aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-dvp.c
blob: 06b516c5263a04efa194d65fba93f3b7170e69b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
/* tc-dvp.c -- Assembler for the DVP
   Copyright (C) 1997, 1998 Free Software Foundation.

   This file is part of GAS, the GNU Assembler.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
/* Needed by opcode/dvp.h.  */
#include "dis-asm.h"
#include "opcode/dvp.h"
#include "elf/mips.h"

static DVP_INSN dvp_insert_operand
     PARAMS ((DVP_INSN, dvp_cpu, const dvp_operand *,
	      int, offsetT, char *, unsigned int));

const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "!";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";

/* Non-zero if in vu-mode.  */
static int vu_mode_p;

/* Non-zero if packing pke instructions in dma tags.  */
static int dma_pack_pke_p;

const char *md_shortopts = "";

struct option md_longopts[] =
{
  /* insert options here */

  {NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);       

int
md_parse_option (c, arg)
     int c;
     char *arg;
{
  return 0;
}

void
md_show_usage (stream)
  FILE *stream;
{
#if 0
  fprintf (stream, "TX VU options:\n");
#endif
} 

/* Set by md_assemble for use by dvp_fill_insn.  */
static subsegT prev_subseg;
static segT prev_seg;

static void s_dmadata PARAMS ((int));
static void s_dmapackpke PARAMS ((int));
static void s_enddirect PARAMS ((int));
static void s_endgpuif PARAMS ((int));
static void s_endmpg PARAMS ((int));
static void s_endunpack PARAMS ((int));
static void s_vu PARAMS ((int));

/* The target specific pseudo-ops which we support.  */
const pseudo_typeS md_pseudo_table[] =
{
    { "dmadata", s_dmadata, 1 },
    { "dmapackpke", s_dmapackpke, 0 },
    { "enddirect", s_enddirect, 0 },
    { "enddmadata", s_dmadata, 0 },
    { "endgpuif", s_endgpuif, 0 },
    { "endmpg", s_endmpg, 0 },
    { "endunpack", s_endunpack, 0 },
    /* .vu,.endvu added to simplify debugging */
    { "vu", s_vu, 1 },
    { "endvu", s_vu, 0 },
    { NULL, NULL, 0 }
};

void
md_begin ()
{
  flagword applicable;
  segT seg;
  subsegT subseg;

  /* Save the current subseg so we can restore it [it's the default one and
     we don't want the initial section to be .sbss.  */
  seg = now_seg;
  subseg = now_subseg;

  subseg_set (seg, subseg);

  /* Initialize the opcode tables.
     This involves computing the hash chains.  */
  dvp_opcode_init_tables (0);

  vu_mode_p = 0;
  dma_pack_pke_p = 0;
}

/* We need to keep a list of fixups.  We can't simply generate them as
   we go, because that would require us to first create the frag, and
   that would screw up references to ``.''.  */

struct dvp_fixup
{
  /* index into `dvp_operands' */
  int opindex;
  expressionS exp;
};

#define MAX_FIXUPS 5

static int fixup_count;
static struct dvp_fixup fixups[MAX_FIXUPS];

/* Given a cpu type and operand number, return a temporary reloc type
   for use in generating the fixup that encodes the cpu type and operand.  */
static int encode_fixup_reloc_type PARAMS ((dvp_cpu, int));
/* Given an encoded fixup reloc type, decode it into cpu and operand.  */
static void decode_fixup_reloc_type PARAMS ((int, dvp_cpu *,
					     const dvp_operand **));

static void assemble_dma PARAMS ((char *));
static void assemble_gpuif PARAMS ((char *));
static void assemble_pke PARAMS ((char *));
static void assemble_vu PARAMS ((char *));
static const dvp_opcode * assemble_vu_insn PARAMS ((dvp_cpu,
						    const dvp_opcode *,
						    const dvp_operand *,
						    char **, char *));
static const dvp_opcode * assemble_one_insn PARAMS ((dvp_cpu,
						     const dvp_opcode *,
						     const dvp_operand *,
						     char **, DVP_INSN *));

