aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-i386.c
blob: 7f8c4beb3f6f36184bfa52710abb7a2f8842c978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
/* i386.c -- Assemble code for the Intel 80386
   Copyright (C) 1989, 1991 Free Software Foundation.
   
   This file is part of GAS, the GNU Assembler.
   
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.
   
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* $Id$ */

/*
  Intel 80386 machine specific gas.
  Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
  Bugs & suggestions are completely welcome.  This is free software.
  Please help us make it better.
  */

#include "as.h"

#include "obstack.h"
#include "opcode/i386.h"

/* 'md_assemble ()' gathers together information and puts it into a
   i386_insn. */

typedef struct {
	/* TM holds the template for the insn were currently assembling. */
	template          tm;
	/* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */
	char              suffix;
	/* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
	
	/* OPERANDS gives the number of given operands. */
	unsigned int               operands;
	
	/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number of
	   given register, displacement, memory operands and immediate operands. */
	unsigned int               reg_operands, disp_operands, mem_operands, imm_operands;
	
	/* TYPES [i] is the type (see above #defines) which tells us how to
	   search through DISPS [i] & IMMS [i] & REGS [i] for the required
	   operand. */
	unsigned int               types [MAX_OPERANDS];
	
	/* Displacements (if given) for each operand. */
	expressionS       * disps [MAX_OPERANDS];
	
	/* Immediate operands (if given) for each operand. */
	expressionS       * imms [MAX_OPERANDS];
	
	/* Register operands (if given) for each operand. */
	reg_entry         * regs [MAX_OPERANDS];
	
	/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
	   the base index byte below.  */
	reg_entry         * base_reg;
	reg_entry         * index_reg;
	unsigned int                log2_scale_factor;
	
	/* SEG gives the seg_entry of this insn.  It is equal to zero unless
	   an explicit segment override is given. */
	seg_entry         * seg;	/* segment for memory operands (if given) */
	
	/* PREFIX holds all the given prefix opcodes (usually null).
	   PREFIXES is the size of PREFIX. */
	char              prefix [MAX_PREFIXES];
	unsigned int              prefixes;
	
	/* RM and IB are the modrm byte and the base index byte where the addressing
	   modes of this insn are encoded. */
	
	modrm_byte        rm;
	base_index_byte   bi;
} i386_insn;

/* This array holds the chars that always start a comment.  If the
   pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "#";

/* This array holds the chars that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output. */
/* Also note that comments started like this one will always work if
   '/' isn't otherwise defined. */
const char line_comment_chars[] = "/"; /* removed '#' xoxorich. */

/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or    0d1.2345e12 */
const char FLT_CHARS[] = "fFdDxX";

/* tables for lexical analysis */
static char opcode_chars[256];
static char register_chars[256];
static char operand_chars[256];
static char space_chars[256];
static char identifier_chars[256];
static char digit_chars[256];

/* lexical macros */
#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_space_char(x) (space_chars[(unsigned char) x])
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])

/* put here all non-digit non-letter charcters that may occur in an operand */
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:";

static char *ordinal_names[] = { "first", "second", "third" };	/* for printfs */

/* md_assemble() always leaves the strings it's passed unaltered.  To
   effect this we maintain a stack of saved characters that we've smashed
   with '\0's (indicating end of strings for various sub-fields of the
   assembler instruction). */
static char save_stack[32];
static char *save_stack_p;	/* stack pointer */
#define END_STRING_AND_SAVE(s)      *save_stack_p++ = *s; *s = '\0'
#define RESTORE_END_STRING(s)       *s = *--save_stack_p
    
    /* The instruction we're assembling. */
    static i386_insn i;

/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
static expressionS disp_expressions[2], im_expressions[2];

/* pointers to ebp & esp entries in reg_hash hash table */
static reg_entry *ebp, *esp;

static int this_operand;	/* current operand we are working on */

/*
  Interface to relax_segment.
  There are 2 relax states for 386 jump insns: one for conditional & one
  for unconditional jumps.  This is because the these two types of jumps
  add different sizes to frags when we're figuring out what sort of jump
  to choose to reach a given label.  */

/* types */
#define COND_JUMP 1		/* conditional jump */
#define UNCOND_JUMP 2		/* unconditional jump */
/* sizes */
#define BYTE 0
#define WORD 1
#define DWORD 2
#define UNKNOWN_SIZE 3

#define ENCODE_RELAX_STATE(type,size) ((type<<2) | (size))
#define SIZE_FROM_RELAX_STATE(s) \
    ( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) )

const relax_typeS md_relax_table[] = {
	/*
	  The fields are:
	  1) most positive reach of this state,
	  2) most negative reach of this state,
	  3) how many bytes this mode will add to the size of the current frag
	  4) which index into the table to try if we can't fit into this one.
	  */
	{1, 1, 0, 0},
	{1, 1, 0, 0},
	{1, 1, 0, 0},
	{1, 1, 0, 0},
	
	/* For now we don't use word displacement jumps:  they may be
	   untrustworthy. */
	{127+1, -128+1, 0, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
	/* word conditionals add 3 bytes to frag:
	   2 opcode prefix; 1 displacement bytes */
	{32767+2, -32768+2, 3, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
	/* dword conditionals adds 4 bytes to frag:
	   1 opcode prefix; 3 displacement bytes */
	{0, 0, 4, 0},
	{1, 1, 0, 0},
	
	{127+1, -128+1, 0, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
	/* word jmp adds 2 bytes to frag:
	   1 opcode prefix; 1 displacement bytes */
	{32767+2, -32768+2, 2, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
	/* dword jmp adds 3 bytes to frag:
	   0 opcode prefix; 3 displacement bytes */
	{0, 0, 3, 0},
	{1, 1, 0, 0},
	
};

#ifdef __STDC__

static char *output_invalid(int c);
static int i386_operand(char *operand_string);
static reg_entry *parse_register(char *reg_string);

#else /* __STDC__ */

static char *output_invalid();
static int i386_operand();
static reg_entry *parse_register();

#endif /* __STDC__ */


/* Ignore certain directives generated by gcc. This probably should
   not be here. */
void dummy ()
{
	while (*input_line_pointer && *input_line_pointer != '\n')
	    input_line_pointer++;
}

const pseudo_typeS md_pseudo_table[] = {
	{ "ffloat",	float_cons,	'f' },
	{ "dfloat",	float_cons,	'd' },
	{ "tfloat",	float_cons,	'x' },
	{ "value",      cons,           2 },
	{ 0, 0, 0 }
};

/* for interface with expression () */
extern char * input_line_pointer;

/* obstack for constructing various things in md_begin */
struct obstack o;

/* hash table for opcode lookup */
static struct hash_control *op_hash = (struct hash_control *) 0;
/* hash table for register lookup */
static struct hash_control *reg_hash = (struct hash_control *) 0;
/* hash table for prefix lookup */
static struct hash_control *prefix_hash = (struct hash_control *) 0;


void md_begin ()
{
	char * hash_err;
	
	obstack_begin (&o,4096);
	
	/* initialize op_hash hash table */
	op_hash = hash_new();		/* xmalloc handles error */
	
	{
		register const template *optab;
		register templates *core_optab;
		char *prev_name;
		
		optab = i386_optab;		/* setup for loop */
		prev_name = optab->name;
		obstack_grow (&o, optab, sizeof(template));
		core_optab = (templates *) xmalloc (sizeof (templates));
		
		for (optab++; optab < i386_optab_end; optab++) {
			if (! strcmp (optab->name, prev_name)) {
				/* same name as before --> append to current template list */
				obstack_grow (&o, optab, sizeof(template));
			} else {
				/* different name --> ship out current template list;
				   add to hash table; & begin anew */
				/* Note: end must be set before start! since obstack_next_free changes
				   upon opstack_finish */
				core_optab->end = (template *) obstack_next_free(&o);
				core_optab->start = (template *) obstack_finish(&o);
				hash_err = hash_insert (op_hash, prev_name, (char *) core_optab);
				if (hash_err && *hash_err) {
				hash_error:
					as_fatal("Internal Error:  Can't hash %s: %s", prev_name, hash_err);
				}
				prev_name = optab->name;
				core_optab = (templates *) xmalloc (sizeof(templates));
				obstack_grow (&o, optab, sizeof(template));
			}
		}
	}
	
	/* initialize reg_hash hash table */
	reg_hash = hash_new();
	{
		register const reg_entry *regtab;
		
		for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++) {
			hash_err = hash_insert (reg_hash, regtab->reg_name, regtab);
			if (hash_err && *hash_err) goto hash_error;
		}
	}
	
	esp = (reg_entry *) hash_find (reg_hash, "esp");
	ebp = (reg_entry *) hash_find (reg_hash, "ebp");
	
