aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-aarch64.c
blob: 2aa38381f47360c4c551fecaabd7a40ce940d407 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
/* tc-aarch64.c -- Assemble for the AArch64 ISA

   Copyright (C) 2009-2023 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GAS.

   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the license, or
   (at your option) any later version.

   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING3. If not,
   see <http://www.gnu.org/licenses/>.  */

#include "as.h"
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#define	 NO_RELOC 0
#include "safe-ctype.h"
#include "subsegs.h"
#include "obstack.h"

#ifdef OBJ_ELF
#include "elf/aarch64.h"
#include "dw2gencfi.h"
#include "sframe.h"
#include "gen-sframe.h"
#endif

#include "dw2gencfi.h"
#include "dwarf2dbg.h"

/* Types of processor to assemble for.  */
#ifndef CPU_DEFAULT
#define CPU_DEFAULT AARCH64_ARCH_V8
#endif

#define streq(a, b)	      (strcmp (a, b) == 0)

#define END_OF_INSN '\0'

static aarch64_feature_set cpu_variant;

/* Variables that we set while parsing command-line options.  Once all
   options have been read we re-process these values to set the real
   assembly flags.  */
static const aarch64_feature_set *mcpu_cpu_opt = NULL;
static const aarch64_feature_set *march_cpu_opt = NULL;

/* Constants for known architecture features.  */
static const aarch64_feature_set cpu_default = CPU_DEFAULT;

/* Currently active instruction sequence.  */
static aarch64_instr_sequence *insn_sequence = NULL;

#ifdef OBJ_ELF
/* Pre-defined "_GLOBAL_OFFSET_TABLE_"	*/
static symbolS *GOT_symbol;
#endif

/* Which ABI to use.  */
enum aarch64_abi_type
{
  AARCH64_ABI_NONE = 0,
  AARCH64_ABI_LP64 = 1,
  AARCH64_ABI_ILP32 = 2,
  AARCH64_ABI_LLP64 = 3
};

unsigned int aarch64_sframe_cfa_sp_reg;
/* The other CFA base register for SFrame stack trace info.  */
unsigned int aarch64_sframe_cfa_fp_reg;
unsigned int aarch64_sframe_cfa_ra_reg;

#ifndef DEFAULT_ARCH
#define DEFAULT_ARCH "aarch64"
#endif

#ifdef OBJ_ELF
/* DEFAULT_ARCH is initialized in gas/configure.tgt.  */
static const char *default_arch = DEFAULT_ARCH;
#endif

/* AArch64 ABI for the output file.  */
static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;

/* When non-zero, program to a 32-bit model, in which the C data types
   int, long and all pointer types are 32-bit objects (ILP32); or to a
   64-bit model, in which the C int type is 32-bits but the C long type
   and all pointer types are 64-bit objects (LP64).  */
#define ilp32_p		(aarch64_abi == AARCH64_ABI_ILP32)

/* When non zero, C types int and long are 32 bit,
   pointers, however are 64 bit */
#define llp64_p (aarch64_abi == AARCH64_ABI_LLP64)

enum vector_el_type
{
  NT_invtype = -1,
  NT_b,
  NT_h,
  NT_s,
  NT_d,
  NT_q,
  NT_zero,
  NT_merge
};

/* Bits for DEFINED field in vector_type_el.  */
#define NTA_HASTYPE     1
#define NTA_HASINDEX    2
#define NTA_HASVARWIDTH 4

struct vector_type_el
{
  enum vector_el_type type;
  unsigned char defined;
  unsigned element_size;
  unsigned width;
  int64_t index;
};

#define FIXUP_F_HAS_EXPLICIT_SHIFT	0x00000001

struct reloc
{
  bfd_reloc_code_real_type type;
  expressionS exp;
  int pc_rel;
  enum aarch64_opnd opnd;
  uint32_t flags;
  unsigned need_libopcodes_p : 1;
};

struct aarch64_instruction
{
  /* libopcodes structure for instruction intermediate representation.  */
  aarch64_inst base;
  /* Record assembly errors found during the parsing.  */
  aarch64_operand_error parsing_error;
  /* The condition that appears in the assembly line.  */
  int cond;
  /* Relocation information (including the GAS internal fixup).  */
  struct reloc reloc;
  /* Need to generate an immediate in the literal pool.  */
  unsigned gen_lit_pool : 1;
};

typedef struct aarch64_instruction aarch64_instruction;

static aarch64_instruction inst;

static bool parse_operands (char *, const aarch64_opcode *);
static bool programmer_friendly_fixup (aarch64_instruction *);

/* If an AARCH64_OPDE_SYNTAX_ERROR has no error string, its first three
   data fields contain the following information:

   data[0].i:
     A mask of register types that would have been acceptable as bare
     operands, outside of a register list.  In addition, SEF_DEFAULT_ERROR
     is set if a general parsing error occured for an operand (that is,
     an error not related to registers, and having no error string).

   data[1].i:
     A mask of register types that would have been acceptable inside
     a register list.  In addition, SEF_IN_REGLIST is set if the
     operand contained a '{' and if we got to the point of trying
     to parse a register inside a list.

   data[2].i:
     The mask associated with the register that was actually seen, or 0
     if none.  A nonzero value describes a register inside a register
     list if data[1].i & SEF_IN_REGLIST, otherwise it describes a bare
     register.

   The idea is that stringless errors from multiple opcode templates can
   be ORed together to give a summary of the available alternatives.  */
#define SEF_DEFAULT_ERROR (1U << 31)
#define SEF_IN_REGLIST (1U << 31)

/* Diagnostics inline function utilities.

   These are lightweight utilities which should only be called by parse_operands
   and other parsers.  GAS processes each assembly line by parsing it against
   instruction template(s), in the case of multiple templates (for the same
   mnemonic name), those templates are tried one by one until one succeeds or
   all fail.  An assembly line may fail a few templates before being
   successfully parsed; an error saved here in most cases is not a user error
   but an error indicating the current template is not the right template.
   Therefore it is very important that errors can be saved at a low cost during
   the parsing; we don't want to slow down the whole parsing by recording
   non-user errors in detail.

   Remember that the objective is to help GAS pick up the most appropriate
   error message in the case of multiple templates, e.g. FMOV which has 8
   templates.  */

static inline void
clear_error (void)
{
  memset (&inst.parsing_error, 0, sizeof (inst.parsing_error));
  inst.parsing_error.kind = AARCH64_OPDE_NIL;
}

static inline bool
error_p (void)
{
  return inst.parsing_error.kind != AARCH64_OPDE_NIL;
}

static inline void
set_error (enum aarch64_operand_error_kind kind, const char *error)
{
  memset (&inst.parsing_error, 0, sizeof (inst.parsing_error));
  inst.parsing_error.index = -1;
  inst.parsing_error.kind = kind;
  inst.parsing_error.error = error;
}

static inline void
set_recoverable_error (const char *error)
{
  set_error (AARCH64_OPDE_RECOVERABLE, error);
}

/* Use the DESC field of the corresponding aarch64_operand entry to compose
   the error message.  */
static inline void
set_default_error (void)
{
  set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
  inst.parsing_error.data[0].i = SEF_DEFAULT_ERROR;
}

static inline void
set_expected_error (unsigned int flags)
{
  set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
  inst.parsing_error.data[0].i = flags;
}

static inline void
set_syntax_error (const char *error)
{
  set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
}

static inline void
set_first_syntax_error (const char *error)
{
  if (! error_p ())
    set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
}

static inline void
set_fatal_syntax_error (const char *error)
{
  set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
}

/* Return value for certain parsers when the parsing fails; those parsers
   return the information of the parsed result, e.g. register number, on
   success.  */
#define PARSE_FAIL -1

/* This is an invalid condition code that means no conditional field is
   present. */
#define COND_ALWAYS 0x10

typedef struct
{
  const char *template;
  uint32_t value;
} asm_nzcv;

struct reloc_entry
{
  char *name;
  bfd_reloc_code_real_type reloc;
};

/* Macros to define the register types and masks for the purpose
   of parsing.  */

#undef AARCH64_REG_TYPES
#define AARCH64_REG_TYPES	\
  BASIC_REG_TYPE(R_32)	/* w[0-30] */	\
  BASIC_REG_TYPE(R_64)	/* x[0-30] */	\
  BASIC_REG_TYPE(SP_32)	/* wsp     */	\
  BASIC_REG_TYPE(SP_64)	/* sp      */	\
  BASIC_REG_TYPE(ZR_32)	/* wzr     */	\
  BASIC_REG_TYPE(ZR_64)	/* xzr     */	\
  BASIC_REG_TYPE(FP_B)	/* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
  BASIC_REG_TYPE(FP_H)	/* h[0-31] */	\
  BASIC_REG_TYPE(FP_S)	/* s[0-31] */	\
  BASIC_REG_TYPE(FP_D)	/* d[0-31] */	\
  BASIC_REG_TYPE(FP_Q)	/* q[0-31] */	\
  BASIC_REG_TYPE(V)	/* v[0-31] */	\
  BASIC_REG_TYPE(Z)	/* z[0-31] */	\
  BASIC_REG_TYPE(P)	/* p[0-15] */	\
  BASIC_REG_TYPE(PN)	/* pn[0-15] */	\
  BASIC_REG_TYPE(ZA)	/* za */	\
  BASIC_REG_TYPE(ZAT)	/* za[0-15] (ZA tile) */			\
  BASIC_REG_TYPE(ZATH)	/* za[0-15]h (ZA tile horizontal slice) */ 	\
  BASIC_REG_TYPE(ZATV)	/* za[0-15]v (ZA tile vertical slice) */	\
  BASIC_REG_TYPE(ZT0)	/* zt0 */					\
  /* Typecheck: any 64-bit int reg         (inc SP exc XZR).  */	\
  MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64))		\
  /* Typecheck: same, plus SVE registers.  */				\
  MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64)		\
		 | REG_TYPE(Z))						\
  /* Typecheck: x[0-30], w[0-30] or [xw]zr.  */				\
  MULTI_REG_TYPE(R_ZR, REG_TYPE(R_32) | REG_TYPE(R_64)			\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64))			\
  /* Typecheck: same, plus SVE registers.  */				\
  MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64)		\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64)			\
		 | REG_TYPE(Z))						\
  /* Typecheck: x[0-30], w[0-30] or {w}sp.  */				\
  MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64)			\
		 | REG_TYPE(SP_32) | REG_TYPE(SP_64))			\
  /* Typecheck: any int                    (inc {W}SP inc [WX]ZR).  */	\
  MULTI_REG_TYPE(R_ZR_SP, REG_TYPE(R_32) | REG_TYPE(R_64)		\
		 | REG_TYPE(SP_32) | REG_TYPE(SP_64)			\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64)) 			\
  /* Typecheck: any [BHSDQ]P FP.  */					\
  MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H)			\
		 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q))	\
  /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR).  */ \
  MULTI_REG_TYPE(R_ZR_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64)		\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) | REG_TYPE(V)	\
		 | REG_TYPE(FP_B) | REG_TYPE(FP_H)			\
		 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q))	\
  /* Typecheck: as above, but also Zn, Pn, and {W}SP.  This should only	\
     be used for SVE instructions, since Zn and Pn are valid symbols	\
     in other contexts.  */						\
  MULTI_REG_TYPE(R_ZR_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64)	\
		 | REG_TYPE(SP_32) | REG_TYPE(SP_64)			\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64) | REG_TYPE(V)	\
		 | REG_TYPE(FP_B) | REG_TYPE(FP_H)			\
		 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)	\
		 | REG_TYPE(Z) | REG_TYPE(P))				\
  /* Any integer register; used for error messages only.  */		\
  MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64)			\
		 | REG_TYPE(SP_32) | REG_TYPE(SP_64)			\
		 | REG_TYPE(ZR_32) | REG_TYPE(ZR_64))			\
  /* Any vector register.  */						\
  MULTI_REG_TYPE(VZ, REG_TYPE(V) | REG_TYPE(Z))				\
  /* An SVE vector or predicate register.  */				\
  MULTI_REG_TYPE(ZP, REG_TYPE(Z) | REG_TYPE(P))				\
  /* Any vector or predicate register.  */				\
  MULTI_REG_TYPE(VZP, REG_TYPE(V) | REG_TYPE(Z) | REG_TYPE(P))		\
  /* The whole of ZA or a single tile.  */				\
  MULTI_REG_TYPE(ZA_ZAT, REG_TYPE(ZA) | REG_TYPE(ZAT))			\
  /* A horizontal or vertical slice of a ZA tile.  */			\
  MULTI_REG_TYPE(ZATHV, REG_TYPE(ZATH) | REG_TYPE(ZATV))		\
  /* Pseudo type to mark the end of the enumerator sequence.  */	\
  END_REG_TYPE(MAX)

#undef BASIC_REG_TYPE
#define BASIC_REG_TYPE(T)	REG_TYPE_##T,
#undef MULTI_REG_TYPE
#define MULTI_REG_TYPE(T,V)	BASIC_REG_TYPE(T)
#undef END_REG_TYPE
#define END_REG_TYPE(T)		BASIC_REG_TYPE(T)

/* Register type enumerators.  */
typedef enum aarch64_reg_type_
{
  /* A list of REG_TYPE_*.  */
  AARCH64_REG_TYPES
} aarch64_reg_type;

#undef BASIC_REG_TYPE
#define BASIC_REG_TYPE(T)	1 << REG_TYPE_##T,
#undef REG_TYPE
#define REG_TYPE(T)		(1 << REG_TYPE_##T)
#undef MULTI_REG_TYPE
#define MULTI_REG_TYPE(T,V)	V,
#undef END_REG_TYPE
#define END_REG_TYPE(T)		0

/* Structure for a hash table entry for a register.  */
typedef struct
{
  const char *name;
  unsigned char number;
  ENUM_BITFIELD (aarch64_reg_type_) type : 8;
  unsigned char builtin;
} reg_entry;

/* Values indexed by aarch64_reg_type to assist the type checking.  */
static const unsigned reg_type_masks[] =
{
  AARCH64_REG_TYPES
};

#undef BASIC_REG_TYPE
#undef REG_TYPE
#undef MULTI_REG_TYPE
#undef END_REG_TYPE
#undef AARCH64_REG_TYPES

/* We expected one of the registers in MASK to be specified.  If a register
   of some kind was specified, SEEN is a mask that contains that register,
   otherwise it is zero.

   If it is possible to provide a relatively pithy message that describes
   the error exactly, return a string that does so, reporting the error
   against "operand %d".  Return null otherwise.

   From a QoI perspective, any REG_TYPE_* that is passed as the first
   argument to set_expected_reg_error should generally have its own message.
   Providing messages for combinations of such REG_TYPE_*s can be useful if
   it is possible to summarize the combination in a relatively natural way.
   On the other hand, it seems better to avoid long lists of unrelated
   things.  */

static const char *
get_reg_expected_msg (unsigned int mask, unsigned int seen)
{
  /* First handle messages that use SEEN.  */
  if ((mask & reg_type_masks[REG_TYPE_ZAT])
      && (seen & reg_type_masks[REG_TYPE_ZATHV]))
    return N_("expected an unsuffixed ZA tile at operand %d");

  if ((mask & reg_type_masks[REG_TYPE_ZATHV])
      && (seen & reg_type_masks[REG_TYPE_ZAT]))
    return N_("missing horizontal or vertical suffix at operand %d");

  if ((mask & reg_type_masks[REG_TYPE_ZA])
      && (seen & (reg_type_masks[REG_TYPE_ZAT]
		  | reg_type_masks[REG_TYPE_ZATHV])))
    return N_("expected 'za' rather than a ZA tile at operand %d");

  if ((mask & reg_type_masks[REG_TYPE_PN])
      && (seen & reg_type_masks[REG_TYPE_P]))
    return N_("expected a predicate-as-counter rather than predicate-as-mask"
	      " register at operand %d");

  if ((mask & reg_type_masks[REG_TYPE_P])
      && (seen & reg_type_masks[REG_TYPE_PN]))
    return N_("expected a predicate-as-mask rather than predicate-as-counter"
	      " register at operand %d");

  /* Integer, zero and stack registers.  */
  if (mask == reg_type_masks[REG_TYPE_R_64])
    return N_("expected a 64-bit integer register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_R_ZR])
    return N_("expected an integer or zero register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_R_SP])
    return N_("expected an integer or stack pointer register at operand %d");

  /* Floating-point and SIMD registers.  */
  if (mask == reg_type_masks[REG_TYPE_BHSDQ])
    return N_("expected a scalar SIMD or floating-point register"
	      " at operand %d");
  if (mask == reg_type_masks[REG_TYPE_V])
    return N_("expected an Advanced SIMD vector register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_Z])
    return N_("expected an SVE vector register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_P]
      || mask == (reg_type_masks[REG_TYPE_P] | reg_type_masks[REG_TYPE_PN]))
    /* Use this error for "predicate-as-mask only" and "either kind of
       predicate".  We report a more specific error if P is used where
       PN is expected, and vice versa, so the issue at this point is
       "predicate-like" vs. "not predicate-like".  */
    return N_("expected an SVE predicate register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_PN])
    return N_("expected an SVE predicate-as-counter register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_VZ])
    return N_("expected a vector register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_ZP])
    return N_("expected an SVE vector or predicate register at operand %d");
  if (mask == reg_type_masks[REG_TYPE_VZP])
    return N_("expected a vector or predicate register at operand %d");

  /* SME-related registers.  */
  if (mask == reg_type_masks[REG_TYPE_ZA])
    return N_("expected a ZA array vector at operand %d");
  if (mask == (reg_type_masks[REG_TYPE_ZA_ZAT] | reg_type_masks[REG_TYPE_ZT0]))
    return N_("expected ZT0 or a ZA mask at operand %d");
  if (mask == reg_type_masks[REG_TYPE_ZAT])
    return N_("expected a ZA tile at operand %d");
  if (mask == reg_type_masks[REG_TYPE_ZATHV])
    return N_("expected a ZA tile slice at operand %d");

  /* Integer and vector combos.  */
  if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_V]))
    return N_("expected an integer register or Advanced SIMD vector register"
	      " at operand %d");
  if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_Z]))
    return N_("expected an integer register or SVE vector register"
	      " at operand %d");
  if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_VZ]))
    return N_("expected an integer or vector register at operand %d");
  if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_P]))
    return N_("expected an integer or predicate register at operand %d");
  if (mask == (reg_type_masks[REG_TYPE_R_ZR] | reg_type_masks[REG_TYPE_VZP]))
    return N_("expected an integer, vector or predicate register"
	      " at operand %d");

  /* SVE and SME combos.  */
  if (mask == (reg_type_masks[REG_TYPE_Z] | reg_type_masks[REG_TYPE_ZATHV]))
    return N_("expected an SVE vector register or ZA tile slice"
	      " at operand %d");

  return NULL;
}

/* Record that we expected a register of type TYPE but didn't see one.
   REG is the register that we actually saw, or null if we didn't see a
   recognized register.  FLAGS is SEF_IN_REGLIST if we are parsing the
   contents of a register list, otherwise it is zero.  */

static inline void
set_expected_reg_error (aarch64_reg_type type, const reg_entry *reg,
			unsigned int flags)
{
  assert (flags == 0 || flags == SEF_IN_REGLIST);
  set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
  if (flags & SEF_IN_REGLIST)
    inst.parsing_error.data[1].i = reg_type_masks[type] | flags;
  else
    inst.parsing_error.data[0].i = reg_type_masks[type];
  if (reg)
    inst.parsing_error.data[2].i = reg_type_masks[reg->type];
}

/* Record that we expected a register list containing registers of type TYPE,
   but didn't see the opening '{'.  If we saw a register instead, REG is the
   register that we saw, otherwise it is null.  */

static inline void
set_expected_reglist_error (aarch64_reg_type type, const reg_entry *reg)
{
  set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
  inst.parsing_error.data[1].i = reg_type_masks[type];
  if (reg)
    inst.parsing_error.data[2].i = reg_type_masks[reg->type];
}

/* Some well known registers that we refer to directly elsewhere.  */
#define REG_SP	31
#define REG_ZR	31

/* Instructions take 4 bytes in the object file.  */
#define INSN_SIZE	4

static htab_t aarch64_ops_hsh;
static htab_t aarch64_cond_hsh;
static htab_t aarch64_shift_hsh;
static htab_t aarch64_sys_regs_hsh;
static htab_t aarch64_pstatefield_hsh;
static htab_t aarch64_sys_regs_ic_hsh;
static htab_t aarch64_sys_regs_dc_hsh;
static htab_t aarch64_sys_regs_at_hsh;
static htab_t aarch64_sys_regs_tlbi_hsh;
static htab_t aarch64_sys_regs_sr_hsh;
static htab_t aarch64_reg_hsh;
static htab_t aarch64_barrier_opt_hsh;
static htab_t aarch64_nzcv_hsh;
static htab_t aarch64_pldop_hsh;
static htab_t aarch64_hint_opt_hsh;

/* Stuff needed to resolve the label ambiguity
   As:
     ...
     label:   <insn>
   may differ from:
     ...
     label:
	      <insn>  */

static symbolS *last_label_seen;

/* Literal pool structure.  Held on a per-section
   and per-sub-section basis.  */

#define MAX_LITERAL_POOL_SIZE 1024
typedef struct literal_expression
{
  expressionS exp;
  /* If exp.op == O_big then this bignum holds a copy of the global bignum value.  */
  LITTLENUM_TYPE * bignum;
} literal_expression;

typedef struct literal_pool
{
  literal_expression literals[MAX_LITERAL_POOL_SIZE];
  unsigned int next_free_entry;
  unsigned int id;
  symbolS *symbol;
  segT section;
  subsegT sub_section;
  int size;
  struct literal_pool *next;
} literal_pool;

/* Pointer to a linked list of literal pools.  */
static literal_pool *list_of_pools = NULL;

/* Pure syntax.	 */

/* This array holds the chars that always start a comment.  If the
   pre-processor is disabled, these aren't very useful.	 */
const char comment_chars[] = "";

/* This array holds the chars that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output.	*/
/* Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output.  */
/* Also note that comments like this one will always work.  */
const char line_comment_chars[] = "#";

const char line_separator_chars[] = ";";

/* Chars that can be used to separate mant
   from exp in floating point numbers.	*/
const char EXP_CHARS[] = "eE";

/* Chars that mean this number is a floating point constant.  */
/* As in 0f12.456  */
/* or	 0d1.2345e12  */

const char FLT_CHARS[] = "rRsSfFdDxXeEpPhHb";

/* Prefix character that indicates the start of an immediate value.  */
#define is_immediate_prefix(C) ((C) == '#')

/* Separator character handling.  */

#define skip_whitespace(str)  do { if (*(str) == ' ') ++(str); } while (0)

static inline bool
skip_past_char (char **str, char c)
{
  if (**str == c)
    {
      (*str)++;
      return true;
    }
  else
    return false;
}

#define skip_past_comma(str) skip_past_char (str, ',')

/* Arithmetic expressions (possibly involving symbols).	 */

static bool in_aarch64_get_expression = false;

/* Third argument to aarch64_get_expression.  */
#define GE_NO_PREFIX  false
#define GE_OPT_PREFIX true

/* Fourth argument to aarch64_get_expression.  */
#define ALLOW_ABSENT  false
#define REJECT_ABSENT true

/* Return TRUE if the string pointed by *STR is successfully parsed
   as an valid expression; *EP will be filled with the information of
   such an expression.  Otherwise return FALSE.

   If ALLOW_IMMEDIATE_PREFIX is true then skip a '#' at the start.
   If REJECT_ABSENT is true then trat missing expressions as an error.  */

static bool
aarch64_get_expression (expressionS *  ep,
			char **        str,
			bool           allow_immediate_prefix,
			bool           reject_absent)
{
  char *save_in;
  segT seg;
  bool prefix_present = false;

  if (allow_immediate_prefix)
    {
      if (is_immediate_prefix (**str))
	{
	  (*str)++;
	  prefix_present = true;
	}
    }

  memset (ep, 0, sizeof (expressionS));

  save_in = input_line_pointer;
  input_line_pointer = *str;
  in_aarch64_get_expression = true;
  seg = expression (ep);
  in_aarch64_get_expression = false;

  if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
    {
      /* We found a bad expression in md_operand().  */
      *str = input_line_pointer;
      input_line_pointer = save_in;
      if (prefix_present && ! error_p ())
	set_fatal_syntax_error (_("bad expression"));
      else
	set_first_syntax_error (_("bad expression"));
      return false;
    }

#ifdef OBJ_AOUT
  if (seg != absolute_section
      && seg != text_section
      && seg != data_section
      && seg != bss_section
      && seg != undefined_section)
    {
      set_syntax_error (_("bad segment"));
      *str = input_line_pointer;
      input_line_pointer = save_in;
      return false;
    }
#else
  (void) seg;
#endif

  *str = input_line_pointer;
  input_line_pointer = save_in;
  return true;
}

/* Turn a string in input_line_pointer into a floating point constant
   of type TYPE, and store the appropriate bytes in *LITP.  The number
   of LITTLENUMS emitted is stored in *SIZEP.  An error message is
   returned, or NULL on OK.  */

const char *
md_atof (int type, char *litP, int *sizeP)
{
  return ieee_md_atof (type, litP, sizeP, target_big_endian);
}

/* We handle all bad expressions here, so that we can report the faulty
   instruction in the error message.  */
void
md_operand (expressionS * exp)
{
  if (in_aarch64_get_expression)
    exp->X_op = O_illegal;
}

/* Immediate values.  */

/* Errors may be set multiple times during parsing or bit encoding
   (particularly in the Neon bits), but usually the earliest error which is set
   will be the most meaningful. Avoid overwriting it with later (cascading)
   errors by calling this function.  */

static void
first_error (const char *error)
{
  if (! error_p ())
    set_syntax_error (error);
}

/* Similar to first_error, but this function accepts formatted error
   message.  */
static void
first_error_fmt (const char *format, ...)
{
  va_list args;
  enum
  { size = 100 };
  /* N.B. this single buffer will not cause error messages for different
     instructions to pollute each other; this is because at the end of
     processing of each assembly line, error message if any will be
     collected by as_bad.  */
  static char buffer[size];

  if (! error_p ())
    {
      int ret ATTRIBUTE_UNUSED;
      va_start (args, format);
      ret = vsnprintf (buffer, size, format, args);
      know (ret <= size - 1 && ret >= 0);
      va_end (args);
      set_syntax_error (buffer);
    }
}

/* Internal helper routine converting a vector_type_el structure *VECTYPE
   to a corresponding operand qualifier.  */

static inline aarch64_opnd_qualifier_t
vectype_to_qualifier (const struct vector_type_el *vectype)
{
  /* Element size in bytes indexed by vector_el_type.  */
  const unsigned char ele_size[5]
    = {1, 2, 4, 8, 16};
  const unsigned int ele_base [5] =
    {
      AARCH64_OPND_QLF_V_4B,
      AARCH64_OPND_QLF_V_2H,
      AARCH64_OPND_QLF_V_2S,
      AARCH64_OPND_QLF_V_1D,
      AARCH64_OPND_QLF_V_1Q
  };

  if (!vectype->defined || vectype->type == NT_invtype)
    goto vectype_conversion_fail;

  if (vectype->type == NT_zero)
    return AARCH64_OPND_QLF_P_Z;
  if (vectype->type == NT_merge)
    return AARCH64_OPND_QLF_P_M;

  gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);

  if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
    {
      /* Special case S_4B.  */
      if (vectype->type == NT_b && vectype->width == 4)
	return AARCH64_OPND_QLF_S_4B;

      /* Special case S_2H.  */
      if (vectype->type == NT_h && vectype->width == 2)
	return AARCH64_OPND_QLF_S_2H;

      /* Vector element register.  */
      return AARCH64_OPND_QLF_S_B + vectype->type;
    }
  else
    {
      /* Vector register.  */
      int reg_size = ele_size[vectype->type] * vectype->width;
      unsigned offset;
      unsigned shift;
      if (reg_size != 16 && reg_size != 8 && reg_size != 4)
	goto vectype_conversion_fail;

      /* The conversion is by calculating the offset from the base operand
	 qualifier for the vector type.  The operand qualifiers are regular
	 enough that the offset can established by shifting the vector width by
	 a vector-type dependent amount.  */
      shift = 0;
      if (vectype->type == NT_b)
	shift = 3;
      else if (vectype->type == NT_h || vectype->type == NT_s)
	shift = 2;
      else if (vectype->type >= NT_d)
	shift = 1;
      else
	gas_assert (0);

      offset = ele_base [vectype->type] + (vectype->width >> shift);
      gas_assert (AARCH64_OPND_QLF_V_4B <= offset
		  && offset <= AARCH64_OPND_QLF_V_1Q);
      return offset;
    }

 vectype_conversion_fail:
  first_error (_("bad vector arrangement type"));
  return AARCH64_OPND_QLF_NIL;
}

/* Register parsing.  */

/* Generic register parser which is called by other specialized
   register parsers.
   CCP points to what should be the beginning of a register name.
   If it is indeed a valid register name, advance CCP over it and
   return the reg_entry structure; otherwise return NULL.
   It does not issue diagnostics.  */

static reg_entry *
parse_reg (char **ccp)
{
  char *start = *ccp;
  char *p;
  reg_entry *reg;

#ifdef REGISTER_PREFIX
  if (*start != REGISTER_PREFIX)
    return NULL;
  start++;
#endif

  p = start;
  if (!ISALPHA (*p) || !is_name_beginner (*p))
    return NULL;

  do
    p++;
  while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');

  reg = (reg_entry *) str_hash_find_n (aarch64_reg_hsh, start, p - start);

  if (!reg)
    return NULL;

  *ccp = p;
  return reg;
}

/* Return the operand qualifier associated with all uses of REG, or
   AARCH64_OPND_QLF_NIL if none.  AARCH64_OPND_QLF_NIL means either
   that qualifiers don't apply to REG or that qualifiers are added
   using suffixes.  */

static aarch64_opnd_qualifier_t
inherent_reg_qualifier (const reg_entry *reg)
{
  switch (reg->type)
    {
    case REG_TYPE_R_32:
    case REG_TYPE_SP_32:
    case REG_TYPE_ZR_32:
      return AARCH64_OPND_QLF_W;

    case REG_TYPE_R_64:
    case REG_TYPE_SP_64:
    case REG_TYPE_ZR_64:
      return AARCH64_OPND_QLF_X;

    case REG_TYPE_FP_B:
    case REG_TYPE_FP_H:
    case REG_TYPE_FP_S:
    case REG_TYPE_FP_D:
    case REG_TYPE_FP_Q:
      return AARCH64_OPND_QLF_S_B + (reg->type - REG_TYPE_FP_B);

    default:
      return AARCH64_OPND_QLF_NIL;
    }
}

/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
   return FALSE.  */
static bool
aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
{
  return (reg_type_masks[type] & (1 << reg->type)) != 0;
}

/* Try to parse a base or offset register.  Allow SVE base and offset
   registers if REG_TYPE includes SVE registers.  Return the register
   entry on success, setting *QUALIFIER to the register qualifier.
   Return null otherwise.

   Note that this function does not issue any diagnostics.  */

static const reg_entry *
aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
			aarch64_opnd_qualifier_t *qualifier)
{
  char *str = *ccp;
  const reg_entry *reg = parse_reg (&str);

  if (reg == NULL)
    return NULL;

  switch (reg->type)
    {
    case REG_TYPE_Z:
      if ((reg_type_masks[reg_type] & (1 << REG_TYPE_Z)) == 0
	  || str[0] != '.')
	return NULL;
      switch (TOLOWER (str[1]))
	{
	case 's':
	  *qualifier = AARCH64_OPND_QLF_S_S;
	  break;
	case 'd':
	  *qualifier = AARCH64_OPND_QLF_S_D;
	  break;
	default:
	  return NULL;
	}
      str += 2;
      break;

    default:
      if (!aarch64_check_reg_type (reg, REG_TYPE_R_ZR_SP))
	return NULL;
      *qualifier = inherent_reg_qualifier (reg);
      break;
    }

  *ccp = str;

  return reg;
}

/* Try to parse a base or offset register.  Return the register entry
   on success, setting *QUALIFIER to the register qualifier.  Return null
   otherwise.

   Note that this function does not issue any diagnostics.  */

static const reg_entry *
aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
{
  return aarch64_addr_reg_parse (ccp, REG_TYPE_R_ZR_SP, qualifier);
}

/* Parse the qualifier of a vector register or vector element of type
   REG_TYPE.  Fill in *PARSED_TYPE and return TRUE if the parsing
   succeeds; otherwise return FALSE.

   Accept only one occurrence of:
   4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
   b h s d q  */
static bool
parse_vector_type_for_operand (aarch64_reg_type reg_type,
			       struct vector_type_el *parsed_type, char **str)
{
  char *ptr = *str;
  unsigned width;
  unsigned element_size;
  enum vector_el_type type;

  /* skip '.' */
  gas_assert (*ptr == '.');
  ptr++;

  if (reg_type != REG_TYPE_V || !ISDIGIT (*ptr))
    {
      width = 0;
      goto elt_size;
    }
  width = strtoul (ptr, &ptr, 10);
  if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
    {
      first_error_fmt (_("bad size %d in vector width specifier"), width);
      return false;
    }

 elt_size:
  switch (TOLOWER (*ptr))
    {
    case 'b':
      type = NT_b;
      element_size = 8;
      break;
    case 'h':
      type = NT_h;
      element_size = 16;
      break;
    case 's':
      type = NT_s;
      element_size = 32;
      break;
    case 'd':
      type = NT_d;
      element_size = 64;
      break;
    case 'q':
      if (reg_type != REG_TYPE_V || width == 1)
	{
	  type = NT_q;
	  element_size = 128;
	  break;
	}
      /* fall through.  */
    default:
      if (*ptr != '\0')
	first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
      else
	first_error (_("missing element size"));
      return false;
    }
  if (width != 0 && width * element_size != 64
      && width * element_size != 128
      && !(width == 2 && element_size == 16)
      && !(width == 4 && element_size == 8))
    {
      first_error_fmt (_
		       ("invalid element size %d and vector size combination %c"),
		       width, *ptr);
      return false;
    }
  ptr++;

  parsed_type->type = type;
  parsed_type->width = width;
  parsed_type->element_size = element_size;

  *str = ptr;

  return true;
}

/* *STR contains an SVE zero/merge predication suffix.  Parse it into
   *PARSED_TYPE and point *STR at the end of the suffix.  */

static bool
parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
{
  char *ptr = *str;

  /* Skip '/'.  */
  gas_assert (*ptr == '/');
  ptr++;
  switch (TOLOWER (*ptr))
    {
    case 'z':
      parsed_type->type = NT_zero;
      break;
    case 'm':
      parsed_type->type = NT_merge;
      break;
    default:
      if (*ptr != '\0' && *ptr != ',')
	first_error_fmt (_("unexpected character `%c' in predication type"),
			 *ptr);
      else
	first_error (_("missing predication type"));
      return false;
    }
  parsed_type->width = 0;
  *str = ptr + 1;
  return true;
}

/* Return true if CH is a valid suffix character for registers of
   type TYPE.  */

static bool
aarch64_valid_suffix_char_p (aarch64_reg_type type, char ch)
{
  switch (type)
    {
    case REG_TYPE_V:
    case REG_TYPE_Z:
    case REG_TYPE_ZA:
    case REG_TYPE_ZAT:
    case REG_TYPE_ZATH:
    case REG_TYPE_ZATV:
      return ch == '.';

    case REG_TYPE_P:
    case REG_TYPE_PN:
      return ch == '.' || ch == '/';

    default:
      return false;
    }
}

/* Parse an index expression at *STR, storing it in *IMM on success.  */

static bool
parse_index_expression (char **str, int64_t *imm)
{
  expressionS exp;

  aarch64_get_expression (&exp, str, GE_NO_PREFIX, REJECT_ABSENT);
  if (exp.X_op != O_constant)
    {
      first_error (_("constant expression required"));
      return false;
    }
  *imm = exp.X_add_number;
  return true;
}

/* Parse a register of the type TYPE.

   Return null if the string pointed to by *CCP is not a valid register
   name or the parsed register is not of TYPE.

   Otherwise return the register, and optionally return the register
   shape and element index information in *TYPEINFO.

   FLAGS includes PTR_IN_REGLIST if the caller is parsing a register list.

   FLAGS includes PTR_FULL_REG if the function should ignore any potential
   register index.

