aboutsummaryrefslogtreecommitdiff
path: root/gas/config/atof-ns32k.c
blob: 6091b74c246a02ad02d217acf018a9d3d4971c45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/* atof_ns32k.c - turn a Flonum into a ns32k floating point number
   Copyright (C) 1987 Free Software Foundation, Inc.

This file is part of GAS, the GNU Assembler.

GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* this is atof-m68k.c hacked for ns32k */

#include "as.h"

extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */

extern char EXP_CHARS[];
				/* Precision in LittleNums. */
#define MAX_PRECISION (4)
#define F_PRECISION (2)
#define D_PRECISION (4)

				/* Length in LittleNums of guard bits. */
#define GUARD (2)

int				/* Number of chars in flonum type 'letter'. */
atof_sizeof (letter)
     char letter;
{
  int	return_value;

  /*
   * Permitting uppercase letters is probably a bad idea.
   * Please use only lower-cased letters in case the upper-cased
   * ones become unsupported!
   */
  switch (letter)
    {
    case 'f':
      return_value = F_PRECISION;
      break;

    case 'd':
      return_value = D_PRECISION;
      break;

    default:
      return_value = 0;
      break;
    }
  return (return_value);
}

static unsigned long int mask [] = {
  0x00000000,
  0x00000001,
  0x00000003,
  0x00000007,
  0x0000000f,
  0x0000001f,
  0x0000003f,
  0x0000007f,
  0x000000ff,
  0x000001ff,
  0x000003ff,
  0x000007ff,
  0x00000fff,
  0x00001fff,
  0x00003fff,
  0x00007fff,
  0x0000ffff,
  0x0001ffff,
  0x0003ffff,
  0x0007ffff,
  0x000fffff,
  0x001fffff,
  0x003fffff,
  0x007fffff,
  0x00ffffff,
  0x01ffffff,
  0x03ffffff,
  0x07ffffff,
  0x0fffffff,
  0x1fffffff,
  0x3fffffff,
  0x7fffffff,
  0xffffffff
  };

static int bits_left_in_littlenum;
static int littlenums_left;
static LITTLENUM_TYPE *	littlenum_pointer;

static int
next_bits (number_of_bits)
     int		number_of_bits;
{
  int			return_value;

  if(!littlenums_left)
  	return 0;
  if (number_of_bits >= bits_left_in_littlenum)
    {
      return_value  = mask [bits_left_in_littlenum] & *littlenum_pointer;
      number_of_bits -= bits_left_in_littlenum;
      return_value <<= number_of_bits;
      if(littlenums_left) {
	      bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
	      littlenum_pointer --;
	      --littlenums_left;
	      return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits];
      }
    }
  else
    {
      bits_left_in_littlenum -= number_of_bits;
      return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum);
    }
  return (return_value);
}

static void
make_invalid_floating_point_number (words)
     LITTLENUM_TYPE *	words;
{
	words[0]= ((unsigned)-1)>>1;	/* Zero the leftmost bit */
	words[1]= -1;
	words[2]= -1;
	words[3]= -1;
}

/***********************************************************************\
*									*
*	Warning: this returns 16-bit LITTLENUMs, because that is	*
*	what the VAX thinks in. It is up to the caller to figure	*
*	out any alignment problems and to conspire for the bytes/word	*
*	to be emitted in the right order. Bigendians beware!		*
*									*
\***********************************************************************/

char *				/* Return pointer past text consumed. */
atof_ns32k (str, what_kind, words)
     char *		str;	/* Text to convert to binary. */
     char		what_kind; /* 'd', 'f', 'g', 'h' */
     LITTLENUM_TYPE *	words;	/* Build the binary here. */
{
	FLONUM_TYPE	f;
	LITTLENUM_TYPE	bits [MAX_PRECISION + MAX_PRECISION + GUARD];
				/* Extra bits for zeroed low-order bits. */
				/* The 1st MAX_PRECISION are zeroed, */
				/* the last contain flonum bits. */
	char *		return_value;
	int		precision; /* Number of 16-bit words in the format. */
	long int	exponent_bits;

	long int	exponent_1;
	long int	exponent_2;
	long int	exponent_3;
	long int	exponent_4;
	int		exponent_skippage;
	LITTLENUM_TYPE	word1;
	LITTLENUM_TYPE *	lp;

	return_value = str;
	f.low	= bits + MAX_PRECISION;
	f.high	= NULL;
	f.leader	= NULL;
	f.exponent	= NULL;
	f.sign	= '\0';