	/* initialize reg_hash hash table */
	prefix_hash = hash_new();
	{
		register const prefix_entry *prefixtab;
		
		for (prefixtab = i386_prefixtab;
		     prefixtab < i386_prefixtab_end; prefixtab++) {
			hash_err = hash_insert (prefix_hash, prefixtab->prefix_name, prefixtab);
			if (hash_err && *hash_err) goto hash_error;
		}
	}
	
	/* fill in lexical tables:  opcode_chars, operand_chars, space_chars */
	{  
		register unsigned int c;
		
		bzero (opcode_chars, sizeof(opcode_chars));
		bzero (operand_chars, sizeof(operand_chars));
		bzero (space_chars, sizeof(space_chars));
		bzero (identifier_chars, sizeof(identifier_chars));
		bzero (digit_chars, sizeof(digit_chars));
		
		for (c = 0; c < 256; c++) {
			if (islower(c) || isdigit(c)) {
				opcode_chars[c] = c;
				register_chars[c] = c;
			} else if (isupper(c)) {
				opcode_chars[c] = tolower(c);
				register_chars[c] = opcode_chars[c];
			} else if (c == PREFIX_SEPERATOR) {
				opcode_chars[c] = c;
			} else if (c == ')' || c == '(') {
				register_chars[c] = c;
			}
			
			if (isupper(c) || islower(c) || isdigit(c))
			    operand_chars[c] = c;
			else if (c && strchr(operand_special_chars, c))
			    operand_chars[c] = c;
			
			if (isdigit(c) || c == '-') digit_chars[c] = c;
			
			if (isalpha(c) || c == '_' || c == '.' || isdigit(c))
			    identifier_chars[c] = c;
			
			if (c == ' ' || c == '\t') space_chars[c] = c;
		}
	}
}

void md_end() {}		/* not much to do here. */


#ifdef DEBUG386

/* debugging routines for md_assemble */
/* static void pi (), pte (), pt (), pe (), ps (); */

static void pi (line, x)
char * line;
i386_insn *x;
{
	register template *p;
	int i;
	
	fprintf (stdout, "%s: template ", line);
	pte (&x->tm);
	fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x",
		 x->rm.mode, x->rm.reg, x->rm.regmem);
	fprintf (stdout, " base %x  index %x  scale %x\n",
		 x->bi.base, x->bi.index, x->bi.scale);
	for (i = 0; i < x->operands; i++) {
		fprintf (stdout, "    #%d:  ", i+1);
		pt (x->types[i]);
		fprintf (stdout, "\n");
		if (x->types[i] & Reg) fprintf (stdout, "%s\n", x->regs[i]->reg_name);
		if (x->types[i] & Imm) pe (x->imms[i]);
		if (x->types[i] & (Disp|Abs)) pe (x->disps[i]);
	}
}

static void pte (t)
template *t;
{
	int i;
	fprintf (stdout, " %d operands ", t->operands);
	fprintf (stdout, "opcode %x ",
		 t->base_opcode);
	if (t->extension_opcode != None)
	    fprintf (stdout, "ext %x ", t->extension_opcode);
	if (t->opcode_modifier&D)
	    fprintf (stdout, "D");
	if (t->opcode_modifier&W)
	    fprintf (stdout, "W");
	fprintf (stdout, "\n");
	for (i = 0; i < t->operands; i++) {
		fprintf (stdout, "    #%d type ", i+1);
		pt (t->operand_types[i]);
		fprintf (stdout, "\n");
	}
}

static void pe (e)
expressionS *e;
{
	fprintf (stdout, "    segment       %s\n", segment_name (e->X_seg));
	fprintf (stdout, "    add_number    %d (%x)\n",
		 e->X_add_number, e->X_add_number);
	if (e->X_add_symbol) {
		fprintf (stdout, "    add_symbol    ");
		ps (e->X_add_symbol);
		fprintf (stdout, "\n");
	}
	if (e->X_subtract_symbol) {
		fprintf (stdout, "    sub_symbol    ");
		ps (e->X_subtract_symbol);
		fprintf (stdout, "\n");
	}
}

static void ps (s)
symbolS *s;
{
	fprintf (stdout, "%s type %s%s",
		 S_GET_NAME(s),
		 S_IS_EXTERNAL(s) ? "EXTERNAL " : "",
		 segment_name(S_GET_SEGMENT(s)));
}

struct type_name {
	unsigned int mask;
	char *tname;
} type_names[] = {
	{ Reg8, "r8" }, { Reg16, "r16" }, { Reg32, "r32" }, { Imm8, "i8" },
	{ Imm8S, "i8s" },
	{ Imm16, "i16" }, { Imm32, "i32" }, { Mem8, "Mem8"}, { Mem16, "Mem16"},
	{ Mem32, "Mem32"}, { BaseIndex, "BaseIndex" },
	{ Abs8, "Abs8" }, { Abs16, "Abs16" }, { Abs32, "Abs32" },
	{ Disp8, "d8" }, { Disp16, "d16" },
	{ Disp32, "d32" }, { SReg2, "SReg2" }, { SReg3, "SReg3" }, { Acc, "Acc" },
	{ InOutPortReg, "InOutPortReg" }, { ShiftCount, "ShiftCount" },
	{ Imm1, "i1" }, { Control, "control reg" }, {Test, "test reg"},
	{ FloatReg, "FReg"}, {FloatAcc, "FAcc"},
	{ JumpAbsolute, "Jump Absolute"},
	{ 0, "" }
};

static void pt (t)
unsigned int t;
{
	register struct type_name *ty;
	
	if (t == Unknown) {
		fprintf (stdout, "Unknown");
	} else {
		for (ty = type_names; ty->mask; ty++)
		    if (t & ty->mask) fprintf (stdout, "%s, ", ty->tname);
	}
	fflush (stdout);
}

#endif /* DEBUG386 */

/*
  This is the guts of the machine-dependent assembler.  LINE points to a
  machine dependent instruction.  This funciton is supposed to emit
  the frags/bytes it assembles to.
  */
void md_assemble (line)
char *line;
{
	/* Holds temlate once we've found it. */
	register template * t;
	
	/* Possible templates for current insn */
	templates *current_templates = (templates *) 0;
	
	/* Initialize globals. */
	bzero (&i, sizeof(i));
	bzero (disp_expressions, sizeof(disp_expressions));
	bzero (im_expressions, sizeof(im_expressions));
	save_stack_p = save_stack;	/* reset stack pointer */
	
	/* Fist parse an opcode & call i386_operand for the operands.
	   We assume that the scrubber has arranged it so that line[0] is the valid 
	   start of a (possibly prefixed) opcode. */
	{
		register char *l = line;		/* Fast place to put LINE. */
		
		/* 1 if operand is pending after ','. */
		unsigned int expecting_operand = 0;
		/* 1 if we found a prefix only acceptable with string insns. */
		unsigned int expecting_string_instruction = 0;
		/* Non-zero if operand parens not balenced. */
		unsigned int paren_not_balenced;
		char * token_start = l;
		
		while (! is_space_char(*l) && *l != END_OF_INSN) {
			if (! is_opcode_char(*l)) {
				as_bad("invalid character %s in opcode", output_invalid(*l));
				return;
			} else if (*l != PREFIX_SEPERATOR) {
				*l = opcode_chars[(unsigned char) *l];	/* fold case of opcodes */
				l++;
			} else {      /* this opcode's got a prefix */
				register unsigned int q;
				register prefix_entry * prefix;
				
				if (l == token_start) {
					as_bad("expecting prefix; got nothing");
					return;
				}
				END_STRING_AND_SAVE (l);
				prefix = (prefix_entry *) hash_find (prefix_hash, token_start);
				if (! prefix) {
					as_bad("no such opcode prefix ('%s')", token_start);
					return;
				}
				RESTORE_END_STRING (l);
				/* check for repeated prefix */
				for (q = 0; q < i.prefixes; q++)
				    if (i.prefix[q] == prefix->prefix_code) {
					    as_bad("same prefix used twice; you don't really want this!");
					    return;
				    }
				if (i.prefixes == MAX_PREFIXES) {
					as_bad("too many opcode prefixes");
					return;
				}
				i.prefix[i.prefixes++] = prefix->prefix_code;
				if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE)
				    expecting_string_instruction = 1;
				/* skip past PREFIX_SEPERATOR and reset token_start */
				token_start = ++l;
			}
		}
		END_STRING_AND_SAVE (l);
		if (token_start == l) {
			as_bad("expecting opcode; got nothing");
			return;
		}
		
		/* Lookup insn in hash; try intel & att naming conventions if appropriate;
		   that is:  we only use the opcode suffix 'b' 'w' or 'l' if we need to. */
		current_templates = (templates *) hash_find (op_hash, token_start);
		if (! current_templates) {
			int last_index = strlen(token_start) - 1;
			char last_char = token_start[last_index];
			switch (last_char) {
			case DWORD_OPCODE_SUFFIX:
			case WORD_OPCODE_SUFFIX:
			case BYTE_OPCODE_SUFFIX:
				token_start[last_index] = '\0';
				current_templates = (templates *) hash_find (op_hash, token_start);
				token_start[last_index] = last_char;
				i.suffix = last_char;
			}
			if (!current_templates) {
				as_bad("no such 386 instruction: `%s'", token_start); return;
			}
		}
		RESTORE_END_STRING (l);
		
