1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
|
/* tc-crx.c -- Assembler code for the CRX CPU core.
Copyright 2004 Free Software Foundation, Inc.
Contributed by Tomer Levi, NSC, Israel.
Originally written for GAS 2.12 by Tomer Levi, NSC, Israel.
Updates, BFDizing, GNUifying and ELF support by Tomer Levi.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "as.h"
#include "safe-ctype.h"
#include "dwarf2dbg.h"
#include "opcode/crx.h"
#include "elf/crx.h"
#include <limits.h>
/* Word is considered here as a 16-bit unsigned short int. */
#define WORD_SIZE 16
#define WORD_SHIFT 16
/* Register is 4-bit size. */
#define REG_SIZE 4
/* Maximum size of a single instruction (in words). */
#define INSN_MAX_SIZE 3
/* Maximum bits which may be set in a `mask16' operand. */
#define MAX_REGS_IN_MASK16 8
/* Escape to 16-bit immediate. */
#define ESC_16 0xE
/* Escape to 32-bit immediate. */
#define ESC_32 0xF
/* Utility macros for string comparison. */
#define streq(a, b) (strcmp (a, b) == 0)
#define strneq(a, b, c) (strncmp (a, b, c) == 0)
/* A mask to set n_bits starting from offset offs. */
#define SET_BITS_MASK(offs,n_bits) ((((1 << (n_bits)) - 1) << (offs)))
/* A mask to clear n_bits starting from offset offs. */
#define CLEAR_BITS_MASK(offs,n_bits) (~(((1 << (n_bits)) - 1) << (offs)))
/* Get the argument type for each operand of a given instruction. */
#define GET_ACTUAL_TYPE \
for (i = 0; i < insn->nargs; i++) \
atyp_act[i] = getarg_type (instruction->operands[i].op_type)
/* Get the size (in bits) for each operand of a given instruction. */
#define GET_ACTUAL_SIZE \
for (i = 0; i < insn->nargs; i++) \
bits_act[i] = getbits (instruction->operands[i].op_type)
/* Non-zero if OP is instruction with no operands. */
#define NO_OPERANDS_INST(OP) \
(streq (OP, "di") || streq (OP, "nop") \
|| streq (OP, "retx") || streq (OP, "ei") \
|| streq (OP, "wait") || streq (OP, "eiwait"))
/* Print a number NUM, shifted by SHIFT bytes, into a location
pointed by index BYTE of array 'output_opcode'. */
#define CRX_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT)
/* Opcode mnemonics hash table. */
static struct hash_control *crx_inst_hash;
/* CRX registers hash table. */
static struct hash_control *reg_hash;
/* CRX coprocessor registers hash table. */
static struct hash_control *copreg_hash;
/* Current instruction we're assembling. */
const inst *instruction;
/* Initialize global variables. */
long output_opcode[2];
/* Nonzero means a relocatable symbol. */
int relocatable;
/* Nonzero means a constant's bit-size was already set. */
int size_was_set;
/* Nonzero means a negative constant. */
int signflag;
/* Nonzero means a CST4 instruction. */
int cst4flag;
/* A copy of the original instruction (used in error messages). */
char ins_parse[MAX_INST_LEN];
/* Holds the current processed argument number. */
int cur_arg_num;
/* Generic assembler global variables which must be defined by all targets. */
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = "#";
/* This array holds machine specific line separator characters. */
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant from exp in floating point nums. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant as in 0f12.456 */
const char FLT_CHARS[] = "f'";
/* Target-specific multicharacter options, not const-declared at usage. */
const char *md_shortopts = "";
struct option md_longopts[] =
{
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
/* This table describes all the machine specific pseudo-ops
the assembler has to support. The fields are:
*** Pseudo-op name without dot.
*** Function to call to execute this pseudo-op.
*** Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
/* In CRX machine, align is in bytes (not a ptwo boundary). */
{"align", s_align_bytes, 0},
{0, 0, 0}
};
const relax_typeS md_relax_table[] =
{
/* bCC */
{0xfa, -0x100, 2, 1}, /* 8 */
{0xfffe, -0x10000, 4, 2}, /* 16 */
{0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
/* bal */
{0xfffe, -0x10000, 4, 4}, /* 16 */
{0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
/* cmpbr */
{0xfe, -0x100, 4, 6}, /* 8 */
{0xfffffe, -0x1000000, 6, 0} /* 24 */
};
static void reset_vars (char *, ins *);
static reg get_register (char *);
static copreg get_copregister (char *);
static void set_operand_size (ins *);
static argtype getarg_type (operand_type);
static int getbits (operand_type);
static int get_flags (operand_type);
static int get_number_of_operands (void);
static void parse_operand (char *, ins *);
static int gettrap (char *);
static void handle_LoadStor (char *);
static int get_cinv_parameters (char *);
static unsigned long getconstant (unsigned long, int);
static int getreg_image (reg);
static void parse_operands (ins *, char *);
static void parse_insn (ins *, char *);
static void print_operand (int, int, argument *);
static void print_constant (int, int, argument *);
static int exponent2scale (int);
static void mask_const (unsigned long *, int);
static void mask_reg (int, unsigned short *);
static int process_label_constant (char *, ins *);
static void set_operand (char *, ins *);
static char * preprocess_reglist (char *, int *);
static int assemble_insn (char *, ins *);
static void print_insn (ins *);
/* Return the bit size for a given operand. */
static int
getbits (operand_type op)
{
if (op < MAX_OPRD)
return crx_optab[op].bit_size;
else
return 0;
}
/* Return the argument type of a given operand. */
static argtype
getarg_type (operand_type op)
{
if (op < MAX_OPRD)
return crx_optab[op].arg_type;
else
return nullargs;
}
/* Return the flags of a given operand. */
static int
get_flags (operand_type op)
{
if (op < MAX_OPRD)
return crx_optab[op].flags;
else
return 0;
}
/* Get the core processor register 'reg_name'. */
static reg
get_register (char *reg_name)
{
const reg_entry *reg;
reg = (const reg_entry *) hash_find (reg_hash, reg_name);
if (reg != NULL)
return reg->value.reg_val;
else
return nullregister;
}
/* Get the coprocessor register 'copreg_name'. */
static copreg
get_copregister (char *copreg_name)
{
const reg_entry *copreg;
copreg = (const reg_entry *) hash_find (copreg_hash, copreg_name);
if (copreg != NULL)
return copreg->value.copreg_val;
else
return nullcopregister;
}
/* Mask a constant to the number of bits it is to be mapped to. */
static void
mask_const (unsigned long int *t, int size)
{
*t &= (((LONGLONG)1 << size) - 1);
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segT seg, valueT val)
{
/* Round .text section to a multiple of 2. */
if (seg == text_section)
return (val + 1) & ~1;
return val;
}
/* Parse an operand that is machine-specific (remove '*'). */
void
md_operand (expressionS * exp)
{
char c = *input_line_pointer;
switch (c)
{
case '*':
input_line_pointer++;
expression (exp);
break;
default:
break;
}
}
/* Reset global variables before parsing a new instruction. */
static void
reset_vars (char *op, ins *crx_ins)
{
unsigned int i;
cur_arg_num = relocatable = size_was_set = signflag = cst4flag = 0;
memset (& output_opcode, '\0', sizeof (output_opcode));
/* Memset the 'signflag' field in every argument. */
for (i = 0; i < MAX_OPERANDS; i++)
crx_ins->arg[i].signflag = 0;
/* Save a copy of the original OP (used in error messages). */
strcpy (ins_parse, op);
}
/* This macro decides whether a particular reloc is an entry in a
switch table. It is used when relaxing, because the linker needs
to know about all such entries so that it can adjust them if
necessary. */
#define SWITCH_TABLE(fix) \
( (fix)->fx_addsy != NULL \
&& (fix)->fx_subsy != NULL \
&& S_GET_SEGMENT ((fix)->fx_addsy) == \
S_GET_SEGMENT ((fix)->fx_subsy) \
&& S_GET_SEGMENT (fix->fx_addsy) != undefined_section \
&& ( (fix)->fx_r_type == BFD_RELOC_CRX_NUM8 \
|| (fix)->fx_r_type == BFD_RELOC_CRX_NUM16 \
|| (fix)->fx_r_type == BFD_RELOC_CRX_NUM32))
/* See whether we need to force a relocation into the output file.
