SUFFIX;

      else if (prev_token.code == T_WORD)
	{
	  if (intel_parser.got_a_float == 2)	/* "fi..." */
	    i.suffix = SHORT_MNEM_SUFFIX;
	  else
	    i.suffix = WORD_MNEM_SUFFIX;
	}

      else if (prev_token.code == T_DWORD)
	{
	  if (intel_parser.got_a_float == 1)	/* "f..." */
	    i.suffix = SHORT_MNEM_SUFFIX;
	  else
	    i.suffix = LONG_MNEM_SUFFIX;
	}

      else if (prev_token.code == T_QWORD)
	i.suffix = DWORD_MNEM_SUFFIX;

      else if (prev_token.code == T_XWORD)
	i.suffix = LONG_DOUBLE_MNEM_SUFFIX;

      else
	{
	  as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
	  return 0;
	}

      intel_match_token (T_PTR);

      return (intel_e10 () && intel_e09_1 ());
    }

  /* e09  : e10 e09'  */
  else if (cur_token.code == ':')
    {
      intel_parser.is_mem = 1;

      return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
    }

  /* e09'  Empty  */
  else
    return 1;
}

/* e10	e11 e10'

   e10'	[ expr ] e10'
   	| Empty  */
static int
intel_e10 ()
{
  return (intel_e11 () && intel_e10_1 ());
}

static int
intel_e10_1 ()
{
  /* e10'  [ expr ]  e10'  */
  if (cur_token.code == '[')
    {
      intel_match_token ('[');
      intel_parser.is_mem = 1;
      
      /* Add a '+' to the displacement string if necessary.  */
      if (*intel_parser.disp != '\0')
	strcat (intel_parser.disp, "+");

      return (intel_expr () && intel_match_token (']') && intel_e10_1 ());
    }

  /* e10'  Empty  */
  else
    return 1;
}


/* e11	( expr )
   	| [ expr ]
	| BYTE
	| WORD
	| DWORD
	| QWORD
	| XWORD
	| $ 
	| .
	| register
	| id
	| constant  */
static int
intel_e11 ()
{
  /* e11  ( expr ) */
  if (cur_token.code == '(')
    {
      intel_match_token ('(');
      strcat (intel_parser.disp, "(");

      if (intel_expr () && intel_match_token (')'))
	  {
	    strcat (intel_parser.disp, ")");
	    return 1;
	  }
      else
	return 0;
    }

  /* e11  [ expr ] */
  else if (cur_token.code == '[')
    {
      intel_match_token ('[');
      intel_parser.is_mem = 1;
      
      /* Operands for jump/call inside brackets denote absolute addresses.  */
      if (current_templates->start->opcode_modifier & Jump
	  || current_templates->start->opcode_modifier & JumpDword
	  || current_templates->start->opcode_modifier & JumpByte
	  || current_templates->start->opcode_modifier & JumpInterSegment)
	i.types[this_operand] |= JumpAbsolute;

      /* Add a '+' to the displacement string if necessary.  */
      if (*intel_parser.disp != '\0')
	strcat (intel_parser.disp, "+");

      return (intel_expr () && intel_match_token (']'));
    }

  /* e11  BYTE 
	  | WORD
	  | DWORD
	  | QWORD
	  | XWORD  */
  else if (cur_token.code == T_BYTE
	   || cur_token.code == T_WORD
	   || cur_token.code == T_DWORD
	   || cur_token.code == T_QWORD
	   || cur_token.code == T_XWORD)
    {
      intel_match_token (cur_token.code);

      return 1;
    }

  /* e11  $
	  | .  */
  else if (cur_token.code == '$' || cur_token.code == '.')
    {
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (cur_token.code);
      intel_parser.is_mem = 1;

      return 1;
    }

  /* e11  register  */
  else if (cur_token.code == T_REG)
    {
      const reg_entry *reg = intel_parser.reg = cur_token.reg;

      intel_match_token (T_REG);

      /* Check for segment change.  */
      if (cur_token.code == ':')
	{
	  if (reg->reg_type & (SReg2 | SReg3))
	    {
	      switch (reg->reg_num)
		{
		case 0:
		  i.seg[i.mem_operands] = &es;
		  break;
		case 1:
		  i.seg[i.mem_operands] = &cs;
		  break;
		case 2:
		  i.seg[i.mem_operands] = &ss;
		  break;
		case 3:
		  i.seg[i.mem_operands] = &ds;
		  break;
		case 4:
		  i.seg[i.mem_operands] = &fs;
		  break;
		case 5:
		  i.seg[i.mem_operands] = &gs;
		  break;
		}
	    }
	  else
	    {
	      as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
	      return 0;
	    }
	}