		/* check for rep/repne without a string instruction */
		if (expecting_string_instruction &&
		    ! IS_STRING_INSTRUCTION (current_templates->
					     start->base_opcode)) {
			as_bad("expecting string instruction after rep/repne");
			return;
		}
		
		/* There may be operands to parse. */
		if (*l != END_OF_INSN &&
		    /* For string instructions, we ignore any operands if given.  This
		       kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where
		       the operands are always going to be the same, and are not really
		       encoded in machine code. */
		    ! IS_STRING_INSTRUCTION (current_templates->
					     start->base_opcode)) {
			/* parse operands */
			do {
				/* skip optional white space before operand */
				while (! is_operand_char(*l) && *l != END_OF_INSN) {
					if (! is_space_char(*l)) {
						as_bad("invalid character %s before %s operand",
						       output_invalid(*l),
						       ordinal_names[i.operands]);
						return;
					}
					l++;
				}
				token_start = l;		/* after white space */
				paren_not_balenced = 0;
				while (paren_not_balenced || *l != ',') {
					if (*l == END_OF_INSN) {
						if (paren_not_balenced) {
							as_bad("unbalenced parenthesis in %s operand.",
							       ordinal_names[i.operands]);
							return;
						} else break;		/* we are done */
					} else if (! is_operand_char(*l)) {
						as_bad("invalid character %s in %s operand",
						       output_invalid(*l),
						       ordinal_names[i.operands]);
						return;
					}
					if (*l == '(') ++paren_not_balenced;
					if (*l == ')') --paren_not_balenced;
					l++;
				}
				if (l != token_start) {	/* yes, we've read in another operand */
					unsigned int operand_ok;
					this_operand = i.operands++;
					if (i.operands > MAX_OPERANDS) {
						as_bad("spurious operands; (%d operands/instruction max)",
						       MAX_OPERANDS);
						return;
					}
					/* now parse operand adding info to 'i' as we go along */
					END_STRING_AND_SAVE (l);
					operand_ok = i386_operand (token_start);
					RESTORE_END_STRING (l);	/* restore old contents */
					if (!operand_ok) return;
				} else {
					if (expecting_operand) {
					expecting_operand_after_comma:
						as_bad("expecting operand after ','; got nothing");
						return;
					}
					if (*l == ',') {
						as_bad("expecting operand before ','; got nothing");
						return;
					}
				}
				
				/* now *l must be either ',' or END_OF_INSN */
				if (*l == ',') {
					if (*++l == END_OF_INSN) {		/* just skip it, if it's \n complain */
						goto expecting_operand_after_comma;
					}
					expecting_operand = 1;
				}
			} while (*l != END_OF_INSN);		/* until we get end of insn */
		}
	}
	
	/* Now we've parsed the opcode into a set of templates, and have the
	   operands at hand.
	   Next, we find a template that matches the given insn,
	   making sure the overlap of the given operands types is consistent
	   with the template operand types. */
	
#define MATCH(overlap,given_type) \
	(overlap && \
	 (overlap & (JumpAbsolute|BaseIndex|Mem8)) \
	 == (given_type & (JumpAbsolute|BaseIndex|Mem8)))
	    
	    /* If m0 and m1 are register matches they must be consistent
	       with the expected operand types t0 and t1.
	       That is, if both m0 & m1 are register matches
	       i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ?
	       then, either 1. or 2. must be true:
	       1. the expected operand type register overlap is null:
	       (t0 & t1 & Reg) == 0
	       AND
	       the given register overlap is null:
	       (m0 & m1 & Reg) == 0
	       2. the expected operand type register overlap == the given
	       operand type overlap:  (t0 & t1 & m0 & m1 & Reg).
	       */
#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \
	    ( ((m0 & (Reg)) && (m1 & (Reg))) ? \
	     ( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \
	      ((t0 & t1) & (m0 & m1) & (Reg)) \
	      ) : 1)
		{
			register unsigned int overlap0, overlap1;
			expressionS * exp;
			unsigned int overlap2;
			unsigned int found_reverse_match;
			
			overlap0 = overlap1 = overlap2 = found_reverse_match = 0;
			for (t = current_templates->start;
			     t < current_templates->end;
			     t++) {
				
				/* must have right number of operands */
				if (i.operands != t->operands) continue;
				else if (!t->operands) break;	/* 0 operands always matches */
				
				overlap0 = i.types[0] & t->operand_types[0];
				switch (t->operands) {
				case 1:
					if (! MATCH (overlap0,i.types[0])) continue;
					break;
				case 2: case 3:
					overlap1 = i.types[1] & t->operand_types[1];
					if (! MATCH (overlap0,i.types[0]) ||
					    ! MATCH (overlap1,i.types[1]) ||
					    ! CONSISTENT_REGISTER_MATCH(overlap0, overlap1,
									t->operand_types[0],
									t->operand_types[1])) {
						
						/* check if other direction is valid ... */
						if (! (t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS))
						    continue;
						
						/* try reversing direction of operands */
						overlap0 = i.types[0] & t->operand_types[1];
						overlap1 = i.types[1] & t->operand_types[0];
						if (! MATCH (overlap0,i.types[0]) ||
						    ! MATCH (overlap1,i.types[1]) ||
						    ! CONSISTENT_REGISTER_MATCH (overlap0, overlap1, 
										 t->operand_types[0],
										 t->operand_types[1])) {
							/* does not match either direction */
							continue;
						}
						/* found a reverse match here -- slip through */
						/* found_reverse_match holds which of D or FloatD we've found */
						found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS;
					}				/* endif: not forward match */
					/* found either forward/reverse 2 operand match here */
					if (t->operands == 3) {
						overlap2 = i.types[2] & t->operand_types[2];
						if (! MATCH (overlap2,i.types[2]) ||
						    ! CONSISTENT_REGISTER_MATCH (overlap0, overlap2,
										 t->operand_types[0],
										 t->operand_types[2]) ||
						    ! CONSISTENT_REGISTER_MATCH (overlap1, overlap2, 
										 t->operand_types[1],
										 t->operand_types[2]))
						    continue;
					}
					/* found either forward/reverse 2 or 3 operand match here:
					   slip through to break */
				}
				break;			/* we've found a match; break out of loop */
			}				/* for (t = ... */
			if (t == current_templates->end) { /* we found no match */
				as_bad("operands given don't match any known 386 instruction");
				return;
			}
			
			/* Copy the template we found (we may change it!). */
			bcopy (t, &i.tm, sizeof (template));
			t = &i.tm;			/* alter new copy of template */
			
			/* If there's no opcode suffix we try to invent one based on register
			   operands. */
			if (! i.suffix && i.reg_operands) {
				/* We take i.suffix from the LAST register operand specified.  This
				   assumes that the last register operands is the destination register
				   operand. */
				int o;
				for (o = 0; o < MAX_OPERANDS; o++)
				    if (i.types[o] & Reg) {
					    i.suffix = (i.types[o] == Reg8) ? BYTE_OPCODE_SUFFIX :
						(i.types[o] == Reg16) ? WORD_OPCODE_SUFFIX :
						    DWORD_OPCODE_SUFFIX;
				    }
			}
			
			/* Make still unresolved immediate matches conform to size of immediate
			   given in i.suffix. Note:  overlap2 cannot be an immediate!
			   We assume this. */
			if ((overlap0 & (Imm8|Imm8S|Imm16|Imm32))
			    && overlap0 != Imm8 && overlap0 != Imm8S
			    && overlap0 != Imm16 && overlap0 != Imm32) {
				if (! i.suffix) {
					as_bad("no opcode suffix given; can't determine immediate size");
					return;
				}
				overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
					     (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
			}
			if ((overlap1 & (Imm8|Imm8S|Imm16|Imm32))
			    && overlap1 != Imm8 && overlap1 != Imm8S
			    && overlap1 != Imm16 && overlap1 != Imm32) {
				if (! i.suffix) {
					as_bad("no opcode suffix given; can't determine immediate size");
					return;
				}
				overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
					     (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
			}
			
			i.types[0] = overlap0;
			i.types[1] = overlap1;
			i.types[2] = overlap2;
			
			if (overlap0 & ImplicitRegister) i.reg_operands--;
			if (overlap1 & ImplicitRegister) i.reg_operands--;
			if (overlap2 & ImplicitRegister) i.reg_operands--;
			if (overlap0 & Imm1) i.imm_operands = 0; /* kludge for shift insns */
			
			if (found_reverse_match) {
				unsigned int save;
				save = t->operand_types[0];
				t->operand_types[0] = t->operand_types[1];
				t->operand_types[1] = save;
			}
			