				/* Use more LittleNums than seems */
				/* necessary: the highest flonum may have */
				/* 15 leading 0 bits, so could be useless. */

	bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION);

	switch(what_kind) {
	case 'f':
		precision = F_PRECISION;
		exponent_bits = 8;
		break;

	case 'd':
		precision = D_PRECISION;
		exponent_bits = 11;
		break;

	default:
		make_invalid_floating_point_number (words);
		return NULL;
	}

	f.high = f.low + precision - 1 + GUARD;

	if (atof_generic (& return_value, ".", EXP_CHARS, & f)) {
		as_warn("Error converting floating point number (Exponent overflow?)");
		make_invalid_floating_point_number (words);
		return NULL;
	}

	if (f.low > f.leader) {
		/* 0.0e0 seen. */
		bzero (words, sizeof(LITTLENUM_TYPE) * precision);
		return return_value;
	}

	if(f.sign!='+' && f.sign!='-') {
		make_invalid_floating_point_number(words);
		return NULL;
	}


		/*
		 * All vaxen floating_point formats (so far) have:
		 * Bit 15 is sign bit.
		 * Bits 14:n are excess-whatever exponent.
		 * Bits n-1:0 (if any) are most significant bits of fraction.
		 * Bits 15:0 of the next word are the next most significant bits.
		 * And so on for each other word.
		 *
		 * So we need: number of bits of exponent, number of bits of
		 * mantissa.
		 */
	bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
	littlenum_pointer = f.leader;
	littlenums_left = 1 + f.leader-f.low;
	/* Seek (and forget) 1st significant bit */
	for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
		;
	exponent_1 = f.exponent + f.leader + 1 - f.low;
	/* Radix LITTLENUM_RADIX, point just higher than f.leader. */
	exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
	/* Radix 2. */
	exponent_3 = exponent_2 - exponent_skippage;
	/* Forget leading zeros, forget 1st bit. */
	exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
	/* Offset exponent. */

	if (exponent_4 & ~ mask [exponent_bits]) {
			/*
			 * Exponent overflow. Lose immediately.
			 */

			/*
			 * We leave return_value alone: admit we read the
			 * number, but return a floating exception
			 * because we can't encode the number.
			 */

		as_warn("Exponent overflow in floating-point number");
		make_invalid_floating_point_number (words);
		return return_value;
	}
	lp = words;

	/* Word 1. Sign, exponent and perhaps high bits. */
	/* Assume 2's complement integers. */
	word1 = ((exponent_4 & mask [exponent_bits]) << (15 - exponent_bits)) |
 ((f.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits);
	* lp ++ = word1;

	/* The rest of the words are just mantissa bits. */
	for (; lp < words + precision; lp++)
		* lp = next_bits (LITTLENUM_NUMBER_OF_BITS);

	if (next_bits (1)) {
		unsigned long int	carry;
			/*
			 * Since the NEXT bit is a 1, round UP the mantissa.
			 * The cunning design of these hidden-1 floats permits
			 * us to let the mantissa overflow into the exponent, and
			 * it 'does the right thing'. However, we lose if the
			 * highest-order bit of the lowest-order word flips.
			 * Is that clear?
			 */


/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
	Please allow at least 1 more bit in carry than is in a LITTLENUM.
	We need that extra bit to hold a carry during a LITTLENUM carry
	propagation. Another extra bit (kept 0) will assure us that we
	don't get a sticky sign bit after shifting right, and that
	permits us to propagate the carry without any masking of bits.
#endif */
		for (carry = 1, lp --; carry && (lp >= words); lp --) {
			carry = * lp + carry;
			* lp = carry;
			carry >>= LITTLENUM_NUMBER_OF_BITS;
		}
		if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
			/* We leave return_value alone: admit we read the
			 * number, but return a floating exception
			 * because we can't encode the number.
			 */
			make_invalid_floating_point_number (words);
			return return_value;
		}
	}
	return (return_value);
}