/* Main entry point for assembling an instruction.  */

void
md_assemble (str)
     char *str;
{
  /* Skip leading white space.  */
  while (isspace (*str))
    str++;

  if (! vu_mode_p)
    {
      if (strncasecmp (str, "dma", 3) == 0)
	assemble_dma (str);
      else if (strncasecmp (str, "gpuif", 5) == 0)
	assemble_gpuif (str);
      else
	assemble_pke (str);
    }
  else
    assemble_vu (str);
}

/* Subroutine of md_assemble to assemble DMA instructions.  */

static void
assemble_dma (str)
     char *str;
{
  DVP_INSN insn_buf[4];
  const dvp_opcode *opcode;

  opcode = assemble_one_insn (DVP_DMA,
			      dma_opcode_lookup_asm (str), dma_operands,
			      &str, insn_buf);
  if (opcode == NULL)
    return;
}

/* Subroutine of md_assemble to assemble PKE instructions.  */

static void
assemble_pke (str)
     char *str;
{
  /* Space for the instruction.
     The variable length insns can require much more space than this.
     It is allocated later, when we know we have such an insn.  */
  DVP_INSN insn_buf[5];
  /* Insn's length, in 32 bit words.  */
  int len;
  /* Pointer to allocated frag.  */
  char *f;
  int i;
  const dvp_opcode *opcode;

  opcode = assemble_one_insn (DVP_PKE,
			      pke_opcode_lookup_asm (str), pke_operands,
			      &str, insn_buf);
  if (opcode == NULL)
    return;

  if (opcode->flags & PKE_OPCODE_LENVAR)
    {
      /* Call back into the parser's state to get the insn's length.
	 This is just the length of the insn, not of any following data.
	 The result 0 if the length is unknown.  */
      len = pke_len ();
      /* FIXME: not done yet */
    }
  else if (opcode->flags & PKE_OPCODE_LEN2)
    len = 2;
  else if (opcode->flags & PKE_OPCODE_LEN5)
    len = 5;
  else
    len = 1;

  f = frag_more (len * 4);

  /* Write out the instruction.
     Reminder: it is important to fetch enough space in one call to
     `frag_more'.  We use (f - frag_now->fr_literal) to compute where
     we are and we don't want frag_now to change between calls.  */
  for (i = 0; i < len; ++i)
    md_number_to_chars (f + i * 4, insn_buf[i], 4);

  /* Create any fixups.  */
  /* FIXME: It might eventually be possible to combine all the various
     copies of this bit of code.  */
  for (i = 0; i < fixup_count; ++i)
    {
      int op_type, reloc_type;
      const dvp_operand *operand;

      /* Create a fixup for this operand.
	 At this point we do not use a bfd_reloc_code_real_type for
	 operands residing in the insn, but instead just use the
	 operand index.  This lets us easily handle fixups for any
	 operand type, although that is admittedly not a very exciting
	 feature.  We pick a BFD reloc type in md_apply_fix.  */

      op_type = fixups[i].opindex;
      reloc_type = encode_fixup_reloc_type (DVP_PKE, op_type);
      operand = &pke_operands[op_type];
      fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
		   &fixups[i].exp,
		   (operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0,
		   (bfd_reloc_code_real_type) reloc_type);
    }
}

/* Subroutine of md_assemble to assemble GPUIF instructions.  */

static void
assemble_gpuif (str)
     char *str;
{
  DVP_INSN insn_buf[4];
  const dvp_opcode *opcode;

  opcode = assemble_one_insn (DVP_GPUIF,
			      gpuif_opcode_lookup_asm (str), gpuif_operands,
			      &str, insn_buf);
  if (opcode == NULL)
    return;
}

/* Subroutine of md_assemble to assemble VU instructions.  */

static void
assemble_vu (str)
     char *str;
{
  /* The lower instruction has the lower address.
     Handle this by grabbing 8 bytes now, and then filling each word
     as appropriate.  */
  char *f = frag_more (8);
  const dvp_opcode *opcode;

#ifdef VERTICAL_BAR_SEPARATOR
  char *p = strchr (str, '|');

  if (p == NULL)
    {
      as_bad ("lower slot missing in `%s'", str);
      return;
    }