			/* Finalize opcode.  First, we change the opcode based on the operand
			   size given by i.suffix: we never have to change things for byte insns,
			   or when no opcode suffix is need to size the operands. */
			
			if (! i.suffix && (t->opcode_modifier & W)) {
				as_bad("no opcode suffix given and no register operands; can't size instruction");
				return;
			}
			
			if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX) {
				/* Select between byte and word/dword operations. */
				if (t->opcode_modifier & W)
				    t->base_opcode |= W;
				/* Now select between word & dword operations via the
				   operand size prefix. */
				if (i.suffix == WORD_OPCODE_SUFFIX) {
					if (i.prefixes == MAX_PREFIXES) {
						as_bad("%d prefixes given and 'w' opcode suffix gives too many prefixes",
						       MAX_PREFIXES);
						return;
					}
					i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE;
				}
			}
			
			/* For insns with operands there are more diddles to do to the opcode. */
			if (i.operands) {
				/* If we found a reverse match we must alter the opcode direction bit
				   found_reverse_match holds bit to set (different for int &
				   float insns). */
				
				if (found_reverse_match) {
					t->base_opcode |= found_reverse_match;
				}
				
				/*
				  The imul $imm, %reg instruction is converted into
				  imul $imm, %reg, %reg. */
				if (t->opcode_modifier & imulKludge) {
					i.regs[2] = i.regs[1]; /* Pretend we saw the 3 operand case. */
					i.reg_operands = 2;
				}
				
				/* Certain instructions expect the destination to be in the i.rm.reg
				   field.  This is by far the exceptional case.  For these instructions,
				   if the source operand is a register, we must reverse the i.rm.reg
				   and i.rm.regmem fields.  We accomplish this by faking that the
				   two register operands were given in the reverse order. */
				if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2) {
					unsigned int first_reg_operand = (i.types[0] & Reg) ? 0 : 1;
					unsigned int second_reg_operand = first_reg_operand + 1;
					reg_entry *tmp = i.regs[first_reg_operand];
					i.regs[first_reg_operand] = i.regs[second_reg_operand];
					i.regs[second_reg_operand] = tmp;
				}
				
				if (t->opcode_modifier & ShortForm) {
					/* The register or float register operand is in operand 0 or 1. */
					unsigned int o = (i.types[0] & (Reg|FloatReg)) ? 0 : 1;
					/* Register goes in low 3 bits of opcode. */
					t->base_opcode |= i.regs[o]->reg_num;
				} else if (t->opcode_modifier & ShortFormW) {
					/* Short form with 0x8 width bit.  Register is always dest. operand */
					t->base_opcode |= i.regs[1]->reg_num;
					if (i.suffix == WORD_OPCODE_SUFFIX ||
					    i.suffix == DWORD_OPCODE_SUFFIX)
					    t->base_opcode |= 0x8;
				} else if (t->opcode_modifier & Seg2ShortForm) {
					if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1) {
						as_bad("you can't 'pop cs' on the 386.");
						return;
					}
					t->base_opcode |= (i.regs[0]->reg_num << 3);
				} else if (t->opcode_modifier & Seg3ShortForm) {
					/* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1.
					   'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9.
					   So, only if i.regs[0]->reg_num == 5 (%gs) do we need
					   to change the opcode. */
					if (i.regs[0]->reg_num == 5)
					    t->base_opcode |= 0x08;
				} else if (t->opcode_modifier & Modrm) {
					/* The opcode is completed (modulo t->extension_opcode which must
					   be put into the modrm byte.
					   Now, we make the modrm & index base bytes based on all the info
					   we've collected. */
					
					/* i.reg_operands MUST be the number of real register operands;
					   implicit registers do not count. */
					if (i.reg_operands == 2) {
						unsigned int source, dest;
						source = (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 : 1;
						dest = source + 1;
						i.rm.mode = 3;
						/* We must be careful to make sure that all segment/control/test/
						   debug registers go into the i.rm.reg field (despite the whether
						   they are source or destination operands). */
						if (i.regs[dest]->reg_type & (SReg2|SReg3|Control|Debug|Test)) {
							i.rm.reg = i.regs[dest]->reg_num;
							i.rm.regmem = i.regs[source]->reg_num;
						} else {
							i.rm.reg = i.regs[source]->reg_num;
							i.rm.regmem = i.regs[dest]->reg_num;
						}
					} else {		/* if it's not 2 reg operands... */
						if (i.mem_operands) {
							unsigned int fake_zero_displacement = 0;
							unsigned int o = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2);
							
							/* Encode memory operand into modrm byte and base index byte. */
							
							if (i.base_reg == esp && ! i.index_reg) {
								/* <disp>(%esp) becomes two byte modrm with no index register. */
								i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
								i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
								i.bi.base = ESP_REG_NUM;
								i.bi.index = NO_INDEX_REGISTER;
								i.bi.scale = 0;		/* Must be zero! */
							} else if (i.base_reg == ebp && !i.index_reg) {
								if (! (i.types[o] & Disp)) {
									/* Must fake a zero byte displacement.
									   There is no direct way to code '(%ebp)' directly. */
									fake_zero_displacement = 1;
									/* fake_zero_displacement code does not set this. */
									i.types[o] |= Disp8;
								}
								i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
								i.rm.regmem = EBP_REG_NUM;
							} else if (! i.base_reg && (i.types[o] & BaseIndex)) {
								/* There are three cases here.
								   Case 1:  '<32bit disp>(,1)' -- indirect absolute.
								   (Same as cases 2 & 3 with NO index register)
								   Case 2:  <32bit disp> (,<index>) -- no base register with disp
								   Case 3:  (, <index>)       --- no base register;
								   no disp (must add 32bit 0 disp). */
								i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
								i.rm.mode = 0;		/* 32bit mode */
								i.bi.base = NO_BASE_REGISTER;
								i.types[o] &= ~Disp;
								i.types[o] |= Disp32;	/* Must be 32bit! */
								if (i.index_reg) {		/* case 2 or case 3 */
									i.bi.index = i.index_reg->reg_num;
									i.bi.scale = i.log2_scale_factor;
									if (i.disp_operands == 0)
									    fake_zero_displacement = 1; /* case 3 */
								} else {
									i.bi.index = NO_INDEX_REGISTER;
									i.bi.scale = 0;
								}
							} else if (i.disp_operands && !i.base_reg && !i.index_reg) {
								/* Operand is just <32bit disp> */
								i.rm.regmem = EBP_REG_NUM;
								i.rm.mode = 0;
								i.types[o] &= ~Disp;
								i.types[o] |= Disp32;
							} else {
								/* It's not a special case; rev'em up. */
								i.rm.regmem = i.base_reg->reg_num;
								i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
								if (i.index_reg) {
									i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
									i.bi.base = i.base_reg->reg_num;
									i.bi.index = i.index_reg->reg_num;
									i.bi.scale = i.log2_scale_factor;
									if (i.base_reg == ebp && i.disp_operands == 0) { /* pace */
										fake_zero_displacement = 1;
										i.types[o] |= Disp8;
										i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
									}
								}
							}
							if (fake_zero_displacement) {
								/* Fakes a zero displacement assuming that i.types[o] holds
								   the correct displacement size. */
								exp = &disp_expressions[i.disp_operands++];
								i.disps[o] = exp;
								exp->X_seg = SEG_ABSOLUTE;
								exp->X_add_number = 0;
								exp->X_add_symbol = (symbolS *) 0;
								exp->X_subtract_symbol = (symbolS *) 0;
							}
							
							/* Select the correct segment for the memory operand. */
							if (i.seg) {
								const unsigned int seg_index;
								const seg_entry * default_seg;
								
								if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING) {
									seg_index = (i.rm.mode<<3) | i.bi.base;
									default_seg = two_byte_segment_defaults [seg_index];
								} else {
									seg_index = (i.rm.mode<<3) | i.rm.regmem;
									default_seg = one_byte_segment_defaults [seg_index];
								}
								/* If the specified segment is not the default, use an
								   opcode prefix to select it */
								if (i.seg != default_seg) {
									if (i.prefixes == MAX_PREFIXES) {
										as_bad("%d prefixes given and %s segment override gives too many prefixes",
										       MAX_PREFIXES, i.seg->seg_name);
										return;
									}
									i.prefix[i.prefixes++] = i.seg->seg_prefix;
								}
							}
						}
						
						/* Fill in i.rm.reg or i.rm.regmem field with register operand
						   (if any) based on t->extension_opcode. Again, we must be careful
						   to make sure that segment/control/debug/test registers are coded
						   into the i.rm.reg field. */
						if (i.reg_operands) {
							unsigned int o =
							    (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 :
								(i.types[1] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 1 : 2;
							/* If there is an extension opcode to put here, the register number
							   must be put into the regmem field. */
							if (t->extension_opcode != None)
							    i.rm.regmem = i.regs[o]->reg_num;
							else i.rm.reg = i.regs[o]->reg_num;
							