This is used to force out switch and PC relative relocations when
relaxing. */
int
crx_force_relocation (fixS *fix)
{
if (generic_force_reloc (fix) || SWITCH_TABLE (fix))
return 1;
return 0;
}
/* Generate a relocation entry for a fixup. */
arelent *
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP)
{
arelent * reloc;
reloc = xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
reloc->addend = fixP->fx_offset;
if (fixP->fx_subsy != NULL)
{
if (SWITCH_TABLE (fixP))
{
/* Keep the current difference in the addend. */
reloc->addend = (S_GET_VALUE (fixP->fx_addsy)
- S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset);
switch (fixP->fx_r_type)
{
case BFD_RELOC_CRX_NUM8:
fixP->fx_r_type = BFD_RELOC_CRX_SWITCH8;
break;
case BFD_RELOC_CRX_NUM16:
fixP->fx_r_type = BFD_RELOC_CRX_SWITCH16;
break;
case BFD_RELOC_CRX_NUM32:
fixP->fx_r_type = BFD_RELOC_CRX_SWITCH32;
break;
default:
abort ();
break;
}
}
else
{
/* We only resolve difference expressions in the same section. */
as_bad_where (fixP->fx_file, fixP->fx_line,
_("can't resolve `%s' {%s section} - `%s' {%s section}"),
fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0",
segment_name (fixP->fx_addsy
? S_GET_SEGMENT (fixP->fx_addsy)
: absolute_section),
S_GET_NAME (fixP->fx_subsy),
segment_name (S_GET_SEGMENT (fixP->fx_addsy)));
}
}
assert ((int) fixP->fx_r_type > 0);
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("internal error: reloc %d (`%s') not supported by object file format"),
fixP->fx_r_type,
bfd_get_reloc_code_name (fixP->fx_r_type));
return NULL;
}
assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
return reloc;
}
/* Prepare machine-dependent frags for relaxation. */
int
md_estimate_size_before_relax (fragS *fragp, asection *seg)
{
/* If symbol is undefined or located in a different section,
select the largest supported relocation. */
relax_substateT subtype;
relax_substateT rlx_state[] = {0, 2,
3, 4,
5, 6};
for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2)
{
if (fragp->fr_subtype == rlx_state[subtype]
&& (!S_IS_DEFINED (fragp->fr_symbol)
|| seg != S_GET_SEGMENT (fragp->fr_symbol)))
{
fragp->fr_subtype = rlx_state[subtype + 1];
break;
}
}
if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table))
abort ();
return md_relax_table[fragp->fr_subtype].rlx_length;
}
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP)
{
/* 'opcode' points to the start of the instruction, whether
we need to change the instruction's fixed encoding. */
char *opcode = fragP->fr_literal + fragP->fr_fix;
bfd_reloc_code_real_type reloc;
subseg_change (sec, 0);
switch (fragP->fr_subtype)
{
case 0:
reloc = BFD_RELOC_CRX_REL8;
break;
case 1:
*opcode = 0x7e;
reloc = BFD_RELOC_CRX_REL16;
break;
case 2:
*opcode = 0x7f;
reloc = BFD_RELOC_CRX_REL32;
break;
case 3:
reloc = BFD_RELOC_CRX_REL16;
break;
case 4:
*++opcode = 0x31;
reloc = BFD_RELOC_CRX_REL32;
break;
case 5:
reloc = BFD_RELOC_CRX_REL8_CMP;
break;
case 6:
*++opcode = 0x31;
reloc = BFD_RELOC_CRX_REL24;
break;
default:
abort ();
break;
}
fix_new (fragP, fragP->fr_fix,
bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)),
fragP->fr_symbol, fragP->fr_offset, 1, reloc);
fragP->fr_var = 0;
fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length;
}
/* Process machine-dependent command line options. Called once for
each option on the command line that the machine-independent part of
GAS does not understand. */
int
md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
{
return 0;
}
/* Machine-dependent usage-output. */
void
md_show_usage (FILE *stream ATTRIBUTE_UNUSED)
{
return;
}
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK. */
char *
md_atof (int type, char *litP, int *sizeP)
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return _("bad call to md_atof");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (! target_big_endian)
{
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
return NULL;
}
/* Apply a fixS (fixup of an instruction or data that we didn't have
enough info to complete immediately) to the data in a frag.
Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable
relaxation of debug sections, this function is called only when
fixuping relocations of debug sections. */
void
md_apply_fix3 (fixS *fixP, valueT *valP, segT seg)
{
valueT val = * valP;
char *buf = fixP->fx_frag->fr_literal + fixP->fx_where;
fixP->fx_offset = 0;
switch (fixP->fx_r_type)
{
case BFD_RELOC_CRX_NUM8:
bfd_put_8 (stdoutput, (unsigned char) val, buf);
break;
case BFD_RELOC_CRX_NUM16:
bfd_put_16 (stdoutput, val, buf);
break;
case BFD_RELOC_CRX_NUM32:
bfd_put_32 (stdoutput, val, buf);
break;
default:
/* We shouldn't ever get here because linkrelax is nonzero. */
abort ();
break;
}
fixP->fx_done = 0;
if (fixP->fx_addsy == NULL
&& fixP->fx_pcrel == 0)
fixP->fx_done = 1;
if (fixP->fx_pcrel == 1
&& fixP->fx_addsy != NULL
&& S_GET_SEGMENT (fixP->fx_addsy) == seg)
fixP->fx_done = 1;
}
/* The location from which a PC relative jump should be calculated,
given a PC relative reloc. */
long
md_pcrel_from (fixS *fixp)
{
return fixp->fx_frag->fr_address + fixp->fx_where;
}
/* This function is called once, at assembler startup time. This should
set up all the tables, etc that the MD part of the assembler needs. */
void
md_begin (void)
{
const char *hashret = NULL;
int i = 0;
/* Set up a hash table for the instructions. */
if ((crx_inst_hash = hash_new ()) == NULL)
as_fatal (_("Virtual memory exhausted"));
while (crx_instruction[i].mnemonic != NULL)
{
const char *mnemonic = crx_instruction[i].mnemonic;
hashret = hash_insert (crx_inst_hash, mnemonic,
(PTR) &crx_instruction[i]);
if (hashret != NULL && *hashret != '\0')
as_fatal (_("Can't hash `%s': %s\n"), crx_instruction[i].mnemonic,
*hashret == 0 ? _("(unknown reason)") : hashret);
/* Insert unique names into hash table. The CRX instruction set
has many identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
do
{
++i;
}
while (crx_instruction[i].mnemonic != NULL
&& streq (crx_instruction[i].mnemonic, mnemonic));
}
/* Initialize reg_hash hash table. */
if ((reg_hash = hash_new ()) == NULL)
as_fatal (_("Virtual memory exhausted"));
{
const reg_entry *regtab;
for (regtab = crx_regtab;
regtab < (crx_regtab + NUMREGS); regtab++)
{
hashret = hash_insert (reg_hash, regtab->name, (PTR) regtab);
if (hashret)
as_fatal (_("Internal Error: Can't hash %s: %s"),
regtab->name,
hashret);
}
}
/* Initialize copreg_hash hash table. */
if ((copreg_hash = hash_new ()) == NULL)
as_fatal (_("Virtual memory exhausted"));
{
const reg_entry *copregtab;
for (copregtab = crx_copregtab; copregtab < (crx_copregtab + NUMCOPREGS);
copregtab++)
{
hashret = hash_insert (copreg_hash, copregtab->name, (PTR) copregtab);
if (hashret)
as_fatal (_("Internal Error: Can't hash %s: %s"),
copregtab->name,
hashret);
}
}
/* Set linkrelax here to avoid fixups in most sections. */
linkrelax = 1;
}
/* Set the number of bits corresponding to a constant -
here we check for possible overflow cases. */
static void
set_operand_size (ins * crx_ins)
{
int cnt_bits = 0;
const cst4_entry *cst4_op;
argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
unsigned long int temp = cur_arg->constant;
/* If the constant's size was already set - nothing to do. */
if (size_was_set)
return;
/* Already dealt with negative numbers in process_label_constants. */