  *p = 0;
  opcode = assemble_vu_insn (DVP_VUUP,
			     vu_upper_opcode_lookup_asm (str), vu_operands,
			     &str, f + 4);
  *p = '|';
  if (opcode == NULL)
    return;
  str = p + 1;
  assemble_vu_insn (DVP_VULO,
		    vu_lower_opcode_lookup_asm (str), vu_operands,
		    &str, f);
#else
  opcode = assemble_vu_insn (DVP_VUUP,
			     vu_upper_opcode_lookup_asm (str), vu_operands,
			     &str, f + 4);
  /* Don't assemble next one if we couldn't assemble the first.  */
  if (opcode)
    assemble_vu_insn (DVP_VULO,
		      vu_lower_opcode_lookup_asm (str), vu_operands,
		      &str, f);
#endif
}

static const dvp_opcode *
assemble_vu_insn (cpu, opcode, operand_table, pstr, buf)
     dvp_cpu cpu;
     const dvp_opcode *opcode;
     const dvp_operand *operand_table;
     char **pstr;
     char *buf;
{
  int i;
  DVP_INSN insn;

  opcode = assemble_one_insn (cpu, opcode, operand_table, pstr, &insn);
  if (opcode == NULL)
    return NULL;

  /* Write out the instruction.
     Reminder: it is important to fetch enough space in one call to
     `frag_more'.  We use (f - frag_now->fr_literal) to compute where
     we are and we don't want frag_now to change between calls.  */
  md_number_to_chars (buf, insn, 4);

  /* Create any fixups.  */
  for (i = 0; i < fixup_count; ++i)
    {
      int op_type, reloc_type;
      const dvp_operand *operand;

      /* Create a fixup for this operand.
	 At this point we do not use a bfd_reloc_code_real_type for
	 operands residing in the insn, but instead just use the
	 operand index.  This lets us easily handle fixups for any
	 operand type, although that is admittedly not a very exciting
	 feature.  We pick a BFD reloc type in md_apply_fix.  */

      op_type = fixups[i].opindex;
      reloc_type = encode_fixup_reloc_type (cpu, op_type);
      operand = &vu_operands[op_type];
      fix_new_exp (frag_now, buf - frag_now->fr_literal, 4,
		   &fixups[i].exp,
		   (operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0,
		   (bfd_reloc_code_real_type) reloc_type);
    }

  /* All done.  */
  return opcode;
}

/* Assemble one instruction at *PSTR.
   CPU indicates what component we're assembling for.
   The assembled instruction is stored in INSN_BUF.
   OPCODE is a pointer to the head of the hash chain.

   *PSTR is updated to point passed the parsed instruction.

   If the insn is successfully parsed the result is a pointer to the opcode
   entry that successfully matched and *PSTR is updated to point passed
   the parsed insn.  If an error occurs the result is NULL and *PSTR is left
   at some random point in the string (??? may wish to leave it pointing where
   the error occured).  */

static const dvp_opcode *
assemble_one_insn (cpu, opcode, operand_table, pstr, insn_buf)
     dvp_cpu cpu;
     const dvp_opcode *opcode;
     const dvp_operand *operand_table;
     char **pstr;
     DVP_INSN *insn_buf;
{
  char *start, *str;

  /* Keep looking until we find a match.  */

  start = str = *pstr;
  for ( ; opcode != NULL; opcode = DVP_OPCODE_NEXT_ASM (opcode))
    {
      int past_opcode_p, num_suffixes, num_operands;
      const unsigned char *syn;

      /* Ensure the mnemonic part matches.  */
      for (str = start, syn = opcode->mnemonic; *syn != '\0'; ++str, ++syn)
	if (tolower (*str) != tolower (*syn))
	  break;
      if (*syn != '\0')
	continue;

      /* Scan the syntax string.  If it doesn't match, try the next one.  */

      dvp_opcode_init_parse ();
      *insn_buf = opcode->value;
      fixup_count = 0;
      past_opcode_p = 0;
      num_suffixes = 0;
      num_operands = 0;

      /* We don't check for (*str != '\0') here because we want to parse
	 any trailing fake arguments in the syntax string.  */
      for (/*str = start, */ syn = opcode->syntax; *syn != '\0'; )
	{
	  int mods,index;
	  const dvp_operand *operand;
	  const char *errmsg;