							/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
							   we must set it to 3 to indicate this is a register operand
							   int the regmem field */
							if (! i.mem_operands) i.rm.mode = 3;
						}
						
						/* Fill in i.rm.reg field with extension opcode (if any). */
						if (t->extension_opcode != None)
						    i.rm.reg = t->extension_opcode;
					}
				}
			}
		}
	
	/* Handle conversion of 'int $3' --> special int3 insn. */
	if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3) {
		t->base_opcode = INT3_OPCODE;
		i.imm_operands = 0;
	}
	
	/* We are ready to output the insn. */
	{
		register char * p;
		
		/* Output jumps. */
		if (t->opcode_modifier & Jump) {
			int n = i.disps[0]->X_add_number;
			
			switch (i.disps[0]->X_seg) {
			case SEG_ABSOLUTE:
				if (FITS_IN_SIGNED_BYTE (n)) {
					p = frag_more (2);
					p[0] = t->base_opcode;
					p[1] = n;
#if 0 /* leave out 16 bit jumps - pace */
				} else if (FITS_IN_SIGNED_WORD (n)) {
					p = frag_more (4);
					p[0] = WORD_PREFIX_OPCODE;
					p[1] = t->base_opcode;
					md_number_to_chars (&p[2], n, 2);
#endif
				} else {		/* It's an absolute dword displacement. */
					if (t->base_opcode == JUMP_PC_RELATIVE) { /* pace */
						/* unconditional jump */
						p = frag_more (5);
						p[0] = 0xe9;
						md_number_to_chars (&p[1], n, 4);
					} else {
						/* conditional jump */
						p = frag_more (6);
						p[0] = TWO_BYTE_OPCODE_ESCAPE;
						p[1] = t->base_opcode + 0x10;
						md_number_to_chars (&p[2], n, 4);
					}
				}
				break;
			default:
				/* It's a symbol; end frag & setup for relax.
				   Make sure there are 6 chars left in the current frag; if not
				   we'll have to start a new one. */
				/* I caught it failing with obstack_room == 6,
				   so I changed to <=   pace */
				if (obstack_room (&frags) <= 6) {
					frag_wane(frag_now);
					frag_new (0);
				}
				p = frag_more (1);
				p[0] = t->base_opcode;
				frag_var (rs_machine_dependent,
					  6,		/* 2 opcode/prefix + 4 displacement */
					  1,
					  ((unsigned char) *p == JUMP_PC_RELATIVE
					   ? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE)
					   : ENCODE_RELAX_STATE (COND_JUMP, BYTE)),
					  i.disps[0]->X_add_symbol,
					  n, p);
				break;
			}
		} else if (t->opcode_modifier & (JumpByte|JumpDword)) {
			int size = (t->opcode_modifier & JumpByte) ? 1 : 4;
			int n = i.disps[0]->X_add_number;
			
			if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
				FRAG_APPEND_1_CHAR (t->base_opcode);
			} else {
				p = frag_more (2);	/* opcode can be at most two bytes */
				/* put out high byte first: can't use md_number_to_chars! */
				*p++ = (t->base_opcode >> 8) & 0xff;
				*p = t->base_opcode & 0xff;
			}
			
			p =  frag_more (size);
			switch (i.disps[0]->X_seg) {
			case SEG_ABSOLUTE:
				md_number_to_chars (p, n, size);
				if (size == 1 && ! FITS_IN_SIGNED_BYTE (n)) {
					as_bad("loop/jecx only takes byte displacement; %d shortened to %d",
					       n, *p);
				}
				break;
			default:
				fix_new (frag_now, p - frag_now->fr_literal, size,
					 i.disps[0]->X_add_symbol, i.disps[0]->X_subtract_symbol,
					 i.disps[0]->X_add_number, 1, NO_RELOC);
				break;
			}
		} else if (t->opcode_modifier & JumpInterSegment) {
			p =  frag_more (1 + 2 + 4);	/* 1 opcode; 2 segment; 4 offset */
			p[0] = t->base_opcode;
			if (i.imms[1]->X_seg == SEG_ABSOLUTE)
			    md_number_to_chars (p + 1, i.imms[1]->X_add_number, 4);
			else
			    fix_new (frag_now, p + 1 -  frag_now->fr_literal, 4,
				     i.imms[1]->X_add_symbol,
				     i.imms[1]->X_subtract_symbol,
				     i.imms[1]->X_add_number, 0, NO_RELOC);
			if (i.imms[0]->X_seg != SEG_ABSOLUTE)
			    as_bad("can't handle non absolute segment in long call/jmp");
			md_number_to_chars (p + 5, i.imms[0]->X_add_number, 2);
		} else {
			/* Output normal instructions here. */
			register char *q;
			
			/* First the prefix bytes. */
			for (q = i.prefix; q < i.prefix + i.prefixes; q++) {
				p =  frag_more (1);
				md_number_to_chars (p, (unsigned int) *q, 1);
			}
			
			/* Now the opcode; be careful about word order here! */
			if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
				FRAG_APPEND_1_CHAR (t->base_opcode);
			} else if (FITS_IN_UNSIGNED_WORD(t->base_opcode)) {
				p =  frag_more (2);
				/* put out high byte first: can't use md_number_to_chars! */
				*p++ = (t->base_opcode >> 8) & 0xff;
				*p = t->base_opcode & 0xff;
			} else {			/* opcode is either 3 or 4 bytes */
				if (t->base_opcode & 0xff000000) {
					p = frag_more (4);
					*p++ = (t->base_opcode >> 24) & 0xff;
				} else p = frag_more (3);
				*p++ = (t->base_opcode >> 16) & 0xff;
				*p++ = (t->base_opcode >>  8) & 0xff;
				*p =   (t->base_opcode      ) & 0xff;
			}
			
			/* Now the modrm byte and base index byte (if present). */
			if (t->opcode_modifier & Modrm) {
				p =  frag_more (1);
				/* md_number_to_chars (p, i.rm, 1); */
				md_number_to_chars (p, (i.rm.regmem<<0 | i.rm.reg<<3 | i.rm.mode<<6), 1);
				/* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode)
				   ==> need second modrm byte. */
				if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3) {
					p =  frag_more (1);
					/* md_number_to_chars (p, i.bi, 1); */
					md_number_to_chars (p,(i.bi.base<<0 | i.bi.index<<3 | i.bi.scale<<6), 1);
				}
			}
			
			if (i.disp_operands) {
				register unsigned int n;
				
				for (n = 0; n < i.operands; n++) {
					if (i.disps[n]) {
						if (i.disps[n]->X_seg == SEG_ABSOLUTE) {
							if (i.types[n] & (Disp8|Abs8)) {
								p =  frag_more (1);
								md_number_to_chars (p, i.disps[n]->X_add_number, 1);
							} else if (i.types[n] & (Disp16|Abs16)) {
								p =  frag_more (2);
								md_number_to_chars (p, i.disps[n]->X_add_number, 2);
							} else {		/* Disp32|Abs32 */
								p =  frag_more (4);
								md_number_to_chars (p, i.disps[n]->X_add_number, 4);
							}
						} else {			/* not SEG_ABSOLUTE */
							/* need a 32-bit fixup (don't support 8bit non-absolute disps) */
							p =  frag_more (4);
							fix_new (frag_now, p -  frag_now->fr_literal, 4,
								 i.disps[n]->X_add_symbol, i.disps[n]->X_subtract_symbol,
								 i.disps[n]->X_add_number, 0, NO_RELOC);
						}
					}
				}
			}				/* end displacement output */
			
			/* output immediate */
			if (i.imm_operands) {
				register unsigned int n;
				
				for (n = 0; n < i.operands; n++) {
					if (i.imms[n]) {
						if (i.imms[n]->X_seg == SEG_ABSOLUTE) {
							if (i.types[n] & (Imm8|Imm8S)) {
								p =  frag_more (1);
								md_number_to_chars (p, i.imms[n]->X_add_number, 1);
							} else if (i.types[n] & Imm16) {
								p =  frag_more (2);
								md_number_to_chars (p, i.imms[n]->X_add_number, 2);
							} else {
								p =  frag_more (4);
								md_number_to_chars (p, i.imms[n]->X_add_number, 4);
							}
						} else {			/* not SEG_ABSOLUTE */
							/* need a 32-bit fixup (don't support 8bit non-absolute ims) */
							/* try to support other sizes ... */
							int size;
							if (i.types[n] & (Imm8|Imm8S))
							    size = 1;
							else if (i.types[n] & Imm16)
							    size = 2;
							else
							    size = 4;
							p = frag_more (size);
							fix_new (frag_now, p - frag_now->fr_literal, size,
								 i.imms[n]->X_add_symbol, i.imms[n]->X_subtract_symbol,
								 i.imms[n]->X_add_number, 0, NO_RELOC);
						}
					}
				}
			}				/* end immediate output */
		}
		