while (temp > 0)
{
temp >>= 1;
cnt_bits++;
}
/* Arithmetic instructions :
16-bit positive signed immediate -->> represent as 32-bit. */
if (IS_INSN_TYPE (ARITH_INS) && !relocatable && !signflag)
{
if (cnt_bits == 16)
{
cur_arg->size = 32;
return;
}
}
/* Index addressing mode :
6-bit positive signed immediate -->> represent as 22-bit. */
if (IS_INSN_TYPE (LD_STOR_INS)
|| IS_INSN_TYPE (STOR_IMM_INS)
|| IS_INSN_TYPE (CSTBIT_INS))
{
if (!signflag && cur_arg->type == arg_idxr)
{
if (cnt_bits == 6)
{
cur_arg->size = 22;
return;
}
if (cnt_bits == 22)
as_bad (_("Offset out of range in Instruction `%s'"), ins_parse);
}
}
/* load/stor instructions :
16-bit positive signed immediate -->> represent as 32-bit. */
if (IS_INSN_TYPE (LD_STOR_INS))
{
if (!signflag && cur_arg->type == arg_cr)
{
if (cnt_bits == 16)
{
cur_arg->size = 32;
return;
}
if (cnt_bits == 32)
as_bad (_("Offset out of range in Instruction `%s'"), ins_parse);
}
}
/* Post-increment mode :
12-bit positive signed immediate -->> represent as 28-bit. */
if (IS_INSN_TYPE (CSTBIT_INS)
|| IS_INSN_TYPE (LD_STOR_INS_INC)
|| IS_INSN_TYPE (STOR_IMM_INS))
{
if (!signflag && cur_arg->type == arg_cr)
{
if (cnt_bits == 12)
{
cur_arg->size = 28;
if (IS_INSN_TYPE (LD_STOR_INS_INC))
as_bad (_("Offset out of range in Instruction `%s'"), ins_parse);
return;
}
if (IS_INSN_TYPE (CSTBIT_INS) || IS_INSN_TYPE (STOR_IMM_INS))
{
if (cnt_bits == 28)
as_bad (_("Offset out of range in Instruction `%s'"), ins_parse);
}
}
}
/* Handle negative cst4 mapping for arithmetic/cmp&br operations. */
if (signflag && !relocatable
&& ((IS_INSN_TYPE (ARITH_INS) || IS_INSN_TYPE (ARITH_BYTE_INS))
|| ((IS_INSN_TYPE (CMPBR_INS) && cur_arg_num == 0))))
{
for (cst4_op = cst4_map; cst4_op < (cst4_map + cst4_maps); cst4_op++)
{
if (cur_arg->constant == (unsigned int)(-cst4_op->value))
{
cur_arg->size = 4;
cur_arg->constant = cst4_op->binary;
cur_arg->signflag = 0;
return;
}
}
}
/* Because of the cst4 mapping -- -1 and -4 already handled above
as well as for relocatable cases. */
if (signflag && IS_INSN_TYPE (ARITH_BYTE_INS))
{
if (!relocatable)
{
if (cur_arg->constant <= 0xffff)
cur_arg->size = 16;
else
/* Setting to 18 so that there is no match. */
cur_arg->size = 18;
}
else
cur_arg->size = 16;
return;
}
if (signflag && IS_INSN_TYPE (ARITH_INS))
{
/* For all immediates which can be expressed in less than 16 bits. */
if (cur_arg->constant <= 0xffff && !relocatable)
{
cur_arg->size = 16;
return;
}
/* Either it is relocatable or not representable in 16 bits. */
if (cur_arg->constant < 0xffffffff || relocatable)
{
cur_arg->size = 32;
return;
}
cur_arg->size = 33;
return;
}
if (signflag && !relocatable)
return;
if (!relocatable)
cur_arg->size = cnt_bits;
/* Checking for Error Conditions. */
if (IS_INSN_TYPE (ARITH_INS) && !signflag)
{
if (cnt_bits > 32)
as_bad (_("Cannot represent Immediate in %d bits in Instruction `%s'"),
cnt_bits, ins_parse);
}
else if (IS_INSN_TYPE (ARITH_BYTE_INS) && !signflag)
{
if (cnt_bits > 16)
as_bad (_("Cannot represent Immediate in %d bits in Instruction `%s'"),
cnt_bits, ins_parse);
}
}
/* Handle the constants immediate/absolute values and
Labels (jump targets/Memory locations). */
static int
process_label_constant (char *str, ins * crx_ins)
{
char *save;
unsigned long int temp, cnt;
const cst4_entry *cst4_op;
int is_cst4 = 0;
int constant_val = 0;
argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
save = input_line_pointer;
signflag = 0;
if (str[0] == '-')
{
signflag = 1;
str++;
}
else if (str[0] == '+')
str++;
input_line_pointer = str;
expression (&crx_ins->exp);
switch (crx_ins->exp.X_op)
{
case O_big:
case O_absent:
/* Missing or bad expr becomes absolute 0. */
as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
str);
crx_ins->exp.X_op = O_constant;
crx_ins->exp.X_add_number = 0;
crx_ins->exp.X_add_symbol = (symbolS *) 0;
crx_ins->exp.X_op_symbol = (symbolS *) 0;
break;
case O_constant:
cur_arg->constant = constant_val = crx_ins->exp.X_add_number;
if ((IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
&& cur_arg_num == 2)
{
LONGLONG temp64 = 0;
char ptr;
char temp_str[30];
unsigned int jump_value = 0;
int BR_MASK = 0, BR_SIZE = 0;
temp_str[0] = '\0';
if (signflag)
{
temp_str[0] = '-';
temp_str[1] = '\0';
}
strncat (temp_str, str, strlen (str));
temp64 = strtoll (temp_str, (char **) &ptr,0);
if (temp64 % 2 != 0)
as_bad (_("Odd Offset in displacement in Instruction `%s'"),
ins_parse);
/* Determine the branch size. */
jump_value = (unsigned int)temp64 & 0xFFFFFFFF;
if (((jump_value & 0xFFFFFF00) == 0xFFFFFF00)
|| ((jump_value & 0xFFFFFF00) == 0x0))
{
BR_MASK = 0xFF;
BR_SIZE = 8;
}
else
if (((jump_value & 0xFF000000) == 0xFF000000)
|| ((jump_value & 0xFF000000) == 0x0))
{
BR_MASK = 0xFFFFFF;
BR_SIZE = 24;
}
jump_value = jump_value >> 1;
cur_arg->constant = jump_value & BR_MASK;
cur_arg->size = BR_SIZE;
size_was_set = 1;
cur_arg->signflag = signflag;
input_line_pointer = save;
return crx_ins->exp.X_op;
}
if (IS_INSN_TYPE (BRANCH_INS)
|| IS_INSN_MNEMONIC ("bal")
|| IS_INSN_TYPE (DCR_BRANCH_INS))
{
LONGLONG temp64 = 0;
char ptr;
char temp_str[30];
unsigned int jump_value = 0;
int BR_MASK = 0, BR_SIZE = 0;
temp_str[0] = '\0';
if (signflag)
{
temp_str[0] = '-';
temp_str[1] = '\0';
}
strncat (temp_str, str, strlen (str));
temp64 = strtoll (temp_str, (char **) &ptr,0);
if (temp64 % 2 != 0)
as_bad (_("Odd Offset in displacement in Instruction `%s'"),
ins_parse);
/* Determine the branch size. */
jump_value = (unsigned int)temp64 & 0xFFFFFFFF;
if (!IS_INSN_MNEMONIC ("bal") && !IS_INSN_TYPE (DCR_BRANCH_INS)
&& (((jump_value & 0xFFFFFF00) == 0xFFFFFF00)
|| ((jump_value & 0xFFFFFF00) == 0x0)))
{
BR_MASK = 0xFF;
BR_SIZE = 8;
}
else if (((jump_value & 0xFFFF0000) == 0xFFFF0000)
|| ((jump_value & 0xFFFF0000) == 0x0))
{
BR_MASK = 0xFFFF;
BR_SIZE = 16;
}
else
{
BR_MASK = 0xFFFFFFFF;
BR_SIZE = 32;
}
jump_value = jump_value >> 1;
cur_arg->constant = jump_value & BR_MASK;
cur_arg->size = BR_SIZE;
size_was_set = 1;
cur_arg->signflag = signflag;
input_line_pointer = save;
return crx_ins->exp.X_op;
}
/* Fix for movd $0xF12344, r0 -- signflag has to be set. */
if (constant_val < 0 && signflag != 1
&& !IS_INSN_TYPE (LD_STOR_INS) && !IS_INSN_TYPE (LD_STOR_INS_INC)
&& !IS_INSN_TYPE (CSTBIT_INS) && !IS_INSN_TYPE (STOR_IMM_INS)
&& !IS_INSN_TYPE (BRANCH_INS) && !IS_INSN_MNEMONIC ("bal"))
{
cur_arg->constant = ~(cur_arg->constant) + 1;
signflag = 1;
}
/* For load/store instruction when the value is in the offset part. */
if (constant_val < 0 && signflag != 1
&& (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (LD_STOR_INS_INC)
|| IS_INSN_TYPE (CSTBIT_INS) || IS_INSN_TYPE (STOR_IMM_INS)))
{
if (cur_arg->type == arg_cr || cur_arg->type == arg_idxr)
{
cur_arg->constant = ~(cur_arg->constant) + 1;
signflag = 1;
}
}
if (signflag)
{
/* Signflag in never set in case of load store instructions
Mapping in case of only the arithinsn case. */
if ((cur_arg->constant != 1 && cur_arg->constant != 4)
|| (!IS_INSN_TYPE (ARITH_INS)
&& !IS_INSN_TYPE (ARITH_BYTE_INS)
&& !IS_INSN_TYPE (CMPBR_INS)))
{
/* Counting the number of bits required to represent
the constant. */
cnt = 0;
temp = cur_arg->constant - 1;
while (temp > 0)
{
temp >>= 1;
cnt++;
}
cur_arg->size = cnt + 1;
cur_arg->constant = ~(cur_arg->constant) + 1;