   FLAGS includes PTR_GOOD_MATCH if we are sufficiently far into parsing
   an operand that we can be confident that it is a good match.  */

#define PTR_IN_REGLIST (1U << 0)
#define PTR_FULL_REG (1U << 1)
#define PTR_GOOD_MATCH (1U << 2)

static const reg_entry *
parse_typed_reg (char **ccp, aarch64_reg_type type,
		 struct vector_type_el *typeinfo, unsigned int flags)
{
  char *str = *ccp;
  bool isalpha = ISALPHA (*str);
  const reg_entry *reg = parse_reg (&str);
  struct vector_type_el atype;
  struct vector_type_el parsetype;
  bool is_typed_vecreg = false;
  unsigned int err_flags = (flags & PTR_IN_REGLIST) ? SEF_IN_REGLIST : 0;

  atype.defined = 0;
  atype.type = NT_invtype;
  atype.width = -1;
  atype.element_size = 0;
  atype.index = 0;

  if (reg == NULL)
    {
      if (typeinfo)
	*typeinfo = atype;
      if (!isalpha && (flags & PTR_IN_REGLIST))
	set_fatal_syntax_error (_("syntax error in register list"));
      else if (flags & PTR_GOOD_MATCH)
	set_fatal_syntax_error (NULL);
      else
	set_expected_reg_error (type, reg, err_flags);
      return NULL;
    }

  if (! aarch64_check_reg_type (reg, type))
    {
      DEBUG_TRACE ("reg type check failed");
      if (flags & PTR_GOOD_MATCH)
	set_fatal_syntax_error (NULL);
      else
	set_expected_reg_error (type, reg, err_flags);
      return NULL;
    }
  type = reg->type;

  if (aarch64_valid_suffix_char_p (reg->type, *str))
    {
      if (*str == '.')
	{
	  if (!parse_vector_type_for_operand (type, &parsetype, &str))
	    return NULL;
	  if ((reg->type == REG_TYPE_ZAT
	       || reg->type == REG_TYPE_ZATH
	       || reg->type == REG_TYPE_ZATV)
	      && reg->number * 8 >= parsetype.element_size)
	    {
	      set_syntax_error (_("ZA tile number out of range"));
	      return NULL;
	    }
	}
      else
	{
	  if (!parse_predication_for_operand (&parsetype, &str))
	    return NULL;
	}

      /* Register if of the form Vn.[bhsdq].  */
      is_typed_vecreg = true;

      if (type != REG_TYPE_V)
	{
	  /* The width is always variable; we don't allow an integer width
	     to be specified.  */
	  gas_assert (parsetype.width == 0);
	  atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
	}
      else if (parsetype.width == 0)
	/* Expect index. In the new scheme we cannot have
	   Vn.[bhsdq] represent a scalar. Therefore any
	   Vn.[bhsdq] should have an index following it.
	   Except in reglists of course.  */
	atype.defined |= NTA_HASINDEX;
      else
	atype.defined |= NTA_HASTYPE;

      atype.type = parsetype.type;
      atype.width = parsetype.width;
    }

  if (!(flags & PTR_FULL_REG) && skip_past_char (&str, '['))
    {
      /* Reject Sn[index] syntax.  */
      if (reg->type != REG_TYPE_Z
	  && reg->type != REG_TYPE_PN
	  && reg->type != REG_TYPE_ZT0
	  && !is_typed_vecreg)
	{
	  first_error (_("this type of register can't be indexed"));
	  return NULL;
	}

      if (flags & PTR_IN_REGLIST)
	{
	  first_error (_("index not allowed inside register list"));
	  return NULL;
	}

      atype.defined |= NTA_HASINDEX;

      if (!parse_index_expression (&str, &atype.index))
	return NULL;

      if (! skip_past_char (&str, ']'))
	return NULL;
    }
  else if (!(flags & PTR_IN_REGLIST) && (atype.defined & NTA_HASINDEX) != 0)
    {
      /* Indexed vector register expected.  */
      first_error (_("indexed vector register expected"));
      return NULL;
    }

  /* A vector reg Vn should be typed or indexed.  */
  if (type == REG_TYPE_V && atype.defined == 0)
    {
      first_error (_("invalid use of vector register"));
    }

  if (typeinfo)
    *typeinfo = atype;

  *ccp = str;

  return reg;
}

/* Parse register.

   Return the register on success; return null otherwise.

   If this is a NEON vector register with additional type information, fill
   in the struct pointed to by VECTYPE (if non-NULL).

   This parser does not handle register lists.  */

static const reg_entry *
aarch64_reg_parse (char **ccp, aarch64_reg_type type,
		   struct vector_type_el *vectype)
{
  return parse_typed_reg (ccp, type, vectype, 0);
}

static inline bool
eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
{
  return (e1.type == e2.type
	  && e1.defined == e2.defined
	  && e1.width == e2.width
	  && e1.element_size == e2.element_size
	  && e1.index == e2.index);
}

/* Return the register number mask for registers of type REG_TYPE.  */

static inline int
reg_type_mask (aarch64_reg_type reg_type)
{
  return reg_type == REG_TYPE_P ? 15 : 31;
}

/* This function parses a list of vector registers of type TYPE.
   On success, it returns the parsed register list information in the
   following encoded format:

   bit   18-22   |   13-17   |   7-11    |    2-6    |   0-1
       4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg

   The information of the register shape and/or index is returned in
   *VECTYPE.

   It returns PARSE_FAIL if the register list is invalid.

   The list contains one to four registers.
   Each register can be one of:
   <Vt>.<T>[<index>]
   <Vt>.<T>
   All <T> should be identical.
   All <index> should be identical.
   There are restrictions on <Vt> numbers which are checked later
   (by reg_list_valid_p).  */

static int
parse_vector_reg_list (char **ccp, aarch64_reg_type type,
		       struct vector_type_el *vectype)
{
  char *str = *ccp;
  int nb_regs;
  struct vector_type_el typeinfo, typeinfo_first;
  int val, val_range, mask;
  int in_range;
  int ret_val;
  bool error = false;
  bool expect_index = false;
  unsigned int ptr_flags = PTR_IN_REGLIST;

  if (*str != '{')
    {
      set_expected_reglist_error (type, parse_reg (&str));
      return PARSE_FAIL;
    }
  str++;

  nb_regs = 0;
  typeinfo_first.defined = 0;
  typeinfo_first.type = NT_invtype;
  typeinfo_first.width = -1;
  typeinfo_first.element_size = 0;
  typeinfo_first.index = 0;
  ret_val = 0;
  val = -1;
  val_range = -1;
  in_range = 0;
  mask = reg_type_mask (type);
  do
    {
      if (in_range)
	{
	  str++;		/* skip over '-' */
	  val_range = val;
	}
      const reg_entry *reg = parse_typed_reg (&str, type, &typeinfo,
					      ptr_flags);
      if (!reg)
	{
	  set_first_syntax_error (_("invalid vector register in list"));
	  error = true;
	  continue;
	}
      val = reg->number;
      /* reject [bhsd]n */
      if (type == REG_TYPE_V && typeinfo.defined == 0)
	{
	  set_first_syntax_error (_("invalid scalar register in list"));
	  error = true;
	  continue;
	}

      if (typeinfo.defined & NTA_HASINDEX)
	expect_index = true;

      if (in_range)
	{
	  if (val == val_range)
	    {
	      set_first_syntax_error
		(_("invalid range in vector register list"));
	      error = true;
	    }
	  val_range = (val_range + 1) & mask;
	}
      else
	{
	  val_range = val;
	  if (nb_regs == 0)
	    typeinfo_first = typeinfo;
	  else if (! eq_vector_type_el (typeinfo_first, typeinfo))
	    {
	      set_first_syntax_error
		(_("type mismatch in vector register list"));
	      error = true;
	    }
	}
      if (! error)
	for (;;)
	  {
	    ret_val |= val_range << (5 * nb_regs);
	    nb_regs++;
	    if (val_range == val)
	      break;
	    val_range = (val_range + 1) & mask;
	  }
      in_range = 0;
      ptr_flags |= PTR_GOOD_MATCH;
    }
  while (skip_past_comma (&str) || (in_range = 1, *str == '-'));

  skip_whitespace (str);
  if (*str != '}')
    {
      set_first_syntax_error (_("end of vector register list not found"));
      error = true;
    }
  str++;

  skip_whitespace (str);

  if (expect_index)
    {
      if (skip_past_char (&str, '['))
	{
	  if (!parse_index_expression (&str, &typeinfo_first.index))
	    error = true;
	  if (! skip_past_char (&str, ']'))
	    error = true;
	}
      else
	{
	  set_first_syntax_error (_("expected index"));
	  error = true;
	}
    }

  if (nb_regs > 4)
    {
      set_first_syntax_error (_("too many registers in vector register list"));
      error = true;
    }
  else if (nb_regs == 0)
    {
      set_first_syntax_error (_("empty vector register list"));
      error = true;
    }

  *ccp = str;
  if (! error)
    *vectype = typeinfo_first;

  return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
}

/* Directives: register aliases.  */

static reg_entry *
insert_reg_alias (char *str, int number, aarch64_reg_type type)
{
  reg_entry *new;
  const char *name;

  if ((new = str_hash_find (aarch64_reg_hsh, str)) != 0)
    {
      if (new->builtin)
	as_warn (_("ignoring attempt to redefine built-in register '%s'"),
		 str);

      /* Only warn about a redefinition if it's not defined as the
         same register.  */
      else if (new->number != number || new->type != type)
	as_warn (_("ignoring redefinition of register alias '%s'"), str);

      return NULL;
    }

  name = xstrdup (str);
  new = XNEW (reg_entry);

  new->name = name;
  new->number = number;
  new->type = type;
  new->builtin = false;

  str_hash_insert (aarch64_reg_hsh, name, new, 0);

  return new;
}

/* Look for the .req directive.	 This is of the form:

	new_register_name .req existing_register_name

   If we find one, or if it looks sufficiently like one that we want to
   handle any error here, return TRUE.  Otherwise return FALSE.  */

static bool
create_register_alias (char *newname, char *p)
{
  const reg_entry *old;
  char *oldname, *nbuf;
  size_t nlen;

  /* The input scrubber ensures that whitespace after the mnemonic is
     collapsed to single spaces.  */
  oldname = p;
  if (!startswith (oldname, " .req "))
    return false;

  oldname += 6;
  if (*oldname == '\0')
    return false;

  old = str_hash_find (aarch64_reg_hsh, oldname);
  if (!old)
    {
      as_warn (_("unknown register '%s' -- .req ignored"), oldname);
      return true;
    }

  /* If TC_CASE_SENSITIVE is defined, then newname already points to
     the desired alias name, and p points to its end.  If not, then
     the desired alias name is in the global original_case_string.  */
#ifdef TC_CASE_SENSITIVE
  nlen = p - newname;
#else
  newname = original_case_string;
  nlen = strlen (newname);
#endif

  nbuf = xmemdup0 (newname, nlen);

  /* Create aliases under the new name as stated; an all-lowercase
     version of the new name; and an all-uppercase version of the new
     name.  */
  if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
    {
      for (p = nbuf; *p; p++)
	*p = TOUPPER (*p);

      if (strncmp (nbuf, newname, nlen))
	{
	  /* If this attempt to create an additional alias fails, do not bother
	     trying to create the all-lower case alias.  We will fail and issue
	     a second, duplicate error message.  This situation arises when the
	     programmer does something like:
	     foo .req r0
	     Foo .req r1
	     The second .req creates the "Foo" alias but then fails to create
	     the artificial FOO alias because it has already been created by the
	     first .req.  */
	  if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
	    {
	      free (nbuf);
	      return true;
	    }
	}

      for (p = nbuf; *p; p++)
	*p = TOLOWER (*p);

      if (strncmp (nbuf, newname, nlen))
	insert_reg_alias (nbuf, old->number, old->type);
    }

  free (nbuf);
  return true;
}

/* Should never be called, as .req goes between the alias and the
   register name, not at the beginning of the line.  */
static void
s_req (int a ATTRIBUTE_UNUSED)
{
  as_bad (_("invalid syntax for .req directive"));
}

/* The .unreq directive deletes an alias which was previously defined
   by .req.  For example:

       my_alias .req r11
       .unreq my_alias	  */

static void
s_unreq (int a ATTRIBUTE_UNUSED)
{
  char *name;
  char saved_char;

  name = input_line_pointer;
  input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
  saved_char = *input_line_pointer;
  *input_line_pointer = 0;

  if (!*name)
    as_bad (_("invalid syntax for .unreq directive"));
  else
    {
      reg_entry *reg = str_hash_find (aarch64_reg_hsh, name);

      if (!reg)
	as_bad (_("unknown register alias '%s'"), name);
      else if (reg->builtin)
	as_warn (_("ignoring attempt to undefine built-in register '%s'"),
		 name);
      else
	{
	  char *p;
	  char *nbuf;

	  str_hash_delete (aarch64_reg_hsh, name);
	  free ((char *) reg->name);
	  free (reg);

	  /* Also locate the all upper case and all lower case versions.
	     Do not complain if we cannot find one or the other as it
	     was probably deleted above.  */

	  nbuf = strdup (name);
	  for (p = nbuf; *p; p++)
	    *p = TOUPPER (*p);
	  reg = str_hash_find (aarch64_reg_hsh, nbuf);
	  if (reg)
	    {
	      str_hash_delete (aarch64_reg_hsh, nbuf);
	      free ((char *) reg->name);
	      free (reg);
	    }

	  for (p = nbuf; *p; p++)
	    *p = TOLOWER (*p);
	  reg = str_hash_find (aarch64_reg_hsh, nbuf);
	  if (reg)
	    {
	      str_hash_delete (aarch64_reg_hsh, nbuf);
	      free ((char *) reg->name);
	      free (reg);
	    }

	  free (nbuf);
	}
    }

  *input_line_pointer = saved_char;
  demand_empty_rest_of_line ();
}

/* Directives: Instruction set selection.  */

#if defined OBJ_ELF || defined OBJ_COFF
/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
   spec.  (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
   Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
   and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped.  */

/* Create a new mapping symbol for the transition to STATE.  */

static void
make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
{
  symbolS *symbolP;
  const char *symname;
  int type;

  switch (state)
    {
    case MAP_DATA:
      symname = "$d";
      type = BSF_NO_FLAGS;
      break;
    case MAP_INSN:
      symname = "$x";
      type = BSF_NO_FLAGS;
      break;
    default:
      abort ();
    }

  symbolP = symbol_new (symname, now_seg, frag, value);
  symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;

  /* Save the mapping symbols for future reference.  Also check that
     we do not place two mapping symbols at the same offset within a
     frag.  We'll handle overlap between frags in
     check_mapping_symbols.

     If .fill or other data filling directive generates zero sized data,
     the mapping symbol for the following code will have the same value
     as the one generated for the data filling directive.  In this case,
     we replace the old symbol with the new one at the same address.  */
  if (value == 0)
    {
      if (frag->tc_frag_data.first_map != NULL)
	{
	  know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
	  symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
			 &symbol_lastP);
	}
      frag->tc_frag_data.first_map = symbolP;
    }
  if (frag->tc_frag_data.last_map != NULL)
    {
      know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
	    S_GET_VALUE (symbolP));
      if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
	symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
		       &symbol_lastP);
    }
  frag->tc_frag_data.last_map = symbolP;
}

/* We must sometimes convert a region marked as code to data during
   code alignment, if an odd number of bytes have to be padded.  The
   code mapping symbol is pushed to an aligned address.  */

static void
insert_data_mapping_symbol (enum mstate state,
			    valueT value, fragS * frag, offsetT bytes)
{
  /* If there was already a mapping symbol, remove it.  */
  if (frag->tc_frag_data.last_map != NULL
      && S_GET_VALUE (frag->tc_frag_data.last_map) ==
      frag->fr_address + value)
    {
      symbolS *symp = frag->tc_frag_data.last_map;

      if (value == 0)
	{
	  know (frag->tc_frag_data.first_map == symp);
	  frag->tc_frag_data.first_map = NULL;
	}
      frag->tc_frag_data.last_map = NULL;
      symbol_remove (symp, &symbol_rootP, &symbol_lastP);
    }

  make_mapping_symbol (MAP_DATA, value, frag);
  make_mapping_symbol (state, value + bytes, frag);
}

static void mapping_state_2 (enum mstate state, int max_chars);

/* Set the mapping state to STATE.  Only call this when about to
   emit some STATE bytes to the file.  */

void
mapping_state (enum mstate state)
{
  enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;

  if (state == MAP_INSN)
    /* AArch64 instructions require 4-byte alignment.  When emitting
       instructions into any section, record the appropriate section
       alignment.  */
    record_alignment (now_seg, 2);

  if (mapstate == state)
    /* The mapping symbol has already been emitted.
       There is nothing else to do.  */
    return;

#define TRANSITION(from, to) (mapstate == (from) && state == (to))
  if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
    /* Emit MAP_DATA within executable section in order.  Otherwise, it will be
       evaluated later in the next else.  */
    return;
  else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
    {
      /* Only add the symbol if the offset is > 0:
	 if we're at the first frag, check it's size > 0;
	 if we're not at the first frag, then for sure
	 the offset is > 0.  */
      struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
      const int add_symbol = (frag_now != frag_first)
	|| (frag_now_fix () > 0);

      if (add_symbol)
	make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
    }
#undef TRANSITION

  mapping_state_2 (state, 0);
}

/* Same as mapping_state, but MAX_CHARS bytes have already been
   allocated.  Put the mapping symbol that far back.  */

static void
mapping_state_2 (enum mstate state, int max_chars)
{
  enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;

  if (!SEG_NORMAL (now_seg))
    return;

  if (mapstate == state)
    /* The mapping symbol has already been emitted.
       There is nothing else to do.  */
    return;

  seg_info (now_seg)->tc_segment_info_data.mapstate = state;
  make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
}
#else
#define mapping_state(x)	/* nothing */
#define mapping_state_2(x, y)	/* nothing */
#endif

/* Directives: sectioning and alignment.  */

static void
s_bss (int ignore ATTRIBUTE_UNUSED)
{
  /* We don't support putting frags in the BSS segment, we fake it by
     marking in_bss, then looking at s_skip for clues.  */
  subseg_set (bss_section, 0);
  demand_empty_rest_of_line ();
  mapping_state (MAP_DATA);
}

static void
s_even (int ignore ATTRIBUTE_UNUSED)
{
  /* Never make frag if expect extra pass.  */
  if (!need_pass_2)
    frag_align (1, 0, 0);

  record_alignment (now_seg, 1);

  demand_empty_rest_of_line ();
}

/* Directives: Literal pools.  */

static literal_pool *
find_literal_pool (int size)
{
  literal_pool *pool;

  for (pool = list_of_pools; pool != NULL; pool = pool->next)
    {
      if (pool->section == now_seg
	  && pool->sub_section == now_subseg && pool->size == size)
	break;
    }

  return pool;
}

static literal_pool *
find_or_make_literal_pool (int size)
{
  /* Next literal pool ID number.  */
  static unsigned int latest_pool_num = 1;
  literal_pool *pool;

  pool = find_literal_pool (size);

  if (pool == NULL)
    {
      /* Create a new pool.  */
      pool = XNEW (literal_pool);
      if (!pool)
	return NULL;

      /* Currently we always put the literal pool in the current text
         section.  If we were generating "small" model code where we
         knew that all code and initialised data was within 1MB then
         we could output literals to mergeable, read-only data
         sections. */

      pool->next_free_entry = 0;
      pool->section = now_seg;
      pool->sub_section = now_subseg;
      pool->size = size;
      pool->next = list_of_pools;
      pool->symbol = NULL;

      /* Add it to the list.  */
      list_of_pools = pool;
    }

  /* New pools, and emptied pools, will have a NULL symbol.  */
  if (pool->symbol == NULL)
    {
      pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
				    &zero_address_frag, 0);
      pool->id = latest_pool_num++;
    }

  /* Done.  */
  return pool;
}

/* Add the literal of size SIZE in *EXP to the relevant literal pool.
   Return TRUE on success, otherwise return FALSE.  */
static bool
add_to_lit_pool (expressionS *exp, int size)
{
  literal_pool *pool;
  unsigned int entry;

  pool = find_or_make_literal_pool (size);

  /* Check if this literal value is already in the pool.  */
  for (entry = 0; entry < pool->next_free_entry; entry++)
    {
      expressionS * litexp = & pool->literals[entry].exp;

      if ((litexp->X_op == exp->X_op)
	  && (exp->X_op == O_constant)
	  && (litexp->X_add_number == exp->X_add_number)
	  && (litexp->X_unsigned == exp->X_unsigned))
	break;

      if ((litexp->X_op == exp->X_op)
	  && (exp->X_op == O_symbol)
	  && (litexp->X_add_number == exp->X_add_number)
	  && (litexp->X_add_symbol == exp->X_add_symbol)
	  && (litexp->X_op_symbol == exp->X_op_symbol))
	break;
    }

  /* Do we need to create a new entry?  */
  if (entry == pool->next_free_entry)
    {
      if (entry >= MAX_LITERAL_POOL_SIZE)
	{
	  set_syntax_error (_("literal pool overflow"));
	  return false;
	}

      pool->literals[entry].exp = *exp;
      pool->next_free_entry += 1;
      if (exp->X_op == O_big)
	{
	  /* PR 16688: Bignums are held in a single global array.  We must
	     copy and preserve that value now, before it is overwritten.  */
	  pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
						  exp->X_add_number);
	  memcpy (pool->literals[entry].bignum, generic_bignum,
		  CHARS_PER_LITTLENUM * exp->X_add_number);
	}
      else
	pool->literals[entry].bignum = NULL;
    }

  exp->X_op = O_symbol;
  exp->X_add_number = ((int) entry) * size;
  exp->X_add_symbol = pool->symbol;

  return true;
}

/* Can't use symbol_new here, so have to create a symbol and then at
   a later date assign it a value. That's what these functions do.  */

static void
symbol_locate (symbolS * symbolP,
	       const char *name,/* It is copied, the caller can modify.  */
	       segT segment,	/* Segment identifier (SEG_<something>).  */
	       valueT valu,	/* Symbol value.  */
	       fragS * frag)	/* Associated fragment.  */
{
  size_t name_length;
  char *preserved_copy_of_name;

  name_length = strlen (name) + 1;	/* +1 for \0.  */
  obstack_grow (&notes, name, name_length);
  preserved_copy_of_name = obstack_finish (&notes);

#ifdef tc_canonicalize_symbol_name
  preserved_copy_of_name =
    tc_canonicalize_symbol_name (preserved_copy_of_name);
#endif

  S_SET_NAME (symbolP, preserved_copy_of_name);

  S_SET_SEGMENT (symbolP, segment);
  S_SET_VALUE (symbolP, valu);
  symbol_clear_list_pointers (symbolP);

  symbol_set_frag (symbolP, frag);

  /* Link to end of symbol chain.  */
  {
    extern int symbol_table_frozen;

    if (symbol_table_frozen)
      abort ();
  }

  symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);

  obj_symbol_new_hook (symbolP);

#ifdef tc_symbol_new_hook
  tc_symbol_new_hook (symbolP);
#endif

#ifdef DEBUG_SYMS
  verify_symbol_chain (symbol_rootP, symbol_lastP);
#endif /* DEBUG_SYMS  */
}


static void
s_ltorg (int ignored ATTRIBUTE_UNUSED)
{
  unsigned int entry;
  literal_pool *pool;
  char sym_name[20];
  int align;

  for (align = 2; align <= 4; align++)
    {
      int size = 1 << align;

      pool = find_literal_pool (size);
      if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
	continue;

      /* Align pool as you have word accesses.
         Only make a frag if we have to.  */
      if (!need_pass_2)
	frag_align (align, 0, 0);

      mapping_state (MAP_DATA);

      record_alignment (now_seg, align);

      sprintf (sym_name, "$$lit_\002%x", pool->id);

      symbol_locate (pool->symbol, sym_name, now_seg,
		     (valueT) frag_now_fix (), frag_now);
      symbol_table_insert (pool->symbol);

      for (entry = 0; entry < pool->next_free_entry; entry++)
	{
	  expressionS * exp = & pool->literals[entry].exp;

	  if (exp->X_op == O_big)
	    {
	      /* PR 16688: Restore the global bignum value.  */
	      gas_assert (pool->literals[entry].bignum != NULL);
	      memcpy (generic_bignum, pool->literals[entry].bignum,
		      CHARS_PER_LITTLENUM * exp->X_add_number);
	    }

	  /* First output the expression in the instruction to the pool.  */
	  emit_expr (exp, size);	/* .word|.xword  */

	  if (exp->X_op == O_big)
	    {
	      free (pool->literals[entry].bignum);
	      pool->literals[entry].bignum = NULL;
	    }
	}

      /* Mark the pool as empty.  */
      pool->next_free_entry = 0;
      pool->symbol = NULL;
    }
}

#if defined(OBJ_ELF) || defined(OBJ_COFF)
/* Forward declarations for functions below, in the MD interface
   section.  */
static struct reloc_table_entry * find_reloc_table_entry (char **);

/* Directives: Data.  */
/* N.B. the support for relocation suffix in this directive needs to be
   implemented properly.  */

static void
s_aarch64_cons (int nbytes)
{
  expressionS exp;

#ifdef md_flush_pending_output
  md_flush_pending_output ();
#endif

  if (is_it_end_of_statement ())
    {
      demand_empty_rest_of_line ();
      return;
    }

#ifdef md_cons_align
  md_cons_align (nbytes);
#endif

  mapping_state (MAP_DATA);
  do
    {
      struct reloc_table_entry *reloc;

      expression (&exp);

      if (exp.X_op != O_symbol)
	emit_expr (&exp, (unsigned int) nbytes);
      else
	{
	  skip_past_char (&input_line_pointer, '#');
	  if (skip_past_char (&input_line_pointer, ':'))
	    {
	      reloc = find_reloc_table_entry (&input_line_pointer);
	      if (reloc == NULL)
		as_bad (_("unrecognized relocation suffix"));
	      else
		as_bad (_("unimplemented relocation suffix"));
	      ignore_rest_of_line ();
	      return;
	    }
	  else
	    emit_expr (&exp, (unsigned int) nbytes);
	}
    }
  while (*input_line_pointer++ == ',');

  /* Put terminator back into stream.  */
  input_line_pointer--;
  demand_empty_rest_of_line ();
}
#endif

#ifdef OBJ_ELF
/* Forward declarations for functions below, in the MD interface
   section.  */
 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);

/* Mark symbol that it follows a variant PCS convention.  */

static void
s_variant_pcs (int ignored ATTRIBUTE_UNUSED)
{
  char *name;
  char c;
  symbolS *sym;
  asymbol *bfdsym;
  elf_symbol_type *elfsym;

  c = get_symbol_name (&name);
  if (!*name)
    as_bad (_("Missing symbol name in directive"));
  sym = symbol_find_or_make (name);
  restore_line_pointer (c);
  demand_empty_rest_of_line ();
  bfdsym = symbol_get_bfdsym (sym);
  elfsym = elf_symbol_from (bfdsym);
  gas_assert (elfsym);
  elfsym->internal_elf_sym.st_other |= STO_AARCH64_VARIANT_PCS;
}
#endif /* OBJ_ELF */

/* Output a 32-bit word, but mark as an instruction.  */

static void
s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
{
  expressionS exp;
  unsigned n = 0;

#ifdef md_flush_pending_output
  md_flush_pending_output ();
#endif

  if (is_it_end_of_statement ())
    {
      demand_empty_rest_of_line ();
      return;
    }

  /* Sections are assumed to start aligned. In executable section, there is no
     MAP_DATA symbol pending. So we only align the address during
     MAP_DATA --> MAP_INSN transition.
     For other sections, this is not guaranteed.  */
  enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
  if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
    frag_align_code (2, 0);

#ifdef OBJ_ELF
  mapping_state (MAP_INSN);
#endif

  do
    {
      expression (&exp);
      if (exp.X_op != O_constant)
	{
	  as_bad (_("constant expression required"));
	  ignore_rest_of_line ();
	  return;
	}

      if (target_big_endian)
	{
	  unsigned int val = exp.X_add_number;
	  exp.X_add_number = SWAP_32 (val);
	}
      emit_expr (&exp, INSN_SIZE);
      ++n;
    }
  while (*input_line_pointer++ == ',');

  dwarf2_emit_insn (n * INSN_SIZE);

  /* Put terminator back into stream.  */
  input_line_pointer--;
  demand_empty_rest_of_line ();
}

static void
s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
{
  demand_empty_rest_of_line ();
  struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
  fde->pauth_key = AARCH64_PAUTH_KEY_B;
}

#ifdef OBJ_ELF
/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction.  */

static void
s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
{
  expressionS exp;

  expression (&exp);
  frag_grow (4);
  fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
		   BFD_RELOC_AARCH64_TLSDESC_ADD);

  demand_empty_rest_of_line ();
}

/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction.  */

static void
s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
{
  expressionS exp;

  /* Since we're just labelling the code, there's no need to define a
     mapping symbol.  */
  expression (&exp);
  /* Make sure there is enough room in this frag for the following
     blr.  This trick only works if the blr follows immediately after
     the .tlsdesc directive.  */
  frag_grow (4);
  fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
		   BFD_RELOC_AARCH64_TLSDESC_CALL);

  demand_empty_rest_of_line ();
}

/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction.  */

static void
s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
{
  expressionS exp;

  expression (&exp);
  frag_grow (4);
  fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
		   BFD_RELOC_AARCH64_TLSDESC_LDR);

  demand_empty_rest_of_line ();
}
#endif	/* OBJ_ELF */

#ifdef TE_PE
static void
s_secrel (int dummy ATTRIBUTE_UNUSED)
{
  expressionS exp;

  do
    {
      expression (&exp);
      if (exp.X_op == O_symbol)
	exp.X_op = O_secrel;

      emit_expr (&exp, 4);
    }
  while (*input_line_pointer++ == ',');

  input_line_pointer--;
  demand_empty_rest_of_line ();
}

void
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
{
  expressionS exp;

  exp.X_op = O_secrel;
  exp.X_add_symbol = symbol;
  exp.X_add_number = 0;
  emit_expr (&exp, size);
}

static void
s_secidx (int dummy ATTRIBUTE_UNUSED)
{
  expressionS exp;

  do
    {
      expression (&exp);
      if (exp.X_op == O_symbol)
	exp.X_op = O_secidx;

      emit_expr (&exp, 2);
    }
  while (*input_line_pointer++ == ',');

  input_line_pointer--;
  demand_empty_rest_of_line ();
}
#endif	/* TE_PE */

static void s_aarch64_arch (int);
static void s_aarch64_cpu (int);
static void s_aarch64_arch_extension (int);

/* This table describes all the machine specific pseudo-ops the assembler
   has to support.  The fields are:
     pseudo-op name without dot
     function to call to execute this pseudo-op
     Integer arg to pass to the function.  */

const pseudo_typeS md_pseudo_table[] = {
  /* Never called because '.req' does not start a line.  */
  {"req", s_req, 0},
  {"unreq", s_unreq, 0},
  {"bss", s_bss, 0},
  {"even", s_even, 0},
  {"ltorg", s_ltorg, 0},
  {"pool", s_ltorg, 0},
  {"cpu", s_aarch64_cpu, 0},
  {"arch", s_aarch64_arch, 0},
  {"arch_extension", s_aarch64_arch_extension, 0},
  {"inst", s_aarch64_inst, 0},
  {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
#ifdef OBJ_ELF
  {"tlsdescadd", s_tlsdescadd, 0},
  {"tlsdesccall", s_tlsdesccall, 0},
  {"tlsdescldr", s_tlsdescldr, 0},
  {"variant_pcs", s_variant_pcs, 0},
#endif
#if defined(OBJ_ELF) || defined(OBJ_COFF)
  {"word", s_aarch64_cons, 4},
  {"long", s_aarch64_cons, 4},
  {"xword", s_aarch64_cons, 8},
  {"dword", s_aarch64_cons, 8},
#endif
#ifdef TE_PE
  {"secrel32", s_secrel, 0},
  {"secidx", s_secidx, 0},
#endif
  {"float16", float_cons, 'h'},
  {"bfloat16", float_cons, 'b'},
  {0, 0, 0}
};


/* Check whether STR points to a register name followed by a comma or the
   end of line; REG_TYPE indicates which register types are checked
   against.  Return TRUE if STR is such a register name; otherwise return
   FALSE.  The function does not intend to produce any diagnostics, but since
   the register parser aarch64_reg_parse, which is called by this function,
   does produce diagnostics, we call clear_error to clear any diagnostics
   that may be generated by aarch64_reg_parse.
   Also, the function returns FALSE directly if there is any user error
   present at the function entry.  This prevents the existing diagnostics
   state from being spoiled.
   The function currently serves parse_constant_immediate and
   parse_big_immediate only.  */
static bool
reg_name_p (char *str, aarch64_reg_type reg_type)
{
  const reg_entry *reg;

  /* Prevent the diagnostics state from being spoiled.  */
  if (error_p ())
    return false;

  reg = aarch64_reg_parse (&str, reg_type, NULL);

  /* Clear the parsing error that may be set by the reg parser.  */
  clear_error ();

  if (!reg)
    return false;

  skip_whitespace (str);
  if (*str == ',' || is_end_of_line[(unsigned char) *str])
    return true;

  return false;
}

/* Parser functions used exclusively in instruction operands.  */

/* Parse an immediate expression which may not be constant.

   To prevent the expression parser from pushing a register name
   into the symbol table as an undefined symbol, firstly a check is
   done to find out whether STR is a register of type REG_TYPE followed
   by a comma or the end of line.  Return FALSE if STR is such a string.  */

static bool
parse_immediate_expression (char **str, expressionS *exp,
			    aarch64_reg_type reg_type)
{
  if (reg_name_p (*str, reg_type))
    {
      set_recoverable_error (_("immediate operand required"));
      return false;
    }

  aarch64_get_expression (exp, str, GE_OPT_PREFIX, REJECT_ABSENT);

  if (exp->X_op == O_absent)
    {
      set_fatal_syntax_error (_("missing immediate expression"));
      return false;
    }

  return true;
}

/* Constant immediate-value read function for use in insn parsing.
   STR points to the beginning of the immediate (with the optional
   leading #); *VAL receives the value.  REG_TYPE says which register
   names should be treated as registers rather than as symbolic immediates.

   Return TRUE on success; otherwise return FALSE.  */

static bool
parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
{
  expressionS exp;

  if (! parse_immediate_expression (str, &exp, reg_type))
    return false;

  if (exp.X_op != O_constant)
    {
      set_syntax_error (_("constant expression required"));
      return false;
    }

  *val = exp.X_add_number;
  return true;
}

static uint32_t
encode_imm_float_bits (uint32_t imm)
{
  return ((imm >> 19) & 0x7f)	/* b[25:19] -> b[6:0] */
    | ((imm >> (31 - 7)) & 0x80);	/* b[31]    -> b[7]   */
}

/* Return TRUE if the single-precision floating-point value encoded in IMM
   can be expressed in the AArch64 8-bit signed floating-point format with
   3-bit exponent and normalized 4 bits of precision; in other words, the
   floating-point value must be expressable as
     (+/-) n / 16 * power (2, r)
   where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4.  */

static bool
aarch64_imm_float_p (uint32_t imm)
{
  /* If a single-precision floating-point value has the following bit
     pattern, it can be expressed in the AArch64 8-bit floating-point
     format:

     3 32222222 2221111111111
     1 09876543 21098765432109876543210
     n Eeeeeexx xxxx0000000000000000000

     where n, e and each x are either 0 or 1 independently, with
     E == ~ e.  */

  uint32_t pattern;

  /* Prepare the pattern for 'Eeeeee'.  */
  if (((imm >> 30) & 0x1) == 0)
    pattern = 0x3e000000;
  else
    pattern = 0x40000000;

  return (imm & 0x7ffff) == 0		/* lower 19 bits are 0.  */
    && ((imm & 0x7e000000) == pattern);	/* bits 25 - 29 == ~ bit 30.  */
}

/* Return TRUE if the IEEE double value encoded in IMM can be expressed
   as an IEEE float without any loss of precision.  Store the value in
   *FPWORD if so.  */

static bool
can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
{
  /* If a double-precision floating-point value has the following bit
     pattern, it can be expressed in a float:

     6 66655555555 5544 44444444 33333333 33222222 22221111 111111
     3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
     n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000

       ----------------------------->     nEeeeeee esssssss ssssssss sssssSSS
	 if Eeee_eeee != 1111_1111

     where n, e, s and S are either 0 or 1 independently and where ~ is the
     inverse of E.  */

  uint32_t pattern;
  uint32_t high32 = imm >> 32;
  uint32_t low32 = imm;

  /* Lower 29 bits need to be 0s.  */
  if ((imm & 0x1fffffff) != 0)
    return false;

  /* Prepare the pattern for 'Eeeeeeeee'.  */
  if (((high32 >> 30) & 0x1) == 0)
    pattern = 0x38000000;
  else
    pattern = 0x40000000;

  /* Check E~~~.  */
  if ((high32 & 0x78000000) != pattern)
    return false;

  /* Check Eeee_eeee != 1111_1111.  */
  if ((high32 & 0x7ff00000) == 0x47f00000)
    return false;

  *fpword = ((high32 & 0xc0000000)		/* 1 n bit and 1 E bit.  */
	     | ((high32 << 3) & 0x3ffffff8)	/* 7 e and 20 s bits.  */
	     | (low32 >> 29));			/* 3 S bits.  */
  return true;
}

/* Return true if we should treat OPERAND as a double-precision
   floating-point operand rather than a single-precision one.  */
static bool
double_precision_operand_p (const aarch64_opnd_info *operand)
{
  /* Check for unsuffixed SVE registers, which are allowed
     for LDR and STR but not in instructions that require an
     immediate.  We get better error messages if we arbitrarily
     pick one size, parse the immediate normally, and then
     report the match failure in the normal way.  */
  return (operand->qualifier == AARCH64_OPND_QLF_NIL
	  || aarch64_get_qualifier_esize (operand->qualifier) == 8);
}

/* Parse a floating-point immediate.  Return TRUE on success and return the
   value in *IMMED in the format of IEEE754 single-precision encoding.
   *CCP points to the start of the string; DP_P is TRUE when the immediate
   is expected to be in double-precision (N.B. this only matters when
   hexadecimal representation is involved).  REG_TYPE says which register
   names should be treated as registers rather than as symbolic immediates.

   This routine accepts any IEEE float; it is up to the callers to reject
   invalid ones.  */

static bool
parse_aarch64_imm_float (char **ccp, int *immed, bool dp_p,
			 aarch64_reg_type reg_type)
{
  char *str = *ccp;
  char *fpnum;
  LITTLENUM_TYPE words[MAX_LITTLENUMS];
  int64_t val = 0;
  unsigned fpword = 0;
  bool hex_p = false;

  skip_past_char (&str, '#');

  fpnum = str;
  skip_whitespace (fpnum);

  if (startswith (fpnum, "0x"))
    {
      /* Support the hexadecimal representation of the IEEE754 encoding.
	 Double-precision is expected when DP_P is TRUE, otherwise the
	 representation should be in single-precision.  */
      if (! parse_constant_immediate (&str, &val, reg_type))
	goto invalid_fp;

      if (dp_p)
	{
	  if (!can_convert_double_to_float (val, &fpword))
	    goto invalid_fp;
	}
      else if ((uint64_t) val > 0xffffffff)
	goto invalid_fp;
      else
	fpword = val;

      hex_p = true;
    }
  else if (reg_name_p (str, reg_type))
   {
     set_recoverable_error (_("immediate operand required"));
     return false;
    }

  if (! hex_p)
    {
      int i;

      if ((str = atof_ieee (str, 's', words)) == NULL)
	goto invalid_fp;

      /* Our FP word must be 32 bits (single-precision FP).  */
      for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
	{
	  fpword <<= LITTLENUM_NUMBER_OF_BITS;
	  fpword |= words[i];
	}
    }

  *immed = fpword;
  *ccp = str;
  return true;

 invalid_fp:
  set_fatal_syntax_error (_("invalid floating-point constant"));
  return false;
}

/* Less-generic immediate-value read function with the possibility of loading
   a big (64-bit) immediate, as required by AdvSIMD Modified immediate
   instructions.