#ifdef DEBUG386
		if (flagseen ['D']) {
			pi (line, &i);
		}
#endif /* DEBUG386 */
		
	}
	return;
}

/* Parse OPERAND_STRING into the i386_insn structure I.  Returns non-zero
   on error. */

static int i386_operand (operand_string)
char *operand_string;
{
	register char *op_string = operand_string;
	
	/* Address of '\0' at end of operand_string. */
	char * end_of_operand_string = operand_string + strlen(operand_string);
	
	/* Start and end of displacement string expression (if found). */
	char * displacement_string_start = 0;
	char * displacement_string_end;
	
	/* We check for an absolute prefix (differentiating,
	   for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
	if (*op_string == ABSOLUTE_PREFIX) {
		op_string++;
		i.types[this_operand] |= JumpAbsolute;
	}
	
	/* Check if operand is a register. */
	if (*op_string == REGISTER_PREFIX) {
		register reg_entry * r;
		if (! (r = parse_register (op_string))) {
			as_bad("bad register name ('%s')", op_string);
			return 0;
		}
		/* Check for segment override, rather than segment register by
		   searching for ':' after %<x>s where <x> = s, c, d, e, f, g. */
		if ((r->reg_type & (SReg2|SReg3)) && op_string[3] == ':') {
			switch (r->reg_num) {
			case 0:
				i.seg = &es; break;
			case 1:
				i.seg = &cs; break;
			case 2:
				i.seg = &ss; break;
			case 3:
				i.seg = &ds; break;
			case 4:
				i.seg = &fs; break;
			case 5:
				i.seg = &gs; break;
			}
			op_string += 4;		/* skip % <x> s : */
			operand_string = op_string; /* Pretend given string starts here. */
			if (!is_digit_char(*op_string) && !is_identifier_char(*op_string)
			    && *op_string != '(' && *op_string != ABSOLUTE_PREFIX) {
				as_bad("bad memory operand after segment override");
				return 0;
			}
			/* Handle case of %es:*foo. */
			if (*op_string == ABSOLUTE_PREFIX) {
				op_string++;
				i.types[this_operand] |= JumpAbsolute;
			}
			goto do_memory_reference;
		}
		i.types[this_operand] |= r->reg_type;
		i.regs[this_operand] = r;
		i.reg_operands++;
	} else if (*op_string == IMMEDIATE_PREFIX) { /* ... or an immediate */
		char * save_input_line_pointer;
		register expressionS *exp;
		segT exp_seg;
		if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) {
			as_bad("only 1 or 2 immediate operands are allowed");
			return 0;
		}
		exp = &im_expressions[i.imm_operands++];
		i.imms [this_operand] = exp;
		save_input_line_pointer = input_line_pointer;
		input_line_pointer = ++op_string;        /* must advance op_string! */
		exp_seg = expression (exp);
		input_line_pointer = save_input_line_pointer;
		switch (exp_seg) {
		case SEG_ABSENT:    /* missing or bad expr becomes absolute 0 */
			as_bad("missing or invalid immediate expression '%s' taken as 0",
			       operand_string);
			exp->X_seg = SEG_ABSOLUTE;
			exp->X_add_number = 0;
			exp->X_add_symbol = (symbolS *) 0;
			exp->X_subtract_symbol = (symbolS *) 0;
			i.types[this_operand] |= Imm;
			break;
		case SEG_ABSOLUTE:
			i.types[this_operand] |= SMALLEST_IMM_TYPE (exp->X_add_number);
			break;
		case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN:
			i.types[this_operand] |= Imm32; /* this is an address ==> 32bit */
			break;
		default:
		seg_unimplemented:
			as_bad("Unimplemented segment type %d in parse_operand", exp_seg);
			return 0;
		}
		/* shorten this type of this operand if the instruction wants
		 * fewer bits than are present in the immediate.  The bit field
		 * code can put out 'andb $0xffffff, %al', for example.   pace
		 * also 'movw $foo,(%eax)'
		 */
		switch (i.suffix) {
		case WORD_OPCODE_SUFFIX:
			i.types[this_operand] |= Imm16;
			break;
		case BYTE_OPCODE_SUFFIX:
			i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
			break;
		}
	} else if (is_digit_char(*op_string) || is_identifier_char(*op_string)
		   || *op_string == '(') {
		/* This is a memory reference of some sort. */
		register char * base_string;
		unsigned int found_base_index_form;
		
	do_memory_reference:
		if (i.mem_operands == MAX_MEMORY_OPERANDS) {
			as_bad("more than 1 memory reference in instruction");
			return 0;
		}
		i.mem_operands++;
		
		/* Determine type of memory operand from opcode_suffix;
		   no opcode suffix implies general memory references. */
		switch (i.suffix) {
		case BYTE_OPCODE_SUFFIX:
			i.types[this_operand] |= Mem8;
			break;
		case WORD_OPCODE_SUFFIX:
			i.types[this_operand] |= Mem16;
			break;
		case DWORD_OPCODE_SUFFIX:
		default:
			i.types[this_operand] |= Mem32;
		}
		
		/*  Check for base index form.  We detect the base index form by
		    looking for an ')' at the end of the operand, searching
		    for the '(' matching it, and finding a REGISTER_PREFIX or ','
		    after it. */
		base_string = end_of_operand_string - 1;
		found_base_index_form = 0;
		if (*base_string == ')') {
			unsigned int parens_balenced = 1;
			/* We've already checked that the number of left & right ()'s are equal,
			   so this loop will not be infinite. */
			do {
				base_string--;
				if (*base_string == ')') parens_balenced++;
				if (*base_string == '(') parens_balenced--;
			} while (parens_balenced);
			base_string++;			/* Skip past '('. */
			if (*base_string == REGISTER_PREFIX || *base_string == ',')
			    found_base_index_form = 1;
		}
		
		/* If we can't parse a base index register expression, we've found
		   a pure displacement expression.  We set up displacement_string_start
		   and displacement_string_end for the code below. */
		if (! found_base_index_form) {
			displacement_string_start = op_string;
			displacement_string_end = end_of_operand_string;
		} else {
			char *base_reg_name, *index_reg_name, *num_string;
			int num;
			
			i.types[this_operand] |= BaseIndex;
			
			/* If there is a displacement set-up for it to be parsed later. */
			if (base_string != op_string + 1) {
				displacement_string_start = op_string;
				displacement_string_end = base_string - 1;
			}
			
			/* Find base register (if any). */
			if (*base_string != ',') {
				base_reg_name = base_string++;
				/* skip past register name & parse it */
				while (isalpha(*base_string)) base_string++;
				if (base_string == base_reg_name+1) {
					as_bad("can't find base register name after '(%c'",
					       REGISTER_PREFIX);
					return 0;
				}
				END_STRING_AND_SAVE (base_string);
				if (! (i.base_reg = parse_register (base_reg_name))) {
					as_bad("bad base register name ('%s')", base_reg_name);
					return 0;
				}
				RESTORE_END_STRING (base_string);
			}
			
			/* Now check seperator; must be ',' ==> index reg
			   OR num ==> no index reg. just scale factor
			   OR ')' ==> end. (scale factor = 1) */
			if (*base_string != ',' && *base_string != ')') {
				as_bad("expecting ',' or ')' after base register in `%s'",
				       operand_string);
				return 0;
			}
			
			/* There may index reg here; and there may be a scale factor. */
			if (*base_string == ',' && *(base_string+1) == REGISTER_PREFIX) {
				index_reg_name = ++base_string;
				while (isalpha(*++base_string));
				END_STRING_AND_SAVE (base_string);
				if (! (i.index_reg = parse_register(index_reg_name))) {
					as_bad("bad index register name ('%s')", index_reg_name);
					return 0;
				}
				RESTORE_END_STRING (base_string);
			}
			
			/* Check for scale factor. */
			if (*base_string == ',' && isdigit(*(base_string+1))) {
				num_string = ++base_string;
				while (is_digit_char(*base_string)) base_string++;
				if (base_string == num_string) {
					as_bad("can't find a scale factor after ','");
					return 0;
				}
				END_STRING_AND_SAVE (base_string);
				/* We've got a scale factor. */
				if (! sscanf (num_string, "%d", &num)) {
					as_bad("can't parse scale factor from '%s'", num_string);
					return 0;
				}
				RESTORE_END_STRING (base_string);
				switch (num) {	/* must be 1 digit scale */
				case 1: i.log2_scale_factor = 0; break;
				case 2: i.log2_scale_factor = 1; break;
				case 4: i.log2_scale_factor = 2; break;
				case 8: i.log2_scale_factor = 3; break;
				default:
					as_bad("expecting scale factor of 1, 2, 4, 8; got %d", num);
					return 0;
				}
			} else {
				if (! i.index_reg && *base_string == ',') {
					as_bad("expecting index register or scale factor after ','; got '%c'",
					       *(base_string+1));
					return 0;
				}
			}
		}
		