if (IS_INSN_TYPE (ARITH_INS) || IS_INSN_TYPE (ARITH_BYTE_INS))
{
char ptr;
LONGLONG temp64;
temp64 = strtoull (str, (char **) &ptr, 0);
if (cnt < 4)
cur_arg->size = 5;
if (IS_INSN_TYPE (ARITH_INS))
{
if (cur_arg->size > 32
|| (temp64 > ULONG_MAX))
{
if (cur_arg->size > 32)
as_bad (_("In Instruction `%s': Immediate size is \
%lu bits cannot be accomodated"),
ins_parse, cnt + 1);
if (temp64 > ULONG_MAX)
as_bad (_("Value given more than 32 bits in \
Instruction `%s'"), ins_parse);
}
}
if (IS_INSN_TYPE (ARITH_BYTE_INS))
{
if (cur_arg->size > 16
|| !((temp64 & 0xFFFF0000) == 0xFFFF0000
|| (temp64 & 0xFFFF0000) == 0x0))
{
if (cur_arg->size > 16)
as_bad (_("In Instruction `%s': Immediate size is \
%lu bits cannot be accomodated"),
ins_parse, cnt + 1);
if (!((temp64 & 0xFFFF0000) == 0xFFFF0000
|| (temp64 & 0xFFFF0000) == 0x0))
as_bad (_("Value given more than 16 bits in \
Instruction `%s'"), ins_parse);
}
}
}
if (IS_INSN_TYPE (LD_STOR_INS) && cur_arg->type == arg_cr)
{
/* Cases handled ---
dispub4/dispuw4/dispud4 and for load store dispubwd4
is applicable only. */
if (cur_arg->size <= 4)
cur_arg->size = 5;
}
/* Argument number is checked to distinguish between
immediate and displacement in cmpbranch and bcopcond. */
if ((IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
&& cur_arg_num == 2)
{
if (cur_arg->size != 32)
cur_arg->constant >>= 1;
}
mask_const (&cur_arg->constant, (int) cur_arg->size);
}
}
else
{
/* Argument number is checked to distinguish between
immediate and displacement in cmpbranch and bcopcond. */
if (((IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
&& cur_arg_num == 2)
|| IS_INSN_TYPE (BRANCH_NEQ_INS))
{
if (IS_INSN_TYPE (BRANCH_NEQ_INS))
{
if (cur_arg->constant == 0)
as_bad (_("Instruction `%s' has Zero offset"), ins_parse);
}
if (cur_arg->constant % 2 != 0)
as_bad (_("Instruction `%s' has odd offset"), ins_parse);
if (IS_INSN_TYPE (BRANCH_NEQ_INS))
{
if (cur_arg->constant > 32 || cur_arg->constant < 2)
as_bad (_("Instruction `%s' has illegal offset (%ld)"),
ins_parse, cur_arg->constant);
cur_arg->constant -= 2;
}
cur_arg->constant >>= 1;
set_operand_size (crx_ins);
}
/* Compare branch argument number zero to be compared -
mapped to cst4. */
if (IS_INSN_TYPE (CMPBR_INS) && cur_arg_num == 0)
{
for (cst4_op = cst4_map; cst4_op < (cst4_map + cst4_maps); cst4_op++)
{
if (cur_arg->constant == (unsigned int)cst4_op->value)
{
cur_arg->constant = cst4_op->binary;
is_cst4 = 1;
break;
}
}
if (!is_cst4)
as_bad (_("Instruction `%s' has invalid imm value as an \
operand"), ins_parse);
}
}
break;
case O_symbol:
case O_subtract:
crx_ins->rtype = BFD_RELOC_NONE;
relocatable = 1;
switch (cur_arg->type)
{
case arg_cr:
/* Have to consider various cases here. */
if (IS_INSN_TYPE (LD_STOR_INS_INC))
/* 'load/stor <num>(reg)+'. */
crx_ins->rtype = BFD_RELOC_CRX_REGREL12;
else if (IS_INSN_TYPE (CSTBIT_INS)
|| IS_INSN_TYPE (STOR_IMM_INS))
/* 'stor imm' and '[stc]bit'. */
crx_ins->rtype = BFD_RELOC_CRX_REGREL28;
else
/* General load/stor instruction. */
crx_ins->rtype = BFD_RELOC_CRX_REGREL32;
break;
case arg_idxr:
/* Index Mode 22 bits relocation. */
crx_ins->rtype = BFD_RELOC_CRX_REGREL22;
break;
case arg_c:
/* Absolute types. */
/* Case for jumps...dx types. */
/* For bal. */
if (IS_INSN_MNEMONIC ("bal") || IS_INSN_TYPE (DCR_BRANCH_INS))
crx_ins->rtype = BFD_RELOC_CRX_REL16;
else if (IS_INSN_TYPE (BRANCH_INS))
crx_ins->rtype = BFD_RELOC_CRX_REL8;
else if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (STOR_IMM_INS)
|| IS_INSN_TYPE (CSTBIT_INS))
crx_ins->rtype = BFD_RELOC_CRX_ABS32;
else if (IS_INSN_TYPE (BRANCH_NEQ_INS))
crx_ins->rtype = BFD_RELOC_CRX_REL4;
else if (IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
crx_ins->rtype = BFD_RELOC_CRX_REL8_CMP;
break;
case arg_ic:
if (IS_INSN_TYPE (ARITH_INS))
crx_ins->rtype = BFD_RELOC_CRX_IMM32;
else if (IS_INSN_TYPE (ARITH_BYTE_INS))
crx_ins->rtype = BFD_RELOC_CRX_IMM16;
break;
default:
break;
}
cur_arg->size = (bfd_reloc_type_lookup (stdoutput, crx_ins->rtype))->bitsize;
break;
default:
break;
}
input_line_pointer = save;
cur_arg->signflag = signflag;
return crx_ins->exp.X_op;
}
/* Get the values of the scale to be encoded -
used for the scaled index mode of addressing. */
static int
exponent2scale (int val)
{
int exponent;
/* If 'val' is 0, the following 'for' will be an endless loop. */
if (val == 0)
return 0;
for (exponent = 0; (val != 1); val >>= 1, exponent++)
;
return exponent;
}
/* Parsing different types of operands
-> constants Immediate/Absolute/Relative numbers
-> Labels Relocatable symbols
-> (rbase) Register base
-> disp(rbase) Register relative
-> disp(rbase)+ Post-increment mode
-> disp(rbase,ridx,scl) Register index mode */
static void
set_operand (char *operand, ins * crx_ins)
{
char *operandS; /* Pointer to start of sub-opearand. */
char *operandE; /* Pointer to end of sub-opearand. */
expressionS scale;
int scale_val;
char *input_save, c;
argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
/* Initialize pointers. */
operandS = operandE = operand;
switch (cur_arg->type)
{
case arg_sc: /* Case *+0x18. */
case arg_ic: /* Case $0x18. */
operandS++;
case arg_c: /* Case 0x18. */
/* Set constant. */
process_label_constant (operandS, crx_ins/*, op_num*/);
if (cur_arg->type != arg_ic)
cur_arg->type = arg_c;
break;
case arg_icr: /* Case $0x18(r1). */
operandS++;
case arg_cr: /* Case 0x18(r1). */
/* Set displacement constant. */
while (*operandE != '(')
operandE++;
*operandE = '\0';
process_label_constant (operandS, crx_ins/*, op_num*/);
operandS = operandE;
case arg_rbase: /* Case (r1). */
operandS++;
/* Set register base. */
while (*operandE != ')')
operandE++;
*operandE = '\0';
if ((cur_arg->r = get_register (operandS)) == nullregister)
as_bad (_("Illegal register `%s' in Instruction `%s'"),
operandS, ins_parse);
if (cur_arg->type != arg_rbase)
cur_arg->type = arg_cr;
break;
case arg_idxr:
/* Set displacement constant. */
while (*operandE != '(')
operandE++;
*operandE = '\0';
process_label_constant (operandS, crx_ins);
operandS = ++operandE;
/* Set register base. */
while ((*operandE != ',') && (! ISSPACE (*operandE)))
operandE++;
*operandE++ = '\0';
if ((cur_arg->r = get_register (operandS)) == nullregister)
as_bad (_("Illegal register `%s' in Instruction `%s'"),
operandS, ins_parse);
/* Skip leading white space. */
while (ISSPACE (*operandE))
operandE++;
operandS = operandE;
/* Set register index. */
while ((*operandE != ')') && (*operandE != ','))
operandE++;
c = *operandE;
*operandE++ = '\0';
if ((cur_arg->i_r = get_register (operandS)) == nullregister)
as_bad (_("Illegal register `%s' in Instruction `%s'"),
operandS, ins_parse);
/* Skip leading white space. */
while (ISSPACE (*operandE))
operandE++;
operandS = operandE;
/* Set the scale. */
if (c == ')')
cur_arg->scale = 0;
else
{
while (*operandE != ')')
operandE++;
*operandE = '\0';
/* Preprocess the scale string. */
input_save = input_line_pointer;
input_line_pointer = operandS;
expression (&scale);
input_line_pointer = input_save;
scale_val = scale.X_add_number;
/* Check if the scale value is legal. */
if (scale_val != 1 && scale_val != 2
&& scale_val != 4 && scale_val != 8)
as_bad (_("Illegal Scale - `%d'"), scale_val);
cur_arg->scale = exponent2scale (scale_val);
}
break;
default:
break;
}
}
/* Parse a single operand.