   To prevent the expression parser from pushing a register name into the
   symbol table as an undefined symbol, a check is firstly done to find
   out whether STR is a register of type REG_TYPE followed by a comma or
   the end of line.  Return FALSE if STR is such a register.  */

static bool
parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
{
  char *ptr = *str;

  if (reg_name_p (ptr, reg_type))
    {
      set_syntax_error (_("immediate operand required"));
      return false;
    }

  aarch64_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, REJECT_ABSENT);

  if (inst.reloc.exp.X_op == O_constant)
    *imm = inst.reloc.exp.X_add_number;

  *str = ptr;

  return true;
}

/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
   if NEED_LIBOPCODES is non-zero, the fixup will need
   assistance from the libopcodes.   */

static inline void
aarch64_set_gas_internal_fixup (struct reloc *reloc,
				const aarch64_opnd_info *operand,
				int need_libopcodes_p)
{
  reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
  reloc->opnd = operand->type;
  if (need_libopcodes_p)
    reloc->need_libopcodes_p = 1;
};

/* Return TRUE if the instruction needs to be fixed up later internally by
   the GAS; otherwise return FALSE.  */

static inline bool
aarch64_gas_internal_fixup_p (void)
{
  return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
}

/* Assign the immediate value to the relevant field in *OPERAND if
   RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
   needs an internal fixup in a later stage.
   ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
   IMM.VALUE that may get assigned with the constant.  */
static inline void
assign_imm_if_const_or_fixup_later (struct reloc *reloc,
				    aarch64_opnd_info *operand,
				    int addr_off_p,
				    int need_libopcodes_p,
				    int skip_p)
{
  if (reloc->exp.X_op == O_constant)
    {
      if (addr_off_p)
	operand->addr.offset.imm = reloc->exp.X_add_number;
      else
	operand->imm.value = reloc->exp.X_add_number;
      reloc->type = BFD_RELOC_UNUSED;
    }
  else
    {
      aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
      /* Tell libopcodes to ignore this operand or not.  This is helpful
	 when one of the operands needs to be fixed up later but we need
	 libopcodes to check the other operands.  */
      operand->skip = skip_p;
    }
}

/* Relocation modifiers.  Each entry in the table contains the textual
   name for the relocation which may be placed before a symbol used as
   a load/store offset, or add immediate. It must be surrounded by a
   leading and trailing colon, for example:

	ldr	x0, [x1, #:rello:varsym]
	add	x0, x1, #:rello:varsym  */

struct reloc_table_entry
{
  const char *name;
  int pc_rel;
  bfd_reloc_code_real_type adr_type;
  bfd_reloc_code_real_type adrp_type;
  bfd_reloc_code_real_type movw_type;
  bfd_reloc_code_real_type add_type;
  bfd_reloc_code_real_type ldst_type;
  bfd_reloc_code_real_type ld_literal_type;
};

static struct reloc_table_entry reloc_table[] =
{
  /* Low 12 bits of absolute address: ADD/i and LDR/STR */
  {"lo12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_ADD_LO12,
   BFD_RELOC_AARCH64_LDST_LO12,
   0},

  /* Higher 21 bits of pc-relative page offset: ADRP */
  {"pg_hi21", 1,
   0,				/* adr_type */
   BFD_RELOC_AARCH64_ADR_HI21_PCREL,
   0,
   0,
   0,
   0},

  /* Higher 21 bits of pc-relative page offset: ADRP, no check */
  {"pg_hi21_nc", 1,
   0,				/* adr_type */
   BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
   0,
   0,
   0,
   0},

  /* Most significant bits 0-15 of unsigned address/value: MOVZ */
  {"abs_g0", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G0,
   0,
   0,
   0},

  /* Most significant bits 0-15 of signed address/value: MOVN/Z */
  {"abs_g0_s", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G0_S,
   0,
   0,
   0},

  /* Less significant bits 0-15 of address/value: MOVK, no check */
  {"abs_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G0_NC,
   0,
   0,
   0},

  /* Most significant bits 16-31 of unsigned address/value: MOVZ */
  {"abs_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G1,
   0,
   0,
   0},

  /* Most significant bits 16-31 of signed address/value: MOVN/Z */
  {"abs_g1_s", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G1_S,
   0,
   0,
   0},

  /* Less significant bits 16-31 of address/value: MOVK, no check */
  {"abs_g1_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G1_NC,
   0,
   0,
   0},

  /* Most significant bits 32-47 of unsigned address/value: MOVZ */
  {"abs_g2", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G2,
   0,
   0,
   0},

  /* Most significant bits 32-47 of signed address/value: MOVN/Z */
  {"abs_g2_s", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G2_S,
   0,
   0,
   0},

  /* Less significant bits 32-47 of address/value: MOVK, no check */
  {"abs_g2_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G2_NC,
   0,
   0,
   0},

  /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
  {"abs_g3", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_G3,
   0,
   0,
   0},

  /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
  {"prel_g0", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G0,
   0,
   0,
   0},

  /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
  {"prel_g0_nc", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
   0,
   0,
   0},

  /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
  {"prel_g1", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G1,
   0,
   0,
   0},

  /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
  {"prel_g1_nc", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
   0,
   0,
   0},

  /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
  {"prel_g2", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G2,
   0,
   0,
   0},

  /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
  {"prel_g2_nc", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
   0,
   0,
   0},

  /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
  {"prel_g3", 1,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_PREL_G3,
   0,
   0,
   0},

  /* Get to the page containing GOT entry for a symbol.  */
  {"got", 1,
   0,				/* adr_type */
   BFD_RELOC_AARCH64_ADR_GOT_PAGE,
   0,
   0,
   0,
   BFD_RELOC_AARCH64_GOT_LD_PREL19},

  /* 12 bit offset into the page containing GOT entry for that symbol.  */
  {"got_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   0,
   BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
   0},

  /* 0-15 bits of address/value: MOVk, no check.  */
  {"gotoff_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
   0,
   0,
   0},

  /* Most significant bits 16-31 of address/value: MOVZ.  */
  {"gotoff_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
   0,
   0,
   0},

  /* 15 bit offset into the page containing GOT entry for that symbol.  */
  {"gotoff_lo15", 0,
   0,				/* adr_type */
   0,
   0,
   0,
   BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
   0},

  /* Get to the page containing GOT TLS entry for a symbol */
  {"gottprel_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
   0,
   0,
   0},

  /* Get to the page containing GOT TLS entry for a symbol */
  {"gottprel_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
   0,
   0,
   0},

  /* Get to the page containing GOT TLS entry for a symbol */
  {"tlsgd", 0,
   BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
   BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
   0,
   0,
   0,
   0},

  /* 12 bit offset into the page containing GOT TLS entry for a symbol */
  {"tlsgd_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
   0,
   0},

  /* Lower 16 bits address/value: MOVk.  */
  {"tlsgd_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
   0,
   0,
   0},

  /* Most significant bits 16-31 of address/value: MOVZ.  */
  {"tlsgd_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
   0,
   0,
   0},

  /* Get to the page containing GOT TLS entry for a symbol */
  {"tlsdesc", 0,
   BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
   BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
   0,
   0,
   0,
   BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},

  /* 12 bit offset into the page containing GOT TLS entry for a symbol */
  {"tlsdesc_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
   BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
   0},

  /* Get to the page containing GOT TLS entry for a symbol.
     The same as GD, we allocate two consecutive GOT slots
     for module index and module offset, the only difference
     with GD is the module offset should be initialized to
     zero without any outstanding runtime relocation. */
  {"tlsldm", 0,
   BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
   BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
   0,
   0,
   0,
   0},

  /* 12 bit offset into the page containing GOT TLS entry for a symbol */
  {"tlsldm_lo12_nc", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
   0,
   0},

  /* 12 bit offset into the module TLS base address.  */
  {"dtprel_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
   BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
   0},

  /* Same as dtprel_lo12, no overflow check.  */
  {"dtprel_lo12_nc", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
   BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
   0},

  /* bits[23:12] of offset to the module TLS base address.  */
  {"dtprel_hi12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
   0,
   0},

  /* bits[15:0] of offset to the module TLS base address.  */
  {"dtprel_g0", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
   0,
   0,
   0},

  /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0.  */
  {"dtprel_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
   0,
   0,
   0},

  /* bits[31:16] of offset to the module TLS base address.  */
  {"dtprel_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
   0,
   0,
   0},

  /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1.  */
  {"dtprel_g1_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
   0,
   0,
   0},

  /* bits[47:32] of offset to the module TLS base address.  */
  {"dtprel_g2", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
   0,
   0,
   0},

  /* Lower 16 bit offset into GOT entry for a symbol */
  {"tlsdesc_off_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
   0,
   0,
   0},

  /* Higher 16 bit offset into GOT entry for a symbol */
  {"tlsdesc_off_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
   0,
   0,
   0},

  /* Get to the page containing GOT TLS entry for a symbol */
  {"gottprel", 0,
   0,				/* adr_type */
   BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
   0,
   0,
   0,
   BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},

  /* 12 bit offset into the page containing GOT TLS entry for a symbol */
  {"gottprel_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   0,
   BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
   0},

  /* Get tp offset for a symbol.  */
  {"tprel", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
   0,
   0},

  /* Get tp offset for a symbol.  */
  {"tprel_lo12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
   BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
   0},

  /* Get tp offset for a symbol.  */
  {"tprel_hi12", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
   0,
   0},

  /* Get tp offset for a symbol.  */
  {"tprel_lo12_nc", 0,
   0,				/* adr_type */
   0,
   0,
   BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
   BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
   0},

  /* Most significant bits 32-47 of address/value: MOVZ.  */
  {"tprel_g2", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
   0,
   0,
   0},

  /* Most significant bits 16-31 of address/value: MOVZ.  */
  {"tprel_g1", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
   0,
   0,
   0},

  /* Most significant bits 16-31 of address/value: MOVZ, no check.  */
  {"tprel_g1_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
   0,
   0,
   0},

  /* Most significant bits 0-15 of address/value: MOVZ.  */
  {"tprel_g0", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
   0,
   0,
   0},

  /* Most significant bits 0-15 of address/value: MOVZ, no check.  */
  {"tprel_g0_nc", 0,
   0,				/* adr_type */
   0,
   BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
   0,
   0,
   0},

  /* 15bit offset from got entry to base address of GOT table.  */
  {"gotpage_lo15", 0,
   0,
   0,
   0,
   0,
   BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
   0},

  /* 14bit offset from got entry to base address of GOT table.  */
  {"gotpage_lo14", 0,
   0,
   0,
   0,
   0,
   BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
   0},
};

/* Given the address of a pointer pointing to the textual name of a
   relocation as may appear in assembler source, attempt to find its
   details in reloc_table.  The pointer will be updated to the character
   after the trailing colon.  On failure, NULL will be returned;
   otherwise return the reloc_table_entry.  */

static struct reloc_table_entry *
find_reloc_table_entry (char **str)
{
  unsigned int i;
  for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
    {
      int length = strlen (reloc_table[i].name);

      if (strncasecmp (reloc_table[i].name, *str, length) == 0
	  && (*str)[length] == ':')
	{
	  *str += (length + 1);
	  return &reloc_table[i];
	}
    }

  return NULL;
}

/* Returns 0 if the relocation should never be forced,
   1 if the relocation must be forced, and -1 if either
   result is OK.  */

static signed int
aarch64_force_reloc (unsigned int type)
{
  switch (type)
    {
    case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
      /* Perform these "immediate" internal relocations
         even if the symbol is extern or weak.  */
      return 0;

    case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
    case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
      /* Pseudo relocs that need to be fixed up according to
	 ilp32_p.  */
      return 1;

    case BFD_RELOC_AARCH64_ADD_LO12:
    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
    case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
    case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
    case BFD_RELOC_AARCH64_LDST128_LO12:
    case BFD_RELOC_AARCH64_LDST16_LO12:
    case BFD_RELOC_AARCH64_LDST32_LO12:
    case BFD_RELOC_AARCH64_LDST64_LO12:
    case BFD_RELOC_AARCH64_LDST8_LO12:
    case BFD_RELOC_AARCH64_LDST_LO12:
    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
    case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
    case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
    case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
      /* Always leave these relocations for the linker.  */
      return 1;

    default:
      return -1;
    }
}

int
aarch64_force_relocation (struct fix *fixp)
{
  int res = aarch64_force_reloc (fixp->fx_r_type);

  if (res == -1)
    return generic_force_reloc (fixp);
  return res;
}

/* Mode argument to parse_shift and parser_shifter_operand.  */
enum parse_shift_mode
{
  SHIFTED_NONE,			/* no shifter allowed  */
  SHIFTED_ARITH_IMM,		/* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
				   "#imm{,lsl #n}"  */
  SHIFTED_LOGIC_IMM,		/* "rn{,lsl|lsr|asl|asr|ror #n}" or
				   "#imm"  */
  SHIFTED_LSL,			/* bare "lsl #n"  */
  SHIFTED_MUL,			/* bare "mul #n"  */
  SHIFTED_LSL_MSL,		/* "lsl|msl #n"  */
  SHIFTED_MUL_VL,		/* "mul vl"  */
  SHIFTED_REG_OFFSET		/* [su]xtw|sxtx {#n} or lsl #n  */
};

/* Parse a <shift> operator on an AArch64 data processing instruction.
   Return TRUE on success; otherwise return FALSE.  */
static bool
parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
{
  const struct aarch64_name_value_pair *shift_op;
  enum aarch64_modifier_kind kind;
  expressionS exp;
  int exp_has_prefix;
  char *s = *str;
  char *p = s;

  for (p = *str; ISALPHA (*p); p++)
    ;

  if (p == *str)
    {
      set_syntax_error (_("shift expression expected"));
      return false;
    }

  shift_op = str_hash_find_n (aarch64_shift_hsh, *str, p - *str);

  if (shift_op == NULL)
    {
      set_syntax_error (_("shift operator expected"));
      return false;
    }

  kind = aarch64_get_operand_modifier (shift_op);

  if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
    {
      set_syntax_error (_("invalid use of 'MSL'"));
      return false;
    }

  if (kind == AARCH64_MOD_MUL
      && mode != SHIFTED_MUL
      && mode != SHIFTED_MUL_VL)
    {
      set_syntax_error (_("invalid use of 'MUL'"));
      return false;
    }

  switch (mode)
    {
    case SHIFTED_LOGIC_IMM:
      if (aarch64_extend_operator_p (kind))
	{
	  set_syntax_error (_("extending shift is not permitted"));
	  return false;
	}
      break;

    case SHIFTED_ARITH_IMM:
      if (kind == AARCH64_MOD_ROR)
	{
	  set_syntax_error (_("'ROR' shift is not permitted"));
	  return false;
	}
      break;

    case SHIFTED_LSL:
      if (kind != AARCH64_MOD_LSL)
	{
	  set_syntax_error (_("only 'LSL' shift is permitted"));
	  return false;
	}
      break;

    case SHIFTED_MUL:
      if (kind != AARCH64_MOD_MUL)
	{
	  set_syntax_error (_("only 'MUL' is permitted"));
	  return false;
	}
      break;

    case SHIFTED_MUL_VL:
      /* "MUL VL" consists of two separate tokens.  Require the first
	 token to be "MUL" and look for a following "VL".  */
      if (kind == AARCH64_MOD_MUL)
	{
	  skip_whitespace (p);
	  if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
	    {
	      p += 2;
	      kind = AARCH64_MOD_MUL_VL;
	      break;
	    }
	}
      set_syntax_error (_("only 'MUL VL' is permitted"));
      return false;

    case SHIFTED_REG_OFFSET:
      if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
	  && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
	{
	  set_fatal_syntax_error
	    (_("invalid shift for the register offset addressing mode"));
	  return false;
	}
      break;

    case SHIFTED_LSL_MSL:
      if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
	{
	  set_syntax_error (_("invalid shift operator"));
	  return false;
	}
      break;

    default:
      abort ();
    }

  /* Whitespace can appear here if the next thing is a bare digit.  */
  skip_whitespace (p);

  /* Parse shift amount.  */
  exp_has_prefix = 0;
  if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
    exp.X_op = O_absent;
  else
    {
      if (is_immediate_prefix (*p))
	{
	  p++;
	  exp_has_prefix = 1;
	}
      aarch64_get_expression (&exp, &p, GE_NO_PREFIX, ALLOW_ABSENT);
    }
  if (kind == AARCH64_MOD_MUL_VL)
    /* For consistency, give MUL VL the same shift amount as an implicit
       MUL #1.  */
    operand->shifter.amount = 1;
  else if (exp.X_op == O_absent)
    {
      if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
	{
	  set_syntax_error (_("missing shift amount"));
	  return false;
	}
      operand->shifter.amount = 0;
    }
  else if (exp.X_op != O_constant)
    {
      set_syntax_error (_("constant shift amount required"));
      return false;
    }
  /* For parsing purposes, MUL #n has no inherent range.  The range
     depends on the operand and will be checked by operand-specific
     routines.  */
  else if (kind != AARCH64_MOD_MUL
	   && (exp.X_add_number < 0 || exp.X_add_number > 63))
    {
      set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
      return false;
    }
  else
    {
      operand->shifter.amount = exp.X_add_number;
      operand->shifter.amount_present = 1;
    }

  operand->shifter.operator_present = 1;
  operand->shifter.kind = kind;

  *str = p;
  return true;
}

/* Parse a <shifter_operand> for a data processing instruction:

      #<immediate>
      #<immediate>, LSL #imm

   Validation of immediate operands is deferred to md_apply_fix.

   Return TRUE on success; otherwise return FALSE.  */

static bool
parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
			   enum parse_shift_mode mode)
{
  char *p;

  if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
    return false;

  p = *str;

  /* Accept an immediate expression.  */
  if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX,
				REJECT_ABSENT))
    return false;

  /* Accept optional LSL for arithmetic immediate values.  */
  if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
    if (! parse_shift (&p, operand, SHIFTED_LSL))
      return false;

  /* Not accept any shifter for logical immediate values.  */
  if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
      && parse_shift (&p, operand, mode))
    {
      set_syntax_error (_("unexpected shift operator"));
      return false;
    }

  *str = p;
  return true;
}

/* Parse a <shifter_operand> for a data processing instruction:

      <Rm>
      <Rm>, <shift>
      #<immediate>
      #<immediate>, LSL #imm

   where <shift> is handled by parse_shift above, and the last two
   cases are handled by the function above.

   Validation of immediate operands is deferred to md_apply_fix.

   Return TRUE on success; otherwise return FALSE.  */

static bool
parse_shifter_operand (char **str, aarch64_opnd_info *operand,
		       enum parse_shift_mode mode)
{
  const reg_entry *reg;
  aarch64_opnd_qualifier_t qualifier;
  enum aarch64_operand_class opd_class
    = aarch64_get_operand_class (operand->type);

  reg = aarch64_reg_parse_32_64 (str, &qualifier);
  if (reg)
    {
      if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
	{
	  set_syntax_error (_("unexpected register in the immediate operand"));
	  return false;
	}

      if (!aarch64_check_reg_type (reg, REG_TYPE_R_ZR))
	{
	  set_expected_reg_error (REG_TYPE_R_ZR, reg, 0);
	  return false;
	}

      operand->reg.regno = reg->number;
      operand->qualifier = qualifier;

      /* Accept optional shift operation on register.  */
      if (! skip_past_comma (str))
	return true;

      if (! parse_shift (str, operand, mode))
	return false;

      return true;
    }
  else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
    {
      set_syntax_error
	(_("integer register expected in the extended/shifted operand "
	   "register"));
      return false;
    }

  /* We have a shifted immediate variable.  */
  return parse_shifter_operand_imm (str, operand, mode);
}

/* Return TRUE on success; return FALSE otherwise.  */

static bool
parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
			     enum parse_shift_mode mode)
{
  char *p = *str;

  /* Determine if we have the sequence of characters #: or just :
     coming next.  If we do, then we check for a :rello: relocation
     modifier.  If we don't, punt the whole lot to
     parse_shifter_operand.  */

  if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
    {
      struct reloc_table_entry *entry;

      if (p[0] == '#')
	p += 2;
      else
	p++;
      *str = p;

      /* Try to parse a relocation.  Anything else is an error.  */
      if (!(entry = find_reloc_table_entry (str)))
	{
	  set_syntax_error (_("unknown relocation modifier"));
	  return false;
	}

      if (entry->add_type == 0)
	{
	  set_syntax_error
	    (_("this relocation modifier is not allowed on this instruction"));
	  return false;
	}

      /* Save str before we decompose it.  */
      p = *str;

      /* Next, we parse the expression.  */
      if (! aarch64_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX,
				    REJECT_ABSENT))
	return false;
      
      /* Record the relocation type (use the ADD variant here).  */
      inst.reloc.type = entry->add_type;
      inst.reloc.pc_rel = entry->pc_rel;

      /* If str is empty, we've reached the end, stop here.  */
      if (**str == '\0')
	return true;

      /* Otherwise, we have a shifted reloc modifier, so rewind to
         recover the variable name and continue parsing for the shifter.  */
      *str = p;
      return parse_shifter_operand_imm (str, operand, mode);
    }

  return parse_shifter_operand (str, operand, mode);
}

/* Parse all forms of an address expression.  Information is written
   to *OPERAND and/or inst.reloc.

   The A64 instruction set has the following addressing modes:

   Offset
     [base]			 // in SIMD ld/st structure
     [base{,#0}]		 // in ld/st exclusive
     [base{,#imm}]
     [base,Xm{,LSL #imm}]
     [base,Xm,SXTX {#imm}]
     [base,Wm,(S|U)XTW {#imm}]
   Pre-indexed
     [base]!                    // in ldraa/ldrab exclusive
     [base,#imm]!
   Post-indexed
     [base],#imm
     [base],Xm			 // in SIMD ld/st structure
   PC-relative (literal)
     label
   SVE:
     [base,#imm,MUL VL]
     [base,Zm.D{,LSL #imm}]
     [base,Zm.S,(S|U)XTW {#imm}]
     [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
     [Zn.S,#imm]
     [Zn.D,#imm]
     [Zn.S{, Xm}]
     [Zn.S,Zm.S{,LSL #imm}]      // in ADR
     [Zn.D,Zm.D{,LSL #imm}]      // in ADR
     [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR

   (As a convenience, the notation "=immediate" is permitted in conjunction
   with the pc-relative literal load instructions to automatically place an
   immediate value or symbolic address in a nearby literal pool and generate
   a hidden label which references it.)

   Upon a successful parsing, the address structure in *OPERAND will be
   filled in the following way:

     .base_regno = <base>
     .offset.is_reg	// 1 if the offset is a register
     .offset.imm = <imm>
     .offset.regno = <Rm>

   For different addressing modes defined in the A64 ISA:

   Offset
     .pcrel=0; .preind=1; .postind=0; .writeback=0
   Pre-indexed
     .pcrel=0; .preind=1; .postind=0; .writeback=1
   Post-indexed
     .pcrel=0; .preind=0; .postind=1; .writeback=1
   PC-relative (literal)
     .pcrel=1; .preind=1; .postind=0; .writeback=0

   The shift/extension information, if any, will be stored in .shifter.
   The base and offset qualifiers will be stored in *BASE_QUALIFIER and
   *OFFSET_QUALIFIER respectively, with NIL being used if there's no
   corresponding register.

   BASE_TYPE says which types of base register should be accepted and
   OFFSET_TYPE says the same for offset registers.  IMM_SHIFT_MODE
   is the type of shifter that is allowed for immediate offsets,
   or SHIFTED_NONE if none.

   In all other respects, it is the caller's responsibility to check
   for addressing modes not supported by the instruction, and to set
   inst.reloc.type.  */

static bool
parse_address_main (char **str, aarch64_opnd_info *operand,
		    aarch64_opnd_qualifier_t *base_qualifier,
		    aarch64_opnd_qualifier_t *offset_qualifier,
		    aarch64_reg_type base_type, aarch64_reg_type offset_type,
		    enum parse_shift_mode imm_shift_mode)
{
  char *p = *str;
  const reg_entry *reg;
  expressionS *exp = &inst.reloc.exp;

  *base_qualifier = AARCH64_OPND_QLF_NIL;
  *offset_qualifier = AARCH64_OPND_QLF_NIL;
  if (! skip_past_char (&p, '['))
    {
      /* =immediate or label.  */
      operand->addr.pcrel = 1;
      operand->addr.preind = 1;

      /* #:<reloc_op>:<symbol>  */
      skip_past_char (&p, '#');
      if (skip_past_char (&p, ':'))
	{
	  bfd_reloc_code_real_type ty;
	  struct reloc_table_entry *entry;

	  /* Try to parse a relocation modifier.  Anything else is
	     an error.  */
	  entry = find_reloc_table_entry (&p);
	  if (! entry)
	    {
	      set_syntax_error (_("unknown relocation modifier"));
	      return false;
	    }

	  switch (operand->type)
	    {
	    case AARCH64_OPND_ADDR_PCREL21:
	      /* adr */
	      ty = entry->adr_type;
	      break;

	    default:
	      ty = entry->ld_literal_type;
	      break;
	    }

	  if (ty == 0)
	    {
	      set_syntax_error
		(_("this relocation modifier is not allowed on this "
		   "instruction"));
	      return false;
	    }

	  /* #:<reloc_op>:  */
	  if (! aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
	    {
	      set_syntax_error (_("invalid relocation expression"));
	      return false;
	    }
	  /* #:<reloc_op>:<expr>  */
	  /* Record the relocation type.  */
	  inst.reloc.type = ty;
	  inst.reloc.pc_rel = entry->pc_rel;
	}
      else
	{
	  if (skip_past_char (&p, '='))
	    /* =immediate; need to generate the literal in the literal pool. */
	    inst.gen_lit_pool = 1;

	  if (!aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
	    {
	      set_syntax_error (_("invalid address"));
	      return false;
	    }
	}

      *str = p;
      return true;
    }

  /* [ */

  bool alpha_base_p = ISALPHA (*p);
  reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
  if (!reg || !aarch64_check_reg_type (reg, base_type))
    {
      if (reg
	  && aarch64_check_reg_type (reg, REG_TYPE_R_SP)
	  && *base_qualifier == AARCH64_OPND_QLF_W)
	set_syntax_error (_("expected a 64-bit base register"));
      else if (alpha_base_p)
	set_syntax_error (_("invalid base register"));
      else
	set_syntax_error (_("expected a base register"));
      return false;
    }
  operand->addr.base_regno = reg->number;

  /* [Xn */
  if (skip_past_comma (&p))
    {
      /* [Xn, */
      operand->addr.preind = 1;

      reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
      if (reg)
	{
	  if (!aarch64_check_reg_type (reg, offset_type))
	    {
	      set_syntax_error (_("invalid offset register"));
	      return false;
	    }

	  /* [Xn,Rm  */
	  operand->addr.offset.regno = reg->number;
	  operand->addr.offset.is_reg = 1;
	  /* Shifted index.  */
	  if (skip_past_comma (&p))
	    {
	      /* [Xn,Rm,  */
	      if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
		/* Use the diagnostics set in parse_shift, so not set new
		   error message here.  */
		return false;
	    }
	  /* We only accept:
	     [base,Xm]  # For vector plus scalar SVE2 indexing.
	     [base,Xm{,LSL #imm}]
	     [base,Xm,SXTX {#imm}]
	     [base,Wm,(S|U)XTW {#imm}]  */
	  if (operand->shifter.kind == AARCH64_MOD_NONE
	      || operand->shifter.kind == AARCH64_MOD_LSL
	      || operand->shifter.kind == AARCH64_MOD_SXTX)
	    {
	      if (*offset_qualifier == AARCH64_OPND_QLF_W)
		{
		  set_syntax_error (_("invalid use of 32-bit register offset"));
		  return false;
		}
	      if (aarch64_get_qualifier_esize (*base_qualifier)
		  != aarch64_get_qualifier_esize (*offset_qualifier)
		  && (operand->type != AARCH64_OPND_SVE_ADDR_ZX
		      || *base_qualifier != AARCH64_OPND_QLF_S_S
		      || *offset_qualifier != AARCH64_OPND_QLF_X))
		{
		  set_syntax_error (_("offset has different size from base"));
		  return false;
		}
	    }
	  else if (*offset_qualifier == AARCH64_OPND_QLF_X)
	    {
	      set_syntax_error (_("invalid use of 64-bit register offset"));
	      return false;
	    }
	}
      else
	{
	  /* [Xn,#:<reloc_op>:<symbol>  */
	  skip_past_char (&p, '#');
	  if (skip_past_char (&p, ':'))
	    {
	      struct reloc_table_entry *entry;

	      /* Try to parse a relocation modifier.  Anything else is
		 an error.  */
	      if (!(entry = find_reloc_table_entry (&p)))
		{
		  set_syntax_error (_("unknown relocation modifier"));
		  return false;
		}

	      if (entry->ldst_type == 0)
		{
		  set_syntax_error
		    (_("this relocation modifier is not allowed on this "
		       "instruction"));
		  return false;
		}

	      /* [Xn,#:<reloc_op>:  */
	      /* We now have the group relocation table entry corresponding to
	         the name in the assembler source.  Next, we parse the
	         expression.  */
	      if (! aarch64_get_expression (exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
		{
		  set_syntax_error (_("invalid relocation expression"));
		  return false;
		}

	      /* [Xn,#:<reloc_op>:<expr>  */
	      /* Record the load/store relocation type.  */
	      inst.reloc.type = entry->ldst_type;
	      inst.reloc.pc_rel = entry->pc_rel;
	    }
	  else
	    {
	      if (! aarch64_get_expression (exp, &p, GE_OPT_PREFIX, REJECT_ABSENT))
		{
		  set_syntax_error (_("invalid expression in the address"));
		  return false;
		}
	      /* [Xn,<expr>  */
	      if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
		/* [Xn,<expr>,<shifter>  */
		if (! parse_shift (&p, operand, imm_shift_mode))
		  return false;
	    }
	}
    }

  if (! skip_past_char (&p, ']'))
    {
      set_syntax_error (_("']' expected"));
      return false;
    }

  if (skip_past_char (&p, '!'))
    {
      if (operand->addr.preind && operand->addr.offset.is_reg)
	{
	  set_syntax_error (_("register offset not allowed in pre-indexed "
			      "addressing mode"));
	  return false;
	}
      /* [Xn]! */
      operand->addr.writeback = 1;
    }
  else if (skip_past_comma (&p))
    {
      /* [Xn], */
      operand->addr.postind = 1;
      operand->addr.writeback = 1;

      if (operand->addr.preind)
	{
	  set_syntax_error (_("cannot combine pre- and post-indexing"));
	  return false;
	}

      reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
      if (reg)
	{
	  /* [Xn],Xm */
	  if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
	    {
	      set_syntax_error (_("invalid offset register"));
	      return false;
	    }

	  operand->addr.offset.regno = reg->number;
	  operand->addr.offset.is_reg = 1;
	}
      else if (! aarch64_get_expression (exp, &p, GE_OPT_PREFIX, REJECT_ABSENT))
	{
	  /* [Xn],#expr */
	  set_syntax_error (_("invalid expression in the address"));
	  return false;
	}
    }

  /* If at this point neither .preind nor .postind is set, we have a
     bare [Rn]{!}; only accept [Rn]! as a shorthand for [Rn,#0]! for ldraa and
     ldrab, accept [Rn] as a shorthand for [Rn,#0].
     For SVE2 vector plus scalar offsets, allow [Zn.<T>] as shorthand for
     [Zn.<T>, xzr].  */
  if (operand->addr.preind == 0 && operand->addr.postind == 0)
    {
      if (operand->addr.writeback)
	{
	  if (operand->type == AARCH64_OPND_ADDR_SIMM10)
            {
              /* Accept [Rn]! as a shorthand for [Rn,#0]!   */
              operand->addr.offset.is_reg = 0;
              operand->addr.offset.imm = 0;
              operand->addr.preind = 1;
            }
          else
           {
	     /* Reject [Rn]!   */
	     set_syntax_error (_("missing offset in the pre-indexed address"));
	     return false;
	   }
	}
       else
	{
          operand->addr.preind = 1;
          if (operand->type == AARCH64_OPND_SVE_ADDR_ZX)
	   {
	     operand->addr.offset.is_reg = 1;
	     operand->addr.offset.regno = REG_ZR;
	     *offset_qualifier = AARCH64_OPND_QLF_X;
 	   }
          else
	   {
	     inst.reloc.exp.X_op = O_constant;
	     inst.reloc.exp.X_add_number = 0;
	   }
	}
    }

  *str = p;
  return true;
}

/* Parse a base AArch64 address (as opposed to an SVE one).  Return TRUE
   on success.  */
static bool
parse_address (char **str, aarch64_opnd_info *operand)
{
  aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
  return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
			     REG_TYPE_R64_SP, REG_TYPE_R_ZR, SHIFTED_NONE);
}

/* Parse an address in which SVE vector registers and MUL VL are allowed.
   The arguments have the same meaning as for parse_address_main.
   Return TRUE on success.  */
static bool
parse_sve_address (char **str, aarch64_opnd_info *operand,
		   aarch64_opnd_qualifier_t *base_qualifier,
		   aarch64_opnd_qualifier_t *offset_qualifier)
{
  return parse_address_main (str, operand, base_qualifier, offset_qualifier,
			     REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
			     SHIFTED_MUL_VL);
}

/* Parse a register X0-X30.  The register must be 64-bit and register 31
   is unallocated.  */
static bool
parse_x0_to_x30 (char **str, aarch64_opnd_info *operand)
{
  const reg_entry *reg = parse_reg (str);
  if (!reg || !aarch64_check_reg_type (reg, REG_TYPE_R_64))
    {
      set_expected_reg_error (REG_TYPE_R_64, reg, 0);
      return false;
    }
  operand->reg.regno = reg->number;
  operand->qualifier = AARCH64_OPND_QLF_X;
  return true;
}

/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
   Return TRUE on success; otherwise return FALSE.  */
static bool
parse_half (char **str, int *internal_fixup_p)
{
  char *p = *str;

  skip_past_char (&p, '#');

  gas_assert (internal_fixup_p);
  *internal_fixup_p = 0;

  if (*p == ':')
    {
      struct reloc_table_entry *entry;

      /* Try to parse a relocation.  Anything else is an error.  */
      ++p;

      if (!(entry = find_reloc_table_entry (&p)))
	{
	  set_syntax_error (_("unknown relocation modifier"));
	  return false;
	}

      if (entry->movw_type == 0)
	{
	  set_syntax_error
	    (_("this relocation modifier is not allowed on this instruction"));
	  return false;
	}

      inst.reloc.type = entry->movw_type;
    }
  else
    *internal_fixup_p = 1;

  if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
    return false;

  *str = p;
  return true;
}

/* Parse an operand for an ADRP instruction:
     ADRP <Xd>, <label>
   Return TRUE on success; otherwise return FALSE.  */

static bool
parse_adrp (char **str)
{
  char *p;

  p = *str;
  if (*p == ':')
    {
      struct reloc_table_entry *entry;

      /* Try to parse a relocation.  Anything else is an error.  */
      ++p;
      if (!(entry = find_reloc_table_entry (&p)))
	{
	  set_syntax_error (_("unknown relocation modifier"));
	  return false;
	}

      if (entry->adrp_type == 0)
	{
	  set_syntax_error
	    (_("this relocation modifier is not allowed on this instruction"));
	  return false;
	}

      inst.reloc.type = entry->adrp_type;
    }
  else
    inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;

  inst.reloc.pc_rel = 1;
  if (! aarch64_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, REJECT_ABSENT))
    return false;
  *str = p;
  return true;
}

/* Miscellaneous. */

/* Parse a symbolic operand such as "pow2" at *STR.  ARRAY is an array
   of SIZE tokens in which index I gives the token for field value I,
   or is null if field value I is invalid.  If the symbolic operand
   can also be given as a 0-based integer, REG_TYPE says which register
   names should be treated as registers rather than as symbolic immediates
   while parsing that integer.  REG_TYPE is REG_TYPE_MAX otherwise.

   Return true on success, moving *STR past the operand and storing the
   field value in *VAL.  */

static int
parse_enum_string (char **str, int64_t *val, const char *const *array,
		   size_t size, aarch64_reg_type reg_type)
{
  expressionS exp;
  char *p, *q;
  size_t i;

  /* Match C-like tokens.  */
  p = q = *str;
  while (ISALNUM (*q))
    q++;

  for (i = 0; i < size; ++i)
    if (array[i]
	&& strncasecmp (array[i], p, q - p) == 0
	&& array[i][q - p] == 0)
      {
	*val = i;
	*str = q;
	return true;
      }

  if (reg_type == REG_TYPE_MAX)
    return false;

  if (!parse_immediate_expression (&p, &exp, reg_type))
    return false;

  if (exp.X_op == O_constant
      && (uint64_t) exp.X_add_number < size)
    {
      *val = exp.X_add_number;
      *str = p;
      return true;
    }

  /* Use the default error for this operand.  */
  return false;
}

/* Parse an option for a preload instruction.  Returns the encoding for the
   option, or PARSE_FAIL.  */

static int
parse_pldop (char **str)
{
  char *p, *q;
  const struct aarch64_name_value_pair *o;

  p = q = *str;
  while (ISALNUM (*q))
    q++;

  o = str_hash_find_n (aarch64_pldop_hsh, p, q - p);
  if (!o)
    return PARSE_FAIL;

  *str = q;
  return o->value;
}

/* Parse an option for a barrier instruction.  Returns the encoding for the
   option, or PARSE_FAIL.  */

static int
parse_barrier (char **str)
{
  char *p, *q;
  const struct aarch64_name_value_pair *o;

  p = q = *str;
  while (ISALPHA (*q))
    q++;

  o = str_hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
  if (!o)
    return PARSE_FAIL;

  *str = q;
  return o->value;
}

/* Parse an operand for a PSB barrier.  Set *HINT_OPT to the hint-option record
   return 0 if successful.  Otherwise return PARSE_FAIL.  */

static int
parse_barrier_psb (char **str,
		   const struct aarch64_name_value_pair ** hint_opt)
{
  char *p, *q;
  const struct aarch64_name_value_pair *o;

  p = q = *str;
  while (ISALPHA (*q))
    q++;

  o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
  if (!o)
    {
      set_fatal_syntax_error
	( _("unknown or missing option to PSB/TSB"));
      return PARSE_FAIL;
    }

  if (o->value != 0x11)
    {
      /* PSB only accepts option name 'CSYNC'.  */
      set_syntax_error
	(_("the specified option is not accepted for PSB/TSB"));
      return PARSE_FAIL;
    }

  *str = q;
  *hint_opt = o;
  return 0;
}

/* Parse an operand for BTI.  Set *HINT_OPT to the hint-option record
   return 0 if successful.  Otherwise return PARSE_FAIL.  */

static int
parse_bti_operand (char **str,
		   const struct aarch64_name_value_pair ** hint_opt)
{
  char *p, *q;
  const struct aarch64_name_value_pair *o;

  p = q = *str;
  while (ISALPHA (*q))
    q++;

  o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
  if (!o)
    {
      set_fatal_syntax_error
	( _("unknown option to BTI"));
      return PARSE_FAIL;
    }

  switch (o->value)
    {
    /* Valid BTI operands.  */
    case HINT_OPD_C:
    case HINT_OPD_J:
    case HINT_OPD_JC:
      break;

    default:
      set_syntax_error
	(_("unknown option to BTI"));
      return PARSE_FAIL;
    }

  *str = q;
  *hint_opt = o;
  return 0;
}

/* Parse STR for reg of REG_TYPE and following '.' and QUALIFIER.
   Function returns REG_ENTRY struct and QUALIFIER [bhsdq] or NULL
   on failure. Format:

     REG_TYPE.QUALIFIER

   Side effect: Update STR with current parse position of success.