	  /* Non operand chars must match exactly.
	     Operand chars that are letters are not part of symbols
	     and are case insensitive.  */
	  if (*syn < 128)
	    {
	      if (tolower (*str) == tolower (*syn))
		{
		  if (*syn == ' ')
		    past_opcode_p = 1;
		  ++syn;
		  ++str;
		}
	      else
		break;
	      continue;
	    }

	  /* We have a suffix or an operand.  Pick out any modifiers.  */
	  mods = 0;
	  index = DVP_OPERAND_INDEX (*syn);
	  while (DVP_MOD_P (operand_table[index].flags))
	    {
	      mods |= operand_table[index].flags & DVP_MOD_BITS;
	      ++syn;
	      index = DVP_OPERAND_INDEX (*syn);
	    }
	  operand = operand_table + index;

	  if (operand->flags & DVP_OPERAND_FAKE)
	    {
	      if (operand->insert)
		{
		  errmsg = NULL;
		  (*operand->insert) (opcode, operand, mods, insn_buf, 0,
				      &errmsg);
		  /* If we get an error, go on to try the next insn.  */
		  if (errmsg)
		    break;
		}
	      ++syn;
	    }
	  /* Are we finished with suffixes?  */
	  else if (!past_opcode_p)
	    {
	      int found;
	      char c;
	      char *s,*t;
	      long suf_value;

	      if (!(operand->flags & DVP_OPERAND_SUFFIX))
		as_fatal ("bad opcode table, missing suffix flag");

	      /* If we're at a space in the input string, we want to skip the
		 remaining suffixes.  There may be some fake ones though, so
		 just go on to try the next one.  */
	      if (*str == ' ')
		{
		  ++syn;
		  continue;
		}

	      s = str;

	      /* Pick the suffix out and parse it.  */
	      /* ??? Hmmm ... there may not be any need to nul-terminate the
		 string, and it may in fact complicate things.  */
	      for (t = (*s == '.' || *s == '/') ? s + 1 : s;
		   *t && (isalnum (*t) || *t == '[' || *t == ']');
		   ++t)
		continue;
	      c = *t;
	      *t = '\0';
	      errmsg = NULL;
	      suf_value = (*operand->parse) (opcode, operand, mods, &s,
					     &errmsg);
	      *t = c;
	      if (errmsg)
		{
		  /* This can happen, for example, in ARC's in "blle foo" and
		     we're currently using the template "b%q%.n %j".  The "bl"
		     insn occurs later in the table so "lle" isn't an illegal
		     suffix.  */
		  break;
		}
	      /* Insert the suffix's value into the insn.  */
	      if (operand->insert)
		(*operand->insert) (opcode, operand, mods,
				    insn_buf, suf_value, NULL);
	      else
		*insn_buf |= suf_value << operand->shift;

	      str = t;
	      ++syn;
	    }
	  else
	    /* This is an operand, either a register or an expression of
	       some kind.  */
	    {
	      char c;
	      char *hold;
	      long value = 0;
	      expressionS exp;

	      if (operand->flags & DVP_OPERAND_SUFFIX)
		as_fatal ("bad opcode table, suffix wrong");

#if 0 /* commas are in the syntax string now */
	      /* If this is not the first, there must be a comma.  */
	      if (num_operands > 0)
		{
		  if (*str != ',')
		    break;
		  ++str;
		}
#endif

	      /* Is there anything left to parse?
		 We don't check for this at the top because we want to parse
		 any trailing fake arguments in the syntax string.  */
	      /* ??? This doesn't allow operands with a legal value of "".  */
	      if (*str == '\0')
		break;

	      /* Is this the special DMA count operand? */
	      if( operand->flags & DVP_OPERAND_DMA_COUNT)
		  dvp_dma_operand_count( 0);
	      if( (operand->flags & DVP_OPERAND_DMA_COUNT) && *str == '*')
	      {
		  /* Yes, it is!
		  Remember that we must compute the length later
		  when the dma-block label (second operand) is known. */
		  ++*pstr;
		  dvp_dma_operand_count( 1);
	      }