operand - Current operand to parse.
crx_ins - Current assembled instruction. */
static void
parse_operand (char *operand, ins * crx_ins)
{
int ret_val;
argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
/* Initialize the type to NULL before parsing. */
cur_arg->type = nullargs;
/* Check whether this is a general processor register. */
if ((ret_val = get_register (operand)) != nullregister)
{
cur_arg->type = arg_r;
cur_arg->r = ret_val;
goto set_size;
}
/* Check whether this is a core [special] coprocessor register. */
if ((ret_val = get_copregister (operand)) != nullcopregister)
{
cur_arg->type = arg_copr;
if (ret_val >= cs0)
cur_arg->type = arg_copsr;
cur_arg->cr = ret_val;
goto set_size;
}
/* Deal with special characters. */
switch (operand[0])
{
case '$':
if (strchr (operand, '(') != NULL)
cur_arg->type = arg_icr;
else
cur_arg->type = arg_ic;
goto set_params;
break;
case '*':
cur_arg->type = arg_sc;
goto set_params;
break;
case '(':
cur_arg->type = arg_rbase;
goto set_params;
break;
default:
break;
}
if (strchr (operand, '(') != NULL)
{
if (strchr (operand, ',') != NULL
&& (strchr (operand, ',') > strchr (operand, '(')))
cur_arg->type = arg_idxr;
else
cur_arg->type = arg_cr;
}
else
cur_arg->type = arg_c;
goto set_params;
/* Parse an operand according to its type. */
set_params:
cur_arg->constant = 0;
set_operand (operand, crx_ins);
/* Determine argument size. */
set_size:
switch (cur_arg->type)
{
/* The following are all registers, so set their size to REG_SIZE. */
case arg_r:
case arg_copr:
case arg_copsr:
case arg_rbase:
cur_arg->size = REG_SIZE;
break;
case arg_c:
case arg_ic:
case arg_sc:
case arg_cr:
case arg_icr:
case arg_idxr:
set_operand_size (crx_ins);
break;
default:
as_bad (_("Illegal argument type in instruction `%s'"), ins_parse);
break;
}
}
/* Parse the various operands. Each operand is then analyzed to fillup
the fields in the crx_ins data structure. */
static void
parse_operands (ins * crx_ins, char *operands)
{
char *operandS; /* Operands string. */
char *operandH, *operandT; /* Single operand head/tail pointers. */
int allocated = 0; /* Indicates a new operands string was allocated. */
char *operand[MAX_OPERANDS]; /* Separating the operands. */
int op_num = 0; /* Current operand number we are parsing. */
int bracket_flag = 0; /* Indicates a bracket '(' was found. */
int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */
/* Preprocess the list of registers, if necessary. */
operandS = operandH = operandT = (INST_HAS_REG_LIST) ?
preprocess_reglist (operands, &allocated) : operands;
while (*operandT != '\0')
{
if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1)
{
*operandT++ = '\0';
operand[op_num++] = strdup (operandH);
operandH = operandT;
continue;
}
if (*operandT == ' ')
as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse);
if (*operandT == '(')
bracket_flag = 1;
else if (*operandT == '[')
sq_bracket_flag = 1;
if (*operandT == ')')
{
if (bracket_flag)
bracket_flag = 0;
else
as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
}
else if (*operandT == ']')
{
if (sq_bracket_flag)
sq_bracket_flag = 0;
else
as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
}
if (bracket_flag == 1 && *operandT == ')')
bracket_flag = 0;
else if (sq_bracket_flag == 1 && *operandT == ']')
sq_bracket_flag = 0;
operandT++;
}
/* Adding the last operand. */
operand[op_num++] = strdup (operandH);
crx_ins->nargs = op_num;
/* Verifying correct syntax of operands (all brackets should be closed). */
if (bracket_flag || sq_bracket_flag)
as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
/* Now we parse each operand separately. */
for (op_num = 0; op_num < crx_ins->nargs; op_num++)
{
cur_arg_num = op_num;
parse_operand (operand[op_num], crx_ins);
free (operand[op_num]);
}
if (allocated)
free (operandS);
}
/* Get the trap index in dispatch table, given its name.
This routine is used by assembling the 'excp' instruction. */
static int
gettrap (char *s)
{
const trap_entry *trap;
for (trap = crx_traps; trap < (crx_traps + NUMTRAPS); trap++)
if (strcasecmp (trap->name, s) == 0)
return trap->entry;
as_bad (_("Unknown exception: `%s'"), s);
return 0;
}
/* Post-Increment instructions, as well as Store-Immediate instructions, are a
sub-group within load/stor instruction groups.
Therefore, when parsing a Post-Increment/Store-Immediate insn, we have to
advance the instruction pointer to the start of that sub-group (that is, up
to the first instruction of that type).
Otherwise, the insn will be mistakenly identified as of type LD_STOR_INS. */
static void
handle_LoadStor (char *operands)
{
/* Post-Increment instructions precede Store-Immediate instructions in
CRX instruction table, hence they are handled before.
This synchronization should be kept. */
/* Assuming Post-Increment insn has the following format :
'MNEMONIC DISP(REG)+, REG' (e.g. 'loadw 12(r5)+, r6').
LD_STOR_INS_INC are the only store insns containing a plus sign (+). */
if (strstr (operands, ")+") != NULL)
{
while (! IS_INSN_TYPE (LD_STOR_INS_INC))
instruction++;
return;
}
/* Assuming Store-Immediate insn has the following format :
'MNEMONIC $DISP, ...' (e.g. 'storb $1, 12(r5)').