   FLAGS is as for parse_typed_reg.  */

static const reg_entry *
parse_reg_with_qual (char **str, aarch64_reg_type reg_type,
		     aarch64_opnd_qualifier_t *qualifier, unsigned int flags)
{
  struct vector_type_el vectype;
  const reg_entry *reg = parse_typed_reg (str, reg_type, &vectype,
					  PTR_FULL_REG | flags);
  if (!reg)
    return NULL;

  if (vectype.type == NT_invtype)
    *qualifier = AARCH64_OPND_QLF_NIL;
  else
    {
      *qualifier = vectype_to_qualifier (&vectype);
      if (*qualifier == AARCH64_OPND_QLF_NIL)
	return NULL;
    }

  return reg;
}

/* Parse STR for unsigned, immediate (1-2 digits) in format:

     #<imm>
     <imm>

  Function return TRUE if immediate was found, or FALSE.
*/
static bool
parse_sme_immediate (char **str, int64_t *imm)
{
  int64_t val;
  if (! parse_constant_immediate (str, &val, REG_TYPE_R_N))
    return false;

  *imm = val;
  return true;
}

/* Parse index with selection register and immediate offset:

   [<Wv>, <imm>]
   [<Wv>, #<imm>]

   Return true on success, populating OPND with the parsed index.  */

static bool
parse_sme_za_index (char **str, struct aarch64_indexed_za *opnd)
{
  const reg_entry *reg;

  if (!skip_past_char (str, '['))
    {
      set_syntax_error (_("expected '['"));
      return false;
    }

  /* The selection register, encoded in the 2-bit Rv field.  */
  reg = parse_reg (str);
  if (reg == NULL || reg->type != REG_TYPE_R_32)
    {
      set_syntax_error (_("expected a 32-bit selection register"));
      return false;
    }
  opnd->index.regno = reg->number;

  if (!skip_past_char (str, ','))
    {
      set_syntax_error (_("missing immediate offset"));
      return false;
    }

  if (!parse_sme_immediate (str, &opnd->index.imm))
    {
      set_syntax_error (_("expected a constant immediate offset"));
      return false;
    }

  if (skip_past_char (str, ':'))
    {
      int64_t end;
      if (!parse_sme_immediate (str, &end))
	{
	  set_syntax_error (_("expected a constant immediate offset"));
	  return false;
	}
      if (end < opnd->index.imm)
	{
	  set_syntax_error (_("the last offset is less than the"
			      " first offset"));
	  return false;
	}
      if (end == opnd->index.imm)
	{
	  set_syntax_error (_("the last offset is equal to the"
			      " first offset"));
	  return false;
	}
      opnd->index.countm1 = (uint64_t) end - opnd->index.imm;
    }

  opnd->group_size = 0;
  if (skip_past_char (str, ','))
    {
      if (strncasecmp (*str, "vgx2", 4) == 0 && !ISALPHA ((*str)[4]))
	{
	  *str += 4;
	  opnd->group_size = 2;
	}
      else if (strncasecmp (*str, "vgx4", 4) == 0 && !ISALPHA ((*str)[4]))
	{
	  *str += 4;
	  opnd->group_size = 4;
	}
      else
	{
	  set_syntax_error (_("invalid vector group size"));
	  return false;
	}
    }

  if (!skip_past_char (str, ']'))
    {
      set_syntax_error (_("expected ']'"));
      return false;
    }

  return true;
}

/* Parse a register of type REG_TYPE that might have an element type
   qualifier and that is indexed by two values: a 32-bit register,
   followed by an immediate.  The ranges of the register and the
   immediate vary by opcode and are checked in libopcodes.

   Return true on success, populating OPND with information about
   the operand and setting QUALIFIER to the register qualifier.

   Field format examples:

   <Pm>.<T>[<Wv>< #<imm>]
   ZA[<Wv>, #<imm>]
   <ZAn><HV>.<T>[<Wv>, #<imm>]

   FLAGS is as for parse_typed_reg.  */

static bool
parse_dual_indexed_reg (char **str, aarch64_reg_type reg_type,
			struct aarch64_indexed_za *opnd,
			aarch64_opnd_qualifier_t *qualifier,
			unsigned int flags)
{
  const reg_entry *reg = parse_reg_with_qual (str, reg_type, qualifier, flags);
  if (!reg)
    return false;

  opnd->v = aarch64_check_reg_type (reg, REG_TYPE_ZATV);
  opnd->regno = reg->number;

  return parse_sme_za_index (str, opnd);
}

/* Like parse_sme_za_hv_tiles_operand, but expect braces around the
   operand.  */

static bool
parse_sme_za_hv_tiles_operand_with_braces (char **str,
					   struct aarch64_indexed_za *opnd,
                                           aarch64_opnd_qualifier_t *qualifier)
{
  if (!skip_past_char (str, '{'))
    {
      set_expected_reglist_error (REG_TYPE_ZATHV, parse_reg (str));
      return false;
    }

  if (!parse_dual_indexed_reg (str, REG_TYPE_ZATHV, opnd, qualifier,
			       PTR_IN_REGLIST))
    return false;

  if (!skip_past_char (str, '}'))
    {
      set_syntax_error (_("expected '}'"));
      return false;
    }

  return true;
}

/* Parse list of up to eight 64-bit element tile names separated by commas in
   SME's ZERO instruction:

     ZERO { <mask> }

   Function returns <mask>:

     an 8-bit list of 64-bit element tiles named ZA0.D to ZA7.D.
*/
static int
parse_sme_zero_mask(char **str)
{
  char *q;
  int mask;
  aarch64_opnd_qualifier_t qualifier;
  unsigned int ptr_flags = PTR_IN_REGLIST;

  mask = 0x00;
  q = *str;
  do
    {
      const reg_entry *reg = parse_reg_with_qual (&q, REG_TYPE_ZA_ZAT,
						  &qualifier, ptr_flags);
      if (!reg)
	return PARSE_FAIL;

      if (reg->type == REG_TYPE_ZA)
	{
	  if (qualifier != AARCH64_OPND_QLF_NIL)
	    {
	      set_syntax_error ("ZA should not have a size suffix");
	      return PARSE_FAIL;
	    }
          /* { ZA } is assembled as all-ones immediate.  */
          mask = 0xff;
	}
      else
	{
          int regno = reg->number;
          if (qualifier == AARCH64_OPND_QLF_S_B)
            {
              /* { ZA0.B } is assembled as all-ones immediate.  */
              mask = 0xff;
            }
          else if (qualifier == AARCH64_OPND_QLF_S_H)
            mask |= 0x55 << regno;
          else if (qualifier == AARCH64_OPND_QLF_S_S)
            mask |= 0x11 << regno;
          else if (qualifier == AARCH64_OPND_QLF_S_D)
            mask |= 0x01 << regno;
	  else if (qualifier == AARCH64_OPND_QLF_S_Q)
	    {
              set_syntax_error (_("ZA tile masks do not operate at .Q"
				  " granularity"));
              return PARSE_FAIL;
	    }
	  else if (qualifier == AARCH64_OPND_QLF_NIL)
	    {
              set_syntax_error (_("missing ZA tile size"));
              return PARSE_FAIL;
	    }
          else
            {
              set_syntax_error (_("invalid ZA tile"));
              return PARSE_FAIL;
            }
        }
      ptr_flags |= PTR_GOOD_MATCH;
    }
  while (skip_past_char (&q, ','));

  *str = q;
  return mask;
}

/* Wraps in curly braces <mask> operand ZERO instruction:

   ZERO { <mask> }

   Function returns value of <mask> bit-field.
*/
static int
parse_sme_list_of_64bit_tiles (char **str)
{
  int regno;

  if (!skip_past_char (str, '{'))
    {
      set_syntax_error (_("expected '{'"));
      return PARSE_FAIL;
    }

  /* Empty <mask> list is an all-zeros immediate.  */
  if (!skip_past_char (str, '}'))
    {
      regno = parse_sme_zero_mask (str);
      if (regno == PARSE_FAIL)
         return PARSE_FAIL;

      if (!skip_past_char (str, '}'))
        {
          set_syntax_error (_("expected '}'"));
          return PARSE_FAIL;
        }
    }
  else
    regno = 0x00;

  return regno;
}

/* Parse streaming mode operand for SMSTART and SMSTOP.

   {SM | ZA}

   Function returns 's' if SM or 'z' if ZM is parsed. Otherwise PARSE_FAIL.
*/
static int
parse_sme_sm_za (char **str)
{
  char *p, *q;

  p = q = *str;
  while (ISALPHA (*q))
    q++;

  if ((q - p != 2)
      || (strncasecmp ("sm", p, 2) != 0 && strncasecmp ("za", p, 2) != 0))
    {
      set_syntax_error (_("expected SM or ZA operand"));
      return PARSE_FAIL;
    }

  *str = q;
  return TOLOWER (p[0]);
}

/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
   Returns the encoding for the option, or PARSE_FAIL.

   If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
   implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.

   If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
   field, otherwise as a system register.
*/

static int
parse_sys_reg (char **str, htab_t sys_regs,
	       int imple_defined_p, int pstatefield_p,
	       uint32_t* flags)
{
  char *p, *q;
  char buf[AARCH64_MAX_SYSREG_NAME_LEN];
  const aarch64_sys_reg *o;
  int value;

  p = buf;
  for (q = *str; ISALNUM (*q) || *q == '_'; q++)
    if (p < buf + (sizeof (buf) - 1))
      *p++ = TOLOWER (*q);
  *p = '\0';

  /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
     valid system register.  This is enforced by construction of the hash
     table.  */
  if (p - buf != q - *str)
    return PARSE_FAIL;

  o = str_hash_find (sys_regs, buf);
  if (!o)
    {
      if (!imple_defined_p)
	return PARSE_FAIL;
      else
	{
	  /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>.  */
	  unsigned int op0, op1, cn, cm, op2;

	  if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
	      != 5)
	    return PARSE_FAIL;
	  if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
	    return PARSE_FAIL;
	  value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
	  if (flags)
	    *flags = 0;
	}
    }
  else
    {
      if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
	as_bad (_("selected processor does not support PSTATE field "
		  "name '%s'"), buf);
      if (!pstatefield_p
	  && !aarch64_sys_ins_reg_supported_p (cpu_variant, o->name,
					       o->value, o->flags, o->features))
	as_bad (_("selected processor does not support system register "
		  "name '%s'"), buf);
      if (aarch64_sys_reg_deprecated_p (o->flags))
	as_warn (_("system register name '%s' is deprecated and may be "
		   "removed in a future release"), buf);
      value = o->value;
      if (flags)
	*flags = o->flags;
    }

  *str = q;
  return value;
}

/* Parse a system reg for ic/dc/at/tlbi instructions.  Returns the table entry
   for the option, or NULL.  */

static const aarch64_sys_ins_reg *
parse_sys_ins_reg (char **str, htab_t sys_ins_regs)
{
  char *p, *q;
  char buf[AARCH64_MAX_SYSREG_NAME_LEN];
  const aarch64_sys_ins_reg *o;

  p = buf;
  for (q = *str; ISALNUM (*q) || *q == '_'; q++)
    if (p < buf + (sizeof (buf) - 1))
      *p++ = TOLOWER (*q);
  *p = '\0';

  /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
     valid system register.  This is enforced by construction of the hash
     table.  */
  if (p - buf != q - *str)
    return NULL;

  o = str_hash_find (sys_ins_regs, buf);
  if (!o)
    return NULL;

  if (!aarch64_sys_ins_reg_supported_p (cpu_variant,
					o->name, o->value, o->flags, 0))
    as_bad (_("selected processor does not support system register "
	      "name '%s'"), buf);
  if (aarch64_sys_reg_deprecated_p (o->flags))
    as_warn (_("system register name '%s' is deprecated and may be "
          "removed in a future release"), buf);

  *str = q;
  return o;
}

#define po_char_or_fail(chr) do {				\
    if (! skip_past_char (&str, chr))				\
      goto failure;						\
} while (0)

#define po_reg_or_fail(regtype) do {				\
    reg = aarch64_reg_parse (&str, regtype, NULL);		\
    if (!reg)							\
      goto failure;						\
  } while (0)

#define po_int_fp_reg_or_fail(reg_type) do {			\
    reg = parse_reg (&str);					\
    if (!reg || !aarch64_check_reg_type (reg, reg_type))	\
      {								\
	set_expected_reg_error (reg_type, reg, 0);		\
	goto failure;						\
      }								\
    info->reg.regno = reg->number;				\
    info->qualifier = inherent_reg_qualifier (reg);		\
  } while (0)

#define po_imm_nc_or_fail() do {				\
    if (! parse_constant_immediate (&str, &val, imm_reg_type))	\
      goto failure;						\
  } while (0)

#define po_imm_or_fail(min, max) do {				\
    if (! parse_constant_immediate (&str, &val, imm_reg_type))	\
      goto failure;						\
    if (val < min || val > max)					\
      {								\
	set_fatal_syntax_error (_("immediate value out of range "\
#min " to "#max));						\
	goto failure;						\
      }								\
  } while (0)

#define po_enum_or_fail(array) do {				\
    if (!parse_enum_string (&str, &val, array,			\
			    ARRAY_SIZE (array), imm_reg_type))	\
      goto failure;						\
  } while (0)

#define po_strict_enum_or_fail(array) do {			\
    if (!parse_enum_string (&str, &val, array,			\
			    ARRAY_SIZE (array), REG_TYPE_MAX))	\
      goto failure;						\
  } while (0)

#define po_misc_or_fail(expr) do {				\
    if (!expr)							\
      goto failure;						\
  } while (0)

/* A primitive log calculator.  */

static inline unsigned int
get_log2 (unsigned int n)
{
  unsigned int count = 0;
  while (n > 1)
    {
      n >>= 1;
      count += 1;
    }
  return count;
}

/* encode the 12-bit imm field of Add/sub immediate */
static inline uint32_t
encode_addsub_imm (uint32_t imm)
{
  return imm << 10;
}

/* encode the shift amount field of Add/sub immediate */
static inline uint32_t
encode_addsub_imm_shift_amount (uint32_t cnt)
{
  return cnt << 22;
}


/* encode the imm field of Adr instruction */
static inline uint32_t
encode_adr_imm (uint32_t imm)
{
  return (((imm & 0x3) << 29)	/*  [1:0] -> [30:29] */
	  | ((imm & (0x7ffff << 2)) << 3));	/* [20:2] -> [23:5]  */
}

/* encode the immediate field of Move wide immediate */
static inline uint32_t
encode_movw_imm (uint32_t imm)
{
  return imm << 5;
}

/* encode the 26-bit offset of unconditional branch */
static inline uint32_t
encode_branch_ofs_26 (uint32_t ofs)
{
  return ofs & ((1 << 26) - 1);
}

/* encode the 19-bit offset of conditional branch and compare & branch */
static inline uint32_t
encode_cond_branch_ofs_19 (uint32_t ofs)
{
  return (ofs & ((1 << 19) - 1)) << 5;
}

/* encode the 19-bit offset of ld literal */
static inline uint32_t
encode_ld_lit_ofs_19 (uint32_t ofs)
{
  return (ofs & ((1 << 19) - 1)) << 5;
}

/* Encode the 14-bit offset of test & branch.  */
static inline uint32_t
encode_tst_branch_ofs_14 (uint32_t ofs)
{
  return (ofs & ((1 << 14) - 1)) << 5;
}

/* Encode the 16-bit imm field of svc/hvc/smc.  */
static inline uint32_t
encode_svc_imm (uint32_t imm)
{
  return imm << 5;
}

/* Reencode add(s) to sub(s), or sub(s) to add(s).  */
static inline uint32_t
reencode_addsub_switch_add_sub (uint32_t opcode)
{
  return opcode ^ (1 << 30);
}

static inline uint32_t
reencode_movzn_to_movz (uint32_t opcode)
{
  return opcode | (1 << 30);
}

static inline uint32_t
reencode_movzn_to_movn (uint32_t opcode)
{
  return opcode & ~(1 << 30);
}

/* Overall per-instruction processing.	*/

/* We need to be able to fix up arbitrary expressions in some statements.
   This is so that we can handle symbols that are an arbitrary distance from
   the pc.  The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
   which returns part of an address in a form which will be valid for
   a data instruction.	We do this by pushing the expression into a symbol
   in the expr_section, and creating a fix for that.  */

static fixS *
fix_new_aarch64 (fragS * frag,
		 int where,
		 short int size,
		 expressionS * exp,
		 int pc_rel,
		 int reloc)
{
  fixS *new_fix;

  switch (exp->X_op)
    {
    case O_constant:
    case O_symbol:
    case O_add:
    case O_subtract:
      new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
      break;

    default:
      new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
			 pc_rel, reloc);
      break;
    }
  return new_fix;
}

/* Diagnostics on operands errors.  */

/* By default, output verbose error message.
   Disable the verbose error message by -mno-verbose-error.  */
static int verbose_error_p = 1;

#ifdef DEBUG_AARCH64
/* N.B. this is only for the purpose of debugging.  */
const char* operand_mismatch_kind_names[] =
{
  "AARCH64_OPDE_NIL",
  "AARCH64_OPDE_RECOVERABLE",
  "AARCH64_OPDE_A_SHOULD_FOLLOW_B",
  "AARCH64_OPDE_EXPECTED_A_AFTER_B",
  "AARCH64_OPDE_SYNTAX_ERROR",
  "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
  "AARCH64_OPDE_INVALID_VARIANT",
  "AARCH64_OPDE_INVALID_VG_SIZE",
  "AARCH64_OPDE_REG_LIST_LENGTH",
  "AARCH64_OPDE_REG_LIST_STRIDE",
  "AARCH64_OPDE_UNTIED_IMMS",
  "AARCH64_OPDE_UNTIED_OPERAND",
  "AARCH64_OPDE_OUT_OF_RANGE",
  "AARCH64_OPDE_UNALIGNED",
  "AARCH64_OPDE_OTHER_ERROR",
  "AARCH64_OPDE_INVALID_REGNO",
};
#endif /* DEBUG_AARCH64 */

/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.

   When multiple errors of different kinds are found in the same assembly
   line, only the error of the highest severity will be picked up for
   issuing the diagnostics.  */

static inline bool
operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
				 enum aarch64_operand_error_kind rhs)
{
  gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
  gas_assert (AARCH64_OPDE_A_SHOULD_FOLLOW_B > AARCH64_OPDE_RECOVERABLE);
  gas_assert (AARCH64_OPDE_EXPECTED_A_AFTER_B > AARCH64_OPDE_RECOVERABLE);
  gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_A_SHOULD_FOLLOW_B);
  gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_EXPECTED_A_AFTER_B);
  gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
  gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
  gas_assert (AARCH64_OPDE_INVALID_VG_SIZE > AARCH64_OPDE_INVALID_VARIANT);
  gas_assert (AARCH64_OPDE_REG_LIST_LENGTH > AARCH64_OPDE_INVALID_VG_SIZE);
  gas_assert (AARCH64_OPDE_REG_LIST_STRIDE > AARCH64_OPDE_REG_LIST_LENGTH);
  gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_REG_LIST_STRIDE);
  gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
  gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST_STRIDE);
  gas_assert (AARCH64_OPDE_INVALID_REGNO > AARCH64_OPDE_OTHER_ERROR);
  return lhs > rhs;
}

/* Helper routine to get the mnemonic name from the assembly instruction
   line; should only be called for the diagnosis purpose, as there is
   string copy operation involved, which may affect the runtime
   performance if used in elsewhere.  */

static const char*
get_mnemonic_name (const char *str)
{
  static char mnemonic[32];
  char *ptr;

  /* Get the first 15 bytes and assume that the full name is included.  */
  strncpy (mnemonic, str, 31);
  mnemonic[31] = '\0';

  /* Scan up to the end of the mnemonic, which must end in white space,
     '.', or end of string.  */
  for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
    ;

  *ptr = '\0';

  /* Append '...' to the truncated long name.  */
  if (ptr - mnemonic == 31)
    mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';

  return mnemonic;
}

static void
reset_aarch64_instruction (aarch64_instruction *instruction)
{
  memset (instruction, '\0', sizeof (aarch64_instruction));
  instruction->reloc.type = BFD_RELOC_UNUSED;
}

/* Data structures storing one user error in the assembly code related to
   operands.  */

struct operand_error_record
{
  const aarch64_opcode *opcode;
  aarch64_operand_error detail;
  struct operand_error_record *next;
};

typedef struct operand_error_record operand_error_record;

struct operand_errors
{
  operand_error_record *head;
  operand_error_record *tail;
};

typedef struct operand_errors operand_errors;

/* Top-level data structure reporting user errors for the current line of
   the assembly code.
   The way md_assemble works is that all opcodes sharing the same mnemonic
   name are iterated to find a match to the assembly line.  In this data
   structure, each of the such opcodes will have one operand_error_record
   allocated and inserted.  In other words, excessive errors related with
   a single opcode are disregarded.  */
operand_errors operand_error_report;

/* Free record nodes.  */
static operand_error_record *free_opnd_error_record_nodes = NULL;

/* Initialize the data structure that stores the operand mismatch
   information on assembling one line of the assembly code.  */
static void
init_operand_error_report (void)
{
  if (operand_error_report.head != NULL)
    {
      gas_assert (operand_error_report.tail != NULL);
      operand_error_report.tail->next = free_opnd_error_record_nodes;
      free_opnd_error_record_nodes = operand_error_report.head;
      operand_error_report.head = NULL;
      operand_error_report.tail = NULL;
      return;
    }
  gas_assert (operand_error_report.tail == NULL);
}

/* Return TRUE if some operand error has been recorded during the
   parsing of the current assembly line using the opcode *OPCODE;
   otherwise return FALSE.  */
static inline bool
opcode_has_operand_error_p (const aarch64_opcode *opcode)
{
  operand_error_record *record = operand_error_report.head;
  return record && record->opcode == opcode;
}

/* Add the error record *NEW_RECORD to operand_error_report.  The record's
   OPCODE field is initialized with OPCODE.
   N.B. only one record for each opcode, i.e. the maximum of one error is
   recorded for each instruction template.  */

static void
add_operand_error_record (const operand_error_record* new_record)
{
  const aarch64_opcode *opcode = new_record->opcode;
  operand_error_record* record = operand_error_report.head;

  /* The record may have been created for this opcode.  If not, we need
     to prepare one.  */
  if (! opcode_has_operand_error_p (opcode))
    {
      /* Get one empty record.  */
      if (free_opnd_error_record_nodes == NULL)
	{
	  record = XNEW (operand_error_record);
	}
      else
	{
	  record = free_opnd_error_record_nodes;
	  free_opnd_error_record_nodes = record->next;
	}
      record->opcode = opcode;
      /* Insert at the head.  */
      record->next = operand_error_report.head;
      operand_error_report.head = record;
      if (operand_error_report.tail == NULL)
	operand_error_report.tail = record;
    }
  else if (record->detail.kind != AARCH64_OPDE_NIL
	   && record->detail.index <= new_record->detail.index
	   && operand_error_higher_severity_p (record->detail.kind,
					       new_record->detail.kind))
    {
      /* In the case of multiple errors found on operands related with a
	 single opcode, only record the error of the leftmost operand and
	 only if the error is of higher severity.  */
      DEBUG_TRACE ("error %s on operand %d not added to the report due to"
		   " the existing error %s on operand %d",
		   operand_mismatch_kind_names[new_record->detail.kind],
		   new_record->detail.index,
		   operand_mismatch_kind_names[record->detail.kind],
		   record->detail.index);
      return;
    }

  record->detail = new_record->detail;
}

static inline void
record_operand_error_info (const aarch64_opcode *opcode,
			   aarch64_operand_error *error_info)
{
  operand_error_record record;
  record.opcode = opcode;
  record.detail = *error_info;
  add_operand_error_record (&record);
}

/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
   error message *ERROR, for operand IDX (count from 0).  */

static void
record_operand_error (const aarch64_opcode *opcode, int idx,
		      enum aarch64_operand_error_kind kind,
		      const char* error)
{
  aarch64_operand_error info;
  memset(&info, 0, sizeof (info));
  info.index = idx;
  info.kind = kind;
  info.error = error;
  info.non_fatal = false;
  record_operand_error_info (opcode, &info);
}

static void
record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
				enum aarch64_operand_error_kind kind,
				const char* error, const int *extra_data)
{
  aarch64_operand_error info;
  info.index = idx;
  info.kind = kind;
  info.error = error;
  info.data[0].i = extra_data[0];
  info.data[1].i = extra_data[1];
  info.data[2].i = extra_data[2];
  info.non_fatal = false;
  record_operand_error_info (opcode, &info);
}

static void
record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
				   const char* error, int lower_bound,
				   int upper_bound)
{
  int data[3] = {lower_bound, upper_bound, 0};
  record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
				  error, data);
}

/* Remove the operand error record for *OPCODE.  */
static void ATTRIBUTE_UNUSED
remove_operand_error_record (const aarch64_opcode *opcode)
{
  if (opcode_has_operand_error_p (opcode))
    {
      operand_error_record* record = operand_error_report.head;
      gas_assert (record != NULL && operand_error_report.tail != NULL);
      operand_error_report.head = record->next;
      record->next = free_opnd_error_record_nodes;
      free_opnd_error_record_nodes = record;
      if (operand_error_report.head == NULL)
	{
	  gas_assert (operand_error_report.tail == record);
	  operand_error_report.tail = NULL;
	}
    }
}

/* Given the instruction in *INSTR, return the index of the best matched
   qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.

   Return -1 if there is no qualifier sequence; return the first match
   if there is multiple matches found.  */

static int
find_best_match (const aarch64_inst *instr,
		 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
{
  int i, num_opnds, max_num_matched, idx;

  num_opnds = aarch64_num_of_operands (instr->opcode);
  if (num_opnds == 0)
    {
      DEBUG_TRACE ("no operand");
      return -1;
    }

  max_num_matched = 0;
  idx = 0;

  /* For each pattern.  */
  for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
    {
      int j, num_matched;
      const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;

      /* Most opcodes has much fewer patterns in the list.  */
      if (empty_qualifier_sequence_p (qualifiers))
	{
	  DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
	  break;
	}

      for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
	if (*qualifiers == instr->operands[j].qualifier)
	  ++num_matched;

      if (num_matched > max_num_matched)
	{
	  max_num_matched = num_matched;
	  idx = i;
	}
    }

  DEBUG_TRACE ("return with %d", idx);
  return idx;
}

/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
   corresponding operands in *INSTR.  */

static inline void
assign_qualifier_sequence (aarch64_inst *instr,
			   const aarch64_opnd_qualifier_t *qualifiers)
{
  int i = 0;
  int num_opnds = aarch64_num_of_operands (instr->opcode);
  gas_assert (num_opnds);
  for (i = 0; i < num_opnds; ++i, ++qualifiers)
    instr->operands[i].qualifier = *qualifiers;
}

/* Callback used by aarch64_print_operand to apply STYLE to the
   disassembler output created from FMT and ARGS.  The STYLER object holds
   any required state.  Must return a pointer to a string (created from FMT
   and ARGS) that will continue to be valid until the complete disassembled
   instruction has been printed.

   We don't currently add any styling to the output of the disassembler as
   used within assembler error messages, and so STYLE is ignored here.  A
   new string is allocated on the obstack help within STYLER and returned
   to the caller.  */

static const char *aarch64_apply_style
	(struct aarch64_styler *styler,
	 enum disassembler_style style ATTRIBUTE_UNUSED,
	 const char *fmt, va_list args)
{
  int res;
  char *ptr;
  struct obstack *stack = (struct obstack *) styler->state;
  va_list ap;

  /* Calculate the required space.  */
  va_copy (ap, args);
  res = vsnprintf (NULL, 0, fmt, ap);
  va_end (ap);
  gas_assert (res >= 0);

  /* Allocate space on the obstack and format the result.  */
  ptr = (char *) obstack_alloc (stack, res + 1);
  res = vsnprintf (ptr, (res + 1), fmt, args);
  gas_assert (res >= 0);

  return ptr;
}

/* Print operands for the diagnosis purpose.  */

static void
print_operands (char *buf, const aarch64_opcode *opcode,
		const aarch64_opnd_info *opnds)
{
  int i;
  struct aarch64_styler styler;
  struct obstack content;
  obstack_init (&content);

  styler.apply_style = aarch64_apply_style;
  styler.state = (void *) &content;

  for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
    {
      char str[128];
      char cmt[128];

      /* We regard the opcode operand info more, however we also look into
	 the inst->operands to support the disassembling of the optional
	 operand.
	 The two operand code should be the same in all cases, apart from
	 when the operand can be optional.  */
      if (opcode->operands[i] == AARCH64_OPND_NIL
	  || opnds[i].type == AARCH64_OPND_NIL)
	break;

      /* Generate the operand string in STR.  */
      aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
			     NULL, cmt, sizeof (cmt), cpu_variant, &styler);

      /* Delimiter.  */
      if (str[0] != '\0')
	strcat (buf, i == 0 ? " " : ", ");

      /* Append the operand string.  */
      strcat (buf, str);

      /* Append a comment.  This works because only the last operand ever
	 adds a comment.  If that ever changes then we'll need to be
	 smarter here.  */
      if (cmt[0] != '\0')
	{
	  strcat (buf, "\t// ");
	  strcat (buf, cmt);
	}
    }

  obstack_free (&content, NULL);
}

/* Send to stderr a string as information.  */

static void
output_info (const char *format, ...)
{
  const char *file;
  unsigned int line;
  va_list args;

  file = as_where (&line);
  if (file)
    {
      if (line != 0)
	fprintf (stderr, "%s:%u: ", file, line);
      else
	fprintf (stderr, "%s: ", file);
    }
  fprintf (stderr, _("Info: "));
  va_start (args, format);
  vfprintf (stderr, format, args);
  va_end (args);
  (void) putc ('\n', stderr);
}

/* See if the AARCH64_OPDE_SYNTAX_ERROR error described by DETAIL
   relates to registers or register lists.  If so, return a string that
   reports the error against "operand %d", otherwise return null.  */

static const char *
get_reg_error_message (const aarch64_operand_error *detail)
{
  /* Handle the case where we found a register that was expected
     to be in a register list outside of a register list.  */
  if ((detail->data[1].i & detail->data[2].i) != 0
      && (detail->data[1].i & SEF_IN_REGLIST) == 0)
    return _("missing braces at operand %d");

  /* If some opcodes expected a register, and we found a register,
     complain about the difference.  */
  if (detail->data[2].i)
    {
      unsigned int expected = (detail->data[1].i & SEF_IN_REGLIST
			       ? detail->data[1].i & ~SEF_IN_REGLIST
			       : detail->data[0].i & ~SEF_DEFAULT_ERROR);
      const char *msg = get_reg_expected_msg (expected, detail->data[2].i);
      if (!msg)
	msg = N_("unexpected register type at operand %d");
      return msg;
    }

  /* Handle the case where we got to the point of trying to parse a
     register within a register list, but didn't find a known register.  */
  if (detail->data[1].i & SEF_IN_REGLIST)
    {
      unsigned int expected = detail->data[1].i & ~SEF_IN_REGLIST;
      const char *msg = get_reg_expected_msg (expected, 0);
      if (!msg)
	msg = _("invalid register list at operand %d");
      return msg;
    }

  /* Punt if register-related problems weren't the only errors.  */
  if (detail->data[0].i & SEF_DEFAULT_ERROR)
    return NULL;

  /* Handle the case where the only acceptable things are registers.  */
  if (detail->data[1].i == 0)
    {
      const char *msg = get_reg_expected_msg (detail->data[0].i, 0);
      if (!msg)
	msg = _("expected a register at operand %d");
      return msg;
    }

  /* Handle the case where the only acceptable things are register lists,
     and there was no opening '{'.  */
  if (detail->data[0].i == 0)
    return _("expected '{' at operand %d");

  return _("expected a register or register list at operand %d");
}

/* Output one operand error record.  */

static void
output_operand_error_record (const operand_error_record *record, char *str)
{
  const aarch64_operand_error *detail = &record->detail;
  int idx = detail->index;
  const aarch64_opcode *opcode = record->opcode;
  enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
				: AARCH64_OPND_NIL);

  typedef void (*handler_t)(const char *format, ...);
  handler_t handler = detail->non_fatal ? as_warn : as_bad;
  const char *msg = detail->error;

  switch (detail->kind)
    {
    case AARCH64_OPDE_NIL:
      gas_assert (0);
      break;

    case AARCH64_OPDE_A_SHOULD_FOLLOW_B:
      handler (_("this `%s' should have an immediately preceding `%s'"
		 " -- `%s'"),
	       detail->data[0].s, detail->data[1].s, str);
      break;

    case AARCH64_OPDE_EXPECTED_A_AFTER_B:
      handler (_("the preceding `%s' should be followed by `%s` rather"
		 " than `%s` -- `%s'"),
	       detail->data[1].s, detail->data[0].s, opcode->name, str);
      break;

    case AARCH64_OPDE_SYNTAX_ERROR:
      if (!msg && idx >= 0)
	{
	  msg = get_reg_error_message (detail);
	  if (msg)
	    {
	      char *full_msg = xasprintf (msg, idx + 1);
	      handler (_("%s -- `%s'"), full_msg, str);
	      free (full_msg);
	      break;
	    }
	}
      /* Fall through.  */

    case AARCH64_OPDE_RECOVERABLE:
    case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
    case AARCH64_OPDE_OTHER_ERROR:
      /* Use the prepared error message if there is, otherwise use the
	 operand description string to describe the error.  */
      if (msg != NULL)
	{
	  if (idx < 0)
	    handler (_("%s -- `%s'"), msg, str);
	  else
	    handler (_("%s at operand %d -- `%s'"),
		     msg, idx + 1, str);
	}
      else
	{
	  gas_assert (idx >= 0);
	  handler (_("operand %d must be %s -- `%s'"), idx + 1,
		   aarch64_get_operand_desc (opd_code), str);
	}
      break;

    case AARCH64_OPDE_INVALID_VARIANT:
      handler (_("operand mismatch -- `%s'"), str);
      if (verbose_error_p)
	{
	  /* We will try to correct the erroneous instruction and also provide
	     more information e.g. all other valid variants.

	     The string representation of the corrected instruction and other
	     valid variants are generated by

	     1) obtaining the intermediate representation of the erroneous
	     instruction;
	     2) manipulating the IR, e.g. replacing the operand qualifier;
	     3) printing out the instruction by calling the printer functions
	     shared with the disassembler.