	      /* Parse the operand.  */
	      else if (operand->parse)
		{
		  errmsg = NULL;
		  value = (*operand->parse) (opcode, operand, mods,
					     &str, &errmsg);
		  if (errmsg)
		    break;
		}
	      else
		{
		  hold = input_line_pointer;
		  input_line_pointer = str;
		  expression (&exp);
		  str = input_line_pointer;
		  input_line_pointer = hold;

		  if (exp.X_op == O_illegal
		      || exp.X_op == O_absent)
		    break;
		  else if (exp.X_op == O_constant)
		    value = exp.X_add_number;
		  else if (exp.X_op == O_register)
		    as_fatal ("got O_register");
		  else
		    {
		      /* We need to generate a fixup for this expression.  */
		      if (fixup_count >= MAX_FIXUPS)
			as_fatal ("too many fixups");
		      fixups[fixup_count].exp = exp;
		      fixups[fixup_count].opindex = index;
		      ++fixup_count;
		      value = 0;
		    }
		}

	      /* Insert the register or expression into the instruction.  */
	      if (operand->insert)
		{
		  const char *errmsg = NULL;
		  (*operand->insert) (opcode, operand, mods,
				      insn_buf, value, &errmsg);
		  if (errmsg != (const char *) NULL)
		    break;
		}
	      else
		*insn_buf |= (value & ((1 << operand->bits) - 1)) << operand->shift;

	      ++syn;
	      ++num_operands;
	    }
	}

      /* If we're at the end of the syntax string, we're done.  */
      if (*syn == '\0')
	{
	  int i;

	  /* For the moment we assume a valid `str' can only contain blanks
	     now.  IE: We needn't try again with a longer version of the
	     insn and it is assumed that longer versions of insns appear
	     before shorter ones (eg: lsr r2,r3,1 vs lsr r2,r3).  */

	  while (isspace (*str))
	    ++str;

	  if (*str != '\0'
#ifndef VERTICAL_BAR_SEPARATOR
	      && cpu != DVP_VUUP
#endif
	      )
	    as_bad ("junk at end of line: `%s'", str);

	  /* It's now up to the caller to emit the instruction and any
	     relocations.  */
	  *pstr = str;
	  return opcode;
	}

      /* Try the next entry.  */
    }

  as_bad ("bad instruction `%s'", start);
  return 0;
}

void 
md_operand (expressionP)
     expressionS *expressionP;
{
}

valueT
md_section_align (segment, size)
     segT segment;
     valueT size;
{
  int align = bfd_get_section_alignment (stdoutput, segment);
  return ((size + (1 << align) - 1) & (-1 << align));
}

symbolS *
md_undefined_symbol (name)
  char *name;
{
  return 0;
}

/* Functions concerning relocs.  */

/* Spacing between each cpu type's operand numbers.
   Should be at least as bit as any operand table.  */
#define RELOC_SPACING 256

/* Given a cpu type and operand number, return a temporary reloc type
   for use in generating the fixup that encodes the cpu type and operand
   number.  */

static int
encode_fixup_reloc_type (cpu, opnum)
     dvp_cpu cpu;
     int opnum;
{
  return (int) BFD_RELOC_UNUSED + ((int) cpu * RELOC_SPACING) + opnum;
}

/* Given a fixup reloc type, decode it into cpu type and operand.  */

static void
decode_fixup_reloc_type (fixup_reloc, cpuP, operandP)
     int fixup_reloc;
     dvp_cpu *cpuP;
     const dvp_operand **operandP;
{
  dvp_cpu cpu = (fixup_reloc - (int) BFD_RELOC_UNUSED) / RELOC_SPACING;
  int opnum = (fixup_reloc - (int) BFD_RELOC_UNUSED) % RELOC_SPACING;

  *cpuP = cpu;
  switch (cpu)
    {
    case DVP_VUUP : *operandP = &vu_operands[opnum]; break;
    case DVP_VULO : *operandP = &vu_operands[opnum]; break;
    case DVP_DMA : *operandP = &dma_operands[opnum]; break;
    case DVP_PKE : *operandP = &pke_operands[opnum]; break;
    case DVP_GPUIF : *operandP = &gpuif_operands[opnum]; break;
    default : as_fatal ("bad fixup encoding");
    }
}