STOR_IMM_INS are the only store insns containing a dollar sign ($). */
if (strstr (operands, "$") != NULL)
while (! IS_INSN_TYPE (STOR_IMM_INS))
instruction++;
}
/* Top level module where instruction parsing starts.
crx_ins - data structure holds some information.
operands - holds the operands part of the whole instruction. */
static void
parse_insn (ins *insn, char *operands)
{
/* Handle 'excp'/'cinv' */
if (IS_INSN_MNEMONIC ("excp") || IS_INSN_MNEMONIC ("cinv"))
{
insn->nargs = 1;
insn->arg[0].type = arg_ic;
insn->arg[0].size = 4;
insn->arg[0].constant = IS_INSN_MNEMONIC ("excp") ?
gettrap (operands) : get_cinv_parameters (operands);
return;
}
/* Handle load/stor unique instructions before parsing. */
if (IS_INSN_TYPE (LD_STOR_INS))
handle_LoadStor (operands);
if (operands != NULL)
parse_operands (insn, operands);
}
/* Cinv instruction requires special handling. */
static int
get_cinv_parameters (char * operand)
{
char *p = operand;
int d_used = 0, i_used = 0, u_used = 0, b_used = 0;
while (*++p != ']')
{
if (*p == ',' || *p == ' ')
continue;
if (*p == 'd')
d_used = 1;
else if (*p == 'i')
i_used = 1;
else if (*p == 'u')
u_used = 1;
else if (*p == 'b')
b_used = 1;
else
as_bad (_("Illegal `cinv' parameter: `%c'"), *p);
}
return ((b_used ? 8 : 0)
+ (d_used ? 4 : 0)
+ (i_used ? 2 : 0)
+ (u_used ? 1 : 0));
}
/* Retrieve the opcode image of a given register.
If the register is illegal for the current instruction,
issue an error. */
static int
getreg_image (reg r)
{
const reg_entry *reg;
char *reg_name;
int is_procreg = 0; /* Nonzero means argument should be processor reg. */
if (((IS_INSN_MNEMONIC ("mtpr")) && (cur_arg_num == 1))
|| ((IS_INSN_MNEMONIC ("mfpr")) && (cur_arg_num == 0)) )
is_procreg = 1;
/* Check whether the register is in registers table. */
if (r < MAX_REG)
reg = &crx_regtab[r];
/* Check whether the register is in coprocessor registers table. */
else if (r < MAX_COPREG)
reg = &crx_copregtab[r-MAX_REG];
/* Register not found. */
else
{
as_bad (_("Unknown register: `%d'"), r);
return 0;
}
reg_name = reg->name;
/* Issue a error message when register is illegal. */
#define IMAGE_ERR \
as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \
reg_name, ins_parse); \
break;
switch (reg->type)
{
case CRX_U_REGTYPE:
if (is_procreg || (instruction->flags & USER_REG))
return reg->image;
else
IMAGE_ERR;
case CRX_CFG_REGTYPE:
if (is_procreg)
return reg->image;
else
IMAGE_ERR;
case CRX_R_REGTYPE:
if (! is_procreg)
return reg->image;
else
IMAGE_ERR;
case CRX_C_REGTYPE:
case CRX_CS_REGTYPE:
return reg->image;
break;
default:
IMAGE_ERR;
}
return 0;
}
/* Routine used to get the binary-string equivalent of a integer constant
which currently require currbits to represent itself to be extended to
nbits. */
static unsigned long int
getconstant (unsigned long int x, int nbits)
{
int cnt = 0;
unsigned long int temp = x;
while (temp > 0)
{
temp >>= 1;
cnt++;
}
/* Escape sequence to next 16bit immediate. */
if (cnt > nbits)
as_bad (_("Value `%ld' truncated to fit `%d' bits in instruction `%s'"),
x, cnt, ins_parse);
else
{
if (signflag)
x |= SET_BITS_MASK (cnt, nbits - cnt);
else
x &= CLEAR_BITS_MASK (cnt, nbits - cnt);
}
/* The following expression avoids overflow if
'nbits' is the number of bits in 'bfd_vma'. */
return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1));
}
/* Print a constant value to 'output_opcode':
ARG holds the operand's type and value.
SHIFT represents the location of the operand to be print into.
NBITS determines the size (in bits) of the constant. */
static void
print_constant (int nbits, int shift, argument *arg)
{
unsigned long mask = 0;
long constant = getconstant (arg->constant, nbits);
switch (nbits)
{
case 32:
case 28:
case 24:
case 22:
/* mask the upper part of the constant, that is, the bits
going to the lowest byte of output_opcode[0].
The upper part of output_opcode[1] is always filled,
therefore it is always masked with 0xFFFF. */
mask = (1 << (nbits - 16)) - 1;
/* Divide the constant between two consecutive words :
0 1 2 3
+---------+---------+---------+---------+
| | X X X X | X X X X | |
+---------+---------+---------+---------+
output_opcode[0] output_opcode[1] */
CRX_PRINT (0, (constant >> WORD_SHIFT) & mask, 0);
CRX_PRINT (1, (constant & 0xFFFF), WORD_SHIFT);
break;
case 16:
case 12:
/* Special case - in arg_cr, the SHIFT represents the location
of the REGISTER, not the constant, which is itself not shifted. */
if (arg->type == arg_cr)
{
CRX_PRINT (0, constant, 0);
break;
}
/* When instruction size is 3 and 'shift' is 16, a 16-bit constant is
always filling the upper part of output_opcode[1]. If we mistakenly
write it to output_opcode[0], the constant prefix (that is, 'match')
will be overriden.
0 1 2 3
+---------+---------+---------+---------+
| 'match' | | X X X X | |
+---------+---------+---------+---------+
output_opcode[0] output_opcode[1] */
if ((instruction->size > 2) && (shift == WORD_SHIFT))
CRX_PRINT (1, constant, WORD_SHIFT);
else
CRX_PRINT (0, constant, shift);
break;
default:
CRX_PRINT (0, constant, shift);
break;
}
}
/* Print an operand to 'output_opcode', which later on will be
printed to the object file:
ARG holds the operand's type, size and value.
SHIFT represents the printing location of operand.
NBITS determines the size (in bits) of a constant operand. */
static void
print_operand (int nbits, int shift, argument *arg)
{
switch (arg->type)
{
case arg_r:
CRX_PRINT (0, getreg_image (arg->r), shift);
break;
case arg_copr:
if (arg->cr < c0 || arg->cr > c15)
as_bad (_("Illegal Co-processor register in Instruction `%s' "),
ins_parse);
CRX_PRINT (0, getreg_image (arg->cr), shift);
break;
case arg_copsr:
if (arg->cr < cs0 || arg->cr > cs15)
as_bad (_("Illegal Co-processor special register in Instruction `%s' "),
ins_parse);
CRX_PRINT (0, getreg_image (arg->cr), shift);
break;
case arg_idxr:
/* 16 12 8 6 0
+--------------------------------+
| r_base | r_idx | scl| disp |
+--------------------------------+ */
CRX_PRINT (0, getreg_image (arg->r), 12);
CRX_PRINT (0, getreg_image (arg->i_r), 8);
CRX_PRINT (0, arg->scale, 6);
case arg_ic:
case arg_c:
print_constant (nbits, shift, arg);
break;
case arg_rbase:
CRX_PRINT (0, getreg_image (arg->r), shift);
break;
case arg_cr:
/* case base_cst4. */
if ((instruction->flags & DISPU4MAP) && cst4flag)
output_opcode[0] |= (getconstant (arg->constant, nbits)
<< (shift + REG_SIZE));
else
/* rbase_disps<NN> and other such cases. */
print_constant (nbits, shift, arg);
/* Add the register argument to the output_opcode. */
CRX_PRINT (0, getreg_image (arg->r), shift);
break;
default:
break;
}
}
/* Retrieve the number of operands for the current assembled instruction. */
static int
get_number_of_operands (void)
{
int i;
for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++)
;
return i;
}
/* Assemble a single instruction :
Instruction has been parsed and all operand values set appropriately.
Algorithm for assembling -
For instruction to be assembled:
Step 1: Find instruction in the array crx_instruction with same mnemonic.
Step 2: Find instruction with same operand types.
Step 3: If (size_of_operands) match then done, else increment the
array_index and goto Step3.
Step 4: Cannot assemble
Returns 1 upon success, 0 upon failure. */
static int
assemble_insn (char *mnemonic, ins *insn)
{
/* Argument type of each operand in the instruction we are looking for. */
argtype atyp[MAX_OPERANDS];
/* Argument type of each operand in the current instruction. */
argtype atyp_act[MAX_OPERANDS];
/* Size (in bits) of each operand in the instruction we are looking for. */
int bits[MAX_OPERANDS];
/* Size (in bits) of each operand in the current instruction. */
int bits_act[MAX_OPERANDS];
/* Location (in bits) of each operand in the current instruction. */
int shift_act[MAX_OPERANDS];
/* Instruction type to match. */
unsigned int ins_type;
int match = 0;
int done_flag = 0;
int dispu4map_type = 0;
int changed_already = 0;
unsigned int temp_value = 0;
int instrtype, i;
/* A pointer to the argument's constant value. */
unsigned long int *cons;
/* Pointer to loop over all cst4_map entries. */
const cst4_entry *cst4_op;
/* Instruction has no operands -> copy only the constant opcode. */
if (insn->nargs == 0)
{
output_opcode[0] = BIN (instruction->match, instruction->match_bits);
return 1;
}
/* Find instruction with same number of operands. */
while (get_number_of_operands () != insn->nargs
&& IS_INSN_MNEMONIC (mnemonic))
instruction++;
if (!IS_INSN_MNEMONIC (mnemonic))
return 0;
/* Initialize argument type and size of each given operand. */
for (i = 0; i < insn->nargs; i++)
{
atyp[i] = insn->arg[i].type;
bits[i] = insn->arg[i].size;
}
/* Initialize argument type and size of each operand in current inst. */
GET_ACTUAL_TYPE;
GET_ACTUAL_SIZE;
/* In some case, same mnemonic can appear with different instruction types.