	     The limitation of this method is that the exact input assembly
	     line cannot be accurately reproduced in some cases, for example an
	     optional operand present in the actual assembly line will be
	     omitted in the output; likewise for the optional syntax rules,
	     e.g. the # before the immediate.  Another limitation is that the
	     assembly symbols and relocation operations in the assembly line
	     currently cannot be printed out in the error report.  Last but not
	     least, when there is other error(s) co-exist with this error, the
	     'corrected' instruction may be still incorrect, e.g.  given
	       'ldnp h0,h1,[x0,#6]!'
	     this diagnosis will provide the version:
	       'ldnp s0,s1,[x0,#6]!'
	     which is still not right.  */
	  size_t len = strlen (get_mnemonic_name (str));
	  int i, qlf_idx;
	  bool result;
	  char buf[2048];
	  aarch64_inst *inst_base = &inst.base;
	  const aarch64_opnd_qualifier_seq_t *qualifiers_list;

	  /* Init inst.  */
	  reset_aarch64_instruction (&inst);
	  inst_base->opcode = opcode;

	  /* Reset the error report so that there is no side effect on the
	     following operand parsing.  */
	  init_operand_error_report ();

	  /* Fill inst.  */
	  result = parse_operands (str + len, opcode)
	    && programmer_friendly_fixup (&inst);
	  gas_assert (result);
	  result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
					  NULL, NULL, insn_sequence);
	  gas_assert (!result);

	  /* Find the most matched qualifier sequence.  */
	  qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
	  gas_assert (qlf_idx > -1);

	  /* Assign the qualifiers.  */
	  assign_qualifier_sequence (inst_base,
				     opcode->qualifiers_list[qlf_idx]);

	  /* Print the hint.  */
	  output_info (_("   did you mean this?"));
	  snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
	  print_operands (buf, opcode, inst_base->operands);
	  output_info (_("   %s"), buf);

	  /* Print out other variant(s) if there is any.  */
	  if (qlf_idx != 0 ||
	      !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
	    output_info (_("   other valid variant(s):"));

	  /* For each pattern.  */
	  qualifiers_list = opcode->qualifiers_list;
	  for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
	    {
	      /* Most opcodes has much fewer patterns in the list.
		 First NIL qualifier indicates the end in the list.   */
	      if (empty_qualifier_sequence_p (*qualifiers_list))
		break;

	      if (i != qlf_idx)
		{
		  /* Mnemonics name.  */
		  snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));

		  /* Assign the qualifiers.  */
		  assign_qualifier_sequence (inst_base, *qualifiers_list);

		  /* Print instruction.  */
		  print_operands (buf, opcode, inst_base->operands);

		  output_info (_("   %s"), buf);
		}
	    }
	}
      break;

    case AARCH64_OPDE_UNTIED_IMMS:
      handler (_("operand %d must have the same immediate value "
                 "as operand 1 -- `%s'"),
               detail->index + 1, str);
      break;

    case AARCH64_OPDE_UNTIED_OPERAND:
      handler (_("operand %d must be the same register as operand 1 -- `%s'"),
               detail->index + 1, str);
      break;

    case AARCH64_OPDE_INVALID_REGNO:
      handler (_("%s%d-%s%d expected at operand %d -- `%s'"),
	       detail->data[0].s, detail->data[1].i,
	       detail->data[0].s, detail->data[2].i, idx + 1, str);
      break;

    case AARCH64_OPDE_OUT_OF_RANGE:
      if (detail->data[0].i != detail->data[1].i)
	handler (_("%s out of range %d to %d at operand %d -- `%s'"),
		 msg ? msg : _("immediate value"),
		 detail->data[0].i, detail->data[1].i, idx + 1, str);
      else
	handler (_("%s must be %d at operand %d -- `%s'"),
		 msg ? msg : _("immediate value"),
		 detail->data[0].i, idx + 1, str);
      break;

    case AARCH64_OPDE_INVALID_VG_SIZE:
      if (detail->data[0].i == 0)
	handler (_("unexpected vector group size at operand %d -- `%s'"),
		 idx + 1, str);
      else
	handler (_("operand %d must have a vector group size of %d -- `%s'"),
		 idx + 1, detail->data[0].i, str);
      break;

    case AARCH64_OPDE_REG_LIST_LENGTH:
      if (detail->data[0].i == (1 << 1))
	handler (_("expected a single-register list at operand %d -- `%s'"),
		 idx + 1, str);
      else if ((detail->data[0].i & -detail->data[0].i) == detail->data[0].i)
	handler (_("expected a list of %d registers at operand %d -- `%s'"),
		 get_log2 (detail->data[0].i), idx + 1, str);
      else if (detail->data[0].i == 0x14)
	handler (_("expected a list of %d or %d registers at"
		   " operand %d -- `%s'"),
		 2, 4, idx + 1, str);
      else
	handler (_("invalid number of registers in the list"
		   " at operand %d -- `%s'"), idx + 1, str);
      break;

    case AARCH64_OPDE_REG_LIST_STRIDE:
      if (detail->data[0].i == (1 << 1))
	handler (_("the register list must have a stride of %d"
		   " at operand %d -- `%s'"), 1, idx + 1, str);
      else if (detail->data[0].i == 0x12 || detail->data[0].i == 0x102)
	handler (_("the register list must have a stride of %d or %d"
		   " at operand %d -- `%s`"), 1,
		 detail->data[0].i == 0x12 ? 4 : 8, idx + 1, str);
      else
	handler (_("invalid register stride at operand %d -- `%s'"),
		 idx + 1, str);
      break;

    case AARCH64_OPDE_UNALIGNED:
      handler (_("immediate value must be a multiple of "
		 "%d at operand %d -- `%s'"),
	       detail->data[0].i, idx + 1, str);
      break;

    default:
      gas_assert (0);
      break;
    }
}

/* Return true if the presence of error A against an instruction means
   that error B should not be reported.  This is only used as a first pass,
   to pick the kind of error that we should report.  */

static bool
better_error_p (operand_error_record *a, operand_error_record *b)
{
  /* For errors reported during parsing, prefer errors that relate to
     later operands, since that implies that the earlier operands were
     syntactically valid.

     For example, if we see a register R instead of an immediate in
     operand N, we'll report that as a recoverable "immediate operand
     required" error.  This is because there is often another opcode
     entry that accepts a register operand N, and any errors about R
     should be reported against the register forms of the instruction.
     But if no such register form exists, the recoverable error should
     still win over a syntax error against operand N-1.

     For these purposes, count an error reported at the end of the
     assembly string as equivalent to an error reported against the
     final operand.  This means that opcode entries that expect more
     operands win over "unexpected characters following instruction".  */
  if (a->detail.kind <= AARCH64_OPDE_FATAL_SYNTAX_ERROR
      && b->detail.kind <= AARCH64_OPDE_FATAL_SYNTAX_ERROR)
    {
      int a_index = (a->detail.index < 0
		     ? aarch64_num_of_operands (a->opcode) - 1
		     : a->detail.index);
      int b_index = (b->detail.index < 0
		     ? aarch64_num_of_operands (b->opcode) - 1
		     : b->detail.index);
      if (a_index != b_index)
	return a_index > b_index;
    }
  return operand_error_higher_severity_p (a->detail.kind, b->detail.kind);
}

/* Process and output the error message about the operand mismatching.

   When this function is called, the operand error information had
   been collected for an assembly line and there will be multiple
   errors in the case of multiple instruction templates; output the
   error message that most closely describes the problem.

   The errors to be printed can be filtered on printing all errors
   or only non-fatal errors.  This distinction has to be made because
   the error buffer may already be filled with fatal errors we don't want to
   print due to the different instruction templates.  */

static void
output_operand_error_report (char *str, bool non_fatal_only)
{
  enum aarch64_operand_error_kind kind;
  operand_error_record *curr;
  operand_error_record *head = operand_error_report.head;
  operand_error_record *record;

  /* No error to report.  */
  if (head == NULL)
    return;

  gas_assert (head != NULL && operand_error_report.tail != NULL);

  /* Only one error.  */
  if (head == operand_error_report.tail)
    {
      /* If the only error is a non-fatal one and we don't want to print it,
	 just exit.  */
      if (!non_fatal_only || head->detail.non_fatal)
	{
	  DEBUG_TRACE ("single opcode entry with error kind: %s",
		       operand_mismatch_kind_names[head->detail.kind]);
	  output_operand_error_record (head, str);
	}
      return;
    }

  /* Find the error kind of the highest severity.  */
  DEBUG_TRACE ("multiple opcode entries with error kind");
  record = NULL;
  for (curr = head; curr != NULL; curr = curr->next)
    {
      gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
      if (curr->detail.kind == AARCH64_OPDE_SYNTAX_ERROR)
	{
	  DEBUG_TRACE ("\t%s [%x, %x, %x]",
		       operand_mismatch_kind_names[curr->detail.kind],
		       curr->detail.data[0].i, curr->detail.data[1].i,
		       curr->detail.data[2].i);
	}
      else if (curr->detail.kind == AARCH64_OPDE_REG_LIST_LENGTH
	       || curr->detail.kind == AARCH64_OPDE_REG_LIST_STRIDE)
	{
	  DEBUG_TRACE ("\t%s [%x]",
		       operand_mismatch_kind_names[curr->detail.kind],
		       curr->detail.data[0].i);
	}
      else
	{
	  DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
	}
      if ((!non_fatal_only || curr->detail.non_fatal)
	  && (!record || better_error_p (curr, record)))
	record = curr;
    }

  kind = (record ? record->detail.kind : AARCH64_OPDE_NIL);
  gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);

  /* Pick up one of errors of KIND to report.  */
  record = NULL;
  for (curr = head; curr != NULL; curr = curr->next)
    {
      /* If we don't want to print non-fatal errors then don't consider them
	 at all.  */
      if (curr->detail.kind != kind
	  || (non_fatal_only && !curr->detail.non_fatal))
	continue;
      /* If there are multiple errors, pick up the one with the highest
	 mismatching operand index.  In the case of multiple errors with
	 the equally highest operand index, pick up the first one or the
	 first one with non-NULL error message.  */
      if (!record || curr->detail.index > record->detail.index)
	record = curr;
      else if (curr->detail.index == record->detail.index
	       && !record->detail.error)
	{
	  if (curr->detail.error)
	    record = curr;
	  else if (kind == AARCH64_OPDE_SYNTAX_ERROR)
	    {
	      record->detail.data[0].i |= curr->detail.data[0].i;
	      record->detail.data[1].i |= curr->detail.data[1].i;
	      record->detail.data[2].i |= curr->detail.data[2].i;
	      DEBUG_TRACE ("\t--> %s [%x, %x, %x]",
			   operand_mismatch_kind_names[kind],
			   curr->detail.data[0].i, curr->detail.data[1].i,
			   curr->detail.data[2].i);
	    }
	  else if (kind == AARCH64_OPDE_REG_LIST_LENGTH
		   || kind == AARCH64_OPDE_REG_LIST_STRIDE)
	    {
	      record->detail.data[0].i |= curr->detail.data[0].i;
	      DEBUG_TRACE ("\t--> %s [%x]",
			   operand_mismatch_kind_names[kind],
			   curr->detail.data[0].i);
	    }
	  /* Pick the variant with the cloest match.  */
	  else if (kind == AARCH64_OPDE_INVALID_VARIANT
		   && record->detail.data[0].i > curr->detail.data[0].i)
	    record = curr;
	}
    }

  /* The way errors are collected in the back-end is a bit non-intuitive.  But
     essentially, because each operand template is tried recursively you may
     always have errors collected from the previous tried OPND.  These are
     usually skipped if there is one successful match.  However now with the
     non-fatal errors we have to ignore those previously collected hard errors
     when we're only interested in printing the non-fatal ones.  This condition
     prevents us from printing errors that are not appropriate, since we did
     match a condition, but it also has warnings that it wants to print.  */
  if (non_fatal_only && !record)
    return;

  gas_assert (record);
  DEBUG_TRACE ("Pick up error kind %s to report",
	       operand_mismatch_kind_names[kind]);

  /* Output.  */
  output_operand_error_record (record, str);
}

/* Write an AARCH64 instruction to buf - always little-endian.  */
static void
put_aarch64_insn (char *buf, uint32_t insn)
{
  unsigned char *where = (unsigned char *) buf;
  where[0] = insn;
  where[1] = insn >> 8;
  where[2] = insn >> 16;
  where[3] = insn >> 24;
}

static uint32_t
get_aarch64_insn (char *buf)
{
  unsigned char *where = (unsigned char *) buf;
  uint32_t result;
  result = ((where[0] | (where[1] << 8) | (where[2] << 16)
	     | ((uint32_t) where[3] << 24)));
  return result;
}

static void
output_inst (struct aarch64_inst *new_inst)
{
  char *to = NULL;

  to = frag_more (INSN_SIZE);

  frag_now->tc_frag_data.recorded = 1;

  put_aarch64_insn (to, inst.base.value);

  if (inst.reloc.type != BFD_RELOC_UNUSED)
    {
      fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
				    INSN_SIZE, &inst.reloc.exp,
				    inst.reloc.pc_rel,
				    inst.reloc.type);
      DEBUG_TRACE ("Prepared relocation fix up");
      /* Don't check the addend value against the instruction size,
         that's the job of our code in md_apply_fix(). */
      fixp->fx_no_overflow = 1;
      if (new_inst != NULL)
	fixp->tc_fix_data.inst = new_inst;
      if (aarch64_gas_internal_fixup_p ())
	{
	  gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
	  fixp->tc_fix_data.opnd = inst.reloc.opnd;
	  fixp->fx_addnumber = inst.reloc.flags;
	}
    }

  dwarf2_emit_insn (INSN_SIZE);
}

/* Link together opcodes of the same name.  */

struct templates
{
  const aarch64_opcode *opcode;
  struct templates *next;
};

typedef struct templates templates;

static templates *
lookup_mnemonic (const char *start, int len)
{
  templates *templ = NULL;

  templ = str_hash_find_n (aarch64_ops_hsh, start, len);
  return templ;
}

/* Subroutine of md_assemble, responsible for looking up the primary
   opcode from the mnemonic the user wrote.  BASE points to the beginning
   of the mnemonic, DOT points to the first '.' within the mnemonic
   (if any) and END points to the end of the mnemonic.  */

static templates *
opcode_lookup (char *base, char *dot, char *end)
{
  const aarch64_cond *cond;
  char condname[16];
  int len;

  if (dot == end)
    return 0;

  inst.cond = COND_ALWAYS;

  /* Handle a possible condition.  */
  if (dot)
    {
      cond = str_hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
      if (!cond)
	return 0;
      inst.cond = cond->value;
      len = dot - base;
    }
  else
    len = end - base;

  if (inst.cond == COND_ALWAYS)
    {
      /* Look for unaffixed mnemonic.  */
      return lookup_mnemonic (base, len);
    }
  else if (len <= 13)
    {
      /* append ".c" to mnemonic if conditional */
      memcpy (condname, base, len);
      memcpy (condname + len, ".c", 2);
      base = condname;
      len += 2;
      return lookup_mnemonic (base, len);
    }

  return NULL;
}

/* Process an optional operand that is found omitted from the assembly line.
   Fill *OPERAND for such an operand of type TYPE.  OPCODE points to the
   instruction's opcode entry while IDX is the index of this omitted operand.
   */

static void
process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
			 int idx, aarch64_opnd_info *operand)
{
  aarch64_insn default_value = get_optional_operand_default_value (opcode);
  gas_assert (optional_operand_p (opcode, idx));
  gas_assert (!operand->present);

  switch (type)
    {
    case AARCH64_OPND_Rd:
    case AARCH64_OPND_Rn:
    case AARCH64_OPND_Rm:
    case AARCH64_OPND_Rt:
    case AARCH64_OPND_Rt2:
    case AARCH64_OPND_Rt_LS64:
    case AARCH64_OPND_Rt_SP:
    case AARCH64_OPND_Rs:
    case AARCH64_OPND_Ra:
    case AARCH64_OPND_Rt_SYS:
    case AARCH64_OPND_Rd_SP:
    case AARCH64_OPND_Rn_SP:
    case AARCH64_OPND_Rm_SP:
    case AARCH64_OPND_Fd:
    case AARCH64_OPND_Fn:
    case AARCH64_OPND_Fm:
    case AARCH64_OPND_Fa:
    case AARCH64_OPND_Ft:
    case AARCH64_OPND_Ft2:
    case AARCH64_OPND_Sd:
    case AARCH64_OPND_Sn:
    case AARCH64_OPND_Sm:
    case AARCH64_OPND_Va:
    case AARCH64_OPND_Vd:
    case AARCH64_OPND_Vn:
    case AARCH64_OPND_Vm:
    case AARCH64_OPND_VdD1:
    case AARCH64_OPND_VnD1:
      operand->reg.regno = default_value;
      break;

    case AARCH64_OPND_Ed:
    case AARCH64_OPND_En:
    case AARCH64_OPND_Em:
    case AARCH64_OPND_Em16:
    case AARCH64_OPND_SM3_IMM2:
      operand->reglane.regno = default_value;
      break;

    case AARCH64_OPND_IDX:
    case AARCH64_OPND_BIT_NUM:
    case AARCH64_OPND_IMMR:
    case AARCH64_OPND_IMMS:
    case AARCH64_OPND_SHLL_IMM:
    case AARCH64_OPND_IMM_VLSL:
    case AARCH64_OPND_IMM_VLSR:
    case AARCH64_OPND_CCMP_IMM:
    case AARCH64_OPND_FBITS:
    case AARCH64_OPND_UIMM4:
    case AARCH64_OPND_UIMM3_OP1:
    case AARCH64_OPND_UIMM3_OP2:
    case AARCH64_OPND_IMM:
    case AARCH64_OPND_IMM_2:
    case AARCH64_OPND_WIDTH:
    case AARCH64_OPND_UIMM7:
    case AARCH64_OPND_NZCV:
    case AARCH64_OPND_SVE_PATTERN:
    case AARCH64_OPND_SVE_PRFOP:
      operand->imm.value = default_value;
      break;

    case AARCH64_OPND_SVE_PATTERN_SCALED:
      operand->imm.value = default_value;
      operand->shifter.kind = AARCH64_MOD_MUL;
      operand->shifter.amount = 1;
      break;

    case AARCH64_OPND_EXCEPTION:
      inst.reloc.type = BFD_RELOC_UNUSED;
      break;

    case AARCH64_OPND_BARRIER_ISB:
      operand->barrier = aarch64_barrier_options + default_value;
      break;

    case AARCH64_OPND_BTI_TARGET:
      operand->hint_option = aarch64_hint_options + default_value;
      break;

    default:
      break;
    }
}

/* Process the relocation type for move wide instructions.
   Return TRUE on success; otherwise return FALSE.  */

static bool
process_movw_reloc_info (void)
{
  int is32;
  unsigned shift;

  is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;

  if (inst.base.opcode->op == OP_MOVK)
    switch (inst.reloc.type)
      {
      case BFD_RELOC_AARCH64_MOVW_G0_S:
      case BFD_RELOC_AARCH64_MOVW_G1_S:
      case BFD_RELOC_AARCH64_MOVW_G2_S:
      case BFD_RELOC_AARCH64_MOVW_PREL_G0:
      case BFD_RELOC_AARCH64_MOVW_PREL_G1:
      case BFD_RELOC_AARCH64_MOVW_PREL_G2:
      case BFD_RELOC_AARCH64_MOVW_PREL_G3:
      case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
      case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
      case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
      case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
	set_syntax_error
	  (_("the specified relocation type is not allowed for MOVK"));
	return false;
      default:
	break;
      }

  switch (inst.reloc.type)
    {
    case BFD_RELOC_AARCH64_MOVW_G0:
    case BFD_RELOC_AARCH64_MOVW_G0_NC:
    case BFD_RELOC_AARCH64_MOVW_G0_S:
    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
    case BFD_RELOC_AARCH64_MOVW_PREL_G0:
    case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
      shift = 0;
      break;
    case BFD_RELOC_AARCH64_MOVW_G1:
    case BFD_RELOC_AARCH64_MOVW_G1_NC:
    case BFD_RELOC_AARCH64_MOVW_G1_S:
    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
    case BFD_RELOC_AARCH64_MOVW_PREL_G1:
    case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
      shift = 16;
      break;
    case BFD_RELOC_AARCH64_MOVW_G2:
    case BFD_RELOC_AARCH64_MOVW_G2_NC:
    case BFD_RELOC_AARCH64_MOVW_G2_S:
    case BFD_RELOC_AARCH64_MOVW_PREL_G2:
    case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
      if (is32)
	{
	  set_fatal_syntax_error
	    (_("the specified relocation type is not allowed for 32-bit "
	       "register"));
	  return false;
	}
      shift = 32;
      break;
    case BFD_RELOC_AARCH64_MOVW_G3:
    case BFD_RELOC_AARCH64_MOVW_PREL_G3:
      if (is32)
	{
	  set_fatal_syntax_error
	    (_("the specified relocation type is not allowed for 32-bit "
	       "register"));
	  return false;
	}
      shift = 48;
      break;
    default:
      /* More cases should be added when more MOVW-related relocation types
         are supported in GAS.  */
      gas_assert (aarch64_gas_internal_fixup_p ());
      /* The shift amount should have already been set by the parser.  */
      return true;
    }
  inst.base.operands[1].shifter.amount = shift;
  return true;
}

/* Determine and return the real reloc type code for an instruction
   with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12.  */

static inline bfd_reloc_code_real_type
ldst_lo12_determine_real_reloc_type (void)
{
  unsigned logsz, max_logsz;
  enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
  enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;

  const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
    {
      BFD_RELOC_AARCH64_LDST8_LO12,
      BFD_RELOC_AARCH64_LDST16_LO12,
      BFD_RELOC_AARCH64_LDST32_LO12,
      BFD_RELOC_AARCH64_LDST64_LO12,
      BFD_RELOC_AARCH64_LDST128_LO12
    },
    {
      BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
      BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
      BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
      BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
      BFD_RELOC_AARCH64_NONE
    },
    {
      BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
      BFD_RELOC_AARCH64_NONE
    },
    {
      BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
      BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
      BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
      BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
      BFD_RELOC_AARCH64_NONE
    },
    {
      BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
      BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
      BFD_RELOC_AARCH64_NONE
    }
  };

  gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
	      || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
	      || (inst.reloc.type
		  == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
	      || (inst.reloc.type
		  == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
	      || (inst.reloc.type
		  == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
  gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);

  if (opd1_qlf == AARCH64_OPND_QLF_NIL)
    opd1_qlf =
      aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
				      1, opd0_qlf, 0);
  gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);

  logsz = get_log2 (aarch64_get_qualifier_esize (opd1_qlf));

  if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
      || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
      || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
      || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
    max_logsz = 3;
  else
    max_logsz = 4;

  if (logsz > max_logsz)
    {
      /* SEE PR 27904 for an example of this.  */
      set_fatal_syntax_error
	(_("relocation qualifier does not match instruction size"));
      return BFD_RELOC_AARCH64_NONE;
    }

  /* In reloc.c, these pseudo relocation types should be defined in similar
     order as above reloc_ldst_lo12 array. Because the array index calculation
     below relies on this.  */
  return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
}

/* Check whether a register list REGINFO is valid.  The registers have type
   REG_TYPE and must be numbered in increasing order (modulo the register
   bank size).  They must have a consistent stride.

   Return true if the list is valid, describing it in LIST if so.  */

static bool
reg_list_valid_p (uint32_t reginfo, struct aarch64_reglist *list,
		  aarch64_reg_type reg_type)
{
  uint32_t i, nb_regs, prev_regno, incr, mask;
  mask = reg_type_mask (reg_type);

  nb_regs = 1 + (reginfo & 0x3);
  reginfo >>= 2;
  prev_regno = reginfo & 0x1f;
  incr = 1;

  list->first_regno = prev_regno;
  list->num_regs = nb_regs;

  for (i = 1; i < nb_regs; ++i)
    {
      uint32_t curr_regno, curr_incr;
      reginfo >>= 5;
      curr_regno = reginfo & 0x1f;
      curr_incr = (curr_regno - prev_regno) & mask;
      if (curr_incr == 0)
	return false;
      else if (i == 1)
	incr = curr_incr;
      else if (curr_incr != incr)
	return false;
      prev_regno = curr_regno;
    }

  list->stride = incr;
  return true;
}

/* Generic instruction operand parser.	This does no encoding and no
   semantic validation; it merely squirrels values away in the inst
   structure.  Returns TRUE or FALSE depending on whether the
   specified grammar matched.  */

static bool
parse_operands (char *str, const aarch64_opcode *opcode)
{
  int i;
  char *backtrack_pos = 0;
  const enum aarch64_opnd *operands = opcode->operands;
  aarch64_reg_type imm_reg_type;

  clear_error ();
  skip_whitespace (str);

  if (AARCH64_CPU_HAS_ANY_FEATURES (*opcode->avariant,
				    AARCH64_FEATURE_SVE
				    | AARCH64_FEATURE_SVE2))
    imm_reg_type = REG_TYPE_R_ZR_SP_BHSDQ_VZP;
  else
    imm_reg_type = REG_TYPE_R_ZR_BHSDQ_V;

  for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
    {
      int64_t val;
      const reg_entry *reg;
      int comma_skipped_p = 0;
      struct vector_type_el vectype;
      aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
      aarch64_opnd_info *info = &inst.base.operands[i];
      aarch64_reg_type reg_type;

      DEBUG_TRACE ("parse operand %d", i);

      /* Assign the operand code.  */
      info->type = operands[i];

      if (optional_operand_p (opcode, i))
	{
	  /* Remember where we are in case we need to backtrack.  */
	  gas_assert (!backtrack_pos);
	  backtrack_pos = str;
	}

      /* Expect comma between operands; the backtrack mechanism will take
	 care of cases of omitted optional operand.  */
      if (i > 0 && ! skip_past_char (&str, ','))
	{
	  set_syntax_error (_("comma expected between operands"));
	  goto failure;
	}
      else
	comma_skipped_p = 1;

      switch (operands[i])
	{
	case AARCH64_OPND_Rd:
	case AARCH64_OPND_Rn:
	case AARCH64_OPND_Rm:
	case AARCH64_OPND_Rt:
	case AARCH64_OPND_Rt2:
	case AARCH64_OPND_Rs:
	case AARCH64_OPND_Ra:
	case AARCH64_OPND_Rt_LS64:
	case AARCH64_OPND_Rt_SYS:
	case AARCH64_OPND_PAIRREG:
	case AARCH64_OPND_SVE_Rm:
	  po_int_fp_reg_or_fail (REG_TYPE_R_ZR);

	  /* In LS64 load/store instructions Rt register number must be even
	     and <=22.  */
	  if (operands[i] == AARCH64_OPND_Rt_LS64)
	  {
	    /* We've already checked if this is valid register.
	       This will check if register number (Rt) is not undefined for LS64
	       instructions:
	       if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED.  */
	    if ((info->reg.regno & 0x18) == 0x18 || (info->reg.regno & 0x01) == 0x01)
	    {
	      set_syntax_error (_("invalid Rt register number in 64-byte load/store"));
	      goto failure;
	    }
	  }
	  break;

	case AARCH64_OPND_Rd_SP:
	case AARCH64_OPND_Rn_SP:
	case AARCH64_OPND_Rt_SP:
	case AARCH64_OPND_SVE_Rn_SP:
	case AARCH64_OPND_Rm_SP:
	  po_int_fp_reg_or_fail (REG_TYPE_R_SP);
	  break;

	case AARCH64_OPND_Rm_EXT:
	case AARCH64_OPND_Rm_SFT:
	  po_misc_or_fail (parse_shifter_operand
			   (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
					 ? SHIFTED_ARITH_IMM
					 : SHIFTED_LOGIC_IMM)));
	  if (!info->shifter.operator_present)
	    {
	      /* Default to LSL if not present.  Libopcodes prefers shifter
		 kind to be explicit.  */
	      gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
	      info->shifter.kind = AARCH64_MOD_LSL;
	      /* For Rm_EXT, libopcodes will carry out further check on whether
		 or not stack pointer is used in the instruction (Recall that
		 "the extend operator is not optional unless at least one of
		 "Rd" or "Rn" is '11111' (i.e. WSP)").  */
	    }
	  break;

	case AARCH64_OPND_Fd:
	case AARCH64_OPND_Fn:
	case AARCH64_OPND_Fm:
	case AARCH64_OPND_Fa:
	case AARCH64_OPND_Ft:
	case AARCH64_OPND_Ft2:
	case AARCH64_OPND_Sd:
	case AARCH64_OPND_Sn:
	case AARCH64_OPND_Sm:
	case AARCH64_OPND_SVE_VZn:
	case AARCH64_OPND_SVE_Vd:
	case AARCH64_OPND_SVE_Vm:
	case AARCH64_OPND_SVE_Vn:
	  po_int_fp_reg_or_fail (REG_TYPE_BHSDQ);
	  break;

	case AARCH64_OPND_SVE_Pd:
	case AARCH64_OPND_SVE_Pg3:
	case AARCH64_OPND_SVE_Pg4_5:
	case AARCH64_OPND_SVE_Pg4_10:
	case AARCH64_OPND_SVE_Pg4_16:
	case AARCH64_OPND_SVE_Pm:
	case AARCH64_OPND_SVE_Pn:
	case AARCH64_OPND_SVE_Pt:
	case AARCH64_OPND_SME_Pm:
	  reg_type = REG_TYPE_P;
	  goto vector_reg;

	case AARCH64_OPND_SVE_Za_5:
	case AARCH64_OPND_SVE_Za_16:
	case AARCH64_OPND_SVE_Zd:
	case AARCH64_OPND_SVE_Zm_5:
	case AARCH64_OPND_SVE_Zm_16:
	case AARCH64_OPND_SVE_Zn:
	case AARCH64_OPND_SVE_Zt:
	case AARCH64_OPND_SME_Zm:
	  reg_type = REG_TYPE_Z;
	  goto vector_reg;

	case AARCH64_OPND_SVE_PNd:
	case AARCH64_OPND_SVE_PNg4_10:
	case AARCH64_OPND_SVE_PNn:
	case AARCH64_OPND_SVE_PNt:
	case AARCH64_OPND_SME_PNd3:
	case AARCH64_OPND_SME_PNg3:
	case AARCH64_OPND_SME_PNn:
	  reg_type = REG_TYPE_PN;
	  goto vector_reg;

	case AARCH64_OPND_Va:
	case AARCH64_OPND_Vd:
	case AARCH64_OPND_Vn:
	case AARCH64_OPND_Vm:
	  reg_type = REG_TYPE_V;
	vector_reg:
	  reg = aarch64_reg_parse (&str, reg_type, &vectype);
	  if (!reg)
	    goto failure;
	  if (vectype.defined & NTA_HASINDEX)
	    goto failure;

	  info->reg.regno = reg->number;
	  if ((reg_type == REG_TYPE_P
	       || reg_type == REG_TYPE_PN
	       || reg_type == REG_TYPE_Z)
	      && vectype.type == NT_invtype)
	    /* Unqualified P and Z registers are allowed in certain
	       contexts.  Rely on F_STRICT qualifier checking to catch
	       invalid uses.  */
	    info->qualifier = AARCH64_OPND_QLF_NIL;
	  else
	    {
	      info->qualifier = vectype_to_qualifier (&vectype);
	      if (info->qualifier == AARCH64_OPND_QLF_NIL)
		goto failure;
	    }
	  break;

	case AARCH64_OPND_VdD1:
	case AARCH64_OPND_VnD1:
	  reg = aarch64_reg_parse (&str, REG_TYPE_V, &vectype);
	  if (!reg)
	    goto failure;
	  if (vectype.type != NT_d || vectype.index != 1)
	    {
	      set_fatal_syntax_error
		(_("the top half of a 128-bit FP/SIMD register is expected"));
	      goto failure;
	    }
	  info->reg.regno = reg->number;
	  /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
	     here; it is correct for the purpose of encoding/decoding since
	     only the register number is explicitly encoded in the related
	     instructions, although this appears a bit hacky.  */
	  info->qualifier = AARCH64_OPND_QLF_S_D;
	  break;

	case AARCH64_OPND_SVE_Zm3_INDEX:
	case AARCH64_OPND_SVE_Zm3_22_INDEX:
	case AARCH64_OPND_SVE_Zm3_11_INDEX:
	case AARCH64_OPND_SVE_Zm4_11_INDEX:
	case AARCH64_OPND_SVE_Zm4_INDEX:
	case AARCH64_OPND_SVE_Zn_INDEX:
	case AARCH64_OPND_SME_Zm_INDEX1:
	case AARCH64_OPND_SME_Zm_INDEX2:
	case AARCH64_OPND_SME_Zm_INDEX3_2:
	case AARCH64_OPND_SME_Zm_INDEX3_10:
	case AARCH64_OPND_SME_Zn_INDEX1_16:
	case AARCH64_OPND_SME_Zn_INDEX2_15:
	case AARCH64_OPND_SME_Zn_INDEX2_16:
	case AARCH64_OPND_SME_Zn_INDEX3_14:
	case AARCH64_OPND_SME_Zn_INDEX3_15:
	case AARCH64_OPND_SME_Zn_INDEX4_14:
	  reg_type = REG_TYPE_Z;
	  goto vector_reg_index;

	case AARCH64_OPND_Ed:
	case AARCH64_OPND_En:
	case AARCH64_OPND_Em:
	case AARCH64_OPND_Em16:
	case AARCH64_OPND_SM3_IMM2:
	  reg_type = REG_TYPE_V;
	vector_reg_index:
	  reg = aarch64_reg_parse (&str, reg_type, &vectype);
	  if (!reg)
	    goto failure;
	  if (!(vectype.defined & NTA_HASINDEX))
	    goto failure;

	  if (reg->type == REG_TYPE_Z && vectype.type == NT_invtype)
	    /* Unqualified Zn[index] is allowed in LUTI2 instructions.  */
	    info->qualifier = AARCH64_OPND_QLF_NIL;
	  else
	    {
	      if (vectype.type == NT_invtype)
		goto failure;
	      info->qualifier = vectype_to_qualifier (&vectype);
	      if (info->qualifier == AARCH64_OPND_QLF_NIL)
		goto failure;
	    }

	  info->reglane.regno = reg->number;
	  info->reglane.index = vectype.index;
	  break;

	case AARCH64_OPND_SVE_ZnxN:
	case AARCH64_OPND_SVE_ZtxN:
	case AARCH64_OPND_SME_Zdnx2:
	case AARCH64_OPND_SME_Zdnx4:
	case AARCH64_OPND_SME_Zmx2:
	case AARCH64_OPND_SME_Zmx4:
	case AARCH64_OPND_SME_Znx2:
	case AARCH64_OPND_SME_Znx4:
	case AARCH64_OPND_SME_Ztx2_STRIDED:
	case AARCH64_OPND_SME_Ztx4_STRIDED:
	  reg_type = REG_TYPE_Z;
	  goto vector_reg_list;

	case AARCH64_OPND_SME_Pdx2:
	case AARCH64_OPND_SME_PdxN:
	  reg_type = REG_TYPE_P;
	  goto vector_reg_list;

	case AARCH64_OPND_LVn:
	case AARCH64_OPND_LVt:
	case AARCH64_OPND_LVt_AL:
	case AARCH64_OPND_LEt:
	  reg_type = REG_TYPE_V;
	vector_reg_list:
	  if (reg_type == REG_TYPE_Z
	      && get_opcode_dependent_value (opcode) == 1
	      && *str != '{')
	    {
	      reg = aarch64_reg_parse (&str, reg_type, &vectype);
	      if (!reg)
		goto failure;
	      info->reglist.first_regno = reg->number;
	      info->reglist.num_regs = 1;
	      info->reglist.stride = 1;
	    }
	  else
	    {
	      val = parse_vector_reg_list (&str, reg_type, &vectype);
	      if (val == PARSE_FAIL)
		goto failure;

	      if (! reg_list_valid_p (val, &info->reglist, reg_type))
		{
		  set_fatal_syntax_error (_("invalid register list"));
		  goto failure;
		}

	      if ((int) vectype.width > 0 && *str != ',')
		{
		  set_fatal_syntax_error
		    (_("expected element type rather than vector type"));
		  goto failure;
		}
	    }
	  if (operands[i] == AARCH64_OPND_LEt)
	    {
	      if (!(vectype.defined & NTA_HASINDEX))
		goto failure;
	      info->reglist.has_index = 1;
	      info->reglist.index = vectype.index;
	    }
	  else
	    {
	      if (vectype.defined & NTA_HASINDEX)
		goto failure;
	      if (!(vectype.defined & NTA_HASTYPE))
		{
		  if (reg_type == REG_TYPE_Z || reg_type == REG_TYPE_P)
		    set_fatal_syntax_error (_("missing type suffix"));
		  goto failure;
		}
	    }
	  info->qualifier = vectype_to_qualifier (&vectype);
	  if (info->qualifier == AARCH64_OPND_QLF_NIL)
	    goto failure;
	  break;

	case AARCH64_OPND_CRn:
	case AARCH64_OPND_CRm:
	    {
	      char prefix = *(str++);
	      if (prefix != 'c' && prefix != 'C')
		goto failure;

	      po_imm_nc_or_fail ();
	      if (val > 15)
		{
		  set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
		  goto failure;
		}
	      info->qualifier = AARCH64_OPND_QLF_CR;
	      info->imm.value = val;
	      break;
	    }

	case AARCH64_OPND_SHLL_IMM:
	case AARCH64_OPND_IMM_VLSR:
	  po_imm_or_fail (1, 64);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_CCMP_IMM:
	case AARCH64_OPND_SIMM5:
	case AARCH64_OPND_FBITS:
	case AARCH64_OPND_TME_UIMM16:
	case AARCH64_OPND_UIMM4:
	case AARCH64_OPND_UIMM4_ADDG:
	case AARCH64_OPND_UIMM10:
	case AARCH64_OPND_UIMM3_OP1:
	case AARCH64_OPND_UIMM3_OP2:
	case AARCH64_OPND_IMM_VLSL:
	case AARCH64_OPND_IMM:
	case AARCH64_OPND_IMM_2:
	case AARCH64_OPND_WIDTH:
	case AARCH64_OPND_SVE_INV_LIMM:
	case AARCH64_OPND_SVE_LIMM:
	case AARCH64_OPND_SVE_LIMM_MOV:
	case AARCH64_OPND_SVE_SHLIMM_PRED:
	case AARCH64_OPND_SVE_SHLIMM_UNPRED:
	case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
	case AARCH64_OPND_SVE_SHRIMM_PRED:
	case AARCH64_OPND_SVE_SHRIMM_UNPRED:
	case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
	case AARCH64_OPND_SVE_SIMM5:
	case AARCH64_OPND_SVE_SIMM5B:
	case AARCH64_OPND_SVE_SIMM6:
	case AARCH64_OPND_SVE_SIMM8:
	case AARCH64_OPND_SVE_UIMM3:
	case AARCH64_OPND_SVE_UIMM7:
	case AARCH64_OPND_SVE_UIMM8:
	case AARCH64_OPND_SVE_UIMM8_53:
	case AARCH64_OPND_IMM_ROT1:
	case AARCH64_OPND_IMM_ROT2:
	case AARCH64_OPND_IMM_ROT3:
	case AARCH64_OPND_SVE_IMM_ROT1:
	case AARCH64_OPND_SVE_IMM_ROT2:
	case AARCH64_OPND_SVE_IMM_ROT3:
	case AARCH64_OPND_CSSC_SIMM8:
	case AARCH64_OPND_CSSC_UIMM8:
	  po_imm_nc_or_fail ();
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_SVE_AIMM:
	case AARCH64_OPND_SVE_ASIMM:
	  po_imm_nc_or_fail ();
	  info->imm.value = val;
	  skip_whitespace (str);
	  if (skip_past_comma (&str))
	    po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
	  else
	    inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
	  break;

	case AARCH64_OPND_SVE_PATTERN:
	  po_enum_or_fail (aarch64_sve_pattern_array);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_SVE_PATTERN_SCALED:
	  po_enum_or_fail (aarch64_sve_pattern_array);
	  info->imm.value = val;
	  if (skip_past_comma (&str)
	      && !parse_shift (&str, info, SHIFTED_MUL))
	    goto failure;
	  if (!info->shifter.operator_present)
	    {
	      gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
	      info->shifter.kind = AARCH64_MOD_MUL;
	      info->shifter.amount = 1;
	    }
	  break;

	case AARCH64_OPND_SVE_PRFOP:
	  po_enum_or_fail (aarch64_sve_prfop_array);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_UIMM7:
	  po_imm_or_fail (0, 127);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_IDX:
	case AARCH64_OPND_MASK:
	case AARCH64_OPND_BIT_NUM:
	case AARCH64_OPND_IMMR:
	case AARCH64_OPND_IMMS:
	  po_imm_or_fail (0, 63);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_IMM0:
	  po_imm_nc_or_fail ();
	  if (val != 0)
	    {
	      set_fatal_syntax_error (_("immediate zero expected"));
	      goto failure;
	    }
	  info->imm.value = 0;
	  break;