		/* If there's an expression begining the operand, parse it,
		   assuming displacement_string_start and displacement_string_end
		   are meaningful. */
		if (displacement_string_start) {
			register expressionS * exp;
			segT exp_seg;
			char * save_input_line_pointer;
			exp = &disp_expressions[i.disp_operands];
			i.disps [this_operand] = exp;
			i.disp_operands++;
			save_input_line_pointer = input_line_pointer;
			input_line_pointer = displacement_string_start;
			END_STRING_AND_SAVE (displacement_string_end);
			exp_seg = expression (exp);
			if(*input_line_pointer)
			    as_bad("Ignoring junk '%s' after expression",input_line_pointer);
			RESTORE_END_STRING (displacement_string_end);
			input_line_pointer = save_input_line_pointer;
			switch (exp_seg) {
			case SEG_ABSENT:
				/* missing expr becomes absolute 0 */
				as_bad("missing or invalid displacement '%s' taken as 0",
				       operand_string);
				i.types[this_operand] |= (Disp|Abs);
				exp->X_seg = SEG_ABSOLUTE;
				exp->X_add_number = 0;
				exp->X_add_symbol = (symbolS *) 0;
				exp->X_subtract_symbol = (symbolS *) 0;
				break;
			case SEG_ABSOLUTE:
				i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number);
				break;
			case SEG_TEXT: case SEG_DATA: case SEG_BSS:
			case SEG_UNKNOWN:	/* must be 32 bit displacement (i.e. address) */
				i.types[this_operand] |= Disp32;
				break;
			default:
				goto seg_unimplemented;
			}
		}
		
		/* Make sure the memory operand we've been dealt is valid. */
		if (i.base_reg && i.index_reg &&
		    ! (i.base_reg->reg_type & i.index_reg->reg_type & Reg)) {
			as_bad("register size mismatch in (base,index,scale) expression");
			return 0;
		}
		if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) ||
		    (i.index_reg && (i.index_reg->reg_type & Reg32) == 0)) {
			as_bad("base/index register must be 32 bit register");
			return 0;
		}
		if (i.index_reg && i.index_reg == esp) {
			as_bad("%s may not be used as an index register", esp->reg_name);
			return 0;
		}
	} else {			/* it's not a memory operand; argh! */
		as_bad("invalid char %s begining %s operand '%s'",
		       output_invalid(*op_string), ordinal_names[this_operand],
		       op_string);
		return 0;
	}
	return 1;			/* normal return */
}

/*
 *			md_estimate_size_before_relax()
 *
 * Called just before relax().
 * Any symbol that is now undefined will not become defined.
 * Return the correct fr_subtype in the frag.
 * Return the initial "guess for fr_var" to caller.
 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
 * Although it may not be explicit in the frag, pretend fr_var starts with a
 * 0 value.
 */
int
    md_estimate_size_before_relax (fragP, segment)
register fragS *	fragP;
register segT	segment;
{
	register unsigned char *	opcode;
	register int		old_fr_fix;
	
	old_fr_fix = fragP -> fr_fix;
	opcode = (unsigned char *) fragP -> fr_opcode;
	/* We've already got fragP->fr_subtype right;  all we have to do is check
	   for un-relaxable symbols. */
	if (S_GET_SEGMENT(fragP -> fr_symbol) != segment) {
		/* symbol is undefined in this segment */
		switch (opcode[0]) {
		case JUMP_PC_RELATIVE:	/* make jmp (0xeb) a dword displacement jump */
			opcode[0] = 0xe9;		/* dword disp jmp */
			fragP -> fr_fix += 4;
			fix_new (fragP, old_fr_fix, 4,
				 fragP -> fr_symbol,
				 (symbolS *) 0,
				 fragP -> fr_offset, 1, NO_RELOC);
			break;
			
		default:
			/* This changes the byte-displacement jump 0x7N -->
			   the dword-displacement jump 0x0f8N */
			opcode[1] = opcode[0] + 0x10;
			opcode[0] = TWO_BYTE_OPCODE_ESCAPE;		/* two-byte escape */
			fragP -> fr_fix += 1 + 4;	/* we've added an opcode byte */
			fix_new (fragP, old_fr_fix + 1, 4,
				 fragP -> fr_symbol,
				 (symbolS *) 0,
				 fragP -> fr_offset, 1, NO_RELOC);
			break;
		}
		frag_wane (fragP);
	}
	return (fragP -> fr_var + fragP -> fr_fix - old_fr_fix);
}				/* md_estimate_size_before_relax() */

/*
 *			md_convert_frag();
 *
 * Called after relax() is finished.
 * In:	Address of frag.
 *	fr_type == rs_machine_dependent.
 *	fr_subtype is what the address relaxed to.
 *
 * Out:	Any fixSs and constants are set up.
 *	Caller will turn frag into a ".space 0".
 */
void
    md_convert_frag (headers, fragP)
object_headers *headers;
register fragS *	fragP;
{
	register unsigned char * opcode;
	unsigned char * where_to_put_displacement;
	unsigned int target_address, opcode_address;
	unsigned int extension;
	int displacement_from_opcode_start;
	
	opcode = (unsigned char *) fragP -> fr_opcode;
	
	/* Address we want to reach in file space. */
	target_address = S_GET_VALUE(fragP->fr_symbol) + fragP->fr_offset;
	
	/* Address opcode resides at in file space. */
	opcode_address = fragP->fr_address + fragP->fr_fix;
	
	/* Displacement from opcode start to fill into instruction. */
	displacement_from_opcode_start = target_address - opcode_address;
	
	switch (fragP->fr_subtype) {
	case ENCODE_RELAX_STATE (COND_JUMP, BYTE):
    case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE):
	/* don't have to change opcode */
	extension = 1;		/* 1 opcode + 1 displacement */
	where_to_put_displacement = &opcode[1];
	break;
	
 case ENCODE_RELAX_STATE (COND_JUMP, WORD):
     opcode[1] = TWO_BYTE_OPCODE_ESCAPE;
	opcode[2] = opcode[0] + 0x10;
	opcode[0] = WORD_PREFIX_OPCODE;
	extension = 4;		/* 3 opcode + 2 displacement */
	where_to_put_displacement = &opcode[3];
	break;
	
 case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD):
     opcode[1] = 0xe9;
	opcode[0] = WORD_PREFIX_OPCODE;
	extension = 3;		/* 2 opcode + 2 displacement */
	where_to_put_displacement = &opcode[2];
	break;
	
 case ENCODE_RELAX_STATE (COND_JUMP, DWORD):
     opcode[1] = opcode[0] + 0x10;
	opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
	extension = 5;		/* 2 opcode + 4 displacement */
	where_to_put_displacement = &opcode[2];
	break;
	
 case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD):
     opcode[0] = 0xe9;
	extension = 4;		/* 1 opcode + 4 displacement */
	where_to_put_displacement = &opcode[1];
	break;
	
 default:
	BAD_CASE(fragP -> fr_subtype);
	break;
}
	/* now put displacement after opcode */
	md_number_to_chars (where_to_put_displacement,
			    displacement_from_opcode_start - extension,
			    SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
	fragP -> fr_fix += extension;
}


int md_short_jump_size = 2;	/* size of byte displacement jmp */
int md_long_jump_size  = 5;	/* size of dword displacement jmp */
int md_reloc_size = 8;		/* Size of relocation record */

void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
char	*ptr;
long	from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
	long offset;
	
	offset = to_addr - (from_addr + 2);
	md_number_to_chars (ptr, (long) 0xeb, 1); /* opcode for byte-disp jump */
	md_number_to_chars (ptr + 1, offset, 1);
}

void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
char	*ptr;
long	from_addr, to_addr;
fragS	*frag;
symbolS	*to_symbol;
{
	long offset;
	
	if (flagseen['m']) {
		offset = to_addr - S_GET_VALUE(to_symbol);
		md_number_to_chars (ptr, 0xe9, 1); /* opcode for long jmp */
		md_number_to_chars (ptr + 1, offset, 4);
		fix_new (frag, (ptr+1) - frag->fr_literal, 4,
			 to_symbol, (symbolS *) 0, (long) 0, 0, NO_RELOC);
	} else {
		offset = to_addr - (from_addr + 5);
		md_number_to_chars(ptr, (long) 0xe9, 1);
		md_number_to_chars(ptr + 1, offset, 4);
	}
}

int
    md_parse_option(argP,cntP,vecP)
char **argP;
int *cntP;
char ***vecP;
{
	return 1;
}

void				/* Knows about order of bytes in address. */
    md_number_to_chars (con, value, nbytes)
char	con [];	/* Return 'nbytes' of chars here. */
long	value;		/* The value of the bits. */
int	nbytes;		/* Number of bytes in the output. */
{
	register char * p = con;
	
	switch (nbytes) {
	case 1:
		p[0] = value & 0xff;
		break;
	case 2:
		p[0] = value & 0xff;
		p[1] = (value >> 8) & 0xff;
		break;
	case 4:
		p[0] = value & 0xff;
		p[1] = (value>>8) & 0xff;
		p[2] = (value>>16) & 0xff;
		p[3] = (value>>24) & 0xff;
		break;
	default:
		BAD_CASE (nbytes);
	}
}


/* Apply a fixup (fixS) to segment data, once it has been determined
   by our caller that we have all the info we need to fix it up. 
   