For example, 'storb' is supported with 3 different types :
LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS.
We assume that when reaching this point, the instruction type was
pre-determined. We need to make sure that the type stays the same
during a search for matching instruction. */
ins_type = CRX_INS_TYPE(instruction->flags);
while (match != 1
/* Check we didn't get to end of table. */
&& instruction->mnemonic != NULL
/* Check that the actual mnemonic is still available. */
&& IS_INSN_MNEMONIC (mnemonic)
/* Check that the instruction type wasn't changed. */
&& IS_INSN_TYPE(ins_type))
{
/* Check for argement type compatibility. */
for (i = 0; i < insn->nargs; i++)
{
if (atyp_act[i] == atyp[i])
done_flag = 1;
else
{
done_flag = 0;
break;
}
}
if (done_flag)
{
for (i = 0; i < insn->nargs; i++)
{
if ((get_flags (instruction->operands[i].op_type) & OPERAND_UNSIGNED)
&& (insn->arg[i].signflag))
{
done_flag = 0;
break;
}
}
}
if (done_flag == 0)
{
/* Try again with next instruction. */
instruction++;
GET_ACTUAL_TYPE;
GET_ACTUAL_SIZE;
continue;
}
else
{
/* Check for size compatibility. */
for (i = 0; i < insn->nargs; i++)
{
if (bits[i] > bits_act[i])
{
/* Actual size is too small - try again. */
done_flag = 0;
instruction++;
GET_ACTUAL_TYPE;
GET_ACTUAL_SIZE;
break;
}
}
}
if (done_flag == 1)
{
/* Full match is found. */
match = 1;
break;
}
}
if (match == 0)
/* We haven't found a match - instruction can't be assembled. */
return 0;
else
/* Full match - print the final image. */
{
/* If the post-increment address mode is used and the load/store
source register is the same as rbase, the result of the
instruction is undefined. */
if (IS_INSN_TYPE (LD_STOR_INS_INC))
{
/* Enough to verify that one of the arguments is a simple reg. */
if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r))
if (insn->arg[0].r == insn->arg[1].r)
as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
insn->arg[0].r);
}
/* Optimization: Omit a zero displacement in bit operations,
saving 2-byte encoding space (e.g., 'cbitw $8, 0(r1)'). */
if (IS_INSN_TYPE (CSTBIT_INS) && !relocatable)
{
if ((instruction->operands[1].op_type == rbase_disps12)
&& (insn->arg[1].constant == 0))
{
instruction--;
GET_ACTUAL_SIZE;
}
}
/* Some instruction assume the stack pointer as rptr operand.
Issue an error when the register to be loaded is also SP. */
if (instruction->flags & NO_SP)
{
if (getreg_image (insn->arg[0].r) == getreg_image (sp))
as_bad (_("`%s' has undefined result"), ins_parse);
}
/* If the rptr register is specified as one of the registers to be loaded,
the final contents of rptr are undefined. Thus, we issue an error. */
if (instruction->flags & NO_RPTR)
{
if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant)
as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
getreg_image (insn->arg[0].r));
}
/* Handle positive constants. */
if (!signflag)
{
if ((instruction->flags & DISPU4MAP) && !relocatable)
{
/* Get the map type of the instruction. */
instrtype = instruction->flags & REVERSE_MATCH ? 0 : 1;
cons = &insn->arg[instrtype].constant;
dispu4map_type = instruction->flags & DISPU4MAP;
switch (dispu4map_type)
{
case DISPUB4:
/* 14 and 15 are reserved escape sequences of dispub4. */
if (*cons == 14 || *cons == 15)
{
instruction++;
GET_ACTUAL_SIZE;
}
break;
case DISPUW4:
/* Mapping has to be done. */
if (*cons <= 15 && *cons % 2 != 0)
{
instruction++;
GET_ACTUAL_SIZE;
}
else if (*cons > 15 && *cons < 27 && *cons % 2 == 0)
{
instruction--;
GET_ACTUAL_SIZE;
}
if (*cons < 27 && *cons % 2 == 0)
*cons /= 2;
break;
case DISPUD4:
/* Mapping has to be done. */
if (*cons <= 15 && *cons % 4 != 0)
{
instruction++;
GET_ACTUAL_SIZE;
}
else if (*cons > 15 && *cons < 53 && *cons % 4 == 0)
{
instruction--;
GET_ACTUAL_SIZE;
}
if (*cons < 53 && *cons % 4 == 0)
*cons /= 4;
break;
default:
as_bad (_("Invalid DISPU4 type"));
break;
}
}
/* Check whether a cst4 mapping has to be done. */
if ((instruction->flags & CST4MAP) && !relocatable)
{
/* 'const' equals reserved escape sequences -->>
represent as i16. */
if (insn->arg[0].constant == ESC_16
|| insn->arg[0].constant == ESC_32)
{
instruction++;
GET_ACTUAL_SIZE;
}
else
{
/* Loop over cst4_map entries. */
for (cst4_op = cst4_map; cst4_op < (cst4_map + cst4_maps);
cst4_op++)
{
/* 'const' equals a binary, which is already mapped
by a different value -->> represent as i16. */
if (insn->arg[0].constant == (unsigned int)cst4_op->binary
&& cst4_op->binary != cst4_op->value)
{
instruction++;
GET_ACTUAL_SIZE;
}
/* 'const' equals a value bigger than 16 -->> map to
its binary and represent as cst4. */
else if (insn->arg[0].constant == (unsigned int)cst4_op->value
&& insn->arg[0].constant >= 16)
{
instruction--;
insn->arg[0].constant = cst4_op->binary;
GET_ACTUAL_SIZE;
}
}
}
}
/* Special check for 'addub 0, r0' instruction -
The opcode '0000 0000 0000 0000' is not allowed. */
if (IS_INSN_MNEMONIC ("addub"))
{
if ((instruction->operands[0].op_type == cst4)
&& instruction->operands[1].op_type == regr)
{
if (insn->arg[0].constant == 0 && insn->arg[1].r == r0)
instruction++;
}
}
if ((IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (CSTBIT_INS)
|| IS_INSN_TYPE (STOR_IMM_INS)) & !relocatable)
{
instrtype = instruction->flags & REVERSE_MATCH ? 0 : 1;
changed_already = 0;
/* Convert 32 bits accesses to 16 bits accesses. */
if (instruction->operands[instrtype].op_type == abs32)
{
if ((insn->arg[instrtype].constant & 0xFFFF0000) == 0xFFFF0000)
{
instruction--;
insn->arg[instrtype].constant =
insn->arg[instrtype].constant & 0xFFFF;
insn->arg[instrtype].size = 16;
changed_already = 1;
GET_ACTUAL_SIZE;
}
}
/* Convert 16 bits accesses to 32 bits accesses. */
if (instruction->operands[instrtype].op_type == abs16
&& changed_already != 1)
{
instruction++;
insn->arg[instrtype].constant =
insn->arg[instrtype].constant & 0xFFFF;
insn->arg[instrtype].size = 32;
GET_ACTUAL_SIZE;
}
changed_already = 0;
}
}
for (i = 0; i < insn->nargs; i++)
{
/* Mark a CST4 argument, if exists. */
if (get_flags (instruction->operands[i].op_type) & OPERAND_CST4)
cst4flag = 1;
/* Handle reserved escape sequences. */
if ((get_flags (instruction->operands[i].op_type) & OPERAND_ESC)
&& !relocatable)
{
/* 0x7e and 0x7f are reserved escape sequences of dispe9. */
if (insn->arg[i].constant == 0x7e || insn->arg[i].constant == 0x7f)
{
/* Use a disps17 for these values. */
instruction++;
GET_ACTUAL_SIZE;
}
}
}
/* First, copy the instruction's opcode. */
output_opcode[0] = BIN (instruction->match, instruction->match_bits);
/* Swap the argument values in case bcop instructions. */
if (IS_INSN_TYPE (COP_BRANCH_INS))
{
temp_value = insn->arg[0].constant;
insn->arg[0].constant = insn->arg[1].constant;
insn->arg[1].constant = temp_value;
}
for (i = 0; i < insn->nargs; i++)
{
shift_act[i] = instruction->operands[i].shift;
signflag = insn->arg[i].signflag;
cur_arg_num = i;
print_operand (bits_act[i], shift_act[i], &insn->arg[i]);
}
}
return 1;
}
/* Set the appropriate bit for register 'r' in 'mask'.