      /* Not a segment register. Check for register scaling.  */
      else if (cur_token.code == '*')
	{
	  if (!intel_parser.is_mem)
	    {
	      as_bad (_("Register scaling only allowed in memory operands."));
	      return 0;
	    }

	  /* What follows must be a valid scale. */
	  if (intel_match_token ('*')
	      && strchr ("01248", *cur_token.str))
	    {
	      i.index_reg = reg;
	      i.types[this_operand] |= BaseIndex;

	      /* Set the scale after setting the register (otherwise,
		 i386_scale will complain)  */
	      i386_scale (cur_token.str);
	      intel_match_token (T_CONST);
	    }
	  else
	    {
	      as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
		      cur_token.str);
	      return 0;
	    }
	}

      /* No scaling. If this is a memory operand, the register is either a
	 base register (first occurrence) or an index register (second
	 occurrence).  */
      else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
	{
	  if (i.base_reg && i.index_reg)
	    {
	      as_bad (_("Too many register references in memory operand.\n"));
	      return 0;
	    }

	  if (i.base_reg == NULL)
	    i.base_reg = reg;
	  else
	    i.index_reg = reg;

	  i.types[this_operand] |= BaseIndex;
	}

      /* Offset modifier. Add the register to the displacement string to be
	 parsed as an immediate expression after we're done.  */
      else if (intel_parser.op_modifier == OFFSET_FLAT)
	strcat (intel_parser.disp, reg->reg_name);
	
      /* It's neither base nor index nor offset.  */
      else
	{
	  i.types[this_operand] |= reg->reg_type & ~BaseIndex;
	  i.op[this_operand].regs = reg;
	  i.reg_operands++;
	}

      /* Since registers are not part of the displacement string (except
	 when we're parsing offset operands), we may need to remove any
	 preceding '+' from the displacement string.  */
      if (*intel_parser.disp != '\0'
	  && intel_parser.op_modifier != OFFSET_FLAT)
	{
	  char *s = intel_parser.disp;
	  s += strlen (s) - 1;
	  if (*s == '+')
	    *s = '\0';
	}

      return 1;
    }
    
  /* e11  id  */
  else if (cur_token.code == T_ID)
    {
      /* Add the identifier to the displacement string.  */
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (T_ID);

      /* The identifier represents a memory reference only if it's not
	 preceded by an offset modifier.  */
      if (intel_parser.op_modifier != OFFSET_FLAT
	  && intel_parser.op_modifier != FLAT)
	intel_parser.is_mem = 1;

      return 1;
    }

  /* e11  constant  */
  else if (cur_token.code == T_CONST
           || cur_token.code == '-'
	   || cur_token.code == '+')
    {
      char *save_str;

      /* Allow constants that start with `+' or `-'.  */
      if (cur_token.code == '-' || cur_token.code == '+')
	{
	  strcat (intel_parser.disp, cur_token.str);
	  intel_match_token (cur_token.code);
	  if (cur_token.code != T_CONST)
	    {
	      as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
		      cur_token.str);
	      return 0;
	    }
	}

      save_str = (char *)malloc (strlen (cur_token.str) + 1);
      if (save_str == NULL)
	abort();
      strcpy (save_str, cur_token.str);

      /* Get the next token to check for register scaling.  */
      intel_match_token (cur_token.code);

      /* Check if this constant is a scaling factor for an index register.  */
      if (cur_token.code == '*')
	{
	  if (intel_match_token ('*') && cur_token.code == T_REG)
	    {
	      if (!intel_parser.is_mem)
		{
		  as_bad (_("Register scaling only allowed in memory operands."));
		  return 0;
		}

	      /* The constant is followed by `* reg', so it must be 
		 a valid scale.  */
	      if (strchr ("01248", *save_str))
		{
		  i.index_reg = cur_token.reg;
		  i.types[this_operand] |= BaseIndex;

		  /* Set the scale after setting the register (otherwise,
		     i386_scale will complain)  */
		  i386_scale (save_str);
		  intel_match_token (T_REG);

		  /* Since registers are not part of the displacement
		     string, we may need to remove any preceding '+' from
		     the displacement string.  */
		  if (*intel_parser.disp != '\0')
		    {
		      char *s = intel_parser.disp;
		      s += strlen (s) - 1;
		      if (*s == '+')
			*s = '\0';
		    }

		  free (save_str);

		  return 1;
		}
	      else
		return 0;
	    }

	  /* The constant was not used for register scaling. Since we have
	     already consumed the token following `*' we now need to put it
	     back in the stream.  */
	  else
	    intel_putback_token ();
	}

      /* Add the constant to the displacement string.  */
      strcat (intel_parser.disp, save_str);
      free (save_str);

      return 1;
    }


  as_bad (_("Unrecognized token '%s'"), cur_token.str);
  return 0;
}


/* Match the given token against cur_token. If they match, read the next
   token from the operand string.  */
static int
intel_match_token (code)
    int code;
{
  if (cur_token.code == code)
    {
      intel_get_token ();
      return 1;
    }
  else
    {
      as_bad (_("Unexpected token `%s'\n"), cur_token.str);
      return 0;
    }
}