/* This is really identical to atof_ns32k except for some details */

gen_to_words(words,precision,exponent_bits)
LITTLENUM_TYPE *words;
long int	exponent_bits;
{
	int return_value=0;

	long int	exponent_1;
	long int	exponent_2;
	long int	exponent_3;
	long int	exponent_4;
	int		exponent_skippage;
	LITTLENUM_TYPE	word1;
	LITTLENUM_TYPE *	lp;

	if (generic_floating_point_number.low > generic_floating_point_number.leader) {
		/* 0.0e0 seen. */
		bzero (words, sizeof(LITTLENUM_TYPE) * precision);
		return return_value;
	}

		/*
		 * All vaxen floating_point formats (so far) have:
		 * Bit 15 is sign bit.
		 * Bits 14:n are excess-whatever exponent.
		 * Bits n-1:0 (if any) are most significant bits of fraction.
		 * Bits 15:0 of the next word are the next most significant bits.
		 * And so on for each other word.
		 *
		 * So we need: number of bits of exponent, number of bits of
		 * mantissa.
		 */
	bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
	littlenum_pointer = generic_floating_point_number.leader;
	littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low;
	/* Seek (and forget) 1st significant bit */
	for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
		;
	exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
 generic_floating_point_number.low;
	/* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
	exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
	/* Radix 2. */
	exponent_3 = exponent_2 - exponent_skippage;
	/* Forget leading zeros, forget 1st bit. */
	exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
	/* Offset exponent. */

	if (exponent_4 & ~ mask [exponent_bits]) {
			/*
			 * Exponent overflow. Lose immediately.
			 */

			/*
			 * We leave return_value alone: admit we read the
			 * number, but return a floating exception
			 * because we can't encode the number.
			 */

		make_invalid_floating_point_number (words);
		return return_value;
	}
	lp = words;

	/* Word 1. Sign, exponent and perhaps high bits. */
	/* Assume 2's complement integers. */
	word1 = ((exponent_4 & mask [exponent_bits]) << (15 - exponent_bits)) |
 ((generic_floating_point_number.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits);
	* lp ++ = word1;

	/* The rest of the words are just mantissa bits. */
	for (; lp < words + precision; lp++)
		* lp = next_bits (LITTLENUM_NUMBER_OF_BITS);

	if (next_bits (1)) {
		unsigned long int	carry;
			/*
			 * Since the NEXT bit is a 1, round UP the mantissa.
			 * The cunning design of these hidden-1 floats permits
			 * us to let the mantissa overflow into the exponent, and
			 * it 'does the right thing'. However, we lose if the
			 * highest-order bit of the lowest-order word flips.
			 * Is that clear?
			 */


/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
	Please allow at least 1 more bit in carry than is in a LITTLENUM.
	We need that extra bit to hold a carry during a LITTLENUM carry
	propagation. Another extra bit (kept 0) will assure us that we
	don't get a sticky sign bit after shifting right, and that
	permits us to propagate the carry without any masking of bits.
#endif */
		for (carry = 1, lp --; carry && (lp >= words); lp --) {
			carry = * lp + carry;
			* lp = carry;
			carry >>= LITTLENUM_NUMBER_OF_BITS;
		}
		if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
			/* We leave return_value alone: admit we read the
			 * number, but return a floating exception
			 * because we can't encode the number.
			 */
			make_invalid_floating_point_number (words);
			return return_value;
		}
	}
	return (return_value);
}

/* This routine is a real kludge.  Someone really should do it better, but
   I'm too lazy, and I don't understand this stuff all too well anyway
   (JF)
 */
void int_to_gen(x)
long x;
{
	char buf[20];
	char *bufp;

	sprintf(buf,"%ld",x);
	bufp= &buf[0];
	if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number))
		as_warn("Error converting number to floating point (Exponent overflow?)");
}