	case AARCH64_OPND_FPIMM0:
	  {
	    int qfloat;
	    bool res1 = false, res2 = false;
	    /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
	       it is probably not worth the effort to support it.  */
	    if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, false,
						  imm_reg_type))
		&& (error_p ()
		    || !(res2 = parse_constant_immediate (&str, &val,
							  imm_reg_type))))
	      goto failure;
	    if ((res1 && qfloat == 0) || (res2 && val == 0))
	      {
		info->imm.value = 0;
		info->imm.is_fp = 1;
		break;
	      }
	    set_fatal_syntax_error (_("immediate zero expected"));
	    goto failure;
	  }

	case AARCH64_OPND_IMM_MOV:
	  {
	    char *saved = str;
	    if (reg_name_p (str, REG_TYPE_R_ZR_SP)
		|| reg_name_p (str, REG_TYPE_V))
	      goto failure;
	    str = saved;
	    po_misc_or_fail (aarch64_get_expression (&inst.reloc.exp, &str,
						     GE_OPT_PREFIX, REJECT_ABSENT));
	    /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
	       later.  fix_mov_imm_insn will try to determine a machine
	       instruction (MOVZ, MOVN or ORR) for it and will issue an error
	       message if the immediate cannot be moved by a single
	       instruction.  */
	    aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
	    inst.base.operands[i].skip = 1;
	  }
	  break;

	case AARCH64_OPND_SIMD_IMM:
	case AARCH64_OPND_SIMD_IMM_SFT:
	  if (! parse_big_immediate (&str, &val, imm_reg_type))
	    goto failure;
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 0,
					      /* need_libopcodes_p */ 1,
					      /* skip_p */ 1);
	  /* Parse shift.
	     N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
	     shift, we don't check it here; we leave the checking to
	     the libopcodes (operand_general_constraint_met_p).  By
	     doing this, we achieve better diagnostics.  */
	  if (skip_past_comma (&str)
	      && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
	    goto failure;
	  if (!info->shifter.operator_present
	      && info->type == AARCH64_OPND_SIMD_IMM_SFT)
	    {
	      /* Default to LSL if not present.  Libopcodes prefers shifter
		 kind to be explicit.  */
	      gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
	      info->shifter.kind = AARCH64_MOD_LSL;
	    }
	  break;

	case AARCH64_OPND_FPIMM:
	case AARCH64_OPND_SIMD_FPIMM:
	case AARCH64_OPND_SVE_FPIMM8:
	  {
	    int qfloat;
	    bool dp_p;

	    dp_p = double_precision_operand_p (&inst.base.operands[0]);
	    if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
		|| !aarch64_imm_float_p (qfloat))
	      {
		if (!error_p ())
		  set_fatal_syntax_error (_("invalid floating-point"
					    " constant"));
		goto failure;
	      }
	    inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
	    inst.base.operands[i].imm.is_fp = 1;
	  }
	  break;

	case AARCH64_OPND_SVE_I1_HALF_ONE:
	case AARCH64_OPND_SVE_I1_HALF_TWO:
	case AARCH64_OPND_SVE_I1_ZERO_ONE:
	  {
	    int qfloat;
	    bool dp_p;

	    dp_p = double_precision_operand_p (&inst.base.operands[0]);
	    if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
	      {
		if (!error_p ())
		  set_fatal_syntax_error (_("invalid floating-point"
					    " constant"));
		goto failure;
	      }
	    inst.base.operands[i].imm.value = qfloat;
	    inst.base.operands[i].imm.is_fp = 1;
	  }
	  break;

	case AARCH64_OPND_LIMM:
	  po_misc_or_fail (parse_shifter_operand (&str, info,
						  SHIFTED_LOGIC_IMM));
	  if (info->shifter.operator_present)
	    {
	      set_fatal_syntax_error
		(_("shift not allowed for bitmask immediate"));
	      goto failure;
	    }
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 0,
					      /* need_libopcodes_p */ 1,
					      /* skip_p */ 1);
	  break;

	case AARCH64_OPND_AIMM:
	  if (opcode->op == OP_ADD)
	    /* ADD may have relocation types.  */
	    po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
							  SHIFTED_ARITH_IMM));
	  else
	    po_misc_or_fail (parse_shifter_operand (&str, info,
						    SHIFTED_ARITH_IMM));
	  switch (inst.reloc.type)
	    {
	    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
	      info->shifter.amount = 12;
	      break;
	    case BFD_RELOC_UNUSED:
	      aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
	      if (info->shifter.kind != AARCH64_MOD_NONE)
		inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
	      inst.reloc.pc_rel = 0;
	      break;
	    default:
	      break;
	    }
	  info->imm.value = 0;
	  if (!info->shifter.operator_present)
	    {
	      /* Default to LSL if not present.  Libopcodes prefers shifter
		 kind to be explicit.  */
	      gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
	      info->shifter.kind = AARCH64_MOD_LSL;
	    }
	  break;

	case AARCH64_OPND_HALF:
	    {
	      /* #<imm16> or relocation.  */
	      int internal_fixup_p;
	      po_misc_or_fail (parse_half (&str, &internal_fixup_p));
	      if (internal_fixup_p)
		aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
	      skip_whitespace (str);
	      if (skip_past_comma (&str))
		{
		  /* {, LSL #<shift>}  */
		  if (! aarch64_gas_internal_fixup_p ())
		    {
		      set_fatal_syntax_error (_("can't mix relocation modifier "
						"with explicit shift"));
		      goto failure;
		    }
		  po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
		}
	      else
		inst.base.operands[i].shifter.amount = 0;
	      inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
	      inst.base.operands[i].imm.value = 0;
	      if (! process_movw_reloc_info ())
		goto failure;
	    }
	  break;

	case AARCH64_OPND_EXCEPTION:
	case AARCH64_OPND_UNDEFINED:
	  po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
						       imm_reg_type));
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 0,
					      /* need_libopcodes_p */ 0,
					      /* skip_p */ 1);
	  break;

	case AARCH64_OPND_NZCV:
	  {
	    const asm_nzcv *nzcv = str_hash_find_n (aarch64_nzcv_hsh, str, 4);
	    if (nzcv != NULL)
	      {
		str += 4;
		info->imm.value = nzcv->value;
		break;
	      }
	    po_imm_or_fail (0, 15);
	    info->imm.value = val;
	  }
	  break;

	case AARCH64_OPND_COND:
	case AARCH64_OPND_COND1:
	  {
	    char *start = str;
	    do
	      str++;
	    while (ISALPHA (*str));
	    info->cond = str_hash_find_n (aarch64_cond_hsh, start, str - start);
	    if (info->cond == NULL)
	      {
		set_syntax_error (_("invalid condition"));
		goto failure;
	      }
	    else if (operands[i] == AARCH64_OPND_COND1
		     && (info->cond->value & 0xe) == 0xe)
	      {
		/* Do not allow AL or NV.  */
		set_default_error ();
		goto failure;
	      }
	  }
	  break;

	case AARCH64_OPND_ADDR_ADRP:
	  po_misc_or_fail (parse_adrp (&str));
	  /* Clear the value as operand needs to be relocated.  */
	  info->imm.value = 0;
	  break;

	case AARCH64_OPND_ADDR_PCREL14:
	case AARCH64_OPND_ADDR_PCREL19:
	case AARCH64_OPND_ADDR_PCREL21:
	case AARCH64_OPND_ADDR_PCREL26:
	  po_misc_or_fail (parse_address (&str, info));
	  if (!info->addr.pcrel)
	    {
	      set_syntax_error (_("invalid pc-relative address"));
	      goto failure;
	    }
	  if (inst.gen_lit_pool
	      && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
	    {
	      /* Only permit "=value" in the literal load instructions.
		 The literal will be generated by programmer_friendly_fixup.  */
	      set_syntax_error (_("invalid use of \"=immediate\""));
	      goto failure;
	    }
	  if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
	    {
	      set_syntax_error (_("unrecognized relocation suffix"));
	      goto failure;
	    }
	  if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
	    {
	      info->imm.value = inst.reloc.exp.X_add_number;
	      inst.reloc.type = BFD_RELOC_UNUSED;
	    }
	  else
	    {
	      info->imm.value = 0;
	      if (inst.reloc.type == BFD_RELOC_UNUSED)
		switch (opcode->iclass)
		  {
		  case compbranch:
		  case condbranch:
		    /* e.g. CBZ or B.COND  */
		    gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
		    inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
		    break;
		  case testbranch:
		    /* e.g. TBZ  */
		    gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
		    inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
		    break;
		  case branch_imm:
		    /* e.g. B or BL  */
		    gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
		    inst.reloc.type =
		      (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
			 : BFD_RELOC_AARCH64_JUMP26;
		    break;
		  case loadlit:
		    gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
		    inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
		    break;
		  case pcreladdr:
		    gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
		    inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
		    break;
		  default:
		    gas_assert (0);
		    abort ();
		  }
	      inst.reloc.pc_rel = 1;
	    }
	  break;

	case AARCH64_OPND_ADDR_SIMPLE:
	case AARCH64_OPND_SIMD_ADDR_SIMPLE:
	  {
	    /* [<Xn|SP>{, #<simm>}]  */
	    char *start = str;
	    /* First use the normal address-parsing routines, to get
	       the usual syntax errors.  */
	    po_misc_or_fail (parse_address (&str, info));
	    if (info->addr.pcrel || info->addr.offset.is_reg
		|| !info->addr.preind || info->addr.postind
		|| info->addr.writeback)
	      {
		set_syntax_error (_("invalid addressing mode"));
		goto failure;
	      }

	    /* Then retry, matching the specific syntax of these addresses.  */
	    str = start;
	    po_char_or_fail ('[');
	    po_reg_or_fail (REG_TYPE_R64_SP);
	    /* Accept optional ", #0".  */
	    if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
		&& skip_past_char (&str, ','))
	      {
		skip_past_char (&str, '#');
		if (! skip_past_char (&str, '0'))
		  {
		    set_fatal_syntax_error
		      (_("the optional immediate offset can only be 0"));
		    goto failure;
		  }
	      }
	    po_char_or_fail (']');
	    break;
	  }

	case AARCH64_OPND_ADDR_REGOFF:
	  /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}]  */
	  po_misc_or_fail (parse_address (&str, info));
	regoff_addr:
	  if (info->addr.pcrel || !info->addr.offset.is_reg
	      || !info->addr.preind || info->addr.postind
	      || info->addr.writeback)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (!info->shifter.operator_present)
	    {
	      /* Default to LSL if not present.  Libopcodes prefers shifter
		 kind to be explicit.  */
	      gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
	      info->shifter.kind = AARCH64_MOD_LSL;
	    }
	  /* Qualifier to be deduced by libopcodes.  */
	  break;

	case AARCH64_OPND_ADDR_SIMM7:
	  po_misc_or_fail (parse_address (&str, info));
	  if (info->addr.pcrel || info->addr.offset.is_reg
	      || (!info->addr.preind && !info->addr.postind))
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (inst.reloc.type != BFD_RELOC_UNUSED)
	    {
	      set_syntax_error (_("relocation not allowed"));
	      goto failure;
	    }
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 1,
					      /* need_libopcodes_p */ 1,
					      /* skip_p */ 0);
	  break;

	case AARCH64_OPND_ADDR_SIMM9:
	case AARCH64_OPND_ADDR_SIMM9_2:
	case AARCH64_OPND_ADDR_SIMM11:
	case AARCH64_OPND_ADDR_SIMM13:
	  po_misc_or_fail (parse_address (&str, info));
	  if (info->addr.pcrel || info->addr.offset.is_reg
	      || (!info->addr.preind && !info->addr.postind)
	      || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
		  && info->addr.writeback))
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (inst.reloc.type != BFD_RELOC_UNUSED)
	    {
	      set_syntax_error (_("relocation not allowed"));
	      goto failure;
	    }
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 1,
					      /* need_libopcodes_p */ 1,
					      /* skip_p */ 0);
	  break;

	case AARCH64_OPND_ADDR_SIMM10:
	case AARCH64_OPND_ADDR_OFFSET:
	  po_misc_or_fail (parse_address (&str, info));
	  if (info->addr.pcrel || info->addr.offset.is_reg
	      || !info->addr.preind || info->addr.postind)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (inst.reloc.type != BFD_RELOC_UNUSED)
	    {
	      set_syntax_error (_("relocation not allowed"));
	      goto failure;
	    }
	  assign_imm_if_const_or_fixup_later (&inst.reloc, info,
					      /* addr_off_p */ 1,
					      /* need_libopcodes_p */ 1,
					      /* skip_p */ 0);
	  break;

	case AARCH64_OPND_ADDR_UIMM12:
	  po_misc_or_fail (parse_address (&str, info));
	  if (info->addr.pcrel || info->addr.offset.is_reg
	      || !info->addr.preind || info->addr.writeback)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (inst.reloc.type == BFD_RELOC_UNUSED)
	    aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
	  else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
		   || (inst.reloc.type
		       == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
		   || (inst.reloc.type
		       == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
		   || (inst.reloc.type
		       == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
		   || (inst.reloc.type
		       == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
	    inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
	  /* Leave qualifier to be determined by libopcodes.  */
	  break;

	case AARCH64_OPND_SIMD_ADDR_POST:
	  /* [<Xn|SP>], <Xm|#<amount>>  */
	  po_misc_or_fail (parse_address (&str, info));
	  if (!info->addr.postind || !info->addr.writeback)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (!info->addr.offset.is_reg)
	    {
	      if (inst.reloc.exp.X_op == O_constant)
		info->addr.offset.imm = inst.reloc.exp.X_add_number;
	      else
		{
		  set_fatal_syntax_error
		    (_("writeback value must be an immediate constant"));
		  goto failure;
		}
	    }
	  /* No qualifier.  */
	  break;

	case AARCH64_OPND_SME_SM_ZA:
	  /* { SM | ZA }  */
	  if ((val = parse_sme_sm_za (&str)) == PARSE_FAIL)
	    {
	      set_syntax_error (_("unknown or missing PSTATE field name"));
	      goto failure;
	    }
	  info->reg.regno = val;
	  break;

	case AARCH64_OPND_SME_PnT_Wm_imm:
	  if (!parse_dual_indexed_reg (&str, REG_TYPE_P,
				       &info->indexed_za, &qualifier, 0))
	    goto failure;
	  info->qualifier = qualifier;
	  break;

	case AARCH64_OPND_SVE_ADDR_RI_S4x16:
	case AARCH64_OPND_SVE_ADDR_RI_S4x32:
	case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
	case AARCH64_OPND_SME_ADDR_RI_U4xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
	case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
	case AARCH64_OPND_SVE_ADDR_RI_U6:
	case AARCH64_OPND_SVE_ADDR_RI_U6x2:
	case AARCH64_OPND_SVE_ADDR_RI_U6x4:
	case AARCH64_OPND_SVE_ADDR_RI_U6x8:
	  /* [X<n>{, #imm, MUL VL}]
	     [X<n>{, #imm}]
	     but recognizing SVE registers.  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if (base_qualifier != AARCH64_OPND_QLF_X)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	sve_regimm:
	  if (info->addr.pcrel || info->addr.offset.is_reg
	      || !info->addr.preind || info->addr.writeback)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  if (inst.reloc.type != BFD_RELOC_UNUSED
	      || inst.reloc.exp.X_op != O_constant)
	    {
	      /* Make sure this has priority over
		 "invalid addressing mode".  */
	      set_fatal_syntax_error (_("constant offset required"));
	      goto failure;
	    }
	  info->addr.offset.imm = inst.reloc.exp.X_add_number;
	  break;

	case AARCH64_OPND_SVE_ADDR_R:
	  /* [<Xn|SP>{, <R><m>}]
	     but recognizing SVE registers.  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if (offset_qualifier == AARCH64_OPND_QLF_NIL)
	    {
	      offset_qualifier = AARCH64_OPND_QLF_X;
	      info->addr.offset.is_reg = 1;
	      info->addr.offset.regno = 31;
	    }
	  else if (base_qualifier != AARCH64_OPND_QLF_X
	      || offset_qualifier != AARCH64_OPND_QLF_X)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  goto regoff_addr;

	case AARCH64_OPND_SVE_ADDR_RR:
	case AARCH64_OPND_SVE_ADDR_RR_LSL1:
	case AARCH64_OPND_SVE_ADDR_RR_LSL2:
	case AARCH64_OPND_SVE_ADDR_RR_LSL3:
	case AARCH64_OPND_SVE_ADDR_RR_LSL4:
	case AARCH64_OPND_SVE_ADDR_RX:
	case AARCH64_OPND_SVE_ADDR_RX_LSL1:
	case AARCH64_OPND_SVE_ADDR_RX_LSL2:
	case AARCH64_OPND_SVE_ADDR_RX_LSL3:
	  /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
	     but recognizing SVE registers.  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if (base_qualifier != AARCH64_OPND_QLF_X
	      || offset_qualifier != AARCH64_OPND_QLF_X)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  goto regoff_addr;

	case AARCH64_OPND_SVE_ADDR_RZ:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
	case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
	case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
	  /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
	     [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}]  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if (base_qualifier != AARCH64_OPND_QLF_X
	      || (offset_qualifier != AARCH64_OPND_QLF_S_S
		  && offset_qualifier != AARCH64_OPND_QLF_S_D))
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  info->qualifier = offset_qualifier;
	  goto regoff_addr;

	case AARCH64_OPND_SVE_ADDR_ZX:
	  /* [Zn.<T>{, <Xm>}].  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  /* Things to check:
	      base_qualifier either S_S or S_D
	      offset_qualifier must be X
	      */
	  if ((base_qualifier != AARCH64_OPND_QLF_S_S
	       && base_qualifier != AARCH64_OPND_QLF_S_D)
	      || offset_qualifier != AARCH64_OPND_QLF_X)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  info->qualifier = base_qualifier;
	  if (!info->addr.offset.is_reg || info->addr.pcrel
	      || !info->addr.preind || info->addr.writeback
	      || info->shifter.operator_present != 0)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  info->shifter.kind = AARCH64_MOD_LSL;
	  break;


	case AARCH64_OPND_SVE_ADDR_ZI_U5:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
	case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
	  /* [Z<n>.<T>{, #imm}]  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if (base_qualifier != AARCH64_OPND_QLF_S_S
	      && base_qualifier != AARCH64_OPND_QLF_S_D)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  info->qualifier = base_qualifier;
	  goto sve_regimm;

	case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
	case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
	case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
	  /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
	     [Z<n>.D, Z<m>.D, <extend> {#<amount>}]

	     We don't reject:

	     [Z<n>.S, Z<m>.S, <extend> {#<amount>}]

	     here since we get better error messages by leaving it to
	     the qualifier checking routines.  */
	  po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
					      &offset_qualifier));
	  if ((base_qualifier != AARCH64_OPND_QLF_S_S
	       && base_qualifier != AARCH64_OPND_QLF_S_D)
	      || offset_qualifier != base_qualifier)
	    {
	      set_syntax_error (_("invalid addressing mode"));
	      goto failure;
	    }
	  info->qualifier = base_qualifier;
	  goto regoff_addr;

	case AARCH64_OPND_SYSREG:
	  {
	    uint32_t sysreg_flags;
	    if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
				      &sysreg_flags)) == PARSE_FAIL)
	      {
		set_syntax_error (_("unknown or missing system register name"));
		goto failure;
	      }
	    inst.base.operands[i].sysreg.value = val;
	    inst.base.operands[i].sysreg.flags = sysreg_flags;
	    break;
	  }

	case AARCH64_OPND_PSTATEFIELD:
	  {
	    uint32_t sysreg_flags;
	    if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1,
				      &sysreg_flags)) == PARSE_FAIL)
	      {
	        set_syntax_error (_("unknown or missing PSTATE field name"));
	        goto failure;
	      }
	    inst.base.operands[i].pstatefield = val;
	    inst.base.operands[i].sysreg.flags = sysreg_flags;
	    break;
	  }

	case AARCH64_OPND_SYSREG_IC:
	  inst.base.operands[i].sysins_op =
	    parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
	  goto sys_reg_ins;

	case AARCH64_OPND_SYSREG_DC:
	  inst.base.operands[i].sysins_op =
	    parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
	  goto sys_reg_ins;

	case AARCH64_OPND_SYSREG_AT:
	  inst.base.operands[i].sysins_op =
	    parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
	  goto sys_reg_ins;

	case AARCH64_OPND_SYSREG_SR:
	  inst.base.operands[i].sysins_op =
	    parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
	  goto sys_reg_ins;

	case AARCH64_OPND_SYSREG_TLBI:
	  inst.base.operands[i].sysins_op =
	    parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
	sys_reg_ins:
	  if (inst.base.operands[i].sysins_op == NULL)
	    {
	      set_fatal_syntax_error ( _("unknown or missing operation name"));
	      goto failure;
	    }
	  break;

	case AARCH64_OPND_BARRIER:
	case AARCH64_OPND_BARRIER_ISB:
	  val = parse_barrier (&str);
	  if (val != PARSE_FAIL
	      && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
	    {
	      /* ISB only accepts options name 'sy'.  */
	      set_syntax_error
		(_("the specified option is not accepted in ISB"));
	      /* Turn off backtrack as this optional operand is present.  */
	      backtrack_pos = 0;
	      goto failure;
	    }
	  if (val != PARSE_FAIL
	      && operands[i] == AARCH64_OPND_BARRIER)
	    {
	      /* Regular barriers accept options CRm (C0-C15).
	         DSB nXS barrier variant accepts values > 15.  */
	      if (val < 0 || val > 15)
	      {
	        set_syntax_error (_("the specified option is not accepted in DSB"));
	        goto failure;
	      }
	    }
	  /* This is an extension to accept a 0..15 immediate.  */
	  if (val == PARSE_FAIL)
	    po_imm_or_fail (0, 15);
	  info->barrier = aarch64_barrier_options + val;
	  break;

	case AARCH64_OPND_BARRIER_DSB_NXS:
	  val = parse_barrier (&str);
	  if (val != PARSE_FAIL)
	    {
	      /* DSB nXS barrier variant accept only <option>nXS qualifiers.  */
	      if (!(val == 16 || val == 20 || val == 24 || val == 28))
	        {
	          set_syntax_error (_("the specified option is not accepted in DSB"));
	          /* Turn off backtrack as this optional operand is present.  */
	          backtrack_pos = 0;
	          goto failure;
	        }
	    }
	  else
	    {
	      /* DSB nXS barrier variant accept 5-bit unsigned immediate, with
	         possible values 16, 20, 24 or 28 , encoded as val<3:2>.  */
	      if (! parse_constant_immediate (&str, &val, imm_reg_type))
	        goto failure;
	      if (!(val == 16 || val == 20 || val == 24 || val == 28))
	        {
	          set_syntax_error (_("immediate value must be 16, 20, 24, 28"));
	          goto failure;
	        }
	    }
	  /* Option index is encoded as 2-bit value in val<3:2>.  */
	  val = (val >> 2) - 4;
	  info->barrier = aarch64_barrier_dsb_nxs_options + val;
	  break;

	case AARCH64_OPND_PRFOP:
	  val = parse_pldop (&str);
	  /* This is an extension to accept a 0..31 immediate.  */
	  if (val == PARSE_FAIL)
	    po_imm_or_fail (0, 31);
	  inst.base.operands[i].prfop = aarch64_prfops + val;
	  break;

	case AARCH64_OPND_BARRIER_PSB:
	  val = parse_barrier_psb (&str, &(info->hint_option));
	  if (val == PARSE_FAIL)
	    goto failure;
	  break;

	case AARCH64_OPND_SME_ZT0:
	  po_reg_or_fail (REG_TYPE_ZT0);
	  break;

	case AARCH64_OPND_SME_ZT0_INDEX:
	  reg = aarch64_reg_parse (&str, REG_TYPE_ZT0, &vectype);
	  if (!reg || vectype.type != NT_invtype)
	    goto failure;
	  if (!(vectype.defined & NTA_HASINDEX))
	    {
	      set_syntax_error (_("missing register index"));
	      goto failure;
	    }
	  info->imm.value = vectype.index;
	  break;

	case AARCH64_OPND_SME_ZT0_LIST:
	  if (*str != '{')
	    {
	      set_expected_reglist_error (REG_TYPE_ZT0, parse_reg (&str));
	      goto failure;
	    }
	  str++;
	  if (!parse_typed_reg (&str, REG_TYPE_ZT0, &vectype, PTR_IN_REGLIST))
	    goto failure;
	  if (*str != '}')
	    {
	      set_syntax_error (_("expected '}' after ZT0"));
	      goto failure;
	    }
	  str++;
	  break;

	case AARCH64_OPND_SME_PNn3_INDEX1:
	case AARCH64_OPND_SME_PNn3_INDEX2:
	  reg = aarch64_reg_parse (&str, REG_TYPE_PN, &vectype);
	  if (!reg)
	    goto failure;
	  if (!(vectype.defined & NTA_HASINDEX))
	    {
	      set_syntax_error (_("missing register index"));
	      goto failure;
	    }
	  info->reglane.regno = reg->number;
	  info->reglane.index = vectype.index;
	  if (vectype.type == NT_invtype)
	    info->qualifier = AARCH64_OPND_QLF_NIL;
	  else
	    info->qualifier = vectype_to_qualifier (&vectype);
	  break;

	case AARCH64_OPND_BTI_TARGET:
	  val = parse_bti_operand (&str, &(info->hint_option));
	  if (val == PARSE_FAIL)
	    goto failure;
	  break;

	case AARCH64_OPND_SME_ZAda_2b:
	case AARCH64_OPND_SME_ZAda_3b:
	  reg = parse_reg_with_qual (&str, REG_TYPE_ZAT, &qualifier, 0);
	  if (!reg)
	    goto failure;
	  info->reg.regno = reg->number;
	  info->qualifier = qualifier;
	  break;

	case AARCH64_OPND_SME_ZA_HV_idx_src:
	case AARCH64_OPND_SME_ZA_HV_idx_srcxN:
	case AARCH64_OPND_SME_ZA_HV_idx_dest:
	case AARCH64_OPND_SME_ZA_HV_idx_destxN:
	case AARCH64_OPND_SME_ZA_HV_idx_ldstr:
	  if (operands[i] == AARCH64_OPND_SME_ZA_HV_idx_ldstr
	      ? !parse_sme_za_hv_tiles_operand_with_braces (&str,
							    &info->indexed_za,
							    &qualifier)
	      : !parse_dual_indexed_reg (&str, REG_TYPE_ZATHV,
					 &info->indexed_za, &qualifier, 0))
	    goto failure;
	  info->qualifier = qualifier;
	  break;

	case AARCH64_OPND_SME_list_of_64bit_tiles:
	  val = parse_sme_list_of_64bit_tiles (&str);
	  if (val == PARSE_FAIL)
	    goto failure;
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_SME_ZA_array_off2x2:
	case AARCH64_OPND_SME_ZA_array_off3_0:
	case AARCH64_OPND_SME_ZA_array_off3_5:
	case AARCH64_OPND_SME_ZA_array_off3x2:
	case AARCH64_OPND_SME_ZA_array_off4:
	  if (!parse_dual_indexed_reg (&str, REG_TYPE_ZA,
				       &info->indexed_za, &qualifier, 0))
	    goto failure;
	  info->qualifier = qualifier;
	  break;

	case AARCH64_OPND_SME_VLxN_10:
	case AARCH64_OPND_SME_VLxN_13:
	  po_strict_enum_or_fail (aarch64_sme_vlxn_array);
	  info->imm.value = val;
	  break;

	case AARCH64_OPND_MOPS_ADDR_Rd:
	case AARCH64_OPND_MOPS_ADDR_Rs:
	  po_char_or_fail ('[');
	  if (!parse_x0_to_x30 (&str, info))
	    goto failure;
	  po_char_or_fail (']');
	  po_char_or_fail ('!');
	  break;

	case AARCH64_OPND_MOPS_WB_Rn:
	  if (!parse_x0_to_x30 (&str, info))
	    goto failure;
	  po_char_or_fail ('!');
	  break;

	default:
	  as_fatal (_("unhandled operand code %d"), operands[i]);
	}

      /* If we get here, this operand was successfully parsed.  */
      inst.base.operands[i].present = 1;
      continue;

    failure:
      /* The parse routine should already have set the error, but in case
	 not, set a default one here.  */
      if (! error_p ())
	set_default_error ();

      if (! backtrack_pos)
	goto parse_operands_return;

      {
	/* We reach here because this operand is marked as optional, and
	   either no operand was supplied or the operand was supplied but it
	   was syntactically incorrect.  In the latter case we report an
	   error.  In the former case we perform a few more checks before
	   dropping through to the code to insert the default operand.  */

	char *tmp = backtrack_pos;
	char endchar = END_OF_INSN;

	if (i != (aarch64_num_of_operands (opcode) - 1))
	  endchar = ',';
	skip_past_char (&tmp, ',');

	if (*tmp != endchar)
	  /* The user has supplied an operand in the wrong format.  */
	  goto parse_operands_return;

	/* Make sure there is not a comma before the optional operand.
	   For example the fifth operand of 'sys' is optional:

	     sys #0,c0,c0,#0,  <--- wrong
	     sys #0,c0,c0,#0   <--- correct.  */
	if (comma_skipped_p && i && endchar == END_OF_INSN)
	  {
	    set_fatal_syntax_error
	      (_("unexpected comma before the omitted optional operand"));
	    goto parse_operands_return;
	  }
      }

      /* Reaching here means we are dealing with an optional operand that is
	 omitted from the assembly line.  */
      gas_assert (optional_operand_p (opcode, i));
      info->present = 0;
      process_omitted_operand (operands[i], opcode, i, info);

      /* Try again, skipping the optional operand at backtrack_pos.  */
      str = backtrack_pos;
      backtrack_pos = 0;

      /* Clear any error record after the omitted optional operand has been
	 successfully handled.  */
      clear_error ();
    }

  /* Check if we have parsed all the operands.  */
  if (*str != '\0' && ! error_p ())
    {
      /* Set I to the index of the last present operand; this is
	 for the purpose of diagnostics.  */
      for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
	;
      set_fatal_syntax_error
	(_("unexpected characters following instruction"));
    }

 parse_operands_return:

  if (error_p ())
    {
      inst.parsing_error.index = i;
      DEBUG_TRACE ("parsing FAIL: %s - %s",
		   operand_mismatch_kind_names[inst.parsing_error.kind],
		   inst.parsing_error.error);
      /* Record the operand error properly; this is useful when there
	 are multiple instruction templates for a mnemonic name, so that
	 later on, we can select the error that most closely describes
	 the problem.  */
      record_operand_error_info (opcode, &inst.parsing_error);
      return false;
    }
  else
    {
      DEBUG_TRACE ("parsing SUCCESS");
      return true;
    }
}

/* It does some fix-up to provide some programmer friendly feature while
   keeping the libopcodes happy, i.e. libopcodes only accepts
   the preferred architectural syntax.
   Return FALSE if there is any failure; otherwise return TRUE.  */

static bool
programmer_friendly_fixup (aarch64_instruction *instr)
{
  aarch64_inst *base = &instr->base;
  const aarch64_opcode *opcode = base->opcode;
  enum aarch64_op op = opcode->op;
  aarch64_opnd_info *operands = base->operands;

  DEBUG_TRACE ("enter");

  switch (opcode->iclass)
    {
    case testbranch:
      /* TBNZ Xn|Wn, #uimm6, label
	 Test and Branch Not Zero: conditionally jumps to label if bit number
	 uimm6 in register Xn is not zero.  The bit number implies the width of
	 the register, which may be written and should be disassembled as Wn if
	 uimm is less than 32.  */
      if (operands[0].qualifier == AARCH64_OPND_QLF_W)
	{
	  if (operands[1].imm.value >= 32)
	    {
	      record_operand_out_of_range_error (opcode, 1, _("immediate value"),
						 0, 31);
	      return false;
	    }
	  operands[0].qualifier = AARCH64_OPND_QLF_X;
	}
      break;
    case loadlit:
      /* LDR Wt, label | =value
	 As a convenience assemblers will typically permit the notation
	 "=value" in conjunction with the pc-relative literal load instructions
	 to automatically place an immediate value or symbolic address in a
	 nearby literal pool and generate a hidden label which references it.
	 ISREG has been set to 0 in the case of =value.  */
      if (instr->gen_lit_pool
	  && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
	{
	  int size = aarch64_get_qualifier_esize (operands[0].qualifier);
	  if (op == OP_LDRSW_LIT)
	    size = 4;
	  if (instr->reloc.exp.X_op != O_constant
	      && instr->reloc.exp.X_op != O_big
	      && instr->reloc.exp.X_op != O_symbol)
	    {
	      record_operand_error (opcode, 1,
				    AARCH64_OPDE_FATAL_SYNTAX_ERROR,
				    _("constant expression expected"));
	      return false;
	    }
	  if (! add_to_lit_pool (&instr->reloc.exp, size))
	    {
	      record_operand_error (opcode, 1,
				    AARCH64_OPDE_OTHER_ERROR,
				    _("literal pool insertion failed"));
	      return false;
	    }
	}
      break;
    case log_shift:
    case bitfield:
      /* UXT[BHW] Wd, Wn
	 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
	 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
	 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
	 A programmer-friendly assembler should accept a destination Xd in
	 place of Wd, however that is not the preferred form for disassembly.
	 */
      if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
	  && operands[1].qualifier == AARCH64_OPND_QLF_W
	  && operands[0].qualifier == AARCH64_OPND_QLF_X)
	operands[0].qualifier = AARCH64_OPND_QLF_W;
      break;

    case addsub_ext:
	{
	  /* In the 64-bit form, the final register operand is written as Wm
	     for all but the (possibly omitted) UXTX/LSL and SXTX
	     operators.
	     As a programmer-friendly assembler, we accept e.g.
	     ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
	     ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}.  */
	  int idx = aarch64_operand_index (opcode->operands,
					   AARCH64_OPND_Rm_EXT);
	  gas_assert (idx == 1 || idx == 2);
	  if (operands[0].qualifier == AARCH64_OPND_QLF_X
	      && operands[idx].qualifier == AARCH64_OPND_QLF_X
	      && operands[idx].shifter.kind != AARCH64_MOD_LSL
	      && operands[idx].shifter.kind != AARCH64_MOD_UXTX
	      && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
	    operands[idx].qualifier = AARCH64_OPND_QLF_W;
	}
      break;

    default:
      break;
    }

  DEBUG_TRACE ("exit with SUCCESS");
  return true;
}

/* Check for loads and stores that will cause unpredictable behavior.  */

static void
warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
{
  aarch64_inst *base = &instr->base;
  const aarch64_opcode *opcode = base->opcode;
  const aarch64_opnd_info *opnds = base->operands;
  switch (opcode->iclass)
    {
    case ldst_pos:
    case ldst_imm9:
    case ldst_imm10:
    case ldst_unscaled:
    case ldst_unpriv:
      /* Loading/storing the base register is unpredictable if writeback.  */
      if ((aarch64_get_operand_class (opnds[0].type)
	   == AARCH64_OPND_CLASS_INT_REG)
	  && opnds[0].reg.regno == opnds[1].addr.base_regno
	  && opnds[1].addr.base_regno != REG_SP
	  /* Exempt STG/STZG/ST2G/STZ2G.  */
	  && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
	  && opnds[1].addr.writeback)
	as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
      break;

    case ldstpair_off:
    case ldstnapair_offs:
    case ldstpair_indexed:
      /* Loading/storing the base register is unpredictable if writeback.  */
      if ((aarch64_get_operand_class (opnds[0].type)
	   == AARCH64_OPND_CLASS_INT_REG)
	  && (opnds[0].reg.regno == opnds[2].addr.base_regno
	    || opnds[1].reg.regno == opnds[2].addr.base_regno)
	  && opnds[2].addr.base_regno != REG_SP
	  /* Exempt STGP.  */
	  && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
	  && opnds[2].addr.writeback)
	    as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
      /* Load operations must load different registers.  */
      if ((opcode->opcode & (1 << 22))
	  && opnds[0].reg.regno == opnds[1].reg.regno)
	    as_warn (_("unpredictable load of register pair -- `%s'"), str);
      break;

    case ldstexcl:
      if ((aarch64_get_operand_class (opnds[0].type)
	   == AARCH64_OPND_CLASS_INT_REG)
	  && (aarch64_get_operand_class (opnds[1].type)
	      == AARCH64_OPND_CLASS_INT_REG))
	{
          if ((opcode->opcode & (1 << 22)))
	    {
	      /* It is unpredictable if load-exclusive pair with Rt == Rt2.  */
	      if ((opcode->opcode & (1 << 21))
		  && opnds[0].reg.regno == opnds[1].reg.regno)
		as_warn (_("unpredictable load of register pair -- `%s'"), str);
	    }
	  else
	    {
	      /*  Store-Exclusive is unpredictable if Rt == Rs.  */
	      if (opnds[0].reg.regno == opnds[1].reg.regno)
		as_warn
		  (_("unpredictable: identical transfer and status registers"
		     " --`%s'"),str);

	      if (opnds[0].reg.regno == opnds[2].reg.regno)
		{
		  if (!(opcode->opcode & (1 << 21)))
	            /*  Store-Exclusive is unpredictable if Rn == Rs.  */
		    as_warn
		      (_("unpredictable: identical base and status registers"
			 " --`%s'"),str);
		  else
	            /*  Store-Exclusive pair is unpredictable if Rt2 == Rs.  */
		    as_warn
		      (_("unpredictable: "
			 "identical transfer and status registers"
			 " --`%s'"),str);
		}

	      /* Store-Exclusive pair is unpredictable if Rn == Rs.  */
	      if ((opcode->opcode & (1 << 21))
		  && opnds[0].reg.regno == opnds[3].reg.regno
		  && opnds[3].reg.regno != REG_SP)
		as_warn (_("unpredictable: identical base and status registers"
			   " --`%s'"),str);
	    }
	}
      break;

    default:
      break;
    }
}

static void
force_automatic_sequence_close (void)
{
  struct aarch64_segment_info_type *tc_seg_info;

  tc_seg_info = &seg_info (now_seg)->tc_segment_info_data;
  if (tc_seg_info->insn_sequence.instr)
    {
      as_warn_where (tc_seg_info->last_file, tc_seg_info->last_line,
		     _("previous `%s' sequence has not been closed"),
		     tc_seg_info->insn_sequence.instr->opcode->name);
      init_insn_sequence (NULL, &tc_seg_info->insn_sequence);
    }
}

/* A wrapper function to interface with libopcodes on encoding and
   record the error message if there is any.