   On the 386, immediates, displacements, and data pointers are all in
   the same (little-endian) format, so we don't need to care about which
   we are handling.  */

void
    md_apply_fix (fixP, value)
fixS * fixP;		/* The fix we're to put in */
long	value;		/* The value of the bits. */
{
	register char * p = fixP->fx_where + fixP->fx_frag->fr_literal;
	
	switch (fixP->fx_size) {
	case 1:
		*p = value;
		break;
	case 2:
		*p++ = value;
		*p = (value>>8);
		break;
	case 4:
		*p++ = value;
		*p++ = (value>>8);
		*p++ = (value>>16);
		*p = (value>>24);
		break;
	default:
		BAD_CASE (fixP->fx_size);
	}
}

long			/* Knows about the byte order in a word. */
    md_chars_to_number (con, nbytes)
unsigned     char	con[];	/* Low order byte 1st. */
int	nbytes;		/* Number of bytes in the input. */
{
	long	retval;
	for (retval=0, con+=nbytes-1; nbytes--; con--)
	    {
		    retval <<= BITS_PER_CHAR;
		    retval |= *con;
	    }
	return retval;
}

/* Not needed for coff since relocation structure does not 
   contain bitfields. */
#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
#ifdef comment
/* Output relocation information in the target's format.  */
void
    md_ri_to_chars(the_bytes, ri)
char *the_bytes;
struct reloc_info_generic *ri;
{
	/* this is easy */
	md_number_to_chars(the_bytes, ri->r_address, 4);
	/* now the fun stuff */
	the_bytes[6] = (ri->r_symbolnum >> 16) & 0x0ff;
	the_bytes[5] = (ri->r_symbolnum >> 8) & 0x0ff;
	the_bytes[4] = ri->r_symbolnum & 0x0ff;
	the_bytes[7] = (((ri->r_extern << 3)  & 0x08) | ((ri->r_length << 1) & 0x06) | 
			((ri->r_pcrel << 0)  & 0x01)) & 0x0F; 
}
#endif /* comment */

void tc_aout_fix_to_chars(where, fixP, segment_address_in_file)
char *where;
fixS *fixP;
relax_addressT segment_address_in_file;
{
	/*
	 * In: length of relocation (or of address) in chars: 1, 2 or 4.
	 * Out: GNU LD relocation length code: 0, 1, or 2.
	 */
	
	static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
	long r_index;
	
	know(fixP->fx_addsy != NULL);
	
	r_index = (S_IS_DEFINED(fixP->fx_addsy)
		   ? S_GET_TYPE(fixP->fx_addsy)
		   : fixP->fx_addsy->sy_number);
	
	/* this is easy */
	md_number_to_chars(where,
			   fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
			   4);
	
	/* now the fun stuff */
	where[4] = r_index  & 0x0ff;
	where[5] = (r_index >> 8) & 0x0ff;
	where[6] = (r_index >> 16) & 0x0ff;
	where[7] = ((((!S_IS_DEFINED(fixP->fx_addsy)) << 3)  & 0x08)
		    | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
		    | ((fixP->fx_pcrel << 0) & 0x01) & 0x0f);
	
	return;
} /* tc_aout_fix_to_chars() */

#endif /* OBJ_AOUT or OBJ_BOUT */


#define MAX_LITTLENUMS 6

/* Turn the string pointed to by litP into a floating point constant of type
   type, and emit the appropriate bytes.  The number of LITTLENUMS emitted
   is stored in *sizeP .  An error message is returned, or NULL on OK.
   */
char *
    md_atof(type,litP,sizeP)
char type;
char *litP;
int *sizeP;
{
	int	prec;
	LITTLENUM_TYPE words[MAX_LITTLENUMS];
	LITTLENUM_TYPE *wordP;
	char	*t;
	
	switch(type) {
	case 'f':
	case 'F':
		prec = 2;
		break;
		
	case 'd':
	case 'D':
		prec = 4;
		break;
		
	case 'x':
	case 'X':
		prec = 5;
		break;
		
	default:
		*sizeP=0;
		return "Bad call to md_atof ()";
	}
	t = atof_ieee (input_line_pointer,type,words);
	if(t)
	    input_line_pointer=t;
	
	*sizeP = prec * sizeof(LITTLENUM_TYPE);
	/* this loops outputs the LITTLENUMs in REVERSE order; in accord with
	   the bigendian 386 */
	for(wordP = words + prec - 1;prec--;) {
		md_number_to_chars (litP, (long) (*wordP--), sizeof(LITTLENUM_TYPE));
		litP += sizeof(LITTLENUM_TYPE);
	}
	return "";	/* Someone should teach Dean about null pointers */
}

char output_invalid_buf[8];

static char * output_invalid (c)
char c;
{
	if (isprint(c)) sprintf (output_invalid_buf, "'%c'", c);
	else sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
	return output_invalid_buf;
}

static reg_entry *parse_register (reg_string)
char *reg_string;          /* reg_string starts *before* REGISTER_PREFIX */
{
	register char *s = reg_string;
	register char *p;
	char reg_name_given[MAX_REG_NAME_SIZE];
	
	s++;				/* skip REGISTER_PREFIX */
	for (p = reg_name_given; is_register_char (*s); p++, s++) {
		*p = register_chars [*s];
		if (p >= reg_name_given + MAX_REG_NAME_SIZE)
		    return (reg_entry *) 0;
	}
	*p = '\0';
	return (reg_entry *) hash_find (reg_hash, reg_name_given);
}


/* We have no need to default values of symbols.  */

/* ARGSUSED */
symbolS *
    md_undefined_symbol (name)
char *name;
{
	return 0;
}

/* Parse an operand that is machine-specific.  
   We just return without modifying the expression if we have nothing
   to do.  */

/* ARGSUSED */
void
    md_operand (expressionP)
expressionS *expressionP;
{
}

/* Round up a section size to the appropriate boundary.  */
long
    md_section_align (segment, size)
segT segment;
long size;
{
	return size;		/* Byte alignment is fine */
}

/* Exactly what point is a PC-relative offset relative TO?
   On the i386, they're relative to the address of the offset, plus
   its size. (??? Is this right?  FIXME-SOON!) */
long
    md_pcrel_from (fixP)
fixS *fixP;
{
	return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}

/*
 * $Log$
 * Revision 1.9  1992/02/13 08:32:36  rich
 * White space and comments only.  The devo tree prior to this delta is
 * tagged as "vanilla" for your convenience.
 *
 * There are also some comment changes.
 *
 * Revision 1.8  1991/12/01  07:11:28  sac
 * More filename renaming.
 *
 * Revision 1.7  1991/11/04  00:54:41  steve
 * Change from bub kukara - puits the index into the right place for a
 * reloc
 *
 * Revision 1.6  1991/08/14  00:25:52  rich
 * * no more relocation_info structures.  We now squirt directly from
 *   fixS's.
 *
 * * i960-bout and i960-coff "tested" against their predecessors.
 *
 * Revision 1.5  1991/07/27  02:32:37  rich
 * Polishing m68k support.
 *
 * Revision 1.4  1991/06/14  14:02:17  rich
 * Version 2 GPL.
 *
 * Revision 1.3  1991/04/12  05:32:42  rich
 * Fixed a comment problem.
 *
 * Revision 1.2  1991/04/08  15:49:45  rich
 * CROSS_ASSEMBLE becomes CROSS_COMPILE to make config simpler.  i386
 * support for aout now tested against an installed customers sun4 cross.
 * Added REVERSE_SORT_RELOCS.
 *
 * Revision 1.1.1.1  1991/04/04  18:16:44  rich
 * new gas main line
 *
 * Revision 1.1  1991/04/04  18:16:41  rich
 * Initial revision
 *
 * Revision 1.2  1991/03/30  17:11:30  rich
 * Updated md_create_short_jump calling protocol.
 *
 *
 */

/*
 * Local Variables:
 * comment-column: 0
 * End:
 */

/* end of tc-i386.c */