/* Given a fixup reloc type, return a pointer to the operand 

/* The location from which a PC relative jump should be calculated,
   given a PC relative reloc.  */

long
md_pcrel_from_section (fixP, sec)
     fixS *fixP;
     segT sec;
{
  if (fixP->fx_addsy != (symbolS *) NULL
      && (! S_IS_DEFINED (fixP->fx_addsy)
	  || S_GET_SEGMENT (fixP->fx_addsy) != sec))
    {
      /* The symbol is undefined (or is defined but not in this section).
	 Let the linker figure it out.  */
      return 0;
    }

  /* FIXME: `& -16L'? */
  return (fixP->fx_frag->fr_address + fixP->fx_where) & -8L;
}

/* Apply a fixup to the object code.  This is called for all the
   fixups we generated by calls to fix_new_exp.  At this point all symbol
   values should be fully resolved, and we attempt to completely resolve the
   reloc.  If we can not do that, we determine the correct reloc code and put
   it back in the fixup.  */

int
md_apply_fix3 (fixP, valueP, seg)
     fixS *fixP;
     valueT *valueP;
     segT seg;
{
  char *where = fixP->fx_frag->fr_literal + fixP->fx_where;
  valueT value;

  /* FIXME FIXME FIXME: The value we are passed in *valueP includes
     the symbol values.  Since we are using BFD_ASSEMBLER, if we are
     doing this relocation the code in write.c is going to call
     bfd_perform_relocation, which is also going to use the symbol
     value.  That means that if the reloc is fully resolved we want to
     use *valueP since bfd_perform_relocation is not being used.
     However, if the reloc is not fully resolved we do not want to use
     *valueP, and must use fx_offset instead.  However, if the reloc
     is PC relative, we do want to use *valueP since it includes the
     result of md_pcrel_from.  This is confusing.  */

  if (fixP->fx_addsy == (symbolS *) NULL)
    {
      value = *valueP;
      fixP->fx_done = 1;
    }
  else if (fixP->fx_pcrel)
    {
      value = *valueP;
    }
  else
    {
      value = fixP->fx_offset;
      if (fixP->fx_subsy != (symbolS *) NULL)
	{
	  if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
	    value -= S_GET_VALUE (fixP->fx_subsy);
	  else
	    {
	      /* We can't actually support subtracting a symbol.  */
	      as_bad_where (fixP->fx_file, fixP->fx_line,
			    "expression too complex");
	    }
	}
    }

  /* Check for dvp operand's.  These are indicated with a reloc value
     >= BFD_RELOC_UNUSED.  */

  if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
    {
      dvp_cpu cpu;
      const dvp_operand *operand;
      DVP_INSN insn;

      decode_fixup_reloc_type ((int) fixP->fx_r_type,
			       & cpu, & operand);

      /* Fetch the instruction, insert the fully resolved operand
	 value, and stuff the instruction back again.  */
      insn = bfd_getl32 ((unsigned char *) where);
      insn = dvp_insert_operand (insn, cpu, operand, -1, (offsetT) value,
				  fixP->fx_file, fixP->fx_line);
      bfd_putl32 ((bfd_vma) insn, (unsigned char *) where);

      if (fixP->fx_done)
	{
	  /* Nothing else to do here.  */
	  return 1;
	}

      /* Determine a BFD reloc value based on the operand information.
	 We are only prepared to turn a few of the operands into relocs.  */
      /* FIXME: This test is a hack.  */
      if ((operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0)
	{
	  assert ((operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0
		  && operand->bits == 11
		  && operand->shift == 0);
	  fixP->fx_r_type = BFD_RELOC_MIPS_DVP_11_PCREL;
	}
      else
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			"unresolved expression that must be resolved");
	  fixP->fx_done = 1;
	  return 1;
	}
    }
  else
    {
      switch (fixP->fx_r_type)
	{
	case BFD_RELOC_8:
	  md_number_to_chars (where, value, 1);
	  break;
	case BFD_RELOC_16:
	  md_number_to_chars (where, value, 2);
	  break;
	case BFD_RELOC_32:
	  md_number_to_chars (where, value, 4);
	  break;
	default:
	  abort ();
	}
    }

  fixP->fx_addnumber = value;

  return 1;
}

/* Translate internal representation of relocation info to BFD target
   format.  */

arelent *
tc_gen_reloc (section, fixP)
     asection *section;
     fixS *fixP;
{
  arelent *reloc;