   Return TRUE on success; otherwise return FALSE.  */

static bool
do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
	   aarch64_insn *code)
{
  aarch64_operand_error error_info;
  memset (&error_info, '\0', sizeof (error_info));
  error_info.kind = AARCH64_OPDE_NIL;
  if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
      && !error_info.non_fatal)
    return true;

  gas_assert (error_info.kind != AARCH64_OPDE_NIL);
  record_operand_error_info (opcode, &error_info);
  return error_info.non_fatal;
}

#ifdef DEBUG_AARCH64
static inline void
dump_opcode_operands (const aarch64_opcode *opcode)
{
  int i = 0;
  while (opcode->operands[i] != AARCH64_OPND_NIL)
    {
      aarch64_verbose ("\t\t opnd%d: %s", i,
		       aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
		       ? aarch64_get_operand_name (opcode->operands[i])
		       : aarch64_get_operand_desc (opcode->operands[i]));
      ++i;
    }
}
#endif /* DEBUG_AARCH64 */

/* This is the guts of the machine-dependent assembler.  STR points to a
   machine dependent instruction.  This function is supposed to emit
   the frags/bytes it assembles to.  */

void
md_assemble (char *str)
{
  templates *template;
  const aarch64_opcode *opcode;
  struct aarch64_segment_info_type *tc_seg_info;
  aarch64_inst *inst_base;
  unsigned saved_cond;

  /* Align the previous label if needed.  */
  if (last_label_seen != NULL)
    {
      symbol_set_frag (last_label_seen, frag_now);
      S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
      S_SET_SEGMENT (last_label_seen, now_seg);
    }

  /* Update the current insn_sequence from the segment.  */
  tc_seg_info = &seg_info (now_seg)->tc_segment_info_data;
  insn_sequence = &tc_seg_info->insn_sequence;
  tc_seg_info->last_file = as_where (&tc_seg_info->last_line);

  inst.reloc.type = BFD_RELOC_UNUSED;

  DEBUG_TRACE ("\n\n");
  DEBUG_TRACE ("==============================");
  DEBUG_TRACE ("Enter md_assemble with %s", str);

  /* Scan up to the end of the mnemonic, which must end in whitespace,
     '.', or end of string.  */
  char *p = str;
  char *dot = 0;
  for (; is_part_of_name (*p); p++)
    if (*p == '.' && !dot)
      dot = p;

  if (p == str)
    {
      as_bad (_("unknown mnemonic -- `%s'"), str);
      return;
    }

  if (!dot && create_register_alias (str, p))
    return;

  template = opcode_lookup (str, dot, p);
  if (!template)
    {
      as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
	      str);
      return;
    }

  skip_whitespace (p);
  if (*p == ',')
    {
      as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
	      get_mnemonic_name (str), str);
      return;
    }

  init_operand_error_report ();

  /* Sections are assumed to start aligned. In executable section, there is no
     MAP_DATA symbol pending. So we only align the address during
     MAP_DATA --> MAP_INSN transition.
     For other sections, this is not guaranteed.  */
  enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
  if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
    frag_align_code (2, 0);

  saved_cond = inst.cond;
  reset_aarch64_instruction (&inst);
  inst.cond = saved_cond;

  /* Iterate through all opcode entries with the same mnemonic name.  */
  do
    {
      opcode = template->opcode;

      DEBUG_TRACE ("opcode %s found", opcode->name);
#ifdef DEBUG_AARCH64
      if (debug_dump)
	dump_opcode_operands (opcode);
#endif /* DEBUG_AARCH64 */

      mapping_state (MAP_INSN);

      inst_base = &inst.base;
      inst_base->opcode = opcode;

      /* Truly conditionally executed instructions, e.g. b.cond.  */
      if (opcode->flags & F_COND)
	{
	  gas_assert (inst.cond != COND_ALWAYS);
	  inst_base->cond = get_cond_from_value (inst.cond);
	  DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
	}
      else if (inst.cond != COND_ALWAYS)
	{
	  /* It shouldn't arrive here, where the assembly looks like a
	     conditional instruction but the found opcode is unconditional.  */
	  gas_assert (0);
	  continue;
	}

      if (parse_operands (p, opcode)
	  && programmer_friendly_fixup (&inst)
	  && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
	{
	  /* Check that this instruction is supported for this CPU.  */
	  if (!aarch64_cpu_supports_inst_p (cpu_variant, inst_base))
	    {
	      as_bad (_("selected processor does not support `%s'"), str);
	      return;
	    }

	  warn_unpredictable_ldst (&inst, str);

	  if (inst.reloc.type == BFD_RELOC_UNUSED
	      || !inst.reloc.need_libopcodes_p)
	    output_inst (NULL);
	  else
	    {
	      /* If there is relocation generated for the instruction,
	         store the instruction information for the future fix-up.  */
	      struct aarch64_inst *copy;
	      gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
	      copy = XNEW (struct aarch64_inst);
	      memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
	      output_inst (copy);
	    }

	  /* Issue non-fatal messages if any.  */
	  output_operand_error_report (str, true);
	  return;
	}

      template = template->next;
      if (template != NULL)
	{
	  reset_aarch64_instruction (&inst);
	  inst.cond = saved_cond;
	}
    }
  while (template != NULL);

  /* Issue the error messages if any.  */
  output_operand_error_report (str, false);
}

/* Various frobbings of labels and their addresses.  */

void
aarch64_start_line_hook (void)
{
  last_label_seen = NULL;
}

void
aarch64_frob_label (symbolS * sym)
{
  last_label_seen = sym;

  dwarf2_emit_label (sym);
}

void
aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
{
  /* Check to see if we have a block to close.  */
  force_automatic_sequence_close ();
}

int
aarch64_data_in_code (void)
{
  if (startswith (input_line_pointer + 1, "data:"))
    {
      *input_line_pointer = '/';
      input_line_pointer += 5;
      *input_line_pointer = 0;
      return 1;
    }

  return 0;
}

char *
aarch64_canonicalize_symbol_name (char *name)
{
  int len;

  if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
    *(name + len - 5) = 0;

  return name;
}

/* Table of all register names defined by default.  The user can
   define additional names with .req.  Note that all register names
   should appear in both upper and lowercase variants.	Some registers
   also have mixed-case names.	*/

#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, true }
#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, false}
#define REGNUM(p,n,t) REGDEF(p##n, n, t)
#define REGNUMS(p,n,s,t) REGDEF(p##n##s, n, t)
#define REGSET16(p,t) \
  REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
  REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
  REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
  REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
#define REGSET16S(p,s,t) \
  REGNUMS(p, 0,s,t), REGNUMS(p, 1,s,t), REGNUMS(p, 2,s,t), REGNUMS(p, 3,s,t), \
  REGNUMS(p, 4,s,t), REGNUMS(p, 5,s,t), REGNUMS(p, 6,s,t), REGNUMS(p, 7,s,t), \
  REGNUMS(p, 8,s,t), REGNUMS(p, 9,s,t), REGNUMS(p,10,s,t), REGNUMS(p,11,s,t), \
  REGNUMS(p,12,s,t), REGNUMS(p,13,s,t), REGNUMS(p,14,s,t), REGNUMS(p,15,s,t)
#define REGSET31(p,t) \
  REGSET16(p, t), \
  REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
  REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
  REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
  REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
#define REGSET(p,t) \
  REGSET31(p,t), REGNUM(p,31,t)

/* These go into aarch64_reg_hsh hash-table.  */
static const reg_entry reg_names[] = {
  /* Integer registers.  */
  REGSET31 (x, R_64), REGSET31 (X, R_64),
  REGSET31 (w, R_32), REGSET31 (W, R_32),

  REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
  REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
  REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
  REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
  REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
  REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),

  REGDEF (wzr, 31, ZR_32), REGDEF (WZR, 31, ZR_32),
  REGDEF (xzr, 31, ZR_64), REGDEF (XZR, 31, ZR_64),

  /* Floating-point single precision registers.  */
  REGSET (s, FP_S), REGSET (S, FP_S),

  /* Floating-point double precision registers.  */
  REGSET (d, FP_D), REGSET (D, FP_D),

  /* Floating-point half precision registers.  */
  REGSET (h, FP_H), REGSET (H, FP_H),

  /* Floating-point byte precision registers.  */
  REGSET (b, FP_B), REGSET (B, FP_B),

  /* Floating-point quad precision registers.  */
  REGSET (q, FP_Q), REGSET (Q, FP_Q),

  /* FP/SIMD registers.  */
  REGSET (v, V), REGSET (V, V),

  /* SVE vector registers.  */
  REGSET (z, Z), REGSET (Z, Z),

  /* SVE predicate(-as-mask) registers.  */
  REGSET16 (p, P), REGSET16 (P, P),

  /* SVE predicate-as-counter registers.  */
  REGSET16 (pn, PN), REGSET16 (PN, PN),

  /* SME ZA.  We model this as a register because it acts syntactically
     like ZA0H, supporting qualifier suffixes and indexing.  */
  REGDEF (za, 0, ZA), REGDEF (ZA, 0, ZA),

  /* SME ZA tile registers.  */
  REGSET16 (za, ZAT), REGSET16 (ZA, ZAT),

  /* SME ZA tile registers (horizontal slice).  */
  REGSET16S (za, h, ZATH), REGSET16S (ZA, H, ZATH),

  /* SME ZA tile registers (vertical slice).  */
  REGSET16S (za, v, ZATV), REGSET16S (ZA, V, ZATV),

  /* SME2 ZT0.  */
  REGDEF (zt0, 0, ZT0), REGDEF (ZT0, 0, ZT0)
};

#undef REGDEF
#undef REGDEF_ALIAS
#undef REGNUM
#undef REGSET16
#undef REGSET31
#undef REGSET

#define N 1
#define n 0
#define Z 1
#define z 0
#define C 1
#define c 0
#define V 1
#define v 0
#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
static const asm_nzcv nzcv_names[] = {
  {"nzcv", B (n, z, c, v)},
  {"nzcV", B (n, z, c, V)},
  {"nzCv", B (n, z, C, v)},
  {"nzCV", B (n, z, C, V)},
  {"nZcv", B (n, Z, c, v)},
  {"nZcV", B (n, Z, c, V)},
  {"nZCv", B (n, Z, C, v)},
  {"nZCV", B (n, Z, C, V)},
  {"Nzcv", B (N, z, c, v)},
  {"NzcV", B (N, z, c, V)},
  {"NzCv", B (N, z, C, v)},
  {"NzCV", B (N, z, C, V)},
  {"NZcv", B (N, Z, c, v)},
  {"NZcV", B (N, Z, c, V)},
  {"NZCv", B (N, Z, C, v)},
  {"NZCV", B (N, Z, C, V)}
};

#undef N
#undef n
#undef Z
#undef z
#undef C
#undef c
#undef V
#undef v
#undef B

/* MD interface: bits in the object file.  */

/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
   for use in the a.out file, and stores them in the array pointed to by buf.
   This knows about the endian-ness of the target machine and does
   THE RIGHT THING, whatever it is.  Possible values for n are 1 (byte)
   2 (short) and 4 (long)  Floating numbers are put out as a series of
   LITTLENUMS (shorts, here at least).	*/

void
md_number_to_chars (char *buf, valueT val, int n)
{
  if (target_big_endian)
    number_to_chars_bigendian (buf, val, n);
  else
    number_to_chars_littleendian (buf, val, n);
}

/* MD interface: Sections.  */

/* Estimate the size of a frag before relaxing.  Assume everything fits in
   4 bytes.  */

int
md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
{
  fragp->fr_var = 4;
  return 4;
}

/* Round up a section size to the appropriate boundary.	 */

valueT
md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
{
  return size;
}

/* This is called from HANDLE_ALIGN in write.c.	 Fill in the contents
   of an rs_align_code fragment.

   Here we fill the frag with the appropriate info for padding the
   output stream.  The resulting frag will consist of a fixed (fr_fix)
   and of a repeating (fr_var) part.

   The fixed content is always emitted before the repeating content and
   these two parts are used as follows in constructing the output:
   - the fixed part will be used to align to a valid instruction word
     boundary, in case that we start at a misaligned address; as no
     executable instruction can live at the misaligned location, we
     simply fill with zeros;
   - the variable part will be used to cover the remaining padding and
     we fill using the AArch64 NOP instruction.

   Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
   enough storage space for up to 3 bytes for padding the back to a valid
   instruction alignment and exactly 4 bytes to store the NOP pattern.  */

void
aarch64_handle_align (fragS * fragP)
{
  /* NOP = d503201f */
  /* AArch64 instructions are always little-endian.  */
  static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };

  int bytes, fix, noop_size;
  char *p;

  if (fragP->fr_type != rs_align_code)
    return;

  bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
  p = fragP->fr_literal + fragP->fr_fix;

#ifdef OBJ_ELF
  gas_assert (fragP->tc_frag_data.recorded);
#endif

  noop_size = sizeof (aarch64_noop);

  fix = bytes & (noop_size - 1);
  if (fix)
    {
#if defined OBJ_ELF || defined OBJ_COFF
      insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
#endif
      memset (p, 0, fix);
      p += fix;
      fragP->fr_fix += fix;
    }

  if (noop_size)
    memcpy (p, aarch64_noop, noop_size);
  fragP->fr_var = noop_size;
}

/* Perform target specific initialisation of a frag.
   Note - despite the name this initialisation is not done when the frag
   is created, but only when its type is assigned.  A frag can be created
   and used a long time before its type is set, so beware of assuming that
   this initialisation is performed first.  */

#ifndef OBJ_ELF
void
aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
		   int max_chars ATTRIBUTE_UNUSED)
{
}

#else /* OBJ_ELF is defined.  */
void
aarch64_init_frag (fragS * fragP, int max_chars)
{
  /* Record a mapping symbol for alignment frags.  We will delete this
     later if the alignment ends up empty.  */
  if (!fragP->tc_frag_data.recorded)
    fragP->tc_frag_data.recorded = 1;

  /* PR 21809: Do not set a mapping state for debug sections
     - it just confuses other tools.  */
  if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
    return;

  switch (fragP->fr_type)
    {
    case rs_align_test:
    case rs_fill:
      mapping_state_2 (MAP_DATA, max_chars);
      break;
    case rs_align:
      /* PR 20364: We can get alignment frags in code sections,
	 so do not just assume that we should use the MAP_DATA state.  */
      mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
      break;
    case rs_align_code:
      mapping_state_2 (MAP_INSN, max_chars);
      break;
    default:
      break;
    }
}

/* Whether SFrame stack trace info is supported.  */

bool
aarch64_support_sframe_p (void)
{
  /* At this time, SFrame is supported for aarch64 only.  */
  return (aarch64_abi == AARCH64_ABI_LP64);
}

/* Specify if RA tracking is needed.  */

bool
aarch64_sframe_ra_tracking_p (void)
{
  return true;
}

/* Specify the fixed offset to recover RA from CFA.
   (useful only when RA tracking is not needed).  */

offsetT
aarch64_sframe_cfa_ra_offset (void)
{
  return (offsetT) SFRAME_CFA_FIXED_RA_INVALID;
}

/* Get the abi/arch indentifier for SFrame.  */

unsigned char
aarch64_sframe_get_abi_arch (void)
{
  unsigned char sframe_abi_arch = 0;

  if (aarch64_support_sframe_p ())
    {
      sframe_abi_arch = target_big_endian
	? SFRAME_ABI_AARCH64_ENDIAN_BIG
	: SFRAME_ABI_AARCH64_ENDIAN_LITTLE;
    }

  return sframe_abi_arch;
}

#endif /* OBJ_ELF */

/* Initialize the DWARF-2 unwind information for this procedure.  */

void
tc_aarch64_frame_initial_instructions (void)
{
  cfi_add_CFA_def_cfa (REG_SP, 0);
}

/* Convert REGNAME to a DWARF-2 register number.  */

int
tc_aarch64_regname_to_dw2regnum (char *regname)
{
  const reg_entry *reg = parse_reg (&regname);
  if (reg == NULL)
    return -1;

  switch (reg->type)
    {
    case REG_TYPE_SP_32:
    case REG_TYPE_SP_64:
    case REG_TYPE_R_32:
    case REG_TYPE_R_64:
      return reg->number;

    case REG_TYPE_FP_B:
    case REG_TYPE_FP_H:
    case REG_TYPE_FP_S:
    case REG_TYPE_FP_D:
    case REG_TYPE_FP_Q:
      return reg->number + 64;

    default:
      break;
    }
  return -1;
}

/* Implement DWARF2_ADDR_SIZE.  */

int
aarch64_dwarf2_addr_size (void)
{
  if (ilp32_p)
    return 4;
  else if (llp64_p)
    return 8;
  return bfd_arch_bits_per_address (stdoutput) / 8;
}

/* MD interface: Symbol and relocation handling.  */

/* Return the address within the segment that a PC-relative fixup is
   relative to.  For AArch64 PC-relative fixups applied to instructions
   are generally relative to the location plus AARCH64_PCREL_OFFSET bytes.  */

long
md_pcrel_from_section (fixS * fixP, segT seg)
{
  offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;

  /* If this is pc-relative and we are going to emit a relocation
     then we just want to put out any pipeline compensation that the linker
     will need.  Otherwise we want to use the calculated base.  */
  if (fixP->fx_pcrel
      && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
	  || aarch64_force_relocation (fixP)))
    base = 0;

  /* AArch64 should be consistent for all pc-relative relocations.  */
  return base + AARCH64_PCREL_OFFSET;
}

/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
   Otherwise we have no need to default values of symbols.  */

symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
#ifdef OBJ_ELF
  if (name[0] == '_' && name[1] == 'G'
      && streq (name, GLOBAL_OFFSET_TABLE_NAME))
    {
      if (!GOT_symbol)
	{
	  if (symbol_find (name))
	    as_bad (_("GOT already in the symbol table"));

	  GOT_symbol = symbol_new (name, undefined_section,
				   &zero_address_frag, 0);
	}

      return GOT_symbol;
    }
#endif

  return 0;
}

/* Return non-zero if the indicated VALUE has overflowed the maximum
   range expressible by a unsigned number with the indicated number of
   BITS.  */

static bool
unsigned_overflow (valueT value, unsigned bits)
{
  valueT lim;
  if (bits >= sizeof (valueT) * 8)
    return false;
  lim = (valueT) 1 << bits;
  return (value >= lim);
}


/* Return non-zero if the indicated VALUE has overflowed the maximum
   range expressible by an signed number with the indicated number of
   BITS.  */

static bool
signed_overflow (offsetT value, unsigned bits)
{
  offsetT lim;
  if (bits >= sizeof (offsetT) * 8)
    return false;
  lim = (offsetT) 1 << (bits - 1);
  return (value < -lim || value >= lim);
}

/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
   unsigned immediate offset load/store instruction, try to encode it as
   an unscaled, 9-bit, signed immediate offset load/store instruction.
   Return TRUE if it is successful; otherwise return FALSE.

   As a programmer-friendly assembler, LDUR/STUR instructions can be generated
   in response to the standard LDR/STR mnemonics when the immediate offset is
   unambiguous, i.e. when it is negative or unaligned.  */

static bool
try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
{
  int idx;
  enum aarch64_op new_op;
  const aarch64_opcode *new_opcode;

  gas_assert (instr->opcode->iclass == ldst_pos);

  switch (instr->opcode->op)
    {
    case OP_LDRB_POS:new_op = OP_LDURB; break;
    case OP_STRB_POS: new_op = OP_STURB; break;
    case OP_LDRSB_POS: new_op = OP_LDURSB; break;
    case OP_LDRH_POS: new_op = OP_LDURH; break;
    case OP_STRH_POS: new_op = OP_STURH; break;
    case OP_LDRSH_POS: new_op = OP_LDURSH; break;
    case OP_LDR_POS: new_op = OP_LDUR; break;
    case OP_STR_POS: new_op = OP_STUR; break;
    case OP_LDRF_POS: new_op = OP_LDURV; break;
    case OP_STRF_POS: new_op = OP_STURV; break;
    case OP_LDRSW_POS: new_op = OP_LDURSW; break;
    case OP_PRFM_POS: new_op = OP_PRFUM; break;
    default: new_op = OP_NIL; break;
    }

  if (new_op == OP_NIL)
    return false;

  new_opcode = aarch64_get_opcode (new_op);
  gas_assert (new_opcode != NULL);

  DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
	       instr->opcode->op, new_opcode->op);

  aarch64_replace_opcode (instr, new_opcode);

  /* Clear up the ADDR_SIMM9's qualifier; otherwise the
     qualifier matching may fail because the out-of-date qualifier will
     prevent the operand being updated with a new and correct qualifier.  */
  idx = aarch64_operand_index (instr->opcode->operands,
			       AARCH64_OPND_ADDR_SIMM9);
  gas_assert (idx == 1);
  instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;

  DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");

  if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
			      insn_sequence))
    return false;

  return true;
}

/* Called by fix_insn to fix a MOV immediate alias instruction.

   Operand for a generic move immediate instruction, which is an alias
   instruction that generates a single MOVZ, MOVN or ORR instruction to loads
   a 32-bit/64-bit immediate value into general register.  An assembler error
   shall result if the immediate cannot be created by a single one of these
   instructions. If there is a choice, then to ensure reversability an
   assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR.  */

static void
fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
{
  const aarch64_opcode *opcode;

  /* Need to check if the destination is SP/ZR.  The check has to be done
     before any aarch64_replace_opcode.  */
  int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
  int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);

  instr->operands[1].imm.value = value;
  instr->operands[1].skip = 0;

  if (try_mov_wide_p)
    {
      /* Try the MOVZ alias.  */
      opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
      aarch64_replace_opcode (instr, opcode);
      if (aarch64_opcode_encode (instr->opcode, instr,
				 &instr->value, NULL, NULL, insn_sequence))
	{
	  put_aarch64_insn (buf, instr->value);
	  return;
	}
      /* Try the MOVK alias.  */
      opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
      aarch64_replace_opcode (instr, opcode);
      if (aarch64_opcode_encode (instr->opcode, instr,
				 &instr->value, NULL, NULL, insn_sequence))
	{
	  put_aarch64_insn (buf, instr->value);
	  return;
	}
    }

  if (try_mov_bitmask_p)
    {
      /* Try the ORR alias.  */
      opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
      aarch64_replace_opcode (instr, opcode);
      if (aarch64_opcode_encode (instr->opcode, instr,
				 &instr->value, NULL, NULL, insn_sequence))
	{
	  put_aarch64_insn (buf, instr->value);
	  return;
	}
    }

  as_bad_where (fixP->fx_file, fixP->fx_line,
		_("immediate cannot be moved by a single instruction"));
}

/* An instruction operand which is immediate related may have symbol used
   in the assembly, e.g.

     mov     w0, u32
     .set    u32,    0x00ffff00

   At the time when the assembly instruction is parsed, a referenced symbol,
   like 'u32' in the above example may not have been seen; a fixS is created
   in such a case and is handled here after symbols have been resolved.
   Instruction is fixed up with VALUE using the information in *FIXP plus
   extra information in FLAGS.

   This function is called by md_apply_fix to fix up instructions that need
   a fix-up described above but does not involve any linker-time relocation.  */

static void
fix_insn (fixS *fixP, uint32_t flags, offsetT value)
{
  int idx;
  uint32_t insn;
  char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
  enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
  aarch64_inst *new_inst = fixP->tc_fix_data.inst;

  if (new_inst)
    {
      /* Now the instruction is about to be fixed-up, so the operand that
	 was previously marked as 'ignored' needs to be unmarked in order
	 to get the encoding done properly.  */
      idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
      new_inst->operands[idx].skip = 0;
    }

  gas_assert (opnd != AARCH64_OPND_NIL);

  switch (opnd)
    {
    case AARCH64_OPND_EXCEPTION:
    case AARCH64_OPND_UNDEFINED:
      if (unsigned_overflow (value, 16))
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("immediate out of range"));
      insn = get_aarch64_insn (buf);
      insn |= (opnd == AARCH64_OPND_EXCEPTION) ? encode_svc_imm (value) : value;
      put_aarch64_insn (buf, insn);
      break;

    case AARCH64_OPND_AIMM:
      /* ADD or SUB with immediate.
	 NOTE this assumes we come here with a add/sub shifted reg encoding
		  3  322|2222|2  2  2 21111 111111
		  1  098|7654|3  2  1 09876 543210 98765 43210
	 0b000000 sf 000|1011|shift 0 Rm    imm6   Rn    Rd    ADD
	 2b000000 sf 010|1011|shift 0 Rm    imm6   Rn    Rd    ADDS
	 4b000000 sf 100|1011|shift 0 Rm    imm6   Rn    Rd    SUB
	 6b000000 sf 110|1011|shift 0 Rm    imm6   Rn    Rd    SUBS
	 ->
		  3  322|2222|2 2   221111111111
		  1  098|7654|3 2   109876543210 98765 43210
	 11000000 sf 001|0001|shift imm12        Rn    Rd    ADD
	 31000000 sf 011|0001|shift imm12        Rn    Rd    ADDS
	 51000000 sf 101|0001|shift imm12        Rn    Rd    SUB
	 71000000 sf 111|0001|shift imm12        Rn    Rd    SUBS
	 Fields sf Rn Rd are already set.  */
      insn = get_aarch64_insn (buf);
      if (value < 0)
	{
	  /* Add <-> sub.  */
	  insn = reencode_addsub_switch_add_sub (insn);
	  value = -value;
	}

      if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
	  && unsigned_overflow (value, 12))
	{
	  /* Try to shift the value by 12 to make it fit.  */
	  if (((value >> 12) << 12) == value
	      && ! unsigned_overflow (value, 12 + 12))
	    {
	      value >>= 12;
	      insn |= encode_addsub_imm_shift_amount (1);
	    }
	}

      if (unsigned_overflow (value, 12))
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("immediate out of range"));

      insn |= encode_addsub_imm (value);

      put_aarch64_insn (buf, insn);
      break;

    case AARCH64_OPND_SIMD_IMM:
    case AARCH64_OPND_SIMD_IMM_SFT:
    case AARCH64_OPND_LIMM:
      /* Bit mask immediate.  */
      gas_assert (new_inst != NULL);
      idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
      new_inst->operands[idx].imm.value = value;
      if (aarch64_opcode_encode (new_inst->opcode, new_inst,
				 &new_inst->value, NULL, NULL, insn_sequence))
	put_aarch64_insn (buf, new_inst->value);
      else
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("invalid immediate"));
      break;

    case AARCH64_OPND_HALF:
      /* 16-bit unsigned immediate.  */
      if (unsigned_overflow (value, 16))
	as_bad_where (fixP->fx_file, fixP->fx_line,
		      _("immediate out of range"));
      insn = get_aarch64_insn (buf);
      insn |= encode_movw_imm (value & 0xffff);
      put_aarch64_insn (buf, insn);
      break;

    case AARCH64_OPND_IMM_MOV:
      /* Operand for a generic move immediate instruction, which is
	 an alias instruction that generates a single MOVZ, MOVN or ORR
	 instruction to loads a 32-bit/64-bit immediate value into general
	 register.  An assembler error shall result if the immediate cannot be
	 created by a single one of these instructions. If there is a choice,
	 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
	 and MOVZ or MOVN to ORR.  */
      gas_assert (new_inst != NULL);
      fix_mov_imm_insn (fixP, buf, new_inst, value);
      break;

    case AARCH64_OPND_ADDR_SIMM7:
    case AARCH64_OPND_ADDR_SIMM9:
    case AARCH64_OPND_ADDR_SIMM9_2:
    case AARCH64_OPND_ADDR_SIMM10:
    case AARCH64_OPND_ADDR_UIMM12:
    case AARCH64_OPND_ADDR_SIMM11:
    case AARCH64_OPND_ADDR_SIMM13:
      /* Immediate offset in an address.  */
      insn = get_aarch64_insn (buf);

      gas_assert (new_inst != NULL && new_inst->value == insn);
      gas_assert (new_inst->opcode->operands[1] == opnd
		  || new_inst->opcode->operands[2] == opnd);

      /* Get the index of the address operand.  */
      if (new_inst->opcode->operands[1] == opnd)
	/* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}].  */
	idx = 1;
      else
	/* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}].  */
	idx = 2;

      /* Update the resolved offset value.  */
      new_inst->operands[idx].addr.offset.imm = value;

      /* Encode/fix-up.  */
      if (aarch64_opcode_encode (new_inst->opcode, new_inst,
				 &new_inst->value, NULL, NULL, insn_sequence))
	{
	  put_aarch64_insn (buf, new_inst->value);
	  break;
	}
      else if (new_inst->opcode->iclass == ldst_pos
	       && try_to_encode_as_unscaled_ldst (new_inst))
	{
	  put_aarch64_insn (buf, new_inst->value);
	  break;
	}

      as_bad_where (fixP->fx_file, fixP->fx_line,
		    _("immediate offset out of range"));
      break;

    default:
      gas_assert (0);
      as_fatal (_("unhandled operand code %d"), opnd);
    }
}

/* Apply a fixup (fixP) to segment data, once it has been determined
   by our caller that we have all the info we need to fix it up.

   Parameter valP is the pointer to the value of the bits.  */

void
md_apply_fix (fixS * fixP, valueT * valP, segT seg)
{
  offsetT value = *valP;
  uint32_t insn;
  char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
  int scale;
  unsigned flags = fixP->fx_addnumber;

  DEBUG_TRACE ("\n\n");
  DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
  DEBUG_TRACE ("Enter md_apply_fix");

  gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);

  /* Note whether this will delete the relocation.  */

  if (fixP->fx_addsy == 0 && !fixP->fx_pcrel
      && aarch64_force_reloc (fixP->fx_r_type) <= 0)
    fixP->fx_done = 1;

  /* Process the relocations.  */
  switch (fixP->fx_r_type)
    {
    case BFD_RELOC_NONE:
      /* This will need to go in the object file.  */
      fixP->fx_done = 0;
      break;

    case BFD_RELOC_8:
    case BFD_RELOC_8_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	md_number_to_chars (buf, value, 1);
      break;

    case BFD_RELOC_16:
    case BFD_RELOC_16_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	md_number_to_chars (buf, value, 2);
      break;

    case BFD_RELOC_32:
    case BFD_RELOC_32_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	md_number_to_chars (buf, value, 4);
      break;

    case BFD_RELOC_64:
    case BFD_RELOC_64_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	md_number_to_chars (buf, value, 8);
      break;

    case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
      /* We claim that these fixups have been processed here, even if
         in fact we generate an error because we do not have a reloc
         for them, so tc_gen_reloc() will reject them.  */
      fixP->fx_done = 1;
      if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
	{
	  as_bad_where (fixP->fx_file, fixP->fx_line,
			_("undefined symbol %s used as an immediate value"),
			S_GET_NAME (fixP->fx_addsy));
	  goto apply_fix_return;
	}
      fix_insn (fixP, flags, value);
      break;

    case BFD_RELOC_AARCH64_LD_LO19_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  if (value & 3)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("pc-relative load offset not word aligned"));
	  if (signed_overflow (value, 21))
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("pc-relative load offset out of range"));
	  insn = get_aarch64_insn (buf);
	  insn |= encode_ld_lit_ofs_19 (value >> 2);
	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  if (signed_overflow (value, 21))
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("pc-relative address offset out of range"));
	  insn = get_aarch64_insn (buf);
	  insn |= encode_adr_imm (value);
	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_BRANCH19:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  if (value & 3)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("conditional branch target not word aligned"));
	  if (signed_overflow (value, 21))
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("conditional branch out of range"));
	  insn = get_aarch64_insn (buf);
	  insn |= encode_cond_branch_ofs_19 (value >> 2);
	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_TSTBR14:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  if (value & 3)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("conditional branch target not word aligned"));
	  if (signed_overflow (value, 16))
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("conditional branch out of range"));
	  insn = get_aarch64_insn (buf);
	  insn |= encode_tst_branch_ofs_14 (value >> 2);
	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_CALL26:
    case BFD_RELOC_AARCH64_JUMP26:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  if (value & 3)
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("branch target not word aligned"));
	  if (signed_overflow (value, 28))
	    as_bad_where (fixP->fx_file, fixP->fx_line,
			  _("branch out of range"));
	  insn = get_aarch64_insn (buf);
	  insn |= encode_branch_ofs_26 (value >> 2);
	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_MOVW_G0:
    case BFD_RELOC_AARCH64_MOVW_G0_NC:
    case BFD_RELOC_AARCH64_MOVW_G0_S:
    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
    case BFD_RELOC_AARCH64_MOVW_PREL_G0:
    case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
      scale = 0;
      goto movw_common;
    case BFD_RELOC_AARCH64_MOVW_G1:
    case BFD_RELOC_AARCH64_MOVW_G1_NC:
    case BFD_RELOC_AARCH64_MOVW_G1_S:
    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
    case BFD_RELOC_AARCH64_MOVW_PREL_G1:
    case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
      scale = 16;
      goto movw_common;
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
      scale = 0;
      S_SET_THREAD_LOCAL (fixP->fx_addsy);
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      goto movw_common;
    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
      scale = 16;
      S_SET_THREAD_LOCAL (fixP->fx_addsy);
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      goto movw_common;
    case BFD_RELOC_AARCH64_MOVW_G2:
    case BFD_RELOC_AARCH64_MOVW_G2_NC:
    case BFD_RELOC_AARCH64_MOVW_G2_S:
    case BFD_RELOC_AARCH64_MOVW_PREL_G2:
    case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
      scale = 32;
      goto movw_common;
    case BFD_RELOC_AARCH64_MOVW_G3:
    case BFD_RELOC_AARCH64_MOVW_PREL_G3:
      scale = 48;
    movw_common:
      if (fixP->fx_done || !seg->use_rela_p)
	{
	  insn = get_aarch64_insn (buf);

	  if (!fixP->fx_done)
	    {
	      /* REL signed addend must fit in 16 bits */
	      if (signed_overflow (value, 16))
		as_bad_where (fixP->fx_file, fixP->fx_line,
			      _("offset out of range"));
	    }
	  else
	    {
	      /* Check for overflow and scale. */
	      switch (fixP->fx_r_type)
		{
		case BFD_RELOC_AARCH64_MOVW_G0:
		case BFD_RELOC_AARCH64_MOVW_G1:
		case BFD_RELOC_AARCH64_MOVW_G2:
		case BFD_RELOC_AARCH64_MOVW_G3:
		case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
		case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
		  if (unsigned_overflow (value, scale + 16))
		    as_bad_where (fixP->fx_file, fixP->fx_line,
				  _("unsigned value out of range"));
		  break;
		case BFD_RELOC_AARCH64_MOVW_G0_S:
		case BFD_RELOC_AARCH64_MOVW_G1_S:
		case BFD_RELOC_AARCH64_MOVW_G2_S:
		case BFD_RELOC_AARCH64_MOVW_PREL_G0:
		case BFD_RELOC_AARCH64_MOVW_PREL_G1:
		case BFD_RELOC_AARCH64_MOVW_PREL_G2:
		  /* NOTE: We can only come here with movz or movn. */
		  if (signed_overflow (value, scale + 16))
		    as_bad_where (fixP->fx_file, fixP->fx_line,
				  _("signed value out of range"));
		  if (value < 0)
		    {
		      /* Force use of MOVN.  */
		      value = ~value;
		      insn = reencode_movzn_to_movn (insn);
		    }
		  else
		    {
		      /* Force use of MOVZ.  */
		      insn = reencode_movzn_to_movz (insn);
		    }
		  break;
		default:
		  /* Unchecked relocations.  */
		  break;
		}
	      value >>= scale;
	    }

	  /* Insert value into MOVN/MOVZ/MOVK instruction. */
	  insn |= encode_movw_imm (value & 0xffff);

	  put_aarch64_insn (buf, insn);
	}
      break;

    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
      fixP->fx_r_type = (ilp32_p
			 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
			 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
      S_SET_THREAD_LOCAL (fixP->fx_addsy);
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      break;

    case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
      fixP->fx_r_type = (ilp32_p
			 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
			 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
      S_SET_THREAD_LOCAL (fixP->fx_addsy);
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      break;

    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
    case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
    case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
    case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
      S_SET_THREAD_LOCAL (fixP->fx_addsy);
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      break;

    case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      fixP->fx_r_type = (ilp32_p
			 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
			 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      break;

    case BFD_RELOC_AARCH64_ADD_LO12:
    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
    case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
    case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
    case BFD_RELOC_AARCH64_LDST128_LO12:
    case BFD_RELOC_AARCH64_LDST16_LO12:
    case BFD_RELOC_AARCH64_LDST32_LO12:
    case BFD_RELOC_AARCH64_LDST64_LO12:
    case BFD_RELOC_AARCH64_LDST8_LO12:
      /* Should always be exported to object file, see
	 aarch64_force_relocation().  */
      gas_assert (!fixP->fx_done);
      gas_assert (seg->use_rela_p);
      break;

    case BFD_RELOC_AARCH64_TLSDESC_ADD:
    case BFD_RELOC_AARCH64_TLSDESC_CALL:
    case BFD_RELOC_AARCH64_TLSDESC_LDR:
      break;

    case BFD_RELOC_UNUSED:
      /* An error will already have been reported.  */
      break;

    case BFD_RELOC_RVA:
    case BFD_RELOC_32_SECREL:
    case BFD_RELOC_16_SECIDX:
      break;

    default:
      as_bad_where (fixP->fx_file, fixP->fx_line,
		    _("unexpected %s fixup"),
		    bfd_get_reloc_code_name (fixP->fx_r_type));
      break;
    }

 apply_fix_return:
  /* Free the allocated the struct aarch64_inst.
     N.B. currently there are very limited number of fix-up types actually use
     this field, so the impact on the performance should be minimal .  */
  free (fixP->tc_fix_data.inst);

  return;
}

/* Translate internal representation of relocation info to BFD target
   format.  */

arelent *
tc_gen_reloc (asection * section, fixS * fixp)
{
  arelent *reloc;
  bfd_reloc_code_real_type code;

  reloc = XNEW (arelent);

  reloc->sym_ptr_ptr = XNEW (asymbol *);
  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
  reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;

  if (fixp->fx_pcrel)
    {
      if (section->use_rela_p)
	fixp->fx_offset -= md_pcrel_from_section (fixp, section);
      else
	fixp->fx_offset = reloc->address;
    }
  reloc->addend = fixp->fx_offset;

  code = fixp->fx_r_type;
  switch (code)
    {
    case BFD_RELOC_16:
      if (fixp->fx_pcrel)
	code = BFD_RELOC_16_PCREL;
      break;

    case BFD_RELOC_32:
      if (fixp->fx_pcrel)
	code = BFD_RELOC_32_PCREL;
      break;

    case BFD_RELOC_64:
      if (fixp->fx_pcrel)
	code = BFD_RELOC_64_PCREL;
      break;

    default:
      break;
    }

  reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
  if (reloc->howto == NULL)
    {
      as_bad_where (fixp->fx_file, fixp->fx_line,
		    _
		    ("cannot represent %s relocation in this object file format"),
		    bfd_get_reloc_code_name (code));
      return NULL;
    }

  return reloc;
}

/* This fix_new is called by cons via TC_CONS_FIX_NEW.	*/

void
cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
{
  bfd_reloc_code_real_type type;
  int pcrel = 0;