This indicates that this register is loaded or stored by
the instruction. */
static void
mask_reg (int r, unsigned short int *mask)
{
if ((reg)r > (reg)sp)
{
as_bad (_("Invalid Register in Register List"));
return;
}
*mask |= (1 << r);
}
/* Preprocess register list - create a 16-bit mask with one bit for each
of the 16 general purpose registers. If a bit is set, it indicates
that this register is loaded or stored by the instruction. */
static char *
preprocess_reglist (char *param, int *allocated)
{
char reg_name[MAX_REGNAME_LEN]; /* Current parsed register name. */
char *regP; /* Pointer to 'reg_name' string. */
int reg_counter = 0; /* Count number of parsed registers. */
unsigned short int mask = 0; /* Mask for 16 general purpose registers. */
char *new_param; /* New created operands string. */
char *paramP = param; /* Pointer to original opearands string. */
char maskstring[10]; /* Array to print the mask as a string. */
int hi_found = 0, lo_found = 0; /* Boolean flags for hi/lo registers. */
reg r;
copreg cr;
/* If 'param' is already in form of a number, no need to preprocess. */
if (strchr (paramP, '{') == NULL)
return param;
/* Verifying correct syntax of operand. */
if (strchr (paramP, '}') == NULL)
as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
while (*paramP++ != '{');
new_param = (char *)xcalloc (MAX_INST_LEN, sizeof (char));
*allocated = 1;
strncpy (new_param, param, paramP - param - 1);
while (*paramP != '}')
{
regP = paramP;
memset (®_name, '\0', sizeof (reg_name));
while (ISALNUM (*paramP))
paramP++;
strncpy (reg_name, regP, paramP - regP);
/* Coprocessor register c<N>. */
if (IS_INSN_TYPE (COP_REG_INS))
{
if (((cr = get_copregister (reg_name)) == nullcopregister)
|| (crx_copregtab[cr-MAX_REG].type != CRX_C_REGTYPE))
as_fatal (_("Illegal register `%s' in cop-register list"), reg_name);
mask_reg (getreg_image (cr - c0), &mask);
}
/* Coprocessor Special register cs<N>. */
else if (IS_INSN_TYPE (COPS_REG_INS))
{
if (((cr = get_copregister (reg_name)) == nullcopregister)
|| (crx_copregtab[cr-MAX_REG].type != CRX_CS_REGTYPE))
as_fatal (_("Illegal register `%s' in cop-special-register list"),
reg_name);
mask_reg (getreg_image (cr - cs0), &mask);
}
/* User register u<N>. */
else if (instruction->flags & USER_REG)
{
if (streq(reg_name, "uhi"))
{
hi_found = 1;
goto next_inst;
}
else if (streq(reg_name, "ulo"))
{
lo_found = 1;
goto next_inst;
}
else if (((r = get_register (reg_name)) == nullregister)
|| (crx_regtab[r].type != CRX_U_REGTYPE))
as_fatal (_("Illegal register `%s' in user register list"), reg_name);
mask_reg (getreg_image (r - u0), &mask);
}
/* General purpose register r<N>. */
else
{
if (streq(reg_name, "hi"))
{
hi_found = 1;
goto next_inst;
}
else if (streq(reg_name, "lo"))
{
lo_found = 1;
goto next_inst;
}
else if (((r = get_register (reg_name)) == nullregister)
|| (crx_regtab[r].type != CRX_R_REGTYPE))
as_fatal (_("Illegal register `%s' in register list"), reg_name);
mask_reg (getreg_image (r - r0), &mask);
}
if (++reg_counter > MAX_REGS_IN_MASK16)
as_bad (_("Maximum %d bits may be set in `mask16' operand"),
MAX_REGS_IN_MASK16);
next_inst:
while (!ISALNUM (*paramP) && *paramP != '}')
paramP++;
}
if (*++paramP != '\0')
as_warn (_("rest of line ignored; first ignored character is `%c'"),
*paramP);
switch (hi_found + lo_found)
{
case 0:
/* At least one register should be specified. */
if (mask == 0)
as_bad (_("Illegal `mask16' operand, operation is undefined - `%s'"),
ins_parse);
break;
case 1:
/* HI can't be specified without LO (and vise-versa). */
as_bad (_("HI/LO registers should be specified together"));
break;
case 2:
/* HI/LO registers mustn't be masked with additional registers. */
if (mask != 0)
as_bad (_("HI/LO registers should be specified without additional registers"));
default:
break;
}
sprintf (maskstring, "$0x%x", mask);
strcat (new_param, maskstring);
return new_param;
}
/* Print the instruction.
Handle also cases where the instruction is relaxable/relocatable. */
void
print_insn (ins *insn)
{
unsigned int i, j, insn_size;
char *this_frag;
unsigned short words[4];
/* Arrange the insn encodings in a WORD size array. */
for (i = 0, j = 0; i < 2; i++)
{
words[j++] = (output_opcode[i] >> 16) & 0xFFFF;
words[j++] = output_opcode[i] & 0xFFFF;
}
/* Handle relaxtion. */
if ((instruction->flags & RELAXABLE) && relocatable)
{
int relax_subtype;
/* Write the maximal instruction size supported. */
insn_size = INSN_MAX_SIZE;
/* bCC */
if (IS_INSN_TYPE (BRANCH_INS))
relax_subtype = 0;
/* bal */
else if (IS_INSN_TYPE (DCR_BRANCH_INS) || IS_INSN_MNEMONIC ("bal"))
relax_subtype = 3;
/* cmpbr */
else if (IS_INSN_TYPE (CMPBR_INS))
relax_subtype = 5;
else
abort ();
this_frag = frag_var (rs_machine_dependent, insn_size * 2,
4, relax_subtype,
insn->exp.X_add_symbol,
insn->exp.X_add_number,
0);
}
else
{
insn_size = instruction->size;
this_frag = frag_more (insn_size * 2);
/* Handle relocation. */
if ((relocatable) && (insn->rtype != BFD_RELOC_NONE))
{
reloc_howto_type *reloc_howto;
int size;
reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype);
if (!reloc_howto)
abort ();
size = bfd_get_reloc_size (reloc_howto);
if (size < 1 || size > 4)
abort ();
fix_new_exp (frag_now, this_frag - frag_now->fr_literal,
size, &insn->exp, reloc_howto->pc_relative,
insn->rtype);
}
}
/* Write the instruction encoding to frag. */
for (i = 0; i < insn_size; i++)
{
md_number_to_chars (this_frag, (valueT) words[i], 2);
this_frag += 2;
}
}
/* This is the guts of the machine-dependent assembler. OP points to a
machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles to. */
void
md_assemble (char *op)
{
ins crx_ins;
char *param;
char c;
/* Reset global variables for a new instruction. */
reset_vars (op, &crx_ins);
/* Strip the mnemonic. */
for (param = op; *param != 0 && !ISSPACE (*param); param++)
;
c = *param;
*param++ = '\0';
/* Find the instruction. */
instruction = (const inst *) hash_find (crx_inst_hash, op);
if (instruction == NULL)
{
as_bad (_("Unknown opcode: `%s'"), op);
return;
}
/* Tie dwarf2 debug info to the address at the start of the insn. */
dwarf2_emit_insn (0);
if (NO_OPERANDS_INST (op))
/* Handle instructions with no operands. */
crx_ins.nargs = 0;
else
/* Parse the instruction's operands. */
parse_insn (&crx_ins, param);
/* Assemble the instruction. */
if (assemble_insn (op, &crx_ins) == 0)
{
as_bad (_("Illegal operands in instruction : `%s'"), ins_parse);
return;
}
/* Print the instruction. */
print_insn (&crx_ins);
}
|