  reloc = (arelent *) xmalloc (sizeof (arelent));

  reloc->sym_ptr_ptr = &fixP->fx_addsy->bsym;
  reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
  reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
  if (reloc->howto == (reloc_howto_type *) NULL)
    {
      as_bad_where (fixP->fx_file, fixP->fx_line,
		    "internal error: can't export reloc type %d (`%s')",
		    fixP->fx_r_type, bfd_get_reloc_code_name (fixP->fx_r_type));
      return NULL;
    }

  assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);

  reloc->addend = fixP->fx_addnumber;

  return reloc;
}

/* Write a value out to the object file, using the appropriate endianness.  */

void
md_number_to_chars (buf, val, n)
     char *buf;
     valueT val;
     int n;
{
  if (target_big_endian)
    number_to_chars_bigendian (buf, val, n);
  else
    number_to_chars_littleendian (buf, val, n);
}

/* Turn a string in input_line_pointer into a floating point constant of type
   type, and store the appropriate bytes in *litP.  The number of LITTLENUMS
   emitted is stored in *sizeP .  An error message is returned, or NULL on OK.
*/

/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6

char *
md_atof (type, litP, sizeP)
     char type;
     char *litP;
     int *sizeP;
{
  int i,prec;
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  LITTLENUM_TYPE *wordP;
  char *t;
  char *atof_ieee ();

  switch (type)
    {
    case 'f':
    case 'F':
    case 's':
    case 'S':
      prec = 2;
      break;

    case 'd':
    case 'D':
    case 'r':
    case 'R':
      prec = 4;
      break;

   /* FIXME: Some targets allow other format chars for bigger sizes here.  */

    default:
      *sizeP = 0;
      return "Bad call to md_atof()";
    }

  t = atof_ieee (input_line_pointer, type, words);
  if (t)
    input_line_pointer = t;
  *sizeP = prec * sizeof (LITTLENUM_TYPE);

  if (target_big_endian)
    {
      for (i = 0; i < prec; i++)
	{
	  md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
	  litP += sizeof (LITTLENUM_TYPE);
	}
    }
  else
    {
      for (i = prec - 1; i >= 0; i--)
	{
	  md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
	  litP += sizeof (LITTLENUM_TYPE);
	}
    }
     
  return 0;
}

/* Insert an operand value into an instruction.  */

static DVP_INSN
dvp_insert_operand (insn, cpu, operand, mods, val, file, line)
     DVP_INSN insn;
     dvp_cpu cpu;
     const dvp_operand *operand;
     int mods;
     offsetT val;
     char *file;
     unsigned int line;
{
  if (operand->bits != 32)
    {
      long min, max;
      offsetT test;

      if ((operand->flags & DVP_OPERAND_RELATIVE_BRANCH) != 0)
	{
	  if ((val & 7) != 0)
	    {
	      if (file == (char *) NULL)
		as_warn ("branch to misaligned address");
	      else
		as_warn_where (file, line, "branch to misaligned address");
	    }
	  val >>= 3;
	}

      if ((operand->flags & DVP_OPERAND_SIGNED) != 0)
	{
	  if ((operand->flags & DVP_OPERAND_SIGNOPT) != 0)
	    max = (1 << operand->bits) - 1;
	  else
	    max = (1 << (operand->bits - 1)) - 1;
	  min = - (1 << (operand->bits - 1));
	}
      else
	{
	  max = (1 << operand->bits) - 1;
	  min = 0;
	}

      if ((operand->flags & DVP_OPERAND_NEGATIVE) != 0)
	test = - val;
      else
	test = val;

      if (test < (offsetT) min || test > (offsetT) max)
	{
	  const char *err =
	    "operand out of range (%s not between %ld and %ld)";
	  char buf[100];

	  sprint_value (buf, test);
	  if (file == (char *) NULL)
	    as_warn (err, buf, min, max);
	  else
	    as_warn_where (file, line, err, buf, min, max);
	}
    }

  if (operand->insert)
    {
      const char *errmsg = NULL;
      (*operand->insert) (NULL, operand, mods, &insn, (long) val, &errmsg);
      if (errmsg != (const char *) NULL)
	as_warn (errmsg);
    }
  else
    insn |= (((long) val & ((1 << operand->bits) - 1))
	     << operand->shift);

  return insn;
}

static void
  s_dmadata( type)
    int type;
{
    static short state = 0;
    static symbolS *label;		/* Points to symbol */
    char *name;
    const char *prevName;
    int temp;

    switch( type )
    {
    case 1:				/* .DmaData */
	if( state != 0 )
	{
	    as_bad( "DmaData blocks cannot be nested.");
	    ignore_rest_of_line();
	    state = 1;
	    break;
	}
	state = 1;