#ifdef TE_PE
  if (exp->X_op == O_secrel)
    {
      exp->X_op = O_symbol;
      type = BFD_RELOC_32_SECREL;
    }
  else if (exp->X_op == O_secidx)
    {
      exp->X_op = O_symbol;
      type = BFD_RELOC_16_SECIDX;
    }
  else
    {
#endif
    /* Pick a reloc.
       FIXME: @@ Should look at CPU word size.  */
    switch (size)
      {
      case 1:
	type = BFD_RELOC_8;
	break;
      case 2:
	type = BFD_RELOC_16;
	break;
      case 4:
	type = BFD_RELOC_32;
	break;
      case 8:
	type = BFD_RELOC_64;
	break;
      default:
	as_bad (_("cannot do %u-byte relocation"), size);
	type = BFD_RELOC_UNUSED;
	break;
      }
#ifdef TE_PE
    }
#endif

  fix_new_exp (frag, where, (int) size, exp, pcrel, type);
}

/* Implement md_after_parse_args.  This is the earliest time we need to decide
   ABI.  If no -mabi specified, the ABI will be decided by target triplet.  */

void
aarch64_after_parse_args (void)
{
  if (aarch64_abi != AARCH64_ABI_NONE)
    return;

#ifdef OBJ_ELF
  /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32.  */
  if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
    aarch64_abi = AARCH64_ABI_ILP32;
  else
    aarch64_abi = AARCH64_ABI_LP64;
#else
  aarch64_abi = AARCH64_ABI_LLP64;
#endif
}

#ifdef OBJ_ELF
const char *
elf64_aarch64_target_format (void)
{
#ifdef TE_CLOUDABI
  /* FIXME: What to do for ilp32_p ?  */
  if (target_big_endian)
    return "elf64-bigaarch64-cloudabi";
  else
    return "elf64-littleaarch64-cloudabi";
#else
  if (target_big_endian)
    return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
  else
    return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
#endif
}

void
aarch64elf_frob_symbol (symbolS * symp, int *puntp)
{
  elf_frob_symbol (symp, puntp);
}
#elif defined OBJ_COFF
const char *
coff_aarch64_target_format (void)
{
  return "pe-aarch64-little";
}
#endif

/* MD interface: Finalization.	*/

/* A good place to do this, although this was probably not intended
   for this kind of use.  We need to dump the literal pool before
   references are made to a null symbol pointer.  */

void
aarch64_cleanup (void)
{
  literal_pool *pool;

  for (pool = list_of_pools; pool; pool = pool->next)
    {
      /* Put it at the end of the relevant section.  */
      subseg_set (pool->section, pool->sub_section);
      s_ltorg (0);
    }
}

#ifdef OBJ_ELF
/* Remove any excess mapping symbols generated for alignment frags in
   SEC.  We may have created a mapping symbol before a zero byte
   alignment; remove it if there's a mapping symbol after the
   alignment.  */
static void
check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
		       void *dummy ATTRIBUTE_UNUSED)
{
  segment_info_type *seginfo = seg_info (sec);
  fragS *fragp;

  if (seginfo == NULL || seginfo->frchainP == NULL)
    return;

  for (fragp = seginfo->frchainP->frch_root;
       fragp != NULL; fragp = fragp->fr_next)
    {
      symbolS *sym = fragp->tc_frag_data.last_map;
      fragS *next = fragp->fr_next;

      /* Variable-sized frags have been converted to fixed size by
         this point.  But if this was variable-sized to start with,
         there will be a fixed-size frag after it.  So don't handle
         next == NULL.  */
      if (sym == NULL || next == NULL)
	continue;

      if (S_GET_VALUE (sym) < next->fr_address)
	/* Not at the end of this frag.  */
	continue;
      know (S_GET_VALUE (sym) == next->fr_address);

      do
	{
	  if (next->tc_frag_data.first_map != NULL)
	    {
	      /* Next frag starts with a mapping symbol.  Discard this
	         one.  */
	      symbol_remove (sym, &symbol_rootP, &symbol_lastP);
	      break;
	    }

	  if (next->fr_next == NULL)
	    {
	      /* This mapping symbol is at the end of the section.  Discard
	         it.  */
	      know (next->fr_fix == 0 && next->fr_var == 0);
	      symbol_remove (sym, &symbol_rootP, &symbol_lastP);
	      break;
	    }

	  /* As long as we have empty frags without any mapping symbols,
	     keep looking.  */
	  /* If the next frag is non-empty and does not start with a
	     mapping symbol, then this mapping symbol is required.  */
	  if (next->fr_address != next->fr_next->fr_address)
	    break;

	  next = next->fr_next;
	}
      while (next != NULL);
    }
}
#endif

/* Adjust the symbol table.  */

void
aarch64_adjust_symtab (void)
{
#ifdef OBJ_ELF
  /* Remove any overlapping mapping symbols generated by alignment frags.  */
  bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
  /* Now do generic ELF adjustments.  */
  elf_adjust_symtab ();
#endif
}

static void
checked_hash_insert (htab_t table, const char *key, void *value)
{
  str_hash_insert (table, key, value, 0);
}

static void
sysreg_hash_insert (htab_t table, const char *key, void *value)
{
  gas_assert (strlen (key) < AARCH64_MAX_SYSREG_NAME_LEN);
  checked_hash_insert (table, key, value);
}

static void
fill_instruction_hash_table (void)
{
  const aarch64_opcode *opcode = aarch64_opcode_table;

  while (opcode->name != NULL)
    {
      templates *templ, *new_templ;
      templ = str_hash_find (aarch64_ops_hsh, opcode->name);

      new_templ = XNEW (templates);
      new_templ->opcode = opcode;
      new_templ->next = NULL;

      if (!templ)
	checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
      else
	{
	  new_templ->next = templ->next;
	  templ->next = new_templ;
	}
      ++opcode;
    }
}

static inline void
convert_to_upper (char *dst, const char *src, size_t num)
{
  unsigned int i;
  for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
    *dst = TOUPPER (*src);
  *dst = '\0';
}

/* Assume STR point to a lower-case string, allocate, convert and return
   the corresponding upper-case string.  */
static inline const char*
get_upper_str (const char *str)
{
  char *ret;
  size_t len = strlen (str);
  ret = XNEWVEC (char, len + 1);
  convert_to_upper (ret, str, len);
  return ret;
}

/* MD interface: Initialization.  */

void
md_begin (void)
{
  unsigned mach;
  unsigned int i;

  aarch64_ops_hsh = str_htab_create ();
  aarch64_cond_hsh = str_htab_create ();
  aarch64_shift_hsh = str_htab_create ();
  aarch64_sys_regs_hsh = str_htab_create ();
  aarch64_pstatefield_hsh = str_htab_create ();
  aarch64_sys_regs_ic_hsh = str_htab_create ();
  aarch64_sys_regs_dc_hsh = str_htab_create ();
  aarch64_sys_regs_at_hsh = str_htab_create ();
  aarch64_sys_regs_tlbi_hsh = str_htab_create ();
  aarch64_sys_regs_sr_hsh = str_htab_create ();
  aarch64_reg_hsh = str_htab_create ();
  aarch64_barrier_opt_hsh = str_htab_create ();
  aarch64_nzcv_hsh = str_htab_create ();
  aarch64_pldop_hsh = str_htab_create ();
  aarch64_hint_opt_hsh = str_htab_create ();

  fill_instruction_hash_table ();

  for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
    sysreg_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
			 (void *) (aarch64_sys_regs + i));

  for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
    sysreg_hash_insert (aarch64_pstatefield_hsh,
			 aarch64_pstatefields[i].name,
			 (void *) (aarch64_pstatefields + i));

  for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
    sysreg_hash_insert (aarch64_sys_regs_ic_hsh,
			 aarch64_sys_regs_ic[i].name,
			 (void *) (aarch64_sys_regs_ic + i));

  for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
    sysreg_hash_insert (aarch64_sys_regs_dc_hsh,
			 aarch64_sys_regs_dc[i].name,
			 (void *) (aarch64_sys_regs_dc + i));

  for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
    sysreg_hash_insert (aarch64_sys_regs_at_hsh,
			 aarch64_sys_regs_at[i].name,
			 (void *) (aarch64_sys_regs_at + i));

  for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
    sysreg_hash_insert (aarch64_sys_regs_tlbi_hsh,
			 aarch64_sys_regs_tlbi[i].name,
			 (void *) (aarch64_sys_regs_tlbi + i));

  for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
    sysreg_hash_insert (aarch64_sys_regs_sr_hsh,
			 aarch64_sys_regs_sr[i].name,
			 (void *) (aarch64_sys_regs_sr + i));

  for (i = 0; i < ARRAY_SIZE (reg_names); i++)
    checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
			 (void *) (reg_names + i));

  for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
    checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
			 (void *) (nzcv_names + i));

  for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
    {
      const char *name = aarch64_operand_modifiers[i].name;
      checked_hash_insert (aarch64_shift_hsh, name,
			   (void *) (aarch64_operand_modifiers + i));
      /* Also hash the name in the upper case.  */
      checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
			   (void *) (aarch64_operand_modifiers + i));
    }

  for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
    {
      unsigned int j;
      /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
	 the same condition code.  */
      for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
	{
	  const char *name = aarch64_conds[i].names[j];
	  if (name == NULL)
	    break;
	  checked_hash_insert (aarch64_cond_hsh, name,
			       (void *) (aarch64_conds + i));
	  /* Also hash the name in the upper case.  */
	  checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
			       (void *) (aarch64_conds + i));
	}
    }

  for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
    {
      const char *name = aarch64_barrier_options[i].name;
      /* Skip xx00 - the unallocated values of option.  */
      if ((i & 0x3) == 0)
	continue;
      checked_hash_insert (aarch64_barrier_opt_hsh, name,
			   (void *) (aarch64_barrier_options + i));
      /* Also hash the name in the upper case.  */
      checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
			   (void *) (aarch64_barrier_options + i));
    }

  for (i = 0; i < ARRAY_SIZE (aarch64_barrier_dsb_nxs_options); i++)
    {
      const char *name = aarch64_barrier_dsb_nxs_options[i].name;
      checked_hash_insert (aarch64_barrier_opt_hsh, name,
			   (void *) (aarch64_barrier_dsb_nxs_options + i));
      /* Also hash the name in the upper case.  */
      checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
			   (void *) (aarch64_barrier_dsb_nxs_options + i));
    }

  for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
    {
      const char* name = aarch64_prfops[i].name;
      /* Skip the unallocated hint encodings.  */
      if (name == NULL)
	continue;
      checked_hash_insert (aarch64_pldop_hsh, name,
			   (void *) (aarch64_prfops + i));
      /* Also hash the name in the upper case.  */
      checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
			   (void *) (aarch64_prfops + i));
    }

  for (i = 0; aarch64_hint_options[i].name != NULL; i++)
    {
      const char* name = aarch64_hint_options[i].name;
      const char* upper_name = get_upper_str(name);

      checked_hash_insert (aarch64_hint_opt_hsh, name,
			   (void *) (aarch64_hint_options + i));

      /* Also hash the name in the upper case if not the same.  */
      if (strcmp (name, upper_name) != 0)
	checked_hash_insert (aarch64_hint_opt_hsh, upper_name,
			     (void *) (aarch64_hint_options + i));
    }

  /* Set the cpu variant based on the command-line options.  */
  if (!mcpu_cpu_opt)
    mcpu_cpu_opt = march_cpu_opt;

  if (!mcpu_cpu_opt)
    mcpu_cpu_opt = &cpu_default;

  cpu_variant = *mcpu_cpu_opt;

  /* Record the CPU type.  */
  if(ilp32_p)
    mach = bfd_mach_aarch64_ilp32;
  else if (llp64_p)
    mach = bfd_mach_aarch64_llp64;
  else
    mach = bfd_mach_aarch64;

  bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
#ifdef OBJ_ELF
  /* FIXME - is there a better way to do it ?  */
  aarch64_sframe_cfa_sp_reg = 31;
  aarch64_sframe_cfa_fp_reg = 29; /* x29.  */
  aarch64_sframe_cfa_ra_reg = 30;
#endif
}

/* Command line processing.  */

const char *md_shortopts = "m:";

#ifdef AARCH64_BI_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
#define OPTION_EL (OPTION_MD_BASE + 1)
#else
#if TARGET_BYTES_BIG_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
#else
#define OPTION_EL (OPTION_MD_BASE + 1)
#endif
#endif

struct option md_longopts[] = {
#ifdef OPTION_EB
  {"EB", no_argument, NULL, OPTION_EB},
#endif
#ifdef OPTION_EL
  {"EL", no_argument, NULL, OPTION_EL},
#endif
  {NULL, no_argument, NULL, 0}
};

size_t md_longopts_size = sizeof (md_longopts);

struct aarch64_option_table
{
  const char *option;			/* Option name to match.  */
  const char *help;			/* Help information.  */
  int *var;			/* Variable to change.  */
  int value;			/* What to change it to.  */
  char *deprecated;		/* If non-null, print this message.  */
};

static struct aarch64_option_table aarch64_opts[] = {
  {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
  {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
   NULL},
#ifdef DEBUG_AARCH64
  {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
#endif /* DEBUG_AARCH64 */
  {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
   NULL},
  {"mno-verbose-error", N_("do not output verbose error messages"),
   &verbose_error_p, 0, NULL},
  {NULL, NULL, NULL, 0, NULL}
};

struct aarch64_cpu_option_table
{
  const char *name;
  const aarch64_feature_set value;
  /* The canonical name of the CPU, or NULL to use NAME converted to upper
     case.  */
  const char *canonical_name;
};

/* This list should, at a minimum, contain all the cpu names
   recognized by GCC.  */
static const struct aarch64_cpu_option_table aarch64_cpus[] = {
  {"all", AARCH64_ANY, NULL},
  {"cortex-a34", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A34"},
  {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A35"},
  {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A53"},
  {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A57"},
  {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A72"},
  {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
				  AARCH64_FEATURE_CRC), "Cortex-A73"},
  {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
				  "Cortex-A55"},
  {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
				  "Cortex-A75"},
  {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
				  "Cortex-A76"},
  {"cortex-a76ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				    AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
				    | AARCH64_FEATURE_DOTPROD
				    | AARCH64_FEATURE_SSBS),
				    "Cortex-A76AE"},
  {"cortex-a77", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
				  | AARCH64_FEATURE_DOTPROD
				  | AARCH64_FEATURE_SSBS),
				  "Cortex-A77"},
  {"cortex-a65", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
				  | AARCH64_FEATURE_DOTPROD
				  | AARCH64_FEATURE_SSBS),
				  "Cortex-A65"},
  {"cortex-a65ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				    AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
				    | AARCH64_FEATURE_DOTPROD
				    | AARCH64_FEATURE_SSBS),
				    "Cortex-A65AE"},
  {"cortex-a78", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
                 AARCH64_FEATURE_F16
                 | AARCH64_FEATURE_RCPC
                 | AARCH64_FEATURE_DOTPROD
                 | AARCH64_FEATURE_SSBS
                 | AARCH64_FEATURE_PROFILE),
   "Cortex-A78"},
  {"cortex-a78ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
                   AARCH64_FEATURE_F16
                   | AARCH64_FEATURE_RCPC
                   | AARCH64_FEATURE_DOTPROD
                   | AARCH64_FEATURE_SSBS
                   | AARCH64_FEATURE_PROFILE),
   "Cortex-A78AE"},
  {"cortex-a78c", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
                   AARCH64_FEATURE_DOTPROD
                   | AARCH64_FEATURE_F16
                   | AARCH64_FEATURE_FLAGM
                   | AARCH64_FEATURE_PAC
                   | AARCH64_FEATURE_PROFILE
                   | AARCH64_FEATURE_RCPC
                   | AARCH64_FEATURE_SSBS),
   "Cortex-A78C"},
  {"cortex-a510", AARCH64_FEATURE (AARCH64_ARCH_V9,
                  AARCH64_FEATURE_BFLOAT16
                  | AARCH64_FEATURE_I8MM
                  | AARCH64_FEATURE_MEMTAG
                  | AARCH64_FEATURE_SVE2_BITPERM),
   "Cortex-A510"},
  {"cortex-a710", AARCH64_FEATURE (AARCH64_ARCH_V9,
                  AARCH64_FEATURE_BFLOAT16
                  | AARCH64_FEATURE_I8MM
                  | AARCH64_FEATURE_MEMTAG
                  | AARCH64_FEATURE_SVE2_BITPERM),
   "Cortex-A710"},
  {"ares", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
				  | AARCH64_FEATURE_DOTPROD
				  | AARCH64_FEATURE_PROFILE),
				  "Ares"},
  {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
				 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
				"Samsung Exynos M1"},
  {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
			      AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
			      | AARCH64_FEATURE_RDMA),
   "Qualcomm Falkor"},
  {"neoverse-e1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
				  | AARCH64_FEATURE_DOTPROD
				  | AARCH64_FEATURE_SSBS),
				  "Neoverse E1"},
  {"neoverse-n1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
				  AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
				  | AARCH64_FEATURE_DOTPROD
				  | AARCH64_FEATURE_PROFILE),
				  "Neoverse N1"},
  {"neoverse-n2", AARCH64_FEATURE (AARCH64_ARCH_V8_5,
				   AARCH64_FEATURE_BFLOAT16
				 | AARCH64_FEATURE_I8MM
				 | AARCH64_FEATURE_F16
				 | AARCH64_FEATURE_SVE
				 | AARCH64_FEATURE_SVE2
				 | AARCH64_FEATURE_SVE2_BITPERM
				 | AARCH64_FEATURE_MEMTAG
				 | AARCH64_FEATURE_RNG),
				 "Neoverse N2"},
  {"neoverse-v1", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
			    AARCH64_FEATURE_PROFILE
			  | AARCH64_FEATURE_CVADP
			  | AARCH64_FEATURE_SVE
			  | AARCH64_FEATURE_SSBS
			  | AARCH64_FEATURE_RNG
			  | AARCH64_FEATURE_F16
			  | AARCH64_FEATURE_BFLOAT16
			  | AARCH64_FEATURE_I8MM), "Neoverse V1"},
  {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
			       AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
			       | AARCH64_FEATURE_RDMA),
   "Qualcomm QDF24XX"},
  {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
			       AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
   "Qualcomm Saphira"},
  {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
				AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
   "Cavium ThunderX"},
  {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
			      AARCH64_FEATURE_CRYPTO),
  "Broadcom Vulcan"},
  /* The 'xgene-1' name is an older name for 'xgene1', which was used
     in earlier releases and is superseded by 'xgene1' in all
     tools.  */
  {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
  {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
  {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
			      AARCH64_FEATURE_CRC), "APM X-Gene 2"},
  {"cortex-r82", AARCH64_ARCH_V8_R, "Cortex-R82"},
  {"cortex-x1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
                AARCH64_FEATURE_F16
                | AARCH64_FEATURE_RCPC
                | AARCH64_FEATURE_DOTPROD
                | AARCH64_FEATURE_SSBS
                | AARCH64_FEATURE_PROFILE),
                "Cortex-X1"},
  {"cortex-x2", AARCH64_FEATURE (AARCH64_ARCH_V9,
                AARCH64_FEATURE_BFLOAT16
                | AARCH64_FEATURE_I8MM
                | AARCH64_FEATURE_MEMTAG
                | AARCH64_FEATURE_SVE2_BITPERM),
                "Cortex-X2"},
  {"generic", AARCH64_ARCH_V8, NULL},

  {NULL, AARCH64_ARCH_NONE, NULL}
};

struct aarch64_arch_option_table
{
  const char *name;
  const aarch64_feature_set value;
};

/* This list should, at a minimum, contain all the architecture names
   recognized by GCC.  */
static const struct aarch64_arch_option_table aarch64_archs[] = {
  {"all", AARCH64_ANY},
  {"armv8-a", AARCH64_ARCH_V8},
  {"armv8.1-a", AARCH64_ARCH_V8_1},
  {"armv8.2-a", AARCH64_ARCH_V8_2},
  {"armv8.3-a", AARCH64_ARCH_V8_3},
  {"armv8.4-a", AARCH64_ARCH_V8_4},
  {"armv8.5-a", AARCH64_ARCH_V8_5},
  {"armv8.6-a", AARCH64_ARCH_V8_6},
  {"armv8.7-a", AARCH64_ARCH_V8_7},
  {"armv8.8-a", AARCH64_ARCH_V8_8},
  {"armv8-r",	AARCH64_ARCH_V8_R},
  {"armv9-a",	AARCH64_ARCH_V9},
  {"armv9.1-a",	AARCH64_ARCH_V9_1},
  {"armv9.2-a",	AARCH64_ARCH_V9_2},
  {"armv9.3-a",	AARCH64_ARCH_V9_3},
  {NULL, AARCH64_ARCH_NONE}
};

/* ISA extensions.  */
struct aarch64_option_cpu_value_table
{
  const char *name;
  const aarch64_feature_set value;
  const aarch64_feature_set require; /* Feature dependencies.  */
};

static const struct aarch64_option_cpu_value_table aarch64_features[] = {
  {"crc",		AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
			AARCH64_ARCH_NONE},
  {"crypto",		AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"fp",		AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
			AARCH64_ARCH_NONE},
  {"lse",		AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
			AARCH64_ARCH_NONE},
  {"simd",		AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
  {"pan",		AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
			AARCH64_ARCH_NONE},
  {"lor",		AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
			AARCH64_ARCH_NONE},
  {"ras",		AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
			AARCH64_ARCH_NONE},
  {"rdma",		AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"fp16",		AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
  {"fp16fml",		AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_F16, 0)},
  {"profile",		AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
			AARCH64_ARCH_NONE},
  {"sve",		AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0)},
  {"tme",		AARCH64_FEATURE (AARCH64_FEATURE_TME, 0),
			AARCH64_ARCH_NONE},
  {"compnum",		AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_F16
					 | AARCH64_FEATURE_SIMD, 0)},
  {"rcpc",		AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
			AARCH64_ARCH_NONE},
  {"dotprod",		AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"sha2",		AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
  {"sb",		AARCH64_FEATURE (AARCH64_FEATURE_SB, 0),
			AARCH64_ARCH_NONE},
  {"predres",		AARCH64_FEATURE (AARCH64_FEATURE_PREDRES, 0),
			AARCH64_ARCH_NONE},
  {"aes",		AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"sm4",		AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"sha3",		AARCH64_FEATURE (AARCH64_FEATURE_SHA3, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0)},
  {"rng",		AARCH64_FEATURE (AARCH64_FEATURE_RNG, 0),
			AARCH64_ARCH_NONE},
  {"ssbs",		AARCH64_FEATURE (AARCH64_FEATURE_SSBS, 0),
			AARCH64_ARCH_NONE},
  {"memtag",		AARCH64_FEATURE (AARCH64_FEATURE_MEMTAG, 0),
			AARCH64_ARCH_NONE},
  {"sve2",		AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
  {"sve2-sm4",		AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SM4, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE2
					 | AARCH64_FEATURE_SM4, 0)},
  {"sve2-aes",		AARCH64_FEATURE (AARCH64_FEATURE_SVE2_AES, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE2
					 | AARCH64_FEATURE_AES, 0)},
  {"sve2-sha3",		AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SHA3, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE2
					 | AARCH64_FEATURE_SHA3, 0)},
  {"sve2-bitperm",	AARCH64_FEATURE (AARCH64_FEATURE_SVE2_BITPERM, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0)},
  {"sme",		AARCH64_FEATURE (AARCH64_FEATURE_SME, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE2
					 | AARCH64_FEATURE_BFLOAT16, 0)},
  {"sme-f64",		AARCH64_FEATURE (AARCH64_FEATURE_SME_F64F64, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SME, 0)},
  {"sme-f64f64",	AARCH64_FEATURE (AARCH64_FEATURE_SME_F64F64, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SME, 0)},
  {"sme-i64",		AARCH64_FEATURE (AARCH64_FEATURE_SME_I16I64, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SME, 0)},
  {"sme-i16i64",	AARCH64_FEATURE (AARCH64_FEATURE_SME_I16I64, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SME, 0)},
  {"sme2",		AARCH64_FEATURE (AARCH64_FEATURE_SME2, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SME, 0)},
  {"bf16",		AARCH64_FEATURE (AARCH64_FEATURE_BFLOAT16, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
  {"i8mm",		AARCH64_FEATURE (AARCH64_FEATURE_I8MM, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
  {"f32mm",		AARCH64_FEATURE (AARCH64_FEATURE_F32MM, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
  {"f64mm",		AARCH64_FEATURE (AARCH64_FEATURE_F64MM, 0),
			AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
  {"ls64",		AARCH64_FEATURE (AARCH64_FEATURE_LS64, 0),
			AARCH64_ARCH_NONE},
  {"flagm",		AARCH64_FEATURE (AARCH64_FEATURE_FLAGM, 0),
			AARCH64_ARCH_NONE},
  {"pauth",		AARCH64_FEATURE (AARCH64_FEATURE_PAC, 0),
			AARCH64_ARCH_NONE},
  {"mops",		AARCH64_FEATURE (AARCH64_FEATURE_MOPS, 0),
			AARCH64_ARCH_NONE},
  {"hbc",		AARCH64_FEATURE (AARCH64_FEATURE_HBC, 0),
			AARCH64_ARCH_NONE},
  {"cssc",		AARCH64_FEATURE (AARCH64_FEATURE_CSSC, 0),
			AARCH64_ARCH_NONE},
  {NULL,		AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
};

struct aarch64_long_option_table
{
  const char *option;			/* Substring to match.  */
  const char *help;			/* Help information.  */
  int (*func) (const char *subopt);	/* Function to decode sub-option.  */
  char *deprecated;		/* If non-null, print this message.  */
};

/* Transitive closure of features depending on set.  */
static aarch64_feature_set
aarch64_feature_disable_set (aarch64_feature_set set)
{
  const struct aarch64_option_cpu_value_table *opt;
  aarch64_feature_set prev = 0;

  while (prev != set) {
    prev = set;
    for (opt = aarch64_features; opt->name != NULL; opt++)
      if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
        AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
  }
  return set;
}

/* Transitive closure of dependencies of set.  */
static aarch64_feature_set
aarch64_feature_enable_set (aarch64_feature_set set)
{
  const struct aarch64_option_cpu_value_table *opt;
  aarch64_feature_set prev = 0;

  while (prev != set) {
    prev = set;
    for (opt = aarch64_features; opt->name != NULL; opt++)
      if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
        AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
  }
  return set;
}

static int
aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
			bool ext_only)
{
  /* We insist on extensions being added before being removed.  We achieve
     this by using the ADDING_VALUE variable to indicate whether we are
     adding an extension (1) or removing it (0) and only allowing it to
     change in the order -1 -> 1 -> 0.  */
  int adding_value = -1;
  aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);

  /* Copy the feature set, so that we can modify it.  */
  *ext_set = **opt_p;
  *opt_p = ext_set;

  while (str != NULL && *str != 0)
    {
      const struct aarch64_option_cpu_value_table *opt;
      const char *ext = NULL;
      int optlen;

      if (!ext_only)
	{
	  if (*str != '+')
	    {
	      as_bad (_("invalid architectural extension"));
	      return 0;
	    }

	  ext = strchr (++str, '+');
	}

      if (ext != NULL)
	optlen = ext - str;
      else
	optlen = strlen (str);

      if (optlen >= 2 && startswith (str, "no"))
	{
	  if (adding_value != 0)
	    adding_value = 0;
	  optlen -= 2;
	  str += 2;
	}
      else if (optlen > 0)
	{
	  if (adding_value == -1)
	    adding_value = 1;
	  else if (adding_value != 1)
	    {
	      as_bad (_("must specify extensions to add before specifying "
			"those to remove"));
	      return false;
	    }
	}

      if (optlen == 0)
	{
	  as_bad (_("missing architectural extension"));
	  return 0;
	}

      gas_assert (adding_value != -1);

      for (opt = aarch64_features; opt->name != NULL; opt++)
	if (strncmp (opt->name, str, optlen) == 0)
	  {
	    aarch64_feature_set set;

	    /* Add or remove the extension.  */
	    if (adding_value)
	      {
		set = aarch64_feature_enable_set (opt->value);
		AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
	      }
	    else
	      {
		set = aarch64_feature_disable_set (opt->value);
		AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
	      }
	    break;
	  }

      if (opt->name == NULL)
	{
	  as_bad (_("unknown architectural extension `%s'"), str);
	  return 0;
	}

      str = ext;
    };

  return 1;
}

static int
aarch64_parse_cpu (const char *str)
{
  const struct aarch64_cpu_option_table *opt;
  const char *ext = strchr (str, '+');
  size_t optlen;

  if (ext != NULL)
    optlen = ext - str;
  else
    optlen = strlen (str);

  if (optlen == 0)
    {
      as_bad (_("missing cpu name `%s'"), str);
      return 0;
    }

  for (opt = aarch64_cpus; opt->name != NULL; opt++)
    if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
      {
	mcpu_cpu_opt = &opt->value;
	if (ext != NULL)
	  return aarch64_parse_features (ext, &mcpu_cpu_opt, false);

	return 1;
      }

  as_bad (_("unknown cpu `%s'"), str);
  return 0;
}

static int
aarch64_parse_arch (const char *str)
{
  const struct aarch64_arch_option_table *opt;
  const char *ext = strchr (str, '+');
  size_t optlen;

  if (ext != NULL)
    optlen = ext - str;
  else
    optlen = strlen (str);

  if (optlen == 0)
    {
      as_bad (_("missing architecture name `%s'"), str);
      return 0;
    }

  for (opt = aarch64_archs; opt->name != NULL; opt++)
    if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
      {
	march_cpu_opt = &opt->value;
	if (ext != NULL)
	  return aarch64_parse_features (ext, &march_cpu_opt, false);

	return 1;
      }

  as_bad (_("unknown architecture `%s'\n"), str);
  return 0;
}

/* ABIs.  */
struct aarch64_option_abi_value_table
{
  const char *name;
  enum aarch64_abi_type value;
};

static const struct aarch64_option_abi_value_table aarch64_abis[] = {
#ifdef OBJ_ELF
  {"ilp32",		AARCH64_ABI_ILP32},
  {"lp64",		AARCH64_ABI_LP64},
#else
  {"llp64",		AARCH64_ABI_LLP64},
#endif
};

static int
aarch64_parse_abi (const char *str)
{
  unsigned int i;

  if (str[0] == '\0')
    {
      as_bad (_("missing abi name `%s'"), str);
      return 0;
    }

  for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
    if (strcmp (str, aarch64_abis[i].name) == 0)
      {
	aarch64_abi = aarch64_abis[i].value;
	return 1;
      }

  as_bad (_("unknown abi `%s'\n"), str);
  return 0;
}

static struct aarch64_long_option_table aarch64_long_opts[] = {
  {"mabi=", N_("<abi name>\t  specify for ABI <abi name>"),
   aarch64_parse_abi, NULL},
  {"mcpu=", N_("<cpu name>\t  assemble for CPU <cpu name>"),
   aarch64_parse_cpu, NULL},
  {"march=", N_("<arch name>\t  assemble for architecture <arch name>"),
   aarch64_parse_arch, NULL},
  {NULL, NULL, 0, NULL}
};

int
md_parse_option (int c, const char *arg)
{
  struct aarch64_option_table *opt;
  struct aarch64_long_option_table *lopt;

  switch (c)
    {
#ifdef OPTION_EB
    case OPTION_EB:
      target_big_endian = 1;
      break;
#endif

#ifdef OPTION_EL
    case OPTION_EL:
      target_big_endian = 0;
      break;
#endif

    case 'a':
      /* Listing option.  Just ignore these, we don't support additional
         ones.  */
      return 0;

    default:
      for (opt = aarch64_opts; opt->option != NULL; opt++)
	{
	  if (c == opt->option[0]
	      && ((arg == NULL && opt->option[1] == 0)
		  || streq (arg, opt->option + 1)))
	    {
	      /* If the option is deprecated, tell the user.  */
	      if (opt->deprecated != NULL)
		as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
			   arg ? arg : "", _(opt->deprecated));

	      if (opt->var != NULL)
		*opt->var = opt->value;

	      return 1;
	    }
	}

      for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
	{
	  /* These options are expected to have an argument.  */
	  if (c == lopt->option[0]
	      && arg != NULL
	      && startswith (arg, lopt->option + 1))
	    {
	      /* If the option is deprecated, tell the user.  */
	      if (lopt->deprecated != NULL)
		as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
			   _(lopt->deprecated));

	      /* Call the sup-option parser.  */
	      return lopt->func (arg + strlen (lopt->option) - 1);
	    }
	}

      return 0;
    }

  return 1;
}

void
md_show_usage (FILE * fp)
{
  struct aarch64_option_table *opt;
  struct aarch64_long_option_table *lopt;

  fprintf (fp, _(" AArch64-specific assembler options:\n"));

  for (opt = aarch64_opts; opt->option != NULL; opt++)
    if (opt->help != NULL)
      fprintf (fp, "  -%-23s%s\n", opt->option, _(opt->help));

  for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
    if (lopt->help != NULL)
      fprintf (fp, "  -%s%s\n", lopt->option, _(lopt->help));

#ifdef OPTION_EB
  fprintf (fp, _("\
  -EB                     assemble code for a big-endian cpu\n"));
#endif

#ifdef OPTION_EL
  fprintf (fp, _("\
  -EL                     assemble code for a little-endian cpu\n"));
#endif
}

/* Parse a .cpu directive.  */

static void
s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
{
  const struct aarch64_cpu_option_table *opt;
  char saved_char;
  char *name;
  char *ext;
  size_t optlen;

  name = input_line_pointer;
  input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
  saved_char = *input_line_pointer;
  *input_line_pointer = 0;

  ext = strchr (name, '+');

  if (ext != NULL)
    optlen = ext - name;
  else
    optlen = strlen (name);

  /* Skip the first "all" entry.  */
  for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
    if (strlen (opt->name) == optlen
	&& strncmp (name, opt->name, optlen) == 0)
      {
	mcpu_cpu_opt = &opt->value;
	if (ext != NULL)
	  if (!aarch64_parse_features (ext, &mcpu_cpu_opt, false))
	    return;

	cpu_variant = *mcpu_cpu_opt;

	*input_line_pointer = saved_char;
	demand_empty_rest_of_line ();
	return;
      }
  as_bad (_("unknown cpu `%s'"), name);
  *input_line_pointer = saved_char;
  ignore_rest_of_line ();
}


/* Parse a .arch directive.  */

static void
s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
{
  const struct aarch64_arch_option_table *opt;
  char saved_char;
  char *name;
  char *ext;
  size_t optlen;

  name = input_line_pointer;
  input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
  saved_char = *input_line_pointer;
  *input_line_pointer = 0;

  ext = strchr (name, '+');

  if (ext != NULL)
    optlen = ext - name;
  else
    optlen = strlen (name);

  /* Skip the first "all" entry.  */
  for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
    if (strlen (opt->name) == optlen
	&& strncmp (name, opt->name, optlen) == 0)
      {
	mcpu_cpu_opt = &opt->value;
	if (ext != NULL)
	  if (!aarch64_parse_features (ext, &mcpu_cpu_opt, false))
	    return;

	cpu_variant = *mcpu_cpu_opt;

	*input_line_pointer = saved_char;
	demand_empty_rest_of_line ();
	return;
      }

  as_bad (_("unknown architecture `%s'\n"), name);
  *input_line_pointer = saved_char;
  ignore_rest_of_line ();
}

/* Parse a .arch_extension directive.  */

static void
s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
{
  char saved_char;
  char *ext = input_line_pointer;

  input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri);
  saved_char = *input_line_pointer;
  *input_line_pointer = 0;

  if (!aarch64_parse_features (ext, &mcpu_cpu_opt, true))
    return;

  cpu_variant = *mcpu_cpu_opt;

  *input_line_pointer = saved_char;
  demand_empty_rest_of_line ();
}

/* Copy symbol information.  */

void
aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
{
  AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
}

#ifdef OBJ_ELF
/* Same as elf_copy_symbol_attributes, but without copying st_other.
   This is needed so AArch64 specific st_other values can be independently
   specified for an IFUNC resolver (that is called by the dynamic linker)
   and the symbol it resolves (aliased to the resolver).  In particular,
   if a function symbol has special st_other value set via directives,
   then attaching an IFUNC resolver to that symbol should not override
   the st_other setting.  Requiring the directive on the IFUNC resolver
   symbol would be unexpected and problematic in C code, where the two
   symbols appear as two independent function declarations.  */

void
aarch64_elf_copy_symbol_attributes (symbolS *dest, symbolS *src)
{
  struct elf_obj_sy *srcelf = symbol_get_obj (src);
  struct elf_obj_sy *destelf = symbol_get_obj (dest);
  /* If size is unset, copy size from src.  Because we don't track whether
     .size has been used, we can't differentiate .size dest, 0 from the case
     where dest's size is unset.  */
  if (!destelf->size && S_GET_SIZE (dest) == 0)
    {
      if (srcelf->size)
	{
	  destelf->size = XNEW (expressionS);
	  *destelf->size = *srcelf->size;
	}
      S_SET_SIZE (dest, S_GET_SIZE (src));
    }
}
#endif