/* Read a new token from intel_parser.op_string and store it in cur_token.  */
static void
intel_get_token ()
{
  char *end_op;
  const reg_entry *reg;
  struct intel_token new_token;

  new_token.code = T_NIL;
  new_token.reg = NULL;
  new_token.str = NULL;

  /* Free the memory allocated to the previous token and move 
     cur_token to prev_token.  */
  if (prev_token.str)
    free (prev_token.str);

  prev_token = cur_token;

  /* Skip whitespace.  */
  while (is_space_char (*intel_parser.op_string))
    intel_parser.op_string++;

  /* Return an empty token if we find nothing else on the line.  */
  if (*intel_parser.op_string == '\0')
    {
      cur_token = new_token;
      return;
    }

  /* The new token cannot be larger than the remainder of the operand
     string.  */
  new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
  if (new_token.str == NULL)
    abort();
  new_token.str[0] = '\0';

  if (strchr ("0123456789", *intel_parser.op_string))
    {
      char *p = new_token.str;
      char *q = intel_parser.op_string;
      new_token.code = T_CONST;

      /* Allow any kind of identifier char to encompass floating point and
	 hexadecimal numbers.  */
      while (is_identifier_char (*q))
	*p++ = *q++;
      *p = '\0';

      /* Recognize special symbol names [0-9][bf].  */
      if (strlen (intel_parser.op_string) == 2
	  && (intel_parser.op_string[1] == 'b' 
	      || intel_parser.op_string[1] == 'f'))
	new_token.code = T_ID;
    }

  else if (strchr ("+-/*:[]()", *intel_parser.op_string))
    {
      new_token.code = *intel_parser.op_string;
      new_token.str[0] = *intel_parser.op_string;
      new_token.str[1] = '\0';
    }

  else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
	   && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
    {
      new_token.code = T_REG;
      new_token.reg = reg;

      if (*intel_parser.op_string == REGISTER_PREFIX)
	{
	  new_token.str[0] = REGISTER_PREFIX;
	  new_token.str[1] = '\0';
	}

      strcat (new_token.str, reg->reg_name);
    }

  else if (is_identifier_char (*intel_parser.op_string))
    {
      char *p = new_token.str;
      char *q = intel_parser.op_string;

      /* A '.' or '$' followed by an identifier char is an identifier.
	 Otherwise, it's operator '.' followed by an expression.  */
      if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
	{
	  new_token.code = *q;
	  new_token.str[0] = *q;
	  new_token.str[1] = '\0';
	}
      else
	{
	  while (is_identifier_char (*q) || *q == '@')
	    *p++ = *q++;
	  *p = '\0';

	  if (strcasecmp (new_token.str, "BYTE") == 0)
	    new_token.code = T_BYTE;

	  else if (strcasecmp (new_token.str, "WORD") == 0)
	    new_token.code = T_WORD;

	  else if (strcasecmp (new_token.str, "DWORD") == 0)
	    new_token.code = T_DWORD;

	  else if (strcasecmp (new_token.str, "QWORD") == 0)
	    new_token.code = T_QWORD;

	  else if (strcasecmp (new_token.str, "XWORD") == 0)
	    new_token.code = T_XWORD;

	  else if (strcasecmp (new_token.str, "PTR") == 0)
	    new_token.code = T_PTR;

	  else if (strcasecmp (new_token.str, "SHORT") == 0)
	    new_token.code = T_SHORT;

	  else if (strcasecmp (new_token.str, "OFFSET") == 0)
	    {
	      new_token.code = T_OFFSET;

	      /* ??? This is not mentioned in the MASM grammar but gcc
		     makes use of it with -mintel-syntax.  OFFSET may be
		     followed by FLAT:  */
	      if (strncasecmp (q, " FLAT:", 6) == 0)
		strcat (new_token.str, " FLAT:");
	    }

	  /* ??? This is not mentioned in the MASM grammar.  */
	  else if (strcasecmp (new_token.str, "FLAT") == 0)
	    new_token.code = T_OFFSET;

	  else
	    new_token.code = T_ID;
	}
    }

  else
    as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);

  intel_parser.op_string += strlen (new_token.str);
  cur_token = new_token;
}


/* Put cur_token back into the token stream and make cur_token point to
   prev_token.  */
static void
intel_putback_token ()
{
  intel_parser.op_string -= strlen (cur_token.str);
  free (cur_token.str);
  cur_token = prev_token;
  
  /* Forget prev_token.  */
  prev_token.code = T_NIL;
  prev_token.reg = NULL;
  prev_token.str = NULL;
}