	SKIP_WHITESPACE();		/* Leading whitespace is part of operand. */
	name = input_line_pointer;

	if( !is_name_beginner( *name) )
	{
	    as_bad( "invalid identifier for \".DmaData\"");
	    obstack_1grow( &cond_obstack, 0);
	    ignore_rest_of_line();
	    break;
	}
	else
	{
	    char c;

	    c = get_symbol_end();
	    line_label = label = colon( name);	  /* user-defined label */
	    *input_line_pointer = c;

	    demand_empty_rest_of_line();
	}				/* if a valid identifyer name */
	break;

    case 0:				/* .EndDmaData */
	if( state != 1 )
	{
	    as_warn( ".EndDmaData encountered outside a DmaData block -- ignored.");
	    ignore_rest_of_line();
	    state = 0;
	    break;
	}
	state = 0;
	demand_empty_rest_of_line();

	/*
	*"label" points to beginning of block
	* Create a name for the final label like _$<name>
	*/
	prevName = label->bsym->name;
	temp = strlen( prevName) + 1;
	name = malloc( temp + 2);
	name[ 0] = '_';
	name[ 1] = '$';
	memcpy( name+2, prevName, temp);    /* copy original name & \0 */
	colon( name);
	free( name);
	break;

    default:
	as_assert( __FILE__, __LINE__, 0);
    }
}

static void
s_dmapackpke( ignore)
    int ignore;
{
    /* Syntax: .dmapackpke 0|1 */
    struct symbol *label;		/* Points to symbol */
    char *name;				/* points to name of symbol */

    SKIP_WHITESPACE();			/* Leading whitespace is part of operand. */
    switch( *input_line_pointer++ )
    {
    case 0:
	dma_pack_pke_p = 0;
	break;
    case 1:
	dma_pack_pke_p = 1;
	break;
    default:
	as_bad( "illegal argument to `.DmaPackPke'");
    }
    demand_empty_rest_of_line();
}

static void
s_enddirect (ignore)
     int ignore;
{
}

static void
s_endgpuif (ignore)
     int ignore;
{
}

static void
s_endmpg (ignore)
     int ignore;
{
  vu_mode_p = 0;
}

static void
s_endunpack (ignore)
     int ignore;
{
  vu_mode_p = 0;
}

static void
s_vu (enable_p)
     int enable_p;
{
  vu_mode_p = enable_p;
}

/* Parse a DMA data spec which can be either of '*' or a quad word count.  */

static int
parse_dma_count( pstr, errmsg)
    char **pstr;
    const char **errmsg;
{
    char *str = *pstr;
    long count, value;
    expressionS exp;

    if( *str == '*' )
    {
	++*pstr;
	/* -1 is a special marker to caller to tell it the count is to be
	computed from the data. */
	return -1;
    }

    expression( &exp);
    if( exp.X_op == O_illegal
	|| exp.X_op == O_absent )
	;
    else if( exp.X_op == O_constant )
	value = exp.X_add_number;
    else if( exp.X_op == O_register )
	as_fatal( "got O_register");
    else
    {
	/* We need to generate a fixup for this expression.  */
	if( fixup_count >= MAX_FIXUPS )
	    as_fatal( "too many fixups");
	fixups[fixup_count].exp = exp;
	fixups[fixup_count].opindex = 0 /*FIXME*/;
	++fixup_count;
	value = 0;
    }

    if( isdigit( *str) ) /*      ????????needs to accept an expression*/
    {
	char *start = str;
	while( *str && *str != ',' )
	    ++str;
	if( *str != ',' )
	{
	    *errmsg = "invalid dma count";
	    return 0;
	}
	count = atoi (start);
	*pstr = str;
	return(count);
    }

    *errmsg = "invalid dma count";
    return